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Growth of frequently hypercyclic
functions for some weighted Taylor shifts
on the unit disc

Augustin Mouze and Vincent Munnier

Abstract. For any α ∈ R, we consider the weighted Taylor shi� operators Tα acting on the space of

analytic functions in the unit disc given by Tα ∶ H(D) → H(D),

f (z) = ∑
k≥0

akz
k ↦ Tα( f )(z) = a1 +∑

k≥1

(1 + 1

k
)
α
ak+1z

k .

We establish the optimal growth of frequently hypercyclic functions for Tα in terms of Lp averages,

1 ≤ p ≤ +∞. �is allows us to highlight a critical exponent.

1 Introduction

LetD denote the open unit disc {z ∈ C ∶ ∣z∣ < 1} of the complex plane. If 0 < r < 1 and
f is an analytic function in D (i.e., f ∈ H(D)), we set

Mp(r, f ) = ( 1

2π
∫

2π

0
∣ f (re iθ)∣pdθ)1/p(1 ≤ p < ∞),

M∞(r, f ) = sup
0≤t≤2π

∣ f (re i t)∣.
In the same spirit, for any holomorphic polynomial q, let us define, for all p ≥ 1,

∥q∥p = ( 1

2π
∫

2π

0
∣q(e iθ)∣pdθ)1/p and ∥q∥∞ = sup

0≤t≤2π
∣q(e i t)∣.

Moreover, for all p > 1, p′ will stand for the exponent conjugate to p, i.e., 1
p + 1

p′ = 1.
For any f in H(D) and any z in D, we will write f (z) = ∑k≥0 akz

k . For all α ∈ R, we
consider the sequence (ωn(α)) defined as follows:

ω0(α) = 1 and ωn(α) = (1 + 1

n
)α for n ≥ 1.

We deal with the following (polynomial) weighted Taylor shi�s acting on H(D)
endowed with the topology of uniform convergence on compact subsets:
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Growth of Frequently Hypercyclic Functions 265

Tα ∶ H(D) Ð→ H(D), f (z) =∑
k≥0

akz
k z→ Tα( f )(z) =∑

k≥0

ωk(α)ak+1zk .
Notice that T0 is the classical Taylor shi� acting onH(D) [4]. In [14], the author shows
that the operator T0 is frequently hypercyclic. Actually, for any α ∈ R, Tα is frequently
hypercyclic. Let us recall that an operator T ∶ X → X , where X is a Fréchet space, is
said to be frequently hypercyclic if there is a vector x ∈ X such that for every non-
empty open set U ⊂ X , the lower density of the set N(x ,U) ∶= {n ∈ N ∶ Tnx ∈ U} is
positive (i.e., d(N(x ,U)) = lim infN→+∞ #{1 ≤ n ≤ N ∶ n ∈ N(x ,U)}/N > 0). Such a
vector x is called frequently hypercyclic. �is natural new concept of hypercyclicity
was introduced in 2004 by Bayart and Grivaux [1, 2] and has been the subject of many
developments since then.We refer the reader to [3] or [10] and the references therein.
In particular, the following result is a crucial tool used to exhibit a lot of examples of
frequently hypercyclic operators.

�eorem 1.1 (Frequent hypercyclicity criterion) Let T be an operator on a separable
Fréchet space X. If there is a dense subset X0 of X and a map S ∶ X0 → X0 such that, for
any x ∈ X0 ,

(i) ∑n≥0 T
nx converges unconditionally,

(ii) ∑n≥0 S
nx converges unconditionally,

(iii) TSx = x,
then T is frequently hypercyclic.

In our context, a straightforward application of the frequent hypercyclicity crite-
rion yields the frequent hypercyclicity of the operators Tα for all α ∈ R. Indeed, let X0

be the set of polynomials with coefficients inQ + iQ. Clearly, the set X0 is a countable
and dense subset in H(D). Now we apply �eorem 1.1. First observe that condition
(i) is clearly satisfied, since for any polynomial f, Tn

α f = 0 if the integer n is strictly
greater than the degree of f. Moreover, if we consider the map Sα ∶ X0 → X0 , given by

∑d
k=0 bkz

k ↦∑d
k=0 bk(ωk(α))−1zk+1 , condition (iii) is obviously satisfied. Finally, for

f (z) = ∑d
k=0 bkz

k , for all 0 < r < 1, we easily get
sup
∣z∣≤r
∣Snα f (z)∣ ≤ (n + 1)∣α∣ r

n

1 − r max
j=0,. . . ,d

∣b j ∣,
which gives condition (ii). �us, the operators Tα are frequently hypercyclic for all
α ∈ R.

Now we are interested in the growth of frequently hypercyclic functions for the
Taylor shi�s Tα , α ∈ R. Such results have been achieved in the case of frequently
hypercyclic functions for the differentiation operator on H(C). We refer the reader
to [5, 6] and the references therein. Recently, in [11], the authors obtained the optimal
growth in terms of average Lp-norms of frequently hypercyclic functions f ∈ H(D)
for the Taylor shi� T0. �e result is stated as follows.

�eorem 1.2 ([11]) We have the following assertions.

(i) Given 2 ≤ p ≤ +∞, there is a frequently hypercyclic function f ∈ H(D) for the
Taylor shi� T0 satisfying the following estimate: there exists C > 0 such that for
every 0 < r < 1,
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266 A. Mouze and V. Munnier

Mp(r, f ) ≤ C√
1 − r .

�is estimate is optimal: every frequently hypercyclic function f ∈ H(D) for the
Taylor shi� T0 satisfies

lim inf
r→1
(√1 − rMp(r, f )) > 0.

