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We consider weak solutions u : ΩT → R
N to parabolic systems of the type

ut − div a(x, t, Du) = 0 in ΩT = Ω × (0, T ),

where the function a(x, t, ξ) satisfies (p, q)-growth conditions. We give an a priori
estimate for weak solutions in the case of possibly discontinuous coefficients. More
precisely, the partial maps x �→ a(x, t, ξ) under consideration may not be continuous,
but may only possess a Sobolev-type regularity. In a certain sense, our assumption
means that the weak derivatives Dxa(·, ·, ξ) are contained in the class
Lα(0, T ; Lβ(Ω)), where the integrability exponents α, β are coupled by

p(n + 2) − 2n

2α
+

n

β
= 1 − κ

for some κ ∈ (0, 1). For the gap between the two growth exponents we assume

2 � p < q � p +
2κ

n + 2
.

Under further assumptions on the integrability of the spatial gradient, we prove a
result on higher differentiability in space as well as the existence of a weak time

derivative ut ∈ L
p/(q−1)
loc (ΩT ). We use the corresponding a priori estimate to deduce

the existence of solutions of Cauchy–Dirichlet problems with the mentioned higher
differentiability property.
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1. Introduction and statement of the results

We consider parabolic systems of the type

ut − div a(x, t,Du) = 0 in ΩT = Ω × (0, T ), (1.1)
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where the function a(x, t, ξ) satisfies (p, q)-growth conditions in the gradient variable
and is possibly discontinuous in the x-variable. The exponents that we consider
satisfy 2 � p < q � p+ 1. A simple model case of the systems that we have in mind
is given by

ut − div (|Du|p−2Du+ b(x)c(t)|Du|q−2Du) = 0 in ΩT = Ω × (0, T ),

with a Sobolev coefficient b(x), and a merely measurable coefficient c(t).
For the case q = p, there is a wide literature on the regularity properties of

weak solutions u ∈ Lp(0, T ;W 1,p(Ω,RN )) of (1.1). We refer to [12,14] for an
overview of results on regularity, partial regularity, higher differentiability and
integrability properties of the spatial gradients. In the case of p-Laplacian sys-
tems with coefficients differentiable in the spatial variable, it is known that higher
differentiability of solutions holds in the sense that the non-linear expressions
Vp(Du) := (μ2 + |Du|2)(p−2)/4Du of the first spatial derivatives are weakly differ-
entiable with D(Vp(Du)) ∈ L2

loc(ΩT ). The corresponding regularity property for the
time derivative is ut ∈ L

p/(p−1)
loc (ΩT ). We refer to Duzaar, Mingione and Steffen in

[14] for the precise results, see also [2,13,31]. We point out that under the weaker
assumption of Hölder continuous coefficients, their methods imply only a higher
differentiability result on a fractional Sobolev scale. For coefficients with weaker
regularity properties than Hölder continuity, the known regularity results include
Calderón–Zygmund type integrability results for the spatial gradient under a VMO-
type condition on x �→ a(x, t, ξ) [1,14,32], and a partial Hölder regularity result
of the form u ∈ C

0;α,α/2
loc (ΩT \ Σu) with |Σu| = 0, in the case of merely continuous

coefficients that might not even be Dini-continuous [3]. In our recent article [20],
we found that a Sobolev-type condition on the coefficients is sufficient to establish
the existence of higher derivatives. This result was inspired by the earlier papers
[9,19,22,29,30] in the elliptic setting.

In the present paper, we deal with the case of a non-standard growth condition
introduced by Marcellini [27,28] in the elliptic context and later on widely studied
by many authors, see e.g. [7,8,10,15–18]. In the parabolic case, in contrast to the
elliptic setting, not much is known for the non-standard (p, q)-growth condition.
We refer to [4,5,34,35] and references therein for some results about regularity in
parabolic problems with (p, q)-growth. As far as we know, the case of discontinuous
coefficients has not been exploited yet.

Our aim is to combine a non-standard growth assumption with coefficients pos-
sessing only a weak Sobolev-type regularity with respect to the x-variable. In order
to make precise our assumptions on the coefficients, we use a characterization of
Sobolev functions due to DeVore and Sharpley [11] and assume

|a(x, t, ξ) − a(y, t, ξ)| � |x− y|[γ(x, t) + γ(y, t)](μ2 + |ξ|2)(q−1)/2, (1.2)

for some γ : ΩT → [0,∞), which plays the role of the derivative Dxa, see also [24].
Note that (1.2) is a weak form of continuity since the function γ may blow up at
some points. On the function γ we impose the anisotropic integrability assumption{

γ ∈ Lα(0, T ;Lβ(Ω)) if p < α <∞, n < β <∞,

γ ∈ C0([0, T ];Lβ(Ω)) if α = ∞,
(1.3)
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that determines the Sobolev regularity of the coefficients, where p < α � +∞ and
n � β < +∞ are related by

p(n+ 2) − 2n
2α

+
n

β
= 1 − κ, (1.4)

for a fixed κ ∈ (0, 1). We note that in the special case p = 2, this condition takes
the simpler form

2
α

+
n

β
= 1 − κ.

For a non-negative function γ satisfying (1.3) and for some exponents 2 � p �
q < p+ 1, we consider a measurable function a : ΩT × R

Nn → R
Nn for which

ξ �→ a(x, t, ξ) is differentiable for a.e. (x, t) ∈ ΩT .

Moreover, for all x, y ∈ Ω, t ∈ (0, T ) and all ξ, ξ̄ ∈ R
Nn, we impose the following

(p, q)-growth conditions

|a(x, t, ξ)| + (μ2 + |ξ|2)1/2|∂ξa(x, t, ξ)| � L(μ2 + |ξ|2)(q−1)/2, (1.5)

〈∂ξa(x, t, ξ)ξ̄, ξ̄〉 � ν(μ2 + |ξ|2)(p−2)/2|ξ̄|2, (1.6)

|a(x, t, ξ) − a(y, t, ξ)| � |x− y| [γ(x, t) + γ(y, t)] (μ2 + |ξ|2)(q−1)/2, (1.7)

for constants 0 < ν � L, μ ∈ [0, 1] and γ : ΩT → [0,∞) satisfying (1.3). We consider
weak solutions, in the sense of definition 2.1, to

{
ut − diva(x, t,Du) = 0 in ΩT = Ω × (0, T ),
u = g on ∂parΩT ,

(1.8)

with the initial and boundary data satisfying

{
g ∈ Lp(q−1)/(p−1)(0, T ;W 1,p(q−1)/(p−1)(ΩT ,R

N )) ∩ C0([0, T ];L2(Ω,RN )),
∂tg ∈ Lp′

(0, T ;W−1,p′
(ΩT ,R

N )).
(1.9)

under additional integrability assumptions on the spatial gradient. More precisely,
we assume that Du ∈ L

p+4/n
loc (ΩT ) and Du ∈ Lδ-Lσ

loc(ΩT ,R
N ) for the exponents

δ, σ satisfying the conditions (1.12) below (see § 2 for the intuitive notation Lδ-Lσ).
We note that the resulting estimate will not depend on the Lp+4/n-norm or on the
Lδ-Lσ-norm of the gradients. The a priori estimate we will obtain is stated in the
following
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Theorem 1.1. Let u ∈ Lp(0, T ;W 1,p(Ω,RN )) be a weak solution of system (1.1),
under the assumptions (1.5), (1.6), (1.7), where

2 � p < q � p+
2κ
n+ 2

. (1.10)

Moreover, suppose that γ ∈ Lα-Lβ(ΩT ) with the exponents α, β from (1.4) and
assume

Du ∈ L
p+4/n
loc (ΩT ) and Du ∈ Lδ-Lσ

loc(ΩT ,R
N ) (1.11)

for the exponents δ and σ given by

δ :=
p(2 − p+ α) − α(p− 2)(q − p)

α(p− q + 1) − p
and σ :=

βp(2 − p+ α) − αβ(p− 2)(q − p)
β(α(p− q + 1) − p+ 2) − 2α

.

(1.12)

There exists a constant γ0 = γ0(n,N, p, q, ν, L, α, β,K) > 0 such that, if
∫

QR0 (z0)

(μ2 + |Du|2)p/2 dz < K and ‖γ(x, t)‖Lα-Lβ(QR0 (z0)) � γ0 (1.13)

for some parabolic cylinder QR0(z0) � ΩT , then we have D(Vp(Du)) ∈
L2

loc(QR0(z0)) and ∂tu ∈ L
p/(q−1)
loc (QR0(z0)) with the estimates

sup
t0−(R/2)2<t<t0

−
∫

BR/2(x0)

|Du(x, t)|2dx+R2−
∫

QR/2(z0)

|D(Vp(Du))|2 dz

� c

(
−
∫

QR(z0)

(1 + |Du|p) dz

)1+(q−p)/θ

(1.14)

and

Rp/(q−1)−
∫

QR/4

|∂tu|p/(q−1) dz � c

(
−
∫

QR

(1 + |Du|p) dz
)1+(p(q−p))/(2(q−1)θ)

(1.15)

for any radius R ∈ (0, R0), with constants c = c(n,N, p, q, ν, L, α, β) and θ =
1 − (n+ 2)(q − p)/2.

Remark 1.2. In the case α = ∞, we interpret the exponents δ, σ from (1.12) as
the respective limits when α→ ∞.

