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Abstract. We study the dynamics of phase space holes in a non-collisional plasma
by numerical integration of the one-dimensional Vlasov equation. The plasma is
bounded and connected to vacuum by two interfaces, which gives rise to non-
periodic boundary conditions. By choosing different initial conditions, we consider
four different situations: development of a sinusoidal wave, two-stream instability,
development of an ab initio Bernstein–Greene–Kruskal state and the expansion of a
plasma into vacuum. For the latter situation ions move with a realistic mass of 1837
electron masses. The most prominent results of our investigation are: (a) a clockwise
revolution of holes in phase space; (b) the appearance of stable oscillations of the
total electron momentum, which, despite their striking linearity, cannot be related
to electrostatic plasma oscillations. To the best of our knowledge none of these
phenomena have been reported in kinetic simulations before: indeed we prove that
the non-periodicity of the boundary conditions is an essential requirement for the
sustainment of both hole revolution and momentum oscillations.

1. Introduction
Particle depletions in the phase space of a non-collisional plasma (phase space holes)
are associated with several prominent nonlinear phenomena in plasmas, such as the
asymptotic development of Landau damping (Manfredi 1997), the appearance of
Bernstein–Greene–Kruskal (BGK) states (Brunetti et al. 2000), electrostatic echoes
(Nocera and Mangeney 1999), solitons (Saeki and Genma 1998; Muschietti et al.
1999) and non-monotonic double layers (Hasegawa and Sato 1982; Han and Kim
1995).
Beside very instructive analytical investigations into the nature and formation

mechanisms of phase space holes (Bernstein 1958; Boutros-Ghali and Dupree 1981;
Dupree 1982; Schamel 1982, 1986, 2000; Chanteur and Raadu 1987; Terry et al.
1990; Korn and Schamel 1996), the study of phase space holes by numerical solution
of Vlasov’s equation was also considered. This has indeed been attempted by most
diverse numerical approaches, including particle-in-cell (Sato and Okuda 1980;
Berman et al. 1986; Han and Kim 1995; Muschietti et al. 1999), waterbag (Berk and
Roberts 1967; Roberts and Berk 1967), splitting (Berk et al. 1970; Bertrand et al.
1989; Mineau 1989; Ghizzo et al. 1998; Fijalkow 1999), Fourier–Fourier (Klimas and
Farrell 1994) and Fourier–Hermite (Armstrong and Montgomery 1969) algorithms.
With the exception of the particle-in-cell simulation by Muschietti et al. (1999),

who applied permeable boundaries with outgoing particle removal, these works used
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spatially periodic boundary conditions, in one or possibly two (Fijalkow 1999) and
three (Singh et al. 2000; Oppenheim et al. 2001) spatial coordinates.
In this paper we relinquish the assumption of periodicity and consider an ion and

electron plasma in a non-periodic configuration, which we simulate by a splitting-
type code. In such a situation, by suitably choosing the initial conditions, we invest-
igate the development of phase space holes in four different situations:
(a) development of a sinusoidal wave, leading to the appearance of non-vanishing
mean velocity holes; (b) a two-stream unstable configuration, developing into BGK
holes; (c) initially static BGK states, coalescing into a single hole; (d) free expansion
of a plasma into vacuum, leading to the appearance of irregularly shaped holes. In
cases (a)–(c) ions are immobile, whereas in case (d) they move with a realistic mass
of 1837 electron masses.
In all the problems we study, holes appear. However, their behaviour is not the

same as in the case of periodic boundary conditions, the most prominent difference
being for cases (a)–(c): the direct effect of the non-periodic boundary conditions
is prevention of the rectilinear, bulk translational motion of the holes in space,
which is so much the hallmark of the periodic situation: rather, in phase space, a
central, large, vanishing velocity hole is surrounded by a chain of smaller holes
which periodically revolve around the main hole in a clockwise direction.
Superimposed on such a revolution, a strikingly regular harmonic oscillation of

the total electron momentum sets in, no matter how large the amplitude of oscil-
lation. In cases (a) and (c) this oscillation is apparently undamped over very long
time-scales and therefore it bears no relation to the plasma oscillations predicted
by the standard linear treatment of Vlasov’s equation. In case (d) the oscillation is
attenuated in time, but its frequency and damping rate are different from Landau’s
rate. Since these oscillations are very important for the stability of holes, we shall
devote part of the paper to the understanding of their attenuation in our otherwise
conservative system.
This article is organized as follows. In Sec. 2 we present the basic equations,

boundary conditions and the code used for the simulations; cases (a), (b)–(c) and
(d) are dealt with in Secs 3–5, respectively; momentum oscillations are analysed in
Sec. 6; conclusions are drawn in Sec. 7.