(ii) Given 1 < p < 2, there is a frequently hypercyclic function f ∈ H(D) for the Taylor
shi� T0 satisfying the following estimate: there exists C > 0 such that for every
0 < r < 1,

Mp(r, f ) ≤ C

(1 − r)1/p′ .
�is estimate is optimal: every frequently hypercyclic function f ∈ H(D) for the
Taylor shi� T0 satisfies

lim inf
r→1
((1 − r)1/p′Mp(r, f )) > 0.

A version of this statement in the case p = 1 was also given. A natural question
that arises is the following: what is the slowest possible growth for a frequently
hypercyclic vector f for the operator Tα? Here, we exhibit a critical exponent from
which the growth of frequently hypercyclic functions changes from polynomial to
logarithmic behavior, and then becomes bounded on the whole unit disc. Summing
up, the following theorem is our main result.

�eorem 1.3 Let α ∈ R.�e following assertions hold:

(i) For any 2 ≤ p < +∞, there is a frequently hypercyclic function f in H(D) for Tα

satisfying the following estimates: there exists C > 0 such that for every 0 < r < 1,

Mp(r, f ) ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C(1 − r)α− 1

2 if α < 1/2,
C
√∣ log(1 − r)∣ if α = 1/2,

C if α > 1/2.
�ese estimates are optimal: every frequently hypercyclic function f in H(D)
for Tα is bounded from below by the corresponding previous estimate depending
on α.

(ii) For any 1 < p < 2, there is a frequently hypercyclic function f in H(D) for Tα

satisfying the following estimates: there exists C > 0 such that for every 0 < r < 1,

Mp(r, f ) ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C(1 − r)α− 1

p′ if α < 1/p′,
C∣ log(1 − r)∣ 1p if α = 1/p′,
C if α > 1/p′.

�ese estimates are optimal: every frequently hypercyclic function f in H(D) for
Tα is bounded from below by the corresponding previous estimate depending
on α.

https://doi.org/10.4153/S0008439520000430 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000430


Growth of Frequently Hypercyclic Functions 267

(iii) �ere is a frequently hypercyclic function f in H(D) for Tα satisfying the following
estimates: there exists C > 0 such that for every 0 < r < 1,

M∞(r, f ) ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C(1 − r)α− 1

2 if α < 1/2,
C∣ log(1 − r)∣ if α = 1/2,
C if α > 1/2.

For α ≠ 1/2, these estimates are optimal: every frequently hypercyclic function f
in H(D) for Tα is bounded from below by the corresponding previous estimate
depending on α.

Finally, we deal with the case p = 1 to obtain a similar statement that extends the
result for the Taylor shi� T0 given in [11] to the weighted Taylor shi�s Tα , for all α ∈ R.
We refer the reader to Proposition 4.1 and�eorem 4.4.

�e paper is organized as follows: in Section 2, the minimum growth of frequently
hypercyclic functions for Tα is established. To do this, we use several well-known
inequalities, such as the Jensen inequality, the Hardy–Littlewood inequality, or the
Hausdorff–Young inequality. In Section 3, inspired by the ideas of [6], using Rudin–
Shapiro polynomials, we will show by a constructive proof that these minimum
estimates of the growth of frequently hypercyclic functions are attained. In Section 4,
we deal with the case p = 1.

�roughout the paper, wheneverA and B depend on some parameters, we will use
the notation A ≲ B (resp. A ≳ B) to mean A ≤ CB (resp. A ≥ CB) for some constant
C > 0 that does not depend on the involved parameters apart from p and α.

2 On the Growth of the Frequently Hypercyclic Functions

Let α ∈ R.We establish some results concerning the blowing-up in terms of Lp-norms
of a frequently hypercyclic function in H(D) for the weighted shi� operator Tα . We
begin with the case 2 ≤ p ≤ +∞.

Proposition 2.1 Let 2 ≤ p ≤ +∞, α ∈ R and f ∈ H(D). Assume that f is a frequently
hypercyclic vector for Tα . �en, for all 0 < r < 1, the following estimates hold:

Mp(r, f ) ≳
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 − r)α− 1

2 if α < 1/2,√∣ log(1 − r)∣ if α = 1/2,
1 if α > 1/2.

Proof We write f (z) = a0 +∑k≥1 akk
−αzk . Since f is frequently hypercyclic, there

exists an increasing subsequence (nk) ⊂ N with positive lower density such that, for
all k ≥ 1, ∣Tnk

α f (0) − 3/2∣ = ∣ank
− 3/2∣ < 1/2, which implies that ∣ank

∣ ≥ 1. Moreover,
since the sequence (nk) has positive lower density, there exists C > 1 such that k ≤
nk ≤ Ck. Let us consider a positive integer l ≥ 1. For any r ∈ [1 − 2−l , 1 − 2−(l+1)],
Jensen’s inequality and Parseval’s �eorem imply

[Mp(r, f )]2 ≥ [Mp(1 − 2−l , f )]2 ≥∑
k≥1

∣ak ∣2
k2α
(1 − 2−l)2k .
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268 A. Mouze and V. Munnier

�us, we deduce

[Mp(r, f )]2 ≥∑
k≥1

∣ank
∣2

n2α
k

(1 − 2−l)2nk ≥∑
k≥1

(1 − 2−l)2Ck

(Ck)2α ≳ 2 l

∑
k=1

k−2α

≳
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if α > 1

2
,

2(1−2α)l if α < 1
2
,

log(2l) if α = 1
2
.

To conclude, it suffices to observe that for all l ≥ 1, if we have r ∈ [1 − 2−l , 1 − 2−(l+1)],
then 1 − r ≤ 2−l ≤ 2(1 − r). �us, we deduce for any 1

2
< r < 1,

Mp(r, f ) ≳
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if α > 1

2
,(1 − r)α− 1

2 if α < 1
2
,√∣ log(1 − r)∣ if α = 1

2
.