As an application of the a priori estimate in theorem 1.1, we prove the existence
of at least one solution which exhibits a higher differentiability property. Note that,
since the uniqueness is not guaranteed in problems with (p, q)-growth and (x, t)-
dependence, we can not expect this regularity for an arbitrary solution. For related
existence results, see e.g. [5,6].
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In order to specify the dependence of the maximal radius in the following result,
we abbreviate

Mg :=
∫

ΩT

(1 + |Dg|)p(q−1)/(p−1) dz + ‖g‖2
L∞-L2 + ‖∂tg‖p′

Lp′−W−1,p′ . (1.16)

Then, referring to § 2 for the definition of the space Cw, we have:

Theorem 1.3. Assume (1.4)–(1.7), where p and q are related by

2 � p < q � p+
2κ
n+ 2

, (1.17)

and consider Cauchy–Dirichlet data as in (1.9).
Then there exists a weak solution u ∈ g + Lp(0, T ;W 1,p

0 (Ω,RN )) ∩ Cw([0, T ];
L2(Ω,R)) of the Cauchy–Dirichlet problem (1.8), which satisfies

D(Vp(Du)) ∈ L2
loc(ΩT ) and ∂tu ∈ L

p/(q−1)
loc (ΩT ).

Moreover, there exist a radius R0 = R0(n,N, p, q, ν, L, α, β, γ(·),Mg) > 0 and a
constant c = c(n,N, p, q, ν, L, α, β) such that

sup
t0−(R/2)2<t<t0

−
∫

BR/2

|Du(x, t)|2dx+R2−
∫

QR/2

|D(Vp(Du))|2 dz

� c

(
−
∫

QR

(1 + |Du|p) dz
)1+(q−p)/θ

(1.18)

and

Rp/(q−1)−
∫

QR/4

|∂tu|p/(q−1) dz � c

(
−
∫

QR

(1 + |Du|p) dz
)1+(p(q−p))/(2(q−1)θ)

(1.19)

hold for every parabolic cylinder QR(z0) ⊂ QR0(z0) � ΩT , with

θ := 1 − n+ 2
2

(q − p). (1.20)

By virtue of the interpolation inequality stated in lemma 2.6 below, the esti-
mate (1.18) implies an integrability estimate for the first spatial derivative that we
state in the following.

Corollary 1.4. Under the assumptions of theorem 1.3, we have Du ∈ Lδ-Lσ
loc(ΩT )

for any exponents δ, σ such that p < δ < +∞, 2 < σ < np/(n− 2) and

2
σ

+
p+ 4/n− 2

δ
= 1. (1.21)

Furthermore, with the radius R0 > 0 and the parameter θ ∈ (0, 1) from theorem 1.3,
we have the estimate

R−n‖Du(x, t)‖2δ/(δ−p+2)

Lδ-Lσ(QR/4(z0))
� c

(
−
∫

QR

(1 + |Du|p) dz
)1+(q−p)/θ

(1.22)

for every parabolic cylinder QR(z0) ⊂ QR0(z0) � ΩT , where c = c(n,N, p, q, ν, L, α, β),
and θ is as in (1.20).
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Remark 1.5. In particular, in the estimate (1.22) we can choose δ = σ = p+ 4/n,
which gives Du ∈ L

p+4/n
loc (ΩT ) with the local estimate

(
−
∫

QR/4(z0)

|Du|p+4/n dz

)n/(n+2)

� c

(
−
∫

QR

(1 + |Du|p) dz
)1+(q−p)/θ

with a constant c = c(n,N, p, q, ν, L, α, β) and for every parabolic cylinderQR(z0) ⊂
QR0(z0) � ΩT . The parameter θ in some sense measures the distance of q − p from
the critical bound 2/(n+ 2). In particular, it holds θ ↓ 0 when q − p ↑ 2/(n+ 2).

We conclude this section with some technical details of the proofs. The difference
quotient method leads to integrals of the type

∫
Qρ

γ2|Du|p dxdt,

due to the Sobolev-type assumption on the coefficients. In order to bound this
integral from above, we need an additional integrability assumption of the type
Du ∈ Lδ-Lσ(QR0), for exponents δ, σ that are determined — in an anything
but obvious way — by the given exponents α, β (cf. (1.12)). We note that once
the desired higher differentiability is established, this kind of integrability follows
from the interpolation result from lemma 2.6. Moreover, in order to re-absorb cer-
tain integrals that arise during the estimates, we rely on the second additional
assumption

‖γ(x, t)‖Lα-Lβ(QR0 ) � γ0 (1.23)

for a sufficiently small parameter γ0 > 0. This can always be achieved by localizing
in the domain. We point out that in the case α = ∞ and β > n, our assumption
γ ∈ C0([0, T ];Lβ(Ω)) is crucial in order to achieve (1.23) on a sufficiently small
cylinder. Finally, we note that the unbalanced growth of the parabolic system (1.8)
leads to inequalities that do not possess the preferable homogeneity. This is the
point where the first assumption from (1.13) can be exploited in order to compensate
for the inhomogeneity of the estimates.

For the construction of the solutions in theorem 1.3, we consider regularized
problems of the type

∂tuε − div a(x, t,Duε) − εdiv (|Duε|q−2Duε) = 0,

whose higher differentiability follows by our preceding paper [20]. This allows us
to apply the a priori estimate from theorem 1.1 and obtain estimates which are
independent of ε. The interpolation lemma 2.6 guarantees the higher integrability
of the spatial gradient leading to the locally strong convergence. The passage to
the limit in the parabolic system is therefore legitimate, and we obtain a solution
with the asserted regularity properties.
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2. Preliminaries

2.1. Notation and elementary lemmas

In this section, we fix the notations used throughout the article and collect some
preliminary results that will prove useful in the sequel.

We shall denote by Ω a bounded domain in R
n and abbreviate ΩT = Ω × (0, T ),

with T > 0. For points in space-time, we will frequently use abbreviations like
z = (x, t) or z0 = (x0, t0), for spatial variables x, x0 ∈ R

n and times t, t0 ∈ R. We
write Bρ(x0) ⊂ R

n for the open ball of radius ρ > 0 and center x0 ∈ R
n. Moreover,

we use the notation

Qρ(z0) := Bρ(x0) × (t0 − ρ2, t0), z0 = (x0, t0) ∈ R
n × R, ρ > 0,

for backward parabolic cylinders. For the standard scalar product on the space R
Nn

of N × n matrices, we write 〈·, ·〉, in contrast to the Euclidean scalar product on
R

N , which we denote by ‘·’.
For integrability exponents 1 � δ, σ � ∞, we use the short-hand notation

Lδ-Lσ(ΩT ,R
k) := Lδ(0, T ;Lσ(Ω,Rk)).

For the corresponding norm, we write

‖u‖Lδ-Lσ(ΩT ) :=

[∫ T

0

(∫
Ω

|u|σ dx
)δ/σ

dt

]1/δ

. (2.1)

Definition 2.1. For exponents 2 � p � q � p+ 1, a function u ∈ g + Lp(0, T ;
W 1,p

0 (Ω; RN )) ∩ Cw([0, T ];L2(Ω,RN )) is a weak solution of the Cauchy–Dirichlet
problem (1.8) if u(·, 0) = g(·, 0) and∫

ΩT

(uϕt − 〈a(x, t,Du),Dϕ〉) dz = 0

for every ϕ ∈ C∞
0 (ΩT ; RN ).

Here, we used the notation Cw([0, T ];L2(Ω,RN )) for the space of maps u ∈
L∞(0, T ;L2(Ω,RN )) that are continuous with respect to the weak L2-topology.

We will denote by c a general constant that may vary on different occasions, even
within the same line of estimates. Relevant dependencies on parameters and special
constants will be suitably emphasized using parentheses or subscripts.

We use the customary notation

Vp(ξ) := (μ2 + |ξ|2)(p−2)/4ξ for all ξ ∈ R
k.

Since the value of μ ∈ [0, 1] is fixed throughout the article, we omit the dependence
on μ in the notation.

The next two lemmas contain technical inequalities that will be useful for our
aims.
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Lemma 2.2 ([21, lemma 2.2]). For any p � 2 we have

c−1(μ2 + |ξ|2 + |η|2)(p−2)/2|ξ − η|2 � |Vp(ξ) − Vp(η)|2

� c(μ2 + |ξ|2 + |η|2)(p−2)/2|ξ − η|2

for any ξ, η ∈ R
k and a constant c = c(p) > 0.

Lemma 2.3 ([21, lemma 2.1]). For any p � 2 we have

c−1(μ2 + |ξ|2 + |η|2)(p−2)/2 �
∫ 1

0

(μ2 + |ξ + s(η − ξ)|2)(p−2)/2 ds

� (μ2 + |ξ|2 + |η|2)(p−2)/2

for any ξ, η ∈ R
k and a constant c = c(p) > 0.

In conclusion, we recall the following well-known iteration lemma that has
important applications in the so-called hole filling method, cf. [23, lemma 6.1,
p. 191].

Lemma 2.4. For R0 < R1, consider a bounded function f : [R0, R1] → [0,∞) with

f(r) � ϑf(ρ) +
A

(ρ− r)α
+

B

(ρ− r)β
+ C for all R0 < r < ρ < R1,

where A,B,C and α > β denote non-negative constants and ϑ ∈ (0, 1). Then we
have

f(R0) � c(α, ϑ)
(

A

(R1 −R0)α
+

B

(R1 −R0)α
+ C

)
.