2. Numerical code, basic equations and boundary conditions
In the following we solve the Vlasov–Poisson system of equations for a distribution
fe(x, ve, t) of electrons of charge −|e| and mass me, moving in a background of
fixed, but inhomogeneously distributed ions of charge |e|:

∂fe

∂t
+ ve

∂fe

∂x
− E

∂fe

∂ve
= 0,

∂E

∂x
= ni −

∫ ∞

−∞
fe dve.


 (2.1)

Here and in the following time t is normalized to the inverse of the electron plasma
frequency ωp = (4πn0e

2/me)1/2, frequencies to ωp, velocity ve to the electrons’
thermal speed vTe = [Te/me]1/2, the space coordinate x to the Debye length λD =
vTe/ωp, the electrostatic field E(x, t) to E0 = 4π(n0λ

3
D)e/λ2

D, where Te is the
homogeneous electron temperature. The inhomogeneous ion density ni(x) takes
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Figure 1. The ion density profile of (2.2) used in Figs 2, 3 and 5.

a constant value n0 over the central part of the plasma (the ‘plateau’) of extent
2D and it is connected to vacuum by two interfaces of width 2d through Epstein
profiles (cf. Fig. 1):

ni(x) = n0




0 for 0 � x < D − 2d
1
2{1 + tanh(4[(x − D)/d + 1])} for D − 2d � x � D

1 for D < x < 3D
1
2{1 + tanh(4[(x − 3D)/d − 1])} for 3D � x � 3D + 2d

0 for 3D + 2d < x � L.

(2.2)

We prescribe the following boundary conditions:

fe(x = 0, ve, t) = fe(x = L, ve, t) = 0; (2.3)

we choose the x-width of the computational box L to be much larger than the
extent of the plateau, so that possible ‘end effects’, induced during the simulations,
would have as small a consequence as possible.
We set d = 120∆x for the half-width of the interface, where∆x = L/Nx is the size

of the mesh: this provides a reasonably well-resolved transition between the plasma
and vacuum. The extent of the electron velocity space is −vmax e � ve � −vmax e.
The values of L, vmax e and of the number of points used in the discretization of the
x coordinate (Nx) and of the velocity coordinate (Nv) will be specified in each of
the simulations below.
The code used for our numerical computations is basically the ‘splitting’ code by

Shoucri and Gagne (1978), where the periodic splines are, however, changed to open
splines: this allows us to represent our open system which has no plasma outside
the computational box (cf. 2.3). This code turns out to be very suitable for our
purposes: a comparatively large time step ∆t = 0.1 ensures a good convergence
and stability in all of the following simulations.

3. Non-vanishing mean velocity holes
The first instance of our investigation will be to produce ‘non-vanishing mean
velocity’ holes, i.e. holes for which the centre is located in phase space at some
positive or negative, non-vanishing velocity coordinate. For this purpose the initial
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Figure 2. Evolution of the electron distribution function for the initial condition in (3.1)
(a Maxwellian with a sinusoidal wave perturbation), where k0 = 0.3, L = 8π/k0, ε = 0.1,
α = 1. Nx = 512, Nv = 320 points were used. Left-hand column, downward: t = 0, 30;
right-hand column, downward t = 66, 96. In all frames, only a restricted, central part of the
phase space is shown: 1

8
� x/L � 7

8
, − 1

2
� ve/vmaxe � 1

2
.

condition for (2.1) is taken as follows:

fe(x, ve, t = 0) = ni(x)hv(ve)[1 + ε cos(αk0x)], (3.1)

where

hv(v) =
1√
2π

exp(−v2/2), (3.2)

ε is a perturbation amplitude and 2α is an integer. Here and in the following sections
the fundamental wavenumber will be defined as k0 = 2π/D: in this way a wave
with mode number 2α is excited, having exactly 2α maxima within the plateau
D � x � 3D, which vanishes outside the plasma.
In the simulations reported in Fig. 2, we use k0 = 0.3,D = 2π/k0, L= 4D, vmax e =

15, ε = 0.1, α = 1, Nx =512, Nv =320. In these conditions only mode number 2 is
excited. In the periodic case, this mode would Landau-damp away and four holes
moving parallel to the x-axis would be created at large times: two of them are posi-
tive mean velocity holes and the other two, with the same amplitude, negative mean
velocity holes. In the non-periodic case, however, these holes move in phase space
in a direction that is not necessarily parallel to the space coordinate and, in fact,
rotates clockwise around the central part of the phase space (cf. Fig. 2).
To better study the time development of the electron momentum, we perform a

second simulation with α = 3
2 in (3.1): six holes now appear in both the periodic

and non-periodic system, as compared in Fig. 3. Hole generation turns out to be a
bit faster in the periodic system (cf. Fig. 3 at t = 30).
This simulation allows us to uncover a very important difference between the

periodic and the non-periodic system, i.e. the behaviour of the total electron mo-
mentum