∎

Using a similar method, we obtain the following estimates for the case p ∈ (1, 2).
Proposition 2.2 Let 1 < p < 2, α ∈ R and f ∈ H(D). Assume that f is a frequently
hypercyclic vector for Tα . �en, for all 0 < r < 1, the following estimates hold:

Mp(r, f ) ≳
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − r)α− 1

p′ if α < 1/p′ ,∣ log(1 − r)∣ 1p if α = 1/p′ ,
1 if α > 1/p′ ,

with 1
p + 1

p′ = 1.

Proof We write f (z) = a0 +∑k≥1 akk
−αzk . Since f is frequently hypercyclic, there

exists an increasing subsequence (nk) ⊂ N with positive lower density such that, for
all k ≥ 1, ∣Tnk

α f (0) − 3/2∣ = ∣ank
− 3/2∣ < 1/2, which implies that ∣ank

∣ ≥ 1. Moreover,
since the sequence (nk) has positive lower density, there exists C > 1 such that k ≤
nk ≤ Ck. Let us consider a positive integer l ≥ 1.

Case α ≠ 1
p′ : from the Hausdorff–Young inequality (we refer the reader to [7]), we

get, for any r in [1 − 2−l , 1 − 2−(l+1)],
[Mp(r, f )]p′ ≥ [Mp(1 − 2−l , f )]p′ ≥∑

k≥1

∣ak ∣p′
kαp

′
(1 − 2−l)kp′

≥∑
k≥1

∣ank
∣p′

n
αp′

k

(1 − 2−l)nk p
′

.

�us, we have

[Mp(r, f )]p′ ≥∑
k≥1

(1 − 2−l)Ckp′

(Ck)αp′ ≳ 2 l

∑
k=1

k−αp
′ ≳
⎧⎪⎪⎨⎪⎪⎩
1 if α > 1

p′

2(1−αp
′)l if α < 1

p′ .
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Hence, we obtain

Mp(r, f ) ≳ ⎧⎪⎪⎨⎪⎪⎩
1 if p′α > 1,
(1 − r)α− 1

p′ if p′α < 1.
Case α = 1

p′ : we use a Hardy–Littewood inequality [7, �eorem 6.2] to obtain for

any r ∈ [1 − 2−l , 1 − 2−(l+1)],
[Mp(r, f )]p ≥ [Mp(1 − 2−l , f )]p ≥∑

k≥1

∣ak ∣pk− p

p′ (1 + k)p−2 (1 − 2−l)kp .
�us, we have

[Mp(r, f )]p ≥ [Mp(1 − 2−l , f )]p ≳∑
k≥1

∣ank
∣p

nk
(1 − 2−l)nk p

≳∑
k≥1

(1 − 2−l)Ckp

Ck
≳ 2 l

∑
k=1

1

k
≳ log(2l).

Hence, we obtain

Mp(r, f ) ≳ ∣ log(1 − r)∣ 1p . ∎

3 Proof of the Main Result

3.1 Definitions and Notation

�e proof of �eorem 1.3 follows the construction given in [6]. In particular, we use
the so-called Rudin–Shapiro polynomials (combined with the de la Vallée–Poussin
polynomials), which have coefficients ±1 (or bounded by 1) and an optimal growth
of sup-norm (ultra-flat polynomials). Let us recall [6, Lemma 2.1], which records the
result of Rudin–Shapiro [12].

Lemma 3.1

(i) For each N ≥ 1, there is a trigonometric polynomial pN = ∑N−1
k=0

εN ,k e
i kθ where εN ,k = ±1 for all 0 ≤ k ≤ N − 1, with at least half of the coefficients

being +1 and with
∥pN∥p ≤ 5√N for p ∈ [2,+∞].

(ii) For each N ≥ 1, there is a trigonometric polynomial p∗N = ∑N−1
k=0 aN ,k e

i kθ where∣aN ,k ∣ ≤ 1 for all 0 ≤ k ≤ N − 1, with at least ⌊ N4 ⌋ coefficients being +1 and with
∥p∗N∥p ≤ 3N 1/p′ for p ∈ [1, 2].

We keep the notation adopted in [6]. For any given polynomial q with q(z) =
∑d

j=0 b jz
j with bd ≠ 0, we denote d = deg(q) and ∥q∥ℓ1 = ∑d

j=0 ∣b j ∣. We set 2N =
⋃k≥1 Ak where for any k ≥ 1, Ak = {2k(2 j − 1); j ∈ N} . Denote by P the countable
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270 A. Mouze and V. Munnier

set of polynomials with rational coefficients and let us also consider pairs (q, l) with
q ∈ P and l ∈ N satisfying ∥q∥ℓ1 ≤ l . Let us consider an enumeration (qk) of P and a
sequence (lk) tending to +∞ such that ∥qk∥ ≤ lk . Clearly, (qk) is a dense set inH(D).
Hence, for any k ≥ 1, we set dk = deg(qk), and we have

∥qk∥ℓ1 ≤ lk for every k ≥ 1.
In our context, for any α ∈ R, we will also need to modify the family of polynomials(qk) as follows: for any positive integer k ≥ 1, we set q̃k(z) = ∑dk

j=0 j
αb
(k)
j z j (we omit

the dependance on α in order to keep some readable notation).
Let α be a real number and let p ∈ (1,∞]. For all integers n ≥ 0, we set In ={2n , . . . , 2n+1 − 1}. Next, for k ≥ 1, let us define the integers
αk = 1 + ⌊max (l 2kd2 max(α ,0)

k , dk +max(3, 3 + α)l 2k +max(α, 0)lk log(1 + dk))⌋,
α∗k = 1 + ⌊max (l p′k d

p′ max(α ,0)
k , dk +max(3, 3 + α)l 2k +max(α, 0)lk log(1 + dk))⌋.