2.2. A higher differentiability result under standard growth conditions

For later use, we recall a previous result from [20, theorem 1.1] on higher dif-
ferentiability of solutions to parabolic systems with standard growth conditions. It
will be needed in the approximation argument to justify the application of the a
priori estimate. We restate the result from [20] with q in place of p since we will
apply it for this exponent. The mentioned result is concerned with weak solutions
to systems of the form

∂tu− div a(x, t,Du) = 0 on ΩT , (2.2)

under the standard q-growth conditions

|a(x, t, ξ)| + (μ2 + |ξ|2)1/2|∂ξa(x, t, ξ)| � L(μ2 + |ξ|2)(q−1)/2, (2.3)

〈∂ξa(x, t, ξ)ξ̄, ξ̄〉 � ν(μ2 + |ξ|2)(q−2)/2|ξ̄|2, (2.4)

for constants 0 < ν � L, μ ∈ [0, 1], where the x-dependence satisfies a Sobolev-type
condition of the form

|a(x, t, ξ) − a(y, t, ξ)| � |x− y| [γ(x, t) + γ(y, t)] (μ2 + |ξ|2)(q−1)/2, (2.5)
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for a function γ ∈ Lα(0, T ;Lβ(Ω)) for q < α <∞ and n < β <∞ with

q(n+ 2) − 2n
2α

+
n

β
= 1. (2.6)

Theorem 2.5 ([20, theorem 1.1]). Let u ∈ Lq(0, T ;W 1,q(Ω,RN )) be a weak solution
of system (2.2) under the assumptions (2.3)–(2.6). Moreover, for a fixed positive
constant K, assume that∫

ΩT

(μ2 + |Du(x, t)|2)q/2 dz < K. (2.7)

Then Vq(Du) := (μ2 + |Du|2)(q−2)/4Du satisfies D(Vq(Du)) ∈ L2
loc(ΩT ) and there

exists a radius R0 = R0(n,N, q, ν, L, α, β, γ(·),K) such that

sup
t0−(R/2)2<t<t0

−
∫

BR/2(x0)

|Du(x, t)|2dx+R2−
∫

QR/2(z0)

|D(Vq(Du))|2 dz

� c−
∫

QR(z0)

(μq + |Du|2 + |Du|q) dz

holds for every parabolic cylinder QR(z0) ⊂ QR0(z0) � ΩT , with a constant c =
c(n,N, q, ν, L, α, β).

2.3. An interpolation inequality

The higher differentiability can be exploited by means of the following interpo-
lation inequality to derive an integrability estimate for the first spatial derivatives.
The proof can be found in [20, proposition 3.1]. Note that for q = s = p+ 4/n it
reduces to lemma 5.3 in [14].

Lemma 2.6. Let u : ΩT → R
N be a function with Du ∈ L∞(0, T ;L2(Ω,RNn)) and

D(Vp(Du)) ∈ L2(ΩT ). Then for exponents δ, σ with p < δ <∞, 2 < σ < np/(n− 2)
and

2
σ

+
p+ 4/n− 2

δ
= 1, (2.8)

it holds |Du| ∈ Lδ-Lσ
loc(ΩT ), with

∫ t0

t0−ρ2

(∫
Bλρ(x0)

|Du|σdx

)δ/σ

dt

� c sup
t0−ρ2<t<t0

(∫
Bρ(x0)

(μ+ |Du|)2 dx

)(δ−p)/2

×
∫

Qρ(z0)

(
|DVp(Du)|2 +

(μ+ |Du|)p

ρ2(1 − λ)2

)
dz (2.9)

for every 0 < λ < 1 and for every parabolic cylinder Qρ(z0) � ΩT . Here, the
constant c depends only on n,N, p, δ and σ.
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3. Proof of the a priori estimate

For the proof of Theorem 1.1, we employ the notation

τhF (x, t) ≡ τh,iF (x, t) := F (x+ hei, t) − F (x, t),

ΔhF (x, t) ≡ Δh,iF (x, t) :=
F (x+ hei, t) − F (x, t)

h
,

(3.1)

for any F ∈ L1
loc(ΩT ,R

N ) and i = 1, . . . , n, |h| > 0.
We divide the proof of the theorem in two parts that are given in the following

two subsections. The first subsection is devoted to the proof of (1.14), while the
second contains the proof of (1.15).

3.1. The second spatial derivatives

Since u is a weak solution of the parabolic system (1.1), we have

∫
ΩT

u · ∂tϕ− 〈a(x, t,Du),Dϕ〉dz = 0,

for every test function ϕ ∈ C∞
0 (ΩT ). Replacing ϕ with τ−hϕ and performing a

discrete integration by parts, we get

∫
ΩT

τhu · ∂tϕ− 〈τh(a(x, t,Du)),Dϕ〉dz = 0,

for sufficiently small |h| > 0. Now we fix smooth symmetric mollifiers ψ1,ε ∈
C∞

0 (B1(0)) and ψ2,ε ∈ C∞
0 ((−1, 1)), ε > 0 and abbreviate Fε := ψ1,ε(x)ψ2,ε(t) ∗ F

for the mollification of a function F : ΩT → R
k. Replacing ϕ by ϕε in the previous

equation and using the symmetry of the mollifiers, we deduce

∫
ΩT

(τhu)ε · ∂tϕ− 〈τh(a(x, t,Du))ε,Dϕ〉dz = 0, (3.2)

for ε > 0 small enough. Now, we choose a testing function of the form ϕ = Φ · (τhu)ε,
for a smooth function Φ with compact support. An integration by parts yields

− 1
2

∫
ΩT

|(τhu)ε|2∂tΦdz +
∫

ΩT

Φ〈(τha(x, t,Du))ε,D(τhu)ε〉dz

= −
∫

ΩT

〈(τha(x, t,Du))ε,DΦ ⊗ (τhu)ε〉dz. (3.3)

At this point, we note that the assumptions (1.11) and (1.10) imply Du ∈
Lp+4/n(ΩT ) ⊂ Lq(ΩT ). In view of the q-growth condition (1.5), it is therefore legit-
imate to pass to the limit as ε ↓ 0 in the preceding integrals. In this way, we derive
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the identity

− 1
2

∫
ΩT

|τhu|2∂tΦdz +
∫

ΩT

Φ〈τha(x, t,Du),Dτhu〉dz

= −
∫

ΩT

〈τha(x, t,Du),DΦ ⊗ τhu〉dz. (3.4)

A standard approximation argument yields the same identity for any Φ ∈
W 1,∞

0 (ΩT ). Now, we consider a parabolic cylinder Qρ(z0) ⊂ QR0(z0) ⊂ ΩT for R0 ∈
(0, 1] to be chosen later. For a fixed time t1 ∈ (t0 − ρ2, t0) and Δ ∈ (0, t0 − t1), we
choose Φ(x, t) = χ̄(t)χ(t)η2(x) with χ ∈W 1,∞((0, T ), [0, 1]), χ ≡ 0 on (0, t0 − ρ2)
and ∂tχ � 0, η ∈ C∞

0 (Bρ(x0), [0, 1]), and with the Lipschitz continuous function
χ̄ : (0, T ) → R defined by

χ̄(t) =

⎧⎪⎨
⎪⎩

1 if t � t1,

affine if t1 < t < t1 + Δ,
0 if t � t1 + Δ.

(3.5)

With such a choice, equation (3.4) becomes

− 1
2

∫
ΩT

|τhu|2η2(x)χ(t)∂tχ̄(t) dz − 1
2

∫
ΩT

|τhu|2η2(x)χ̄(t)∂tχ(t) dz

+
∫

ΩT

χ̄(t)χ(t)η2(x)〈τha(x, t,Du),Dτhu〉dz

= −2
∫

ΩT

〈τha(x, t,Du), χ̄(t)χ(t)η(x)∇η(x) ⊗ τhu〉dz. (3.6)

Letting Δ → 0 in the previous equality, we get

1
2

∫
Bρ(x0)

χ(t1)η2(x)|τhu(x, t1)|2dx+
∫

Qt1

χ(t)η2(x)〈τha(x, t,Du),Dτhu〉dz

= −2
∫

Qt1

χ(t)η(x)〈τha(x, t,Du),∇η ⊗ τhu〉dz +
1
2

∫
Qt1

∂tχη
2(x)|τhu|2 dz,

(3.7)

for almost every t1 ∈ (0, T ), where we abbreviated Qt1 = Bρ(x0) × (t0 − ρ2, t1).
Decomposing now

τha(x, t,Du) = [a(x+ hei, t,Du(x+ hei, t)) − a(x+ hei, t,Du(x, t))]

+ [a(x+ hei, t,Du(x, t)) − a(x, t,Du(x, t))]

=: Ah + Bh, (3.8)
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equation (3.7) can be re-written as follows:

1
2

∫
Bρ(x0)

χ(t1)η2(x)|τhu(x, t1)|2dx+
∫

Qt1

χ(t)η2(x)〈Ah,Dτhu〉dz

= −2
∫

Qt1

χ(t)η(x)〈Ah,∇η ⊗ τhu〉dz − 2
∫

Qt1

χ(t)η(x)〈Bh,∇η ⊗ τhu〉dz

+
1
2

∫
Qt1

∂tχη
2|τhu|2 dz −

∫
Qt1

χ(t)η2(x)〈Bh,Dτhu〉dz

=: I1 + I2 + I3 + I4. (3.9)

Observe that

Ah =
∫ 1

0

∂ξa(x+ hei, t,Du(x, t) + sτhDu) τhDu ds. (3.10)

By virtue of assumption (1.6) and lemma 2.3, this yields that

〈Ah, τhDu〉 � cpν(μ2 + |Du|2 + |Du(x+ hei, t)|2)(p−2)/2|τhDu|2

= cpνD(h)(p−2)/2|τhDu|2, (3.11)

where we set

D(h) := μ2 + |Du(x+ hei, t)|2 + |Du(x, t)|2. (3.12)

The estimate (3.11) implies that the left-hand side of (3.9) can be controlled from
below as follows

1
2

∫
Bρ(x0)

χ(t1)η2(x)|τhu(x, t1)|2dx+
∫

Qt1

χ(t)η2(x)〈Ah,Dτhu〉dz

� 1
2

∫
Bρ(x0)

χ(t1)η2(x)|τhu(x, t1)|2dx

+ cpν

∫
Qt1

χ(t)η2(x)D(h)(p−2)/2|τhDu|2 dz. (3.13)

Now, by assumption (1.7) and setting

Γ(h) := γ(x+ hei, t) + γ(x, t), (3.14)

we deduce that

|I4| �
∫

Qρ

χ(t)η2(x)|Bh| |Dτhu|dz

� |h|
∫

Qρ

χ(t)η2(x)Γ(h)(μ2 + |Du(x, t)|2)(q−1)/2|Dτhu|dz

� |h|
∫

Qρ

χ(t)η2(x)Γ(h)D(h)(q−1)/2|Dτhu|dz

� ε

∫
Qρ

χ(t)η2(x)D(h)(p−2)/2|Dτhu|2 dz + cεh
2

∫
Qρ

Γ(h)2D(h)(2q−p)/2 dz,

(3.15)
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where we have used the fact 0 � χ, η � 1 and Young’s inequality, for some constant
ε ∈ (0, 1) that will be chosen later. At this point, we distinguish between the two
cases α ∈ (p,∞) and α = ∞, in which we shall use different arguments to estimate
the second integral in (3.15).