We set fα = ∑n≥0 Pn ,α where the blocks (Pn ,α) are polynomials defined as follows,
using Rudin–Shapiro polynomials given by Lemma 3.1,

Pn ,α(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if n is odd,

0 if n ∈ Ak and 2n−1 < αk ,

z2
n

Qn(z) if n ∈ Ak and 2n−1 ≥ αk ,

(3.1)

with for n ∈ Ak ,

Qn(z) = ∑
j∈In

j−αc
(k)
j−2n z

j−2n ,

where the sequence (c(k)j ) denotes the sequence of the coefficients of the polynomial

given by z ↦ p
⌊ 2

n−1

αk
⌋
(zαk)q̃k(z).

We also set f ∗α = ∑n≥0 P
∗
n ,α where the blocks (P∗n ,α) are polynomials defined as

follows, using the de la Vallée–Poussin polynomials given by Lemma 3.1,

P∗n ,α(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if n is odd,

0 if n ∈ Ak and 2n−1 < α∗k ,
z2

n

Q∗n(z) if n ∈ Ak and 2n−1 ≥ α∗k ,
(3.2)

with, for n ∈ Ak ,

Q∗n(z) = ∑
j∈In

j−αc
(k)
j−2n z

j−2n ,

where the sequence (c(k)j ) denotes the sequence of the coefficients of the polynomial

given by z ↦ p∗
⌊ 2

n−1

α∗
k

⌋
(zα∗k )q̃k(z).

A combination of Lemma 3.2 (resp. Lemma 3.3) below with the triangle inequality
will ensure that the function fα (resp. f

∗
α ) belongs toH(D). Observe that, if we denote

the polynomial z ↦ p
⌊ 2

n−1

αk
⌋
(zαk) (resp. z ↦ p∗

⌊ 2
n−1

αk
⌋
(zα∗k )) by gk (resp. g∗k ), we have, for
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all 1 ≤ p ≤ +∞, ∥gk∥p = ∥p⌊ 2n−1
αk
⌋
∥p (resp. ∥g∗k ∥p = ∥p∗⌊ 2n−1

α∗
k

⌋
∥p). Finally, for any integer

n, let us denote (ϕn(k)) the sequence defined as follows

ϕn(k) = ⎧⎪⎪⎨⎪⎪⎩
k−α if k ∈ In ,
0 otherwise.

3.2 Growth of Specific Functions: the Lp−case for 1 < p < +∞
In this subsection, for all 1 < p < +∞, we are going to construct specific functions
f ∈ H(D) and we shall study their growth. We will appeal to a strong form of the
Marcinkiewicz Multiplier �eorem (we refer the reader to [8]) to deal with all the
cases except for the critical cases (i.e., α = 1

2
when p ≥ 2 and α = 1

p′ when 1 < p < 2)
where we will use a Paley–Littlewood decomposition or a method of interpolation to
conclude. We begin this section with some useful lemmas.

Lemma 3.2 For any 2 ≤ p < +∞, any 0 < r < 1 and any n ∈ N, we have
Mp(r, Pn ,α) ≲ 2n( 1

2
−α)r2

n

.

Proof Let 2 ≤ p < +∞. Let n be a positive integer.Without loss of generality, we can
assume thatn belongs to the setAk for some k ≥ 1. Let r be in (0, 1). Since r ↦ Mp(r, ⋅)
is increasing, we get

Mp(r, Pn ,α) ≤ r2n∥Qn∥p .
�en the polynomial Qn can be viewed as a trigonometric polynomial obtained by

an abstract convolution operator on T, given by (ck)k≥0 ↦ (ϕn( j)c(k)j−2n) j≥0 (where(c(k)j ) denotes the sequence of the coefficients of the polynomial p
⌊ 2

n−1

αk
⌋
q̃k). Now, we

are going to apply the Marcinkiewicz Multiplier �eorem [8, �eorem 8.2 p. 148]. To
do this, observe that we have, for any l ≥ 1,

sup
j∈I l

∣ϕn( j)∣ ≤ sup
j∈In

∣ϕn( j)∣ ≲ 2−nα ,
sup
l
∑
j∈I l

∣ϕn( j + 1) − ϕn( j)∣ ≤ ∑
j∈In

∣ϕn( j + 1) − ϕn( j)∣ ≲ 2−nα .
Hence, taking into account the choice of αk and Lemma 3.1, we get

∥Qn∥p ≲ 2−nα∥p⌊ 2n−1
αk
⌋
∥p∥q̃k∥∞

≲ 2−nα
√

2n

αk
lk(1 + dk)max(α ,0)

≲ 2n(
1

2
−α) .

Finally, we obtain the desired estimate

Mp(r, Pn ,α) ≲ 2n( 1

2
−α)r2

n

. ∎
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Lemma 3.3 For any 1 < p < 2, any 0 < r < 1, and any n ∈ N, we have
Mp(r, P∗n ,α) ≲ 2n( 1

p′
−α)

r2
n

.

Proof �e proof is similar to that of Lemma 3.2. Let 1 < p < 2 and n be a positive
integer.Without loss of generality, we can assume that n belongs to the setAk for some
k ≥ 1. Let r be in (0, 1). Again, combining theMarcinkiewiczMultiplier�eoremwith
Lemma 3.1 and the choice of α∗k , we obtain

∥Q∗n∥p ≲ 2−nα∥p∗⌊ 2n−1
α∗
k

⌋
∥p∥q̃k∥∞ ≲ 2−nα( 2n

α∗k
) 1

p′

lk(1 + dk)max(α ,0)
≲ 2

n( 1

p′
−α)

.

Finally, using (3.2), we deduce the desired estimate. ∎

Now we are ready to obtain the rate of growth of the aforementioned functions fα
and f ∗α . We begin with the case 2 ≤ p < +∞.

Lemma 3.4 Let 2 ≤ p < +∞. For all 0 < r < 1, the following estimates hold:

Mp(r, fα) ≲
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − r)α− 1

2 if α < 1/2,√∣ log(1 − r)∣ if α = 1/2,
1 if α > 1/2.

Proof Let 2 ≤ p < +∞. Let us recall that fα = ∑n≥0 Pn ,α . First, we deal with the
case α > 1

2
. Combining Lemma 3.2 with the triangle inequality, we obtain, for any r

in (0, 1),
Mp(r, fα) ≤ ∑

n≥0

Mp(r, Pn ,α) ≲ ∑
n≥0

2n(
1

2
−α)r2

n

≲ 1.

�en we treat the case α < 1
2
. Combining Lemma 3.2 with the triangle inequality and

the integral comparison test, we get, for any r in (0, 1),
Mp(r, fα) ≤ ∑

n≥0

Mp(r, Pn ,α) ≲ ∑
n≥0

2n(
1

2
−α)r2

n

≲ (1 − r)α− 1

2 .

Finally, for the case α = 1
2
, we have by a corollary of the Paley–Littlewood decom-

position (we refer the reader to [8, �eorem 5.3.1]) and the integral comparison test
∀0 < r < 1,

Mp(r, fα) ≲ (∑
n≥0

[Mp(r, Pn ,α)]2 ) 1

2

≲ (∑
n≥0

r2
n) 1

2

≲
√∣ log(1 − r)∣. ∎

Next we deal with the case 1 < p < 2. �e following result holds.

Lemma 3.5 Let 1 < p < 2. For all 0 < r < 1, the following estimates hold:

Mp(r, f ∗α ) ≲
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − r)α− 1

p′ if α < 1/p′ ,∣ log(1 − r)∣ 1p if α = 1/p′ ,
1 if α > 1/p′ .
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Proof Let 1 < p < 2. Let us recall that f ∗α = ∑n≥0 P
∗
n ,α . �en, applying Lemma 3.3,

we obtain by the triangle inequality, for any 0 < r < 1,
Mp(r, f ∗α ) ≤ ∑

n≥0

Mp(r, P∗n ,α) ≲ ∑
n≥0

2
n( 1

p′
−α)

r2
n

.

�erefore, using a straightforward estimate or the integral comparison test, we get,
for any 0 < r < 1,

Mp(r, f ∗α ) ≲ ⎧⎪⎪⎨⎪⎪⎩
1 if p′α > 1,
(1 − r)α− 1

p′ if p′α < 1.
Finally, we deal with the case α = 1

p′ : first we have by the classical Lp Bernstein

inequality

Mp(r, (P∗n ,α)′) ≲ 2nMp(r, P∗n ,α) ≲ 2nr2n .
By an easy calculation, we deduce

Mp(r, ( f ∗α )′) ≲ ∑
n≥0

2nr2
n

≲
1

1 − r
.

Hence, [9, �eorem 2] gives the following conclusion, for any 0 < r < 1,
Mp(r, f ∗α ) ≲ ∣ log(1 − r)∣ 1p . ∎

3.3 Growth of Specific Functions: the L∞ case

�ispart is based on the use of aweightedBernstein inequality for the case α ≤ 0.�en
we proceed to an induction based on a fine control of derivatives, since themultipliers
we are dealing with are extremely localized for the case α ≥ 0. Nonetheless, to deal
with the critical case given by α = 1

2
, we need to exploit the flatness of the Rudin–

Shapiro polynomials.
We begin this section with some useful estimates of the sup norm of the aforemen-

tioned polynomials Pn ,α .

Lemma 3.6 For any α ≤ 0 and any integer n ≥ 0, we have
M∞(r, Pn ,α) ≲ 2n( 1

2
−α)r2

n

.

Proof Let α ≤ 0. Let n be an integer such that n belongs to Ak for some k ≥ 1.
�en, using the form of the polynomial Pn ,α , Lemma 3.1, and a fractional Bernstein’s
inequality (see [13, �eorem 19.10 and Remark 19.5]), we obtain

M∞(r, Pn ,α) ≲ 2−nαr2n
√

2n

αk
lk .

Finally, the choice of αk ensures that

M∞(r, Pn ,α) ≲ 2−n(α− 1

2
)r2

n

. ∎

�en we complete the previous proof to obtain the following lemma.
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Lemma 3.7 For any α ∈ R and any integer n ≥ 0, we have
M∞(r, Pn ,α) ≲ 2n( 1

2
−α)r2

n

.

Proof In the case α ≤ 0, the proof comes from Lemma 3.6. Assume now that α > 0.
First, we deal with the case 0 < α ≤ 1. We keep the notation of Section 3.1. Let n ≥ 1 be
an integer and assume that n belongs toAk for some k ≥ 1. �en we write

Pn ,α(z) = ∑
j∈In

u j

jα
z j and P′n ,α(z) = ∑

j∈In

u j

jα−1
z j−1 .

Since α − 1 ≤ 0, it follows from the proof of Lemma 3.6 that

M∞(r, P′n ,α) ≲ 2−n((α−1)− 1

2
)r2

n−1 .

We deduce, for any θ ∈ R and any 0 < r < 1,
∣Pn ,α(re iθ)∣ = ∣∫ r

0
e iθP′n ,α(te iθ)dt∣ ≤ ∫ r

0
∣P′n ,α(te iθ)∣dt

≲ 2−n((α−1)−
1

2
) ∫

r

0
t2

n−1dt

≲ 2−n(α−
1

2
)r2

n

.

Finally, we obtain
M∞(r, Pn ,α) ≲ 2n( 1

2
−α)r2

n

.

�e general case (given by α ≥ 0) follows by a straightforward induction on l ≥ 0,
which is the order of differentiation with l < α ≤ l + 1. ∎

Nowwe are ready to estimate the rate of growth of the aforementioned function fα .