We start with the case α ∈ (p,∞). Let us first state some bounds for our parame-
ters that will justify the applications of Hölder’s inequality below. As a consequence
of (1.17) and (1.4) we have

q − p � 2κ
n+ 2

< κ and α � p(n+ 2) − 2n
2(1 − κ)

� p

1 − κ
, (3.16)

where we used p � 2 in the last step. This implies in particular

α(p− q + 1) > p. (3.17)

Next, we note that because of p � 2, the coupling (1.4) implies

1
β

� 1 − κ

n
− p

αn
.

Using this bound and (3.16), we deduce

2 − p+ α− α(q − p) > 2
α

β
> 0. (3.18)

Now, we estimate the last integral in (3.15) by Hölder’s inequality with expo-
nents α/(α(p− q + 1) − p+ 2) and α/(p− 2 + αq − αp) as follows. We note that
the Hölder exponents are greater than 1 because of (3.17) and q � p � 2. In this
way, we deduce∫

Qρ

Γ(h)2D(h)(2q−p)/2 dz

=
∫

Qρ

Γ(h)2D(h)(α(2q−p)−p(p−2+αq−αp))/2αD(h)(p(p−2+αq−αp)/2α dz

�
(∫

Qρ

Γ(h)2α/(α(p−q+1)−p+2)

×D(h)(α(2q−p)−p(p−2+αq−αp))/(2α(p−q+1)−2p+4) dz

)(α(p−q+1)−p+2)/α

×
(∫

Qρ

D(h)p/2 dz

)(p−2+αq−αp)/α

� c(K)

(∫
Qρ

Γ(h)2α/(α(p−q+1)−p+2)

×D(h)(α(2q−p)−p(p−2+αq−αp))/(2α(p−q+1)−2p+4) dz

)(α(p−q+1)−p+2)/α
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with the constant K from assumption (1.13). Next, we first use Hölder’s
inequality in space with exponents β[α(p− q + 1) − p+ 2]/2α and β[α(p−
q + 1) − p+ 2]/(β[α(p− q + 1) − p+ 2] − 2α), and then in time with exponents
(α(p− q + 1) − p+ 2)/2 and (α(p− q + 1) − p+ 2)/(α(p− q + 1) − p), which is
legitimate because of (3.17) and (3.18). In this way, we deduce∫

Qρ

Γ(h)(2α)/(α(p−q+1)−p+2)D(h)(α(2q−p)−p(p−2+αq−αp))/(2α(p−q+1)−2p+4) dz

=
∫ t0

t0−ρ2

(∫
Bρ(x0)

Γ(h)2α/(α(p−q+1)−p+2)

×D(h)(α(2q−p)−p(p−2+αq−αp))/(2α(p−q+1)−2p+4) dx

)
dt

�
∫ t0

t0−ρ2

⎡
⎣
(∫

Bρ(x0)

Γ(h)β dx

)2α/(β[α(p−q+1)−p+2])

×
(∫

Bρ(x0)

D(h)σ/2 dx

)(β[α(p−q+1)−p+2]−2α)/(β[α(p−q+1)−p+2])
⎤
⎦dt

�

⎡
⎣∫ t0

t0−ρ2

(∫
Bρ(x0)

Γ(h)β dx

)α/β

dt

⎤
⎦

2/(α(p−q+1)−p+2)

·
⎡
⎣∫ t0

t0−ρ2

(∫
Bρ(x0)

D(h)σ/2 dx

)δ/σ

dt

⎤
⎦

(α(p−q+1)−p)/(α(p−q+1)−p+2)

.

Joining the two preceding estimates, we arrive at∫
Qρ

Γ(h)2D(h)(2q−p)/2 dz � c(K)‖Γ(h)‖2
Lα-Lβ(Qρ)‖D(h)1/2‖δ[α(p−q+1)−p]/α

Lδ-Lσ(Qρ)

= c(K)‖Γ(h)‖2
Lα-Lβ(Qρ)‖D(h)1/2‖2δ/(δ−p+2)

Lδ-Lσ(Qρ)
(3.19)

where we used that

α(p− q + 1) − p

α
=

2
δ − p+ 2

.

Now we turn our attention to the case α = ∞, in which we have β = n/(1 − κ),

δ =
p− (p− 2)(q − p)

p− q + 1
and σ =

β(p− (p− 2)(q − p))
β(p− q + 1) − 2

.

We note that q − p � 2κ/(n+ 2) < κ implies σ <∞. We apply Hölder’s inequality
with exponents 1/(p− q + 1) and 1/(q − p) to the last integral in (3.15), with the
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result ∫
Qρ

Γ(h)2D(h)(2q−p)/2 dz

=
∫

Qρ

Γ(h)2D(h)(2q−p−p(q−p))/2D(h)p(q−p)/2 dz

�
(∫

Qρ

Γ(h)2/(p−q+1)D(h)(2q−p−p(q−p))/(2(p−q+1)) dz

)p−q+1

×
(∫

Qρ

D(h)p/2 dz

)q−p

� c(K)

(∫
Qρ

Γ(h)2/(p−q+1)D(h)δ/2 dz

)p−q+1

,

where we used assumption (1.13) in the last step. To the last integral,
we apply Hölder’s inequality in space with exponents β(p− q + 1)/2 and
(β(p− q + 1)/(β(p− q + 1) − 2) = σ/δ to deduce

∫
Qρ

Γ(h)2/(p−q+1)D(h)δ/2 dz

=
∫ t0

t0−ρ2

(∫
Bρ(x0)

Γ(h)β dx

)2/(β(p−q+1))(∫
Bρ(x0)

D(h)σ/2 dx

)δ/σ

dt

� ‖Γ(h)‖2/(p−q+1)

L∞-Lβ(Qρ)
‖D(h)1/2‖δ

Lδ-Lσ(Qρ).

Combining both estimates, we deduce

∫
Qρ

Γ(h)2D(h)(2q−p)/2 dz � c(K)‖Γ(h)‖2
L∞-Lβ(Qρ)‖D(h)1/2‖δ(p−q+1)

Lδ-Lσ(Qρ)

= c(K)‖Γ(h)‖2
Lα-Lβ(Qρ)‖D(h)1/2‖2δ/(δ−p+2)

Lδ-Lσ(Qρ)
, (3.20)

which establishes (3.19) also in the borderline case α = ∞. Plugging the estimate
(3.19), respectively (3.20), into (3.15) we get

|I4| � ε

∫
Qρ

χ(t)η2(x)D(h)(p−2)/2|Dτhu|2 dz

+ cε(K)h2‖Γ(h)‖2
Lα-Lβ(Qρ)‖D(h)1/2‖2δ/(δ−p+2)

Lδ-Lσ(Qρ)
. (3.21)

The estimate (3.19), respectively (3.20), can also be used to bound the second
integral from (3.9) as in the following. Indeed, by assumption (1.7) and Young’s
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inequality we have that

|I2| � 2|h|
∫

Qρ

χ(t)η(x)|∇η|Γ(h)(μ2 + |Du(x, t)|2)(q−1)/2|τhu|dz

�
∫

Qρ

χ(t)|∇η|2D(h)(p−2)/2|τhu|2 dz

+ h2

∫
Qρ

χ(t)η2(x)Γ(h)2D(h)(2q−p)/2 dz

and hence, by using (3.19), or (3.20), we conclude that

|I2| �
∫

Qρ

χ(t)|∇η|2D(h)(p−2)/2|τhu|2 dz

+ cε(K)h2‖Γ(h)‖2
Lα-Lβ(Qρ)‖D(h)1/2‖2δ/(δ−p+2)

Lδ-Lσ(Qρ)
. (3.22)

It remains to estimate I1. Assumption (1.5) and the equality (3.10) yield

|Ah| � L|τhDu(x, t)|
∫ 1

0

(μ2 + |Du(x, t) + sτhDu(x, t)|2)(q−2)/2 ds

� cLD(h)(q−2)/2|τhDu(x, t)|, (3.23)

where we have used lemma 2.3 in the last step. Applying Young’s and Hölder’s
inequalities, we thus deduce

|I1| � cL

∫
Qρ

χ(t)η(x)|∇η|D(h)(q−2)/2|τhDu||τhu|dz

� ε

∫
Qρ

χ(t)η2(x)D(h)(p−2)/2|τhDu|2 dz

+ cε

∫
Qρ

χ(t)|∇η|2D(h)(2q−p−2)/2|τhu|2 dz

� ε

∫
Qρ

χ(t)η2(x)D(h)(p−2)/2|τhDu|2 dz

+ cε

(∫
Qρ

χ(t)|∇η|2D(h)(2q−p)/2 dz

)(2q−p−2)/(2q−p)

×
(∫

Qρ

χ(t)|∇η|2|τhu|2q−p dz

)2/(2q−p)

. (3.24)
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Collecting estimates (3.9), (3.13), (3.21), (3.22) and (3.24), and taking the
supremum over t1 ∈ (t0 − (λρ)2, t0), we obtain

sup
to−(λρ)2<t1<t0

1
2

∫
Bρ(x0)

χ(t1)η2(x)|τhu(x, t1)|2dx

+ cpν

∫
Qρ

χ(t)η2(x)D(h)(p−2)/2|τhDu|2 dz

� 4ε
∫

Qρ

χ(t)η2(x)D(h)(p−2)/2|τhDu|2 dz

+ cε

∫
Qρ

χ(t)|∇η|2D(h)(p−2)/2|τhu|2 dz

+ cε(K)h2‖Γ(h)‖2
Lα-Lβ(Qρ)‖D(h)1/2‖2δ/(δ−p+2)

Lδ-Lσ(Qρ)
+

1
2

∫
Qρ

∂tχη
2|τhu|2 dz

+ cε

(∫
Qρ

χ(t)|∇η|2D(h)(2q−p)/2 dz

)(2q−p−2)/(2q−p)

×
(∫

Qρ

χ(t)|∇η|2|τhu|2q−p dz

)2/(2q−p)

.