Lemma 3.8 For all 0 < r < 1, the following estimates hold:

M∞(r, fα) ≲
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − r)α− 1

2 if α < 1/2,∣ log(1 − r)∣ if α = 1/2,
1 if α > 1/2.

Proof Let us recall that fα = ∑n≥0 Pn ,α . Taking into account Lemma 3.7, we
obtain—along the same lines as the proof of Lemma 3.4— on one hand, for α > 1

2
and

for any r in (0, 1),
M∞(r, fα) ≤ ∑

n≥0

M∞(r, Pn ,α) ≲ ∑
n≥0

2n(
1

2
−α)r2

n

≲ 1,

on the other hand, for α < 1
2
and for any r in (0, 1),

M∞(r, fα) ≤ ∑
n≥0

M∞(r, Pn ,α) ≲ ∑
n≥0

2n(
1

2
−α)r2

n

≲ (1 − r)α− 1

2 .

Finally the case α = 1/2 is easy: Lemma 3.7 implies

M∞(r, f 1

2

) ≤ ∑
n≥0

M∞(r, Pn , 1
2

) ≲ ∑
n≥0

r2
n

,

and the estimate∑n≥0 r
2n ≲ ∣ log(1 − r)∣ gives the conclusion. ∎
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3.4 Frequent Hypercyclicity

In this subsection, we are going to prove that the functions fα and f ∗α given by Section
3.1 are frequently hypercyclic vectors for the weighted Taylor shi� operator Tα , α ∈ R.
�e construction of these elements and the proof of this crucial fact are an adaptation
of the ideas given by Drasin and Saksman in the case of Mac–Lane differentiation
operator [6].

Lemma 3.9 We keep the notation of Section 3.1. For p ≥ 2 (resp. 1 < p < 2), the
function fα (resp. f

∗
α ) is a frequently hypercyclic vector for the operator Tα .

Proof Since the proof for f ∗α is very similar, we only prove the frequent hypercyclic-
ity of fα for the operator Tα . We do not repeat the details for f ∗α : it suffices to replace
αk and p

⌊ 2
n−1

αk
⌋
by α∗k and p∗

⌊ 2
n−1

α∗
k

⌋
and to adapt the proof.

Let k be a large enough integer. Let us consider n ∈ Ak such that 2n−1 ≥ αk . We
considerBn the set of s in [2n , 2n+1] ∩N such that the coefficient zs in the polynomial
z2

n

p
⌊ 2

n−1

αk
⌋
(zαk) is equal to 1. We denote by Tk = {s ∶ s ∈ Bn , n ∈ Ak , 2

n−1 ≥ αk} .
According to Lemma 3.1, we have

#Bn ≥ 2n

10αk
= #({2n , . . . , 2n+1 − 1})

10αk
= #({2n , . . . , 2n+2 − 1})

30αk
.

Since the elements of Ak are in arithmetic progression, we finally obtain that Tk has
positive lower density.

�en let α be a real number and let k be in N. Now let us consider s ∈ Bn with
n ∈ Ak satisfying 2

n−1 ≥ αk . We are going to prove that

sup
∣z∣=1− 1

lk

∣T s
α( fα)(z) − qk(z)∣ ≲ 1

lk
,

provided that k is chosen large enough.�iswill allow us to obtain the frequent hyper-
cyclicity property of Tα using the properties of the enumeration (qk , lk). �erefore,
to do this, we choose an even integer n ≥ 1 and s ∈ Bn . Let us write s = 2n +mαk for

some m ∈ {0, . . . , ⌊ 2n−1αk
⌋} with

z2
n

p
⌊ 2

n−1

αk
⌋
(zαk) = ⋯+ 1zs +⋯.

By the choice of αk , the next block of coefficients is dissociated from the present
one because of the condition αk + dk < 2αk . Hence, using the form of the polyno-
mials q̃k and the definition of Tα , we have that the first dk Taylor coefficients of
T s
α( fα) are precisely those of qk . Notice again by the choice of αk (or α∗k ) that the

Taylor coefficients of T s
α( fα) of index j with s + dk + 1 ≤ j ≤ s + (max(3, 3 + α)) l 2k +

max(α, 0)lk log(dk) are null.Moreover, since n is an even integer, by the construction
of each block Pn , all the coefficients having indexes lying in [2n+1 , 2n+2 − 1] are also

https://doi.org/10.4153/S0008439520000430 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000430


276 A. Mouze and V. Munnier

null. Indeed, the last index that belongs to Bn is bounded from above by 2n + 2n−1 +
dk < 2n+1 (by the choice of n such that 2n ≥ 2αk ≥ 2dk). �erefore, we can write

T s
α( fα)(z) − qk(z) = ∑

jk≤ j≤2n+1−1

c
(k)
j( j − s)α z j−s

+

+∞

∑
j=2n+2

c
(k)
j( j − s)α z j−s ∶= S1(z) + S2(z),

where jk = s + (max(3, 3 + α)) l 2k +max(α, 0)lk log(1 + dk). By the construction of

fα , we observe for any j ∈ [ jk , 2n+1 − 1] ∩N that all the coefficients c
(k)
j coincide with

the coefficients of q̃k possibly multiplied by some coefficient bounded by 1.�erefore,
we obtain, for any j ∈ [ jk , 2n+1 − 1] ∩N, the following estimate:

∣c(k)j ∣ ≤ ∥q̃k∥ℓ1 ≤ dmax(α ,0)
k lk .

Hence, we get, by the triangle inequality and from the basic inequality 1 − t ≤ e−t for
t > 0,

sup
∣z∣=1− 1

lk

∣S1(z)∣ ≤ dmax(α ,0)
k lk ∑

j≥ jk

max(( j − s)−α , 1)(1 − 1

lk
) j−s

≤ dmax(α ,0)
k lk ∑

j≥ jk−s

max( j−α , 1)e− j

lk .

For α > 0, thanks to the inequality t/3 ≤ 1 − e−t , for 0 < t < 1, we get
sup
∣z∣=1− 1

lk

∣S1(z)∣ ≤ dα
k lk ∑

j≥ jk−s

e
−

j

lk ≤ dα
k lk

1 − e−1/lk
e−(3+α)lk−α log(1+dk) ≤ 3

lk
.

In the same spirit, for α ≤ 0, we get, for all k large enough,

sup
∣z∣=1− 1

lk

∣S1(z)∣ ≤ lk ∑
j≥ jk−s

j−α e
−

j

lk ≲ l 2k(3l 2k)−α e−3 lk ≲ 1

lk
,

using an integral comparison test.
Now we deal with the sum S2(z). Combining the growth of fα given by Section

3.3 with Cauchy formula’s along the radii r = 1 − 1/ j, we get, for any j ≥ 1,
∣c(k)j ∣ ≤ Cp j

α max( j 12−α+ε , 1) ≲ jmax( 1

2
+ε ,α) ,

where Cp > 0 only depends on p and 0 < ε≪ 1 (which allows us to take into

account the logarithmic factor for the case α = 1
2
). Since we have both 2n+1 ≥ 4αk ≥

4max(3, 3 + α)l 2k , which implies 2n+1 ≥ 4αk ≥ 4max(1, α)l 2k , and { j − s ∶ j ≥ 2n+2} ⊂{ j ≥ 2n+1}, we obtain, provided that k is large enough again,
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sup
∣z∣=1− 1

lk

∣S2(z)∣ ≲ ∑
j≥2n+1

jmax(−α ,0)( j + s)max( 1

2
+ε ,α)(1 − 1

lk
) j

≲ ∑
j≥2n+1

jmax( 1

2
+ε , 1

2
+ε−α ,α)e

−
j

lk

≲ ∫
+∞

4 max(1,α)l 2
k

tmax( 1

2
+ε , 1

2
+ε−α ,α)e

− t
lk dt.

Taking into consideration the different cases, an easy calculation leads to the following
inequality:

sup
∣z∣=1− 1

lk

∣S2(z)∣ ≲ l β(α)+1k l
β(α)
k e−4 max(1,α)lk ≲

1

lk
,

with β(α) =max (1/2 + ε, 1/2 + ε − α, α) . �is finishes the proof. ∎

3.5 Final Step

Now we are ready to prove�eorem 1.3. To do this, it suffices to combine Lemma 3.9
with:

● Proposition 2.1 and Lemma 3.4, in the case 2 ≤ p < +∞;
● Proposition 2.1 and Lemma 3.8, in the case p = +∞;
● Proposition 2.2 and Lemma 3.5, in the case 1 < p < 2.
Remark 3.10 For p = +∞ and α = 1

2
, there is still a question: what is the optimal

growth of a frequently hypercyclic vector for T 1

2

? According to Proposition 2.1, such

an element f satisfies, for any 0 < r < 1,M∞(r, f ) ≳√∣ log(1 − r)∣. On the other hand,
Lemmas 3.8 and 3.9 ensure that there exists frequently hypercyclic vector f forT 1

2

such

that, for any 0 < r < 1,M∞(r, f ) ≲ ∣ log(1 − r)∣.
4 The Case p = 1

To conclude, let us consider the case p = 1. First it is easy to obtain the following
estimates. �e proof follows the ideas of Proposition 2.1. �e case α = 0 was already
known [11].

Proposition 4.1 Let α ∈ R and f ∈ H(D). Assume that f is a frequently hypercyclic
vector for Tα . �en, for all 0 < r < 1, the following estimates hold:

M1(r, f ) ≳
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − r)α if α < 0,
− log(1 − r) if α = 0,
1 if α > 0.

Proof We write f (z) = a0 +∑k≥1 akk
−αzk . We argue as in the beginning of the

proof of Proposition 2.1 to find an increasing subsequence (nk) ⊂ N satisfying k ≤
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nk ≤ Ck with C > 1 such that for all k, ∣ank
∣ ≥ 1. Let us consider a positive integer l ≥ 1.

For any r ∈ [1 − 2−l , 1 − 2−(l+1)], we apply Hardy’s inequality to obtain
M1(r, f ) ≥ M1(1 − 2−l , f ) ≥∑

k≥1

∣ak ∣
kα+1

(1 − 2−l)k

≥∑
k≥1

∣ank
∣

nα+1
k

(1 − 2−l)nk ≥∑
k≥1

(1 − 2−l)Ck

(Ck)α+1
≳

2 l

∑
k=1

k−α−1 ≳

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − r)α if α < 0,
− log(1 − r) if α = 0,
1 if α > 0.

∎

On the other hand, for α = 0, we established the following result (see [11]), which
gives in some sense the optimality of the estimate of Proposition 4.1. In the following,
for any positive integer l, the notation logl will stand for the iterated function log○ ⋅ ⋅ ⋅ ○
log where log appears l times.