At this point, we choose the parameter ε = cpν/8, which enables us to reabsorb the
first integral from the right-hand side into the left-hand side to get

sup
t0−(λρ)2<t1<t0

1
2

∫
Bρ(x0)

χ(t1)η2(x)|τhu(x, t1)|2dx

+
cpν

2

∫
Qρ

χ(t)η2(x)D(h)(p−2)/2|τhDu|2 dz

� c

∫
Qρ

χ(t)|∇η|2D(h)(p−2)/2|τhu|2 dz +
1
2

∫
Qρ

∂tχη
2|τhu|2 dz

+ c(K)h2‖Γ(h)‖2
Lα-Lβ(Qρ)‖D(h)1/2‖2δ/(δ−p+2)

Lδ-Lσ(Qρ)

+ c

(∫
Qρ

χ(t)|∇η|2D(h)(2q−p)/2 dz

)(2q−p−2)/(2q−p)

×
(∫

Qρ

χ(t)|∇η|2|τhu|2q−p dz

)2/(2q−p)

. (3.25)

Here and in the remainder of the proof, we write c for constants that depend
at most on n,N, p, q, ν, L, α and β, and c(K) for constants that may addition-
ally depend on K. For any parameter 1/2 < λ < 1 we choose a cut-off func-
tion η ∈ C∞

0 (Bρ(x0), [0, 1]) with η ≡ 1 on Bλρ(x0) and |∇η| � 2/(ρ(1 − λ)) on
Bρ(x0). For the cut-off function in time, we choose the piecewise affine func-
tion χ : (0, T ) → [0, 1] with χ(t) ≡ 0 on (0, t0 − ρ2), χ(t) ≡ 1 on (t0 − (λρ)2, T ) and
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∂tχ ≡ 1/(ρ2(1 − λ2)) on (t0 − ρ2, t0 − (λρ)2). We divide both sides of (3.25) by h2.
In view of the properties of χ and η, this yields the estimate

sup
t0−(λρ)2<t<t0

∫
Bλρ(x0)

|Δhu(x, t)|2dx+
∫

Qλρ

D(h)(p−2)/2|ΔhDu|2 dz

� c

ρ2(1 − λ)2

∫
Qρ

D(h)(p−2)/2|Δhu|2 dz +
c

ρ2(1 − λ2)

∫
Qρ

|Δhu|2 dz

+ c(K)‖Γ(h)‖2
Lα-Lβ(Qρ)‖D(h)1/2‖2δ/(δ−p+2)

Lδ-Lσ(Qρ)

+
c

ρ2(1 − λ)2

(∫
Qρ

D(h)(2q−p)/2 dz

)(2q−p−2)/(2q−p)

×
(∫

Qρ

|Δhu|2q−p dz

)2/(2q−p)

, (3.26)

with the difference quotients Δh as defined in (3.1). Since lemma 2.2 implies

D(h)(p−2)/2|ΔhDu|2 � 1
c
|Δh(Vp(Du))|2,

we infer the following bound from (3.26) by letting h→ 0:

sup
t0−(λρ)2<t<t0

∫
Bλρ(x0)

|Du(x, t)|2dx+
∫

Qλρ

|D(Vp(Du))|2 dz

� c

ρ2(1 − λ)2

∫
Qρ

(μp + |Du|2 + |Du|p) dz

+ c(K)‖γ(x, t)‖2
Lα-Lβ(Qρ)‖Du(x, t)‖2δ/(δ−p+2)

Lδ-Lσ(Qρ)

+
c

ρ2(1 − λ)2

∫
Qρ

|Du(x, t)|2q−p dz.

We bound the last integral in the previous estimate first by Hölder’s inequality
with exponents 2/(2 − n(q − p)) and 2/(n(q − p)) and then by Young’s inequality
with exponents 2/(2 − (n+ 2)(q − p)) and 2/((n+ 2)(q − p)), which is possible by
virtue of our assumptions on q. This provides us with the estimate

c

ρ2(1 − λ)2

∫
Qρ

|Du|2q−p dz

� c

ρ2(1 − λ)2

(∫
Qρ

|Du|p dz

)1−(q−p)n/2(∫
Qρ

|Du|p+ 4
n dz

)(q−p)n/2

� ε

(∫
Qρ

|Du|p+4/n dz

)n/(n+2)

+
(

cε
ρ2(1 − λ)2

)2/(2−(n+2)(q−p))

×
(∫

Qρ

|Du|p dz

)(2−n(q−p))/(2−(n+2)(q−p))
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= ε

(∫
Qρ

|Du|p+4/n dz

)n/(n+2)

+
(

cε
ρ2(1 − λ)2

)1/θ

×
(∫

Qρ

|Du|p dz

)1+(q−p)/θ

for any ε ∈ (0, 1), where we used the abbreviation θ := 1 − (n+ 2)(q − p)/2 in the
last step. In view of assumption (1.13), we arrive at the estimate

sup
t0−(λρ)2<t<t0

∫
Bλρ(x0)

|Du(x, t)|2dx+
∫

Qλρ

|D(Vp(Du))|2 dz

� c

ρ2(1 − λ)2

∫
Qρ

(μp + |Du|2 + |Du|p) dz +
(

cε
ρ2(1 − λ)2

)1/θ

×
(∫

Qρ

|Du|p dz

)1+(q−p)/θ

+ c(K)‖γ(x, t)‖2
Lα-Lβ(Qρ)‖Du(x, t)‖2δ/(δ−p+2)

Lδ-Lσ(Qρ)

+ ε

(∫
Qρ

|Du|p+4/n dz

)n/(n+2)

=: RHS, (3.27)

where RHS denotes the right-hand side. Now, note that from assumptions (1.4)
and (1.10) we have

2
σ

+
p+ 4/n− 2

δ
� 1.

Since δ > p, we can find a σ∗ ∈ (σ, np/(n− 2)) with

2
σ∗

+
p+ 4/n− 2

δ
= 1.

Therefore, using the interpolation inequality of lemma 2.6 with λρ in place of ρ,
and with the exponents δ and σ∗, we deduce

‖Du(x, t)‖δ
Lδ-Lσ(Qλ2ρ) � c

∫ t0

t0−(λρ)2

(∫
Bλ2ρ

|Du|σ∗dx

)δ/σ∗

dt

� c sup
t0−λ2ρ2<t<t0

(∫
Bλρ

(μ+ |Du|)2 dx

)(δ−p)/2

×
∫

Qλρ

(|D(Vp(Du))|2 +
(μ+ |Du|)p

ρ2(1 − λ)2
) dz,

for all 0 < ρ � R0 � 1, with a constant c = c(n,N, p, q, δ, σ∗) = c(n,N, p, q, α, β).
Bounding the last two integrals with the help of (3.27) and taking into account the
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definition of RHS, we arrive at

‖Du(x, t)‖2δ/(δ−p+2)

Lδ-Lσ(Qλ2ρ)
� c · RHS. (3.28)

Similarly, choosing δ = σ = p+ 4/n in the interpolation lemma 2.6, we infer

∫
Qλ2ρ

|Du|p+4/n dz � c sup
t0−λ2ρ2<t<t0

(∫
Bλρ

(μ+ |Du|)2 dx

)2/n

×
∫

Qλρ

(|D(Vp(Du))|2 +
(μ+ |Du|)p

ρ2(1 − λ)2
) dz,

which by virtue of (3.27) implies

(∫
Qλ2ρ

|Du|p+4/n dz

)n/(n+2)

� c · RHS. (3.29)

Combining (3.28) and (3.29) and keeping in mind the definition of RHS from (3.27),
we deduce

‖Du(x, t)‖2δ/(δ−p+2)

Lδ-Lσ(Qλ2ρ)
+

(∫
Qλ2ρ

|Du|p+4/n dz

)n/(n+2)

� c

ρ2(1 − λ)2

∫
Qρ

(μp + |Du|2 + |Du|p) dz

+
(

cε
ρ2(1 − λ)2

)1/θ
(∫

Qρ

|Du|p dz

)1+(q−p)/θ

+ c(K)‖γ(x, t)‖2
Lα-Lβ(Qρ)‖Du(x, t)‖2δ/(δ−p+2)

Lδ-Lσ(Qρ)

+ cε

(∫
Qρ

|Du|p+4/n dz

)n/(n+2)

.

As above, the constant c depends at most on n,N, p, q, ν, L, α and β, while the
constant c(K) may additionally depend onK. At this stage, we choose the constants
γ0 ∈ (0, 1) and ε ∈ (0, 1) in such a way that

γ2
0 =

1
2c(K)

and cε =
1
2
.
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Note that the choice of ε depends only on n,N, p, ν, L, α, β, and the choice of γ0

additionally on K. Then we obtain, in view of assumption (1.13)

‖Du(x, t)‖2δ/(δ−p+2)

Lδ-Lσ(Qλ2ρ)
+

(∫
Qλ2ρ

|Du|p+4/n dz

)n/(n+2)

� 1
2

⎡
⎣‖Du(x, t)‖2δ/(δ−p+2)

Lδ-Lσ(Qρ)
+

(∫
Qρ

|Du|p+4/n dz

)n/(n+2)
⎤
⎦

+
c

(ρ− λ2ρ)2

∫
QR

(μp + |Du|2 + |Du|p) dz

+
(

c

(ρ− λ2ρ)2

)1/θ (∫
QR

|Du|p dz
)1+(q−p)/θ

for every ρ < R < R0, where we used 1 − λ2 � 2(1 − λ). Exploiting the previous
estimate for any λ with 3/4 < λ2 < 1, we infer from the iteration lemma 2.4

‖Du(x, t)‖2δ/(δ−p+2)

Lδ-Lσ(Q3R/4)
+

(∫
Q3R/4

|Du|p+4/n dz

)n/(n+2)

� c

R2

∫
QR

(μp + |Du|2 + |Du|p) dz +
( c

R2

)1/θ
(∫

QR

|Du|p dz
)1+(q−p)/θ

= cRn−
∫

QR

(μp + |Du|2 + |Du|p) dz + cRn

(
−
∫

QR

|Du|p dz
)1+(q−p)/θ

. (3.30)

Now, we use (3.27) with ρ = 3R/4 and λ = 2/3 and estimate the right-hand side of
(3.27) by the preceding estimate. This yields the bound

sup
t0−(R/2)2<t<t0

∫
BR/2

|Du(x, t)|2dx+
∫

QR/2

|D(Vp(Du))|2 dz

� cRn−
∫

QR

(
μp + |Du|p + |Du|2) dz + cRn

(
−
∫

QR

|Du|p dz
)1+(q−p)/θ

. (3.31)

Dividing both sides by Rn and estimating μp + |Du|2 � c(p)(1 + |Du|p), we arrive
at the asserted estimate (1.14).

3.2. The time derivative

It remains to establish the estimate (1.15) for the time derivative. To this end,
we recall that we have

Δh(a(x, t,Du)) =
1
h
Ah +

1
h
Bh, (3.32)
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with Ah and Bh as introduced in (3.8). From (3.23) and (1.7), we have

∣∣∣∣ 1hAh

∣∣∣∣
p/(q−1)

� cD(h)((q−2)p)/(2(q−1))|ΔhDu|p/(q−1)

= cD(h)(p(p−2))/(4(q−1))|ΔhDu|p/(q−1)

×D(h)p(p−2+2(q−p))/(4(q−1)) (3.33)

and

∣∣∣∣ 1hBh

∣∣∣∣
p/(q−1)

� cΓ(h)p/(q−1)(μ2 + |Du|2)p/2 � cΓ(h)p/(q−1)D(h)p/2

= cΓ(h)p/(q−1)D(h)p(2q−p)/(4(q−1))D(h)p(p−2)/(4(q−1)), (3.34)

where D(h) and Γ(h) are defined in (3.12) and (3.14), respectively. Next, we inte-
grate the inequality (3.33) over the parabolic cylinder QR/4 and use Hölder’s
inequality with exponents 2(q − 1)/p and 2(q − 1)/(p− 2 + 2(q − p)). In this way,
we deduce

−
∫

QR/4

∣∣∣∣ 1hAh

∣∣∣∣
p/(q−1)

dz � c

(
−
∫

QR/4

D(h)(p−2)/2|ΔhDu|2 dz

)p/(2(q−1))

×
(
−
∫

QR/4

D(h)p/2 dz

)(p−2+2(q−p))/(2(q−1))

� c

(
−
∫

QR/4

|Δh(Vp(Du))|2 dz

)p/(2(q−1))

×
(
−
∫

QR/4

D(h)p/2 dz

)(p−2+2(q−p))/(2(q−1))

, (3.35)

where the last estimate follows from lemma 2.2. Similarly, integrating the
inequality (3.34) and applying Hölder’s inequality with the exponents 2(q − 1)/p,
2(q − 1)/(p− 2) and (q − 1)/(q − p) in the case p > 2, respectively, with exponents
q − 1 and (q − 1)/(q − 2) if p = 2, we infer

−
∫

QR/4

∣∣∣∣ 1hBh

∣∣∣∣
p/(q−1)

dz � c

(
−
∫

QR/4

Γ(h)2D(h)(2q−p)/2 dz

)p/(2(q−1))

×
(
−
∫

QR/4

D(h)p/2 dz

)(p−2)/(2(q−1))

. (3.36)
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From (3.32), (3.35) and (3.36), it follows

−
∫

QR/4

|Δh(a(x, t,Du))|p/(q−1) dz

� c

(
−
∫

QR/4

|Δh(Vp(Du))|2 dz

)p/(2(q−1))

×
(
−
∫

QR/4

D(h)p/2 dz

)(p−2+2(q−p))/(2(q−1))

+ c

(
−
∫

QR/4

Γ(h)2D(h)(2q−p)/2 dz

)p/(2(q−1))

×
(
−
∫

QR/4

D(h)p/2 dz

)(p−2)/(2(q−1))

. (3.37)

By using (3.19), respectively (3.20), we infer

−
∫

QR/4

|Δh(a(x, t,Du))|p/(q−1) dz

� c

(
−
∫

QR/4

|ΔhVp(Du)|2 dz

)p/(2(q−1))

×
(
−
∫

QR/4

D(h)p/2 dz

)(p−2+2(q−p))/(2(q−1))

+ c(K)R−(n+2)p/(2(q−1))(‖Γ(h)‖2
Lα-Lβ(QR/4)

× ‖D(h)1/2‖2δ/(δ−p+2)

Lδ-Lσ(QR/4)
)p/(2(q−1))

×
(
−
∫

QR/4

D(h)p/2 dz

)(p−2)/(2(q−1))

,

where α, β are the exponents in (1.4) and δ, σ have been defined in (1.12). Letting
h→ 0, we deduce

(
−
∫

QR/4

|D(a(x, t,Du))|p/(q−1) dz

)2(q−1)/p

� c−
∫

QR/4

|D(Vp(Du))|2 dz

(
−
∫

QR/4

(μ2 + |Du|2)p/2 dz

)(p−2+2(q−p))/p
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+
c(K)
Rn+2

‖γ(x, t)‖2
Lα-Lβ(QR/4)

(Rn + ‖Du(x, t)‖2δ/(δ−p+2)

Lδ-Lσ(QR/4)

×
(
−
∫

QR/4

(μ2 + |Du|2)p/2 dz

)(p−2)/p

. (3.38)

Assumption (1.13) implies

c(K)‖γ(x, t)‖2
Lα-Lβ(QR0 ) � c(K)γ2

0 < 1

if we diminish the value of γ0 if necessary. We estimate the right-hand side of
the estimate (3.38) by means of (3.30) and (3.31). Since (p− 2 + 2(q − p))/p >
(p− 2)/p we obtain(

−
∫

QR/4

|D(a(x, t,Du))|p/(q−1) dz

)2(q−1)/p

� c

R2
(−
∫

QR

(1 + |Du|p) dz)1+(q−p)/θ

(
−
∫

QR

(1 + |Du|p) dz
)(p−2+2(q−p))/p

=
c

R2

(
−
∫

QR

(1 + |Du|p) dz
)2(q−1)/p+(q−p)/θ

.

From system (1.8) we thereby deduce that

R
p

q−1−
∫

QR/4

|∂tu|p/(q−1) dz � c

(
−
∫

QR

(1 + |Du|p) dz
)1+p(q−p)/(2(q−1)θ)

with a constant c = c(n,N, p, q, ν, L, α, β). This establishes the claimed esti-
mate (1.15) and concludes the proof of theorem 1.1.

4. Existence of regular solutions

In this section, we will give the proof of theorem 1.3 by constructing a sequence
of approximating problems for which we are allowed to apply the a priori estimate
from theorem 1.1. For the passage to the limit we will apply techniques developed in
[5] for the proof of existence of variational solutions of problems with (p, q)-growth.

Proof of Theorem 1.3. Regularization. For some sequence εk ∈ (0, 1] with εk ↓ 0,
we define regularized functions ak as

ak(x, t, ξ) := a(x, t, ξ) + εk|ξ|q−2ξ for ξ ∈ R
Nn, (x, t) ∈ ΩT .

As a consequence of the assumptions (1.5), (1.6) and (1.7) on a, we have

|ak(x, t, ξ)| + (μ2 + |ξ|2)1/2|Dξak(x, t, ξ)| � (L+ c(q))(μ2 + |ξ|2)(q−1)/2, (4.1)

〈Dξak(x, t, ξ)ξ̄, ξ̄〉 � ν(μ2 + |ξ|2)(p−2)/2|ξ̄|2 + c(q)εk|ξ|q−2|ξ̄|2, (4.2)

|ak(x, t, ξ) − ak(y, t, ξ)| � |x− y|[γ(x, t) + γ(y, t)](μ2 + |ξ|2)(q−1)/2, (4.3)
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for each k ∈ N, any (x, t) ∈ ΩT and any ξ, ξ̄ ∈ R
Nn. In particular, the regularized

functions ak satisfy standard q-growth and ellipticity conditions. Since, furthermore,
the initial and boundary data satisfy (1.9), classical theory [26] yields the existence
of unique solutions uk ∈ Lq(0, T ;W 1,q(Ω,RN )) of the Cauchy–Dirichlet problems{

∂tuk − divak(x, t,Duk) = 0 in ΩT ,

uk = g on ∂parΩT ,
(4.4)

for any k ∈ N.

Energy bounds. As a direct consequence of the parabolic system in (4.4) and
assumption (1.9) on the boundary values, we have

∂tg, ∂tuk ∈ Lq′ (
0, T ;W−1,q′ (

Ω,RN
))
.