�eorem 4.2 ([11]) For any l ≥ 1, there is a frequently hypercyclic function f ∈ H(D)
for T satisfying the following estimate: there exists C > 0 such that for every 0 < r < 1
sufficiently large,

M1(r, f ) ≤ C∣ log(1 − r)∣ logl ( − log(1 − r)).
For α ≠ 0, we are going to combine the ideas of [11] with those of Subsection 3.3 to

obtain a similar result. Let l ≥ 1. We also set f ∗α = ∑n≥0 P
∗
n ,α where the blocks (P∗n ,α)

are polynomials defined as in (3.2), with

α∗k = 1 + ⌊max (uk , dk +max(3, 3 + α)l 2k +max(α, 0)lk log(1 + dk))⌋ ,
where uk is chosen such that logl+1(α∗k ) ≥ lk .
Lemma 4.3 We have for any α ∈ R, for all n ∈ N, and for any r ∈ (0, 1),

M1(r, P∗n ,α) ≲ r2n2−nα lk .
Proof We argue as in the proof of Lemmas 3.6 and 3.7. First, let α ≤ 0.�en, by the
maximum principle, we can write

M1(r, P∗n ,α) ≤ r2
n

2π
∫

2π

0
∣Q∗n(re i t)∣dt

= r2
n

2π
∫

2π

0
∣∑
j∈In

j−αc
(k)
j−2n(re i t) j−2n ∣dt.(4.1)

Let us consider the trigonometric polynomials

Un ,α(e iθ) = ∑
j∈In

j−αc
(k)
j−2n r

j−2n e i jθ and Vn(e iθ) = ∑
j∈In

c
(k)
j−2n r

j−2n e i jθ .
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Observe that

∑
j∈In

j−αc
(k)
j−2n(re iθ) j−2n = e−i2n θUn ,α(e iθ) and q∗n ,k(e iθ) = e−i2n θVn(e iθ).

(4.2)

From (4.1), (4.2), and the fractional Bernstein’s inequality (see [13, �eorem 19.10 and
Remark 19.5]), we get

M1(r, P∗n ,α) ≤ r2n∥Un ,α∥1 ≲ r2n2−(n+1)α ∥Vn∥ 1 = r2n2−(n+1)α∥q∗n ,k∥1 .
�us, using Lemma 3.1, we obtain

M1(r, P∗n ,α) ≲ r2n2−nα lk .(4.3)

Now let us consider the case α ∈ (0, 1]. Since we have, for any r ∈ (0, 1),
∣P∗n ,α(re iθ)∣ = ∣∫ r

0
e iθ (P∗n ,α)′ (te iθ)dt∣

≤ ∫
r

0
∣ (P∗n ,α)′ (te iθ)∣dt = ∫ r

0
t−1∣P∗n ,α−1(te iθ)∣dt,

we deduce, by integrating this inequality and using (4.3) with α − 1 ≤ 0,
M1(r, P∗n ,α) ≲ ∫ r

0
t−1M1(t, P∗n ,α−1)dt ≲ lk2−n(α−1) ∫ r

0
t2

n−1dt ≲ r2
n

2−nα lk .

�e general case follows by an easy induction onm with m < α ≤ m + 1. ∎

We are ready to prove in a certain sense the optimality of Proposition 4.1.

�eorem 4.4 Let α ∈ R. For any l ≥ 1, there is a frequently hypercyclic function f ∗α ∈
H(D) for T satisfying the following estimate: there exists C > 0 such that for every 0 <
r < 1 sufficiently large

M1(r, f ) ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(1 − r)α logl(− log(1 − r)) if α < 0,
C ∣log(1 − r)∣ logl(− log(1 − r)) if α = 0,
C if α > 0.

Proof �e case α = 0 is given by�eorem 4.2. In the following, for l ≥ 1, we denote
by A l the smallest integer so that for all n ≥ A l , logl(n) ≥ logl+1(αk) (with 2n−1 ≥ αk).
�en, for any j large enough, the use of Lemma 4.3 and the inequality (1 − t) ≤ e−t ,
for 0 ≤ t ≤ 1, leads to

M1 (1 − 1

2 j
, f ∗α ) ≤∑

n≥1

M1(1 − 1

2 j
, P∗n ,α)

≲ ∑
n≥0,

2n−1≥α∗k

(1 − 1

2 j
)2n−12−nα lk

≤ logl+1(α∗k )A l2
A l max(0,−α)

+ ∑
n≥A l

e−2
n− j−1

2−nα logl(n).
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For α > 0, the last sum is bounded by

∑
n≥A l

e−2
n− j−1

2−nα logl(n) ≤ ∑
n≥A l

2−nα logl(n) ≲ 1.
For α < 0, we can write

∑
n≥A l

e−2
n− j−1

2−nα logl(n) ≤ j+1

∑
n=A l

e−2
n− j−1

2−nα logl(n)
+ ∑

n≥ j+2

e−2
n− j−1

2−nα logl(n)
≤ logl( j + 1) j+1

∑
n=1

2−nα

+ 2−( j+1)α ∑
m≥1

e−2
m

2−mα logl(m + j + 1)
≤ logl( j + 1)2−( j+1)α
+ 2−( j+1)α logl( j + 1)∑

m≥1

e−2
m

2−mα(m + 1)
≲ 2− jα logl( j).

We deduce

M1(1 − 1

2 j
, f ∗α ) ≲ ⎧⎪⎪⎨⎪⎪⎩

logl( j)2− jα if α < 0,
1 if α > 0.

Hence, we obtain for any 1 − 1
2 j ≤ r < 1 − 1

2 j+1 (with j large enough),

M1(r, f ∗α ) ≤ M1(1 − 1

2 j+1
, f ∗α ) ≲ ⎧⎪⎪⎨⎪⎪⎩

logl( j)2− jα if α < 0,
1 if α > 0.

≲

⎧⎪⎪⎨⎪⎪⎩
logl (− log(1 − r)) (1 − r)α if α < 0,
1 if α > 0.

To obtain the frequent hypercyclicity of the vector f ∗α for the weighted Taylor shi� Tα ,
it suffices to mimic the proof of Lemma 3.9. ∎

Remark 4.5 For p = 1 and α ≤ 0, the following problems remain open: does there
exist a frequently hypercyclic function gα ∈ H(D) for the Taylor shi� Tα such that

lim supr→1 ((1 − r)−αM1(r, gα)) < +∞ if α < 0 or lim supr→1 ( M1(r ,g0)
− log(1−r)

) < +∞ if
α = 0 ?
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