Hence, for any t0 ∈ (0, T ) we may use ϕ = (uk − g)χ(0,t0) ∈ Lq(0, T ;W 1,q
0 (Ω,RN ))

as test function in (4.4), with the result

I + II :=
∫ t0

0

〈∂t(uk − g), uk − g〉W−1,q′ dt

+
∫

Ωt0

〈ak(x, t,Duk) − ak(x, t,Dg),Duk −Dg〉dz

= −
∫ t0

0

〈∂tg, uk − g〉W−1,q′ dt−
∫

Ωt0

〈ak(x, t,Dg),Duk −Dg〉dz

=: III + IV, (4.5)

where 〈·, ·〉W−1,q′ denotes the duality pairing between W−1,q′
(Ω,RN ) and

W 1,q
0 (Ω,RN ). The first integral can be re-written in a standard way (cf. [33,

proposition III.1.2]) as

I =
∫ t0

0

〈∂t(uk − g), uk − g〉W−1,q′ dt

=
1
2

∫ t0

0

∂t‖uk − g‖2
L2(Ω) dt =

1
2

∫
Ω×{t0}

|uk − g|2 dx, (4.6)

where we used the initial condition uk = g at t = 0 according to (4.4). For the
estimate of the second integral on the left-hand side of (4.5), we use (4.2) to infer

II =
∫

Ωt0

〈ak(x, t,Duk) − ak(x, t,Dg),Duk −Dg〉dz

� c(p)ν
∫

Ωt0

(μ2 + |Duk|2 + |Dg|2)(p−2)/2|Duk −Dg|2 dz

� c(p)ν
∫

Ωt0

|Duk −Dg|p dz. (4.7)
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For the estimate of III, we use the fact ∂tg ∈ Lp′
(0, T ;W−1,p′

(Ω,RN )), which is a
consequence of (1.9). This allows us to estimate

III �
∫ t0

0

‖Duk −Dg‖Lp(Ω) ‖∂tg‖W−1,p′ (Ω) dt

� c(p)ν
4

∫
Ωt0

|Duk −Dg|p dz + c(p, ν)‖∂tg‖p′

Lp′−W−1,p′ (ΩT )
. (4.8)

Finally, using (4.1) and Young’s inequality, we deduce

IV � c(q, L)
∫

Ωt0

(μ2 + |Dg|2)(q−1)/2|Duk −Dg|dz

� c(p)ν
4

∫
Ωt0

|Duk −Dg|p dz + c(p, q, ν, L)
∫

Ωt0

(μ+ |Dg|)p(q−1)/(p−1) dz.

(4.9)

We note that the last integral is finite by (1.9). Plugging (4.6), (4.7), (4.8) and (4.9)
into (4.5) and reabsorbing the integral involving the spatial derivatives, we arrive
at

1
2

∫
Ω×{t0}

|uk − g|2 dx+
c(p)ν

2

∫
Ωt0

|Duk −Dg|p dz

� c(p, ν)‖∂tg‖p′

Lp′−W−1,p′ (ΩT )
+ c(p, q, ν, L)

∫
ΩT

(μ+ |Dg|)p(q−1)/(p−1) dz (4.10)

for every t0 ∈ [0, T ]. Taking the supremum over t0 ∈ [0, T ], we arrive at the energy
bound

sup
t∈[0,T ]

∫
Ω×{t}

|uk|2 dx+
∫

ΩT

|Duk|p dz � c(p, q, ν, L)Mg, (4.11)

for every k ∈ N, where we used the abbreviation (1.16). Moreover, applying
Poincaré’s inequality to (uk − g)(·, t) for a.e. t ∈ (0, T ), we deduce∫

ΩT

|uk|p dz � c(n, p,diam(Ω))
∫

ΩT

|Duk −Dg|p dz + c(p)
∫

ΩT

|g|p dz

� c(n, p, q, ν, L,diam(Ω))Mg + c(p)
∫

ΩT

|g|p dz, (4.12)

independently of k ∈ N. Combining the energy bounds (4.11) and (4.12) with the
Gagliardo–Nirenberg interpolation inequality, we infer

∫
ΩT

|uk|p(n+2)/n dz � c

(
sup

t∈[0,T ]

∫
Ω×{t}

|uk|2 dx

)p/n ∫
ΩT

(|Duk|p + |uk|p) dz

� c(n, p, q, ν, L,diam(Ω),Mg, ‖g‖Lp), (4.13)

for any k ∈ N. In view of the preceding energy bounds, after passing to a
subsequence we can achieve weak convergence to some limit map u ∈ g +
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Lp(0, T ;W 1,p
0 (Ω,RN )) in the sense{

Duk ⇁ Du in Lp(ΩT ,R
Nn),

uk ⇁ u in Lp(n+2)/n(ΩT ,R
N ),

(4.14)

in the limit k → ∞.

Weak continuity in time. Testing the weak formulation of the parabolic system (4.4)
with a function ϕ ∈ C∞

0 (ΩT ) and exploiting the growth condition (4.1), we infer∣∣∣∣
∫

ΩT

uk∂tϕdz
∣∣∣∣ � c(q, L)

∫
ΩT

(1 + |Duk|)q−1|Dϕ|dz

� c(q, L)| sptϕ|(p+1−q)/p

(∫
ΩT

(1 + |Duk|)p dz
)(q−1)/p

× ‖Dϕ‖L∞(ΩT )

� c| sptϕ|(p+1−q)/p‖ϕ‖L∞−W �,2(ΩT )

for � > (n+ 2)/2, by the energy estimate (4.11) and Sobolev’s embedding, applied
on the time slices Ω × {t} for t ∈ (0, T ). The constant in the last line depends at
most on p, q, ν, L,Mg and diam(Ω). Now we choose a testing function of the form
ϕ(x, t) = χδ(t)ψ(x), where ψ ∈ C∞

0 (Ω) and χδ are suitable smooth functions that
approximate χ(t1,t2) for times 0 � t1 < t2 � T . Letting δ ↓ 0, the preceding estimate
implies ∣∣∣∣

∫
Ω

(uk(x, t2) − uk(x, t1))ψ(x) dx
∣∣∣∣ � c|t2 − t1|(p+1−q)/p‖ψ‖W �,2(Ω)

for every k ∈ N. This implies uk ∈ C0([0, T ];W−�,2(Ω,RN )) with a uniform estimate

‖uk(·, t2) − uk(·, t1)‖W−�,2(Ω) � c|t2 − t1|(p+1−q)/p

for any t1, t2 ∈ [0, T ]. Since, furthermore, the sequence uk is bounded in the space
L∞(0, T ;L2(Ω,RN )) by (4.11), a compactness result from [25] implies

uk(·, t) ⇁ u(·, t) weakly in L2(Ω,RN ), for every t ∈ [0, T ], (4.15)

and the limit map satisfies u ∈ Cw([0, T ];L2(Ω,RN )). A detailed proof of this
compactness result can be found in [5, theorem A.2].

Application of the a priori estimate. As a consequence of (4.1), (4.2) and (4.3),
the function ak satisfies the q-growth conditions (2.3) to (2.5) of theorem 2.5 with
c(q)εk instead of ν and L+ c(q) instead of L. Moreover, we infer from (1.17) and
(1.4) that we have

q(n+ 2) − 2n
2α

+
n

β
� p(n+ 2) − 2n

2α
+
n

β
+
κ

α
� 1 − κ+

κ

α
< 1.

Hence, we can find smaller exponents α0 ∈ [q, α) and β0 ∈ [n, β) for which (2.6)
holds true. This enables us to apply theorem 2.5 — with these exponents
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α0 and β0 — to the solutions uk of the regularized problems. From the mentioned
theorem, we deduce

D(Vq(Duk)) ∈ L2
loc

(
ΩT ,R

Nn2
)

and Duk ∈ L∞
loc(0, T ;L2

loc(Ω,R
Nn)),

for any k ∈ N. However, the corresponding estimates provided by theorem 2.5 are
not independent of k. For the exponents δ, σ defined in (1.12), we have

2
p+ 4/n

+
q + 4/n− 2
p+ 4/n

� 1 and
2
σ

+
q + 4/n− 2

δ
� 1,

so that the interpolation lemma 2.6 with q in place of p and Hölder’s inequality
imply

Duk ∈ L
p+4/n
loc (ΩT ) and Duk ∈ Lδ

loc(0, T ;Lσ
loc(Ω,R

N )).

Therefore, assumption (1.11) of the a priori estimate is satisfied. Moreover, the
first part of (1.13) is satisfied for some constant K = K(p, q, ν, L,Mg) as a con-
sequence of the energy bound (4.11). Because of the absolute continuity of the
integral and the definition (2.1), we can find a radius R0 > 0, only depending on
n,N, p, q, ν, L, α, β, γ(·) and K, so that

‖γ‖Lα-Lβ(QR0 (z0)) � γ0 (4.16)

holds for any cylinder QR0(z0) ⊂ ΩT , where γ0 = γ0(n,N, p, q, ν, L, α, β,K) denotes
the constant from theorem 1.1. We note that in the case α = ∞ and β = n/(1 − κ),
we rely on the assumption γ ∈ C0([0, T ];Lβ(Ω)), which enables us to choose R0 so
small that (4.16) holds true. Since, furthermore, the assumptions (1.5), (1.6), (1.7)
are satisfied for ak and L+ c(q) in place of L by (4.1), (4.2) and (4.3), we are in a
position to apply the a priori estimates from theorem 1.1 to the sequence uk. This
yields the uniform estimates

sup
t0−(R/2)2<t<t0

−
∫

BR/2(x0)

|Duk(x, t)|2dx+R2−
∫

QR/2(z0)

|D(Vp(Duk))|2 dz

� c

(
−
∫

QR(z0)

(1 + |Duk|p) dz

)1+(q−p)/θ

(4.17)

and

Rp/(q−1)−
∫

QR/4(z0)

|∂tuk|p/(q−1) dz

� c

(
−
∫

QR(z0)

(1 + |Duk|p) dz

)1+p(q−p)/(2(q−1)θ)

(4.18)

for every k ∈ N, provided R ∈ (0, R0). In the above estimates, the constant c
depends only on n,N, p, q, ν, L, α and β, and θ is given by θ = 1 − (n+ 2)(q − p)/2.

https://doi.org/10.1017/prm.2018.63 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.63


On higher differentiability of solutions of parabolic systems 447

By virtue of (4.17), the interpolation lemma 2.6 yields the integrability estimate

(
−
∫

QR/4(z0)

|Duk|p+4/n dz

)n/(n+2)

� c

(
−
∫

QR(z0)

(1 + |Duk|p) dz

)1+(q−p)/θ

.

(4.19)
Locally strong convergence. Our next goal is the proof of the strong convergence

Duk → Du in Lp(Q0,R
N ), as k → ∞, (4.20)

for any parabolic subcylinder Q0 = O × (t1, t2) � ΩT . This will enable us to pass
to the limit in (4.17), which will conclude the proof of the theorem. We choose
another subdomain Q1 with Q0 � Q1 � ΩT and a non-negative cut-off function
ϕ ∈ C∞

0 (Q1) with ϕ ≡ 1 on Q0. First, we note that because of (4.18), (4.19) and
q < p+ 4/n, a covering argument yields

sup
k∈N

(
‖∂tuk‖

L
p

q−1 (Q1)
+ ‖Duk‖Lq(Q1)

)
<∞. (4.21)

Consequently, we have weak convergence

Duk ⇁ Du in Lq(Q1,R
Nn), as k → ∞. (4.22)

and

∂tuk ⇁ ∂tu in Lp/(q−1)(Q1,R
Nn), as k → ∞. (4.23)

Moreover, from Rellich’s theorem, we infer

uk → u in Lp/(q−1)(Q1), as k → ∞.

Since the sequence uk is bounded in the space Lp(n+2)/n(ΩT ) by (4.13) and q <
p(n+ 2)/n, an interpolation argument yields

uk → u in Lq(Q1), as k → ∞. (4.24)

Moreover, we deduce from (4.21) that also the weak limit u satisfies

∂tu ∈ Lp/(q−1)(Q1,R
N ) and Du ∈ Lq(Q1,R

Nn). (4.25)

As a consequence, we have ϕ(uk − u) ∈ Lq(0, T ;W 1,q
0 (Ω,RN )). Moreover, we note

that ϕ(uk − u) ∈ Lp(n+2)/n(ΩT ) by (4.13), and that q − p < 2/(n+ 2) implies
p(n+ 2)/n > p/(p+ 1 − q) = (p/(q − 1))′. Hence, it is legitimate to use ϕ(uk − u)
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as test function in equation (4.4), which yields

Ik + IIk :=
∫

ΩT

∂t(uk − u) · ϕ(uk − u) dz

+
∫

ΩT

〈ak(x, t,Duk) − ak(x, t,Du),D(ϕ(uk − u))〉dz

= −
∫

ΩT

∂tu · ϕ(uk − u) dz −
∫

ΩT

〈ak(x, t,Du),D(ϕ(uk − u)〉dz

=: IIIk + IVk. (4.26)

The first integral can be re-written as

Ik =
1
2

∫
ΩT

∂t|uk − u|2ϕdz = −1
2

∫
ΩT

|uk − u|2∂tϕdz → 0 (4.27)

as k → ∞, because of sptϕ � Q1 � ΩT and (4.24). We estimate the second integral
in (4.26) by means of (4.1), (4.2) and lemma 2.3. This leads us to

IIk � c(p)ν
∫

ΩT

ϕ(μ2 + |Du|2 + |Duk|2)(p−2)/2|Duk −Du|2 dz

− c(q, L)
∫

ΩT

|Dϕ|(μ2 + |Du|2 + |Duk|2)(q−1)/2|uk − u|dz

� c(p)ν
∫

ΩT

ϕ|Du−Duk|p dz − c(q, L)

×
∫

ΩT

|Dϕ|(1 + |Du|2 + |Duk|2)(q−1)/2|uk − u|dz. (4.28)

Because of ϕ∂tu ∈ Lp/(q−1)(ΩT ) and p(n+ 2)/n > (p/(q − 1))′, the weak conver-
gence (4.14) implies

lim
k→∞

IIIk = 0. (4.29)

Finally, the growth condition (4.1) and the fact ak(x, t, ξ) − a(x, t, ξ) = εk|ξ|q−2ξ
yield

IVk = −
∫

ΩT

ϕ〈a(x, t,Du),D(uk − u)〉dz

+
∫

ΩT

ϕ〈a(x, t,Du) − ak(x, t,Du),D(uk − u)〉dz

−
∫

ΩT

〈ak(x, t,Du),Dϕ⊗ (uk − u)〉dz
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� −
∫

ΩT

ϕ〈a(x, t,Du),D(uk − u)〉dz

+ εk

∫
ΩT

ϕ|Du|q−1 (|Duk| + |Du|) dz

+ c(q, L)
∫

ΩT

(μ2 + |Du|2)(q−1)/2|Dϕ| |uk − u|dz, (4.30)

which goes to 0 as k → ∞, as a consequence of the weak convergence (4.22), the
uniform bound (4.21), and the strong convergence (4.24). Using (4.27), (4.28), (4.29)
and (4.30) in (4.26), we arrive at

c(p)ν
∫

Q0

|Du−Duk|p dz � c(p)ν
∫

ΩT

ϕ|Du−Duk|p dz

� IIIk + IVk − Ik + c(q, L)
∫

ΩT

|Dϕ|(1 + |Du| + |Duk|)q−1|uk − u|dz

→ 0 (4.31)

in the limit k → ∞, where we used the energy bound (4.21) and (4.24) for the
convergence of the last integral. This implies the asserted local strong conver-
gence (4.20), for every Q0 � ΩT . In particular, keeping in mind lemma 2.2, we
deduce

Vp(Duk) → Vp(Du) in L2(Q0), as k → ∞,

for every subcylinder Q0 = O × (t1, t2) � ΩT . Recalling the local bounds (4.17)
and (4.18), we deduce⎧⎪⎨

⎪⎩
Duk

∗⇁ Du weakly∗ in L∞(t1, t2;L2(O,RN )),
D(Vp(Duk)) ⇁ D(Vp(Du)) weakly in L2(Q0),
∂tuk ⇁ ∂tu weakly in L

p
q−1 (Q0),

in the limit k → ∞. Using lower semicontinuity of the respective norms with respect
to the above convergences, we pass to the limit in the bounds (4.17) and (4.18).
This yields the asserted estimates (1.18) and (1.19). Finally, it remains to show
that the limit map u is a weak solution to system (1.8). To this end, we fix a testing
function ϕ ∈ C∞

0 (ΩT ,R
N ) and use it in the systems (4.4), with the result∫

ΩT

(
ukϕt − 〈a(x, t,Duk),Dϕ〉 − εk〈|Duk|q−2Duk,Dϕ〉

)
dz = 0

for every k ∈ N. By the strong convergence (4.20) with Q0 = sptϕ, the growth
condition (1.5), and q � p+ 1, we can pass to the limit k → ∞ in the last equation
to infer ∫

ΩT

(uϕt − 〈a(x, t,Du),Dϕ〉) dz = 0.

This completes the proof of Theorem 1.3. �
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395–411.

8 M. Carozza, J. Kristensen and A. Passarelli di Napoli. Regularity of minimizers of
autonomous convex variational integrals. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13
(2014), 1065–1089.

9 G. Cupini, F. Giannetti, R. Giova and A. Passarelli di Napoli. Higher integrability for
minimizers of asymptotically convex integrals with discontinuous coefficients. Nonlinear
Anal. 154 (2017), 7–24. (doi: 10.1016/j.na.2016.02.017).

10 G. Cupini, P. Marcellini and E. Mascolo. Existence and regularity for elliptic equations
under p, q-growth. Adv. Differ. Equ. 19 (2014), 693–724.

11 R. A. DeVore and R. C. Sharpley. Maximal functions measuring smoothness. Mem. Am.
Math. Soc. 47 (1984), no. 293.

12 E. DiBenedetto. Degenerate parabolic equations (New York: Universitext, Springer-Verlag,
1993).

13 F. Duzaar and G. Mingione. Second order parabolic systems, optimal regularity, and
singular sets of solutions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005),
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Gauthier-Villars, 1969).

27 P. Marcellini. Regularity of minimizers of integrals of the calculus of variations with
nonstandard growth conditions. Arch. Ration. Mech. Anal. 105 (1989), 267–284.

28 P. Marcellini. Regularity and existence of solutions of elliptic equations with p, q-growth
conditions. J. Differ. Equ. 90 (1991), 1–30.

29 A. Passarelli di Napoli. Higher differentiability of minimizers of variational integrals with
Sobolev coefficients. Adv. Calc. Var. 7 (2014a), 59–89.

30 A. Passarelli di Napoli. Higher differentiability of solutions of elliptic systems with Sobolev
coefficients: the case p = n = 2. Potential Anal. 41 (2014b), 715–735.

31 C. Scheven, Regularity for subquadratic parabolic systems: higher integrability and
dimension estimates. Proc. R. Soc. Edinburgh 140A (2010a), 1269–1308.

32 C. Scheven. Non-linear Calderón-Zygmund theory for parabolic systems with subquadratic
growth. J. Evol. Equ. 10 (2010b), 597–622.

33 R. Showalter, Monotone operators in banach space and nonlinear partial differential
equations (Providence, RI: Am. Math. Soc., 1997).

34 T. Singer, Existence of weak solutions of parabolic systems with p, q-growth. Manuscripta
Math. 151 (2016), 87–112.

35 J. You. Regularity of solutions of certain parabolic system with nonstandard growth
condition. Acta Math. Sinica 14 (1998), 145–160.

https://doi.org/10.1017/prm.2018.63 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.63

	1 Introduction and statement of the results
	2 Preliminaries
	2.1 Notation and elementary lemmas
	2.2 A higher differentiability result under standard growth conditions
	2.3 An interpolation inequality

	3 Proof of the a priori estimate
	3.1 The second spatial derivatives
	3.2 The time derivative

	4 Existence of regular solutions
	References