Px =
∫ L

0

∫ ∞

−∞
vefe(x, ve, t) dve dx. (3.3)
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Figure 3. Evolution of the electron distribution function for the initial condition in (3.1)
(a Maxwellian with a sinusoidal wave perturbation) where k0 = 0.3, L = 8π/k0, ε = 0.1,
α = 3

2
. Nx = 512, Nv = 320 points were used. Comparison between the periodic case (left)

and the non-periodic case is shown. Frame pairs, downward: t = 0, 20, 40, 60, 100, 120. Only
a restricted, central part of the phase space is shown: 1

8
� x/L � 7

8
, − 1

2
� ve/vmaxe � 1

2
.
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Figure 4. Oscillation of the total electron momentum in (3.3) during the development of
phase space holes in Fig. 3.

In a periodic system Px is identically zero. In the non-periodic system, however, Px

oscillates in time, apparently undamped, with a period T � 10 (cf. Fig. 4). Similar
oscillations also exist for smaller values of the perturbation amplitude ε: generally
speaking, the smaller this amplitude, the further in the wings of the distribution
function (larger ve) holes will appear.

4. Holes of the BGK type
To study the evolution of holes with a vanishing mean velocity two possibilities
exist: a ‘two-stream’ initial condition, with a perturbation exciting mode number
n (so as to obtain 2n holes) and ab initio created holes. We shall test both of these
possibilities.
For the two-stream case the initial distribution function for electrons streaming

at a speed ±v0 relative to the ions takes the form

fe(x, ve, t = 0) =
1√
2π

ni(x) exp[−(|ve| − v0)2/2][1 + ε cos(αk0x)]. (4.1)

We recall that, in the periodic case, such an initial condition generates a simple
equilibrium of the BKG type with two holes: these holes have a vanishing mean
velocity and the total momentum Px in (3.3) is again zero.
In the non-periodic simulations reported in Fig. 5, we use k0 = 0.427 12, D =

2π/k0 = 14.7106, L = 4D, v0 = 2, ε = 0.01, α = 1, Nx = 512, Nv = 320. We observe
the development of the same BGK holes, their mixing and finally their collapse,
as indeed in the periodic case (Ghizzo et al. 1998). The difference comes from
the appearance of six non-vanishing mean velocity holes. These holes rotate around
the central vanishing mean velocity hole, as in the case reported in Sec. 3. Also we
note the oscillation of the total momentum Px, with the same frequency as in Sec. 3
and a slightly different amplitude (0.175 instead of 0.115).
To study an ab initio BGK case, we start with the initial condition (which reduces

to the one used by Ghizzo et al. (1988) for ni = 1)

fe(x, ve, t = 0) =
2µ√
2π

ni

(
1 − ζ

3 − 2ζ

)(
1 +

we

1 − ζ

)
exp(−we), (4.2)
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Figure 5. Evolution of the electron distribution function for the initial condition in (4.1)
(a Maxwellian with a two-stream perturbation), where k0 = 0.427 12, L = 8π/k0, v0 = 2,
ε = 0.01, α = 1. Nx = 512, Nv = 320 points were used. Notice the appearance of holes with
a zero mean velocity, their collapse and the development of holes with a non-vanishing mean
velocity. Left-hand column, downward: t = 0, 40, 80, 120; right-hand column, downward:
t = 160, 200, 240, 280. In all frames, only a restricted, central part of the phase space is
shown: 1

8
� x/L � 7

8
, − 1

2
� ve/vmaxe � 1

2
.

where we is the total energy of the electron in the electrostatic potential φ(x):

we = v2
e/2 − φ(x),

φ(x) =
{

ε sin(αk0x) for |x − 2D| < D
0 for |x − 2D| � D.


 (4.3)

For the simulations reported in Fig. 6, we choose k0 = 0.427 12,D = 2π/k0 =
14.7106, L = 4D,µ = 0.92, ζ = 0.9, ε = 0.001, α = 1, Nx = 512, Nv = 320, so that,
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Figure 6. Evolution of the electron distribution function for the initial condition in (4.2) and
(4.3) (an ab initio BGK state), where k0 =0.427 12, L=8π/k0, µ=0.92, ζ =0.9, ε=0.001,
α=1. Nx =512, Nv =320 points were used. Notice the merging of the holes into a single
hole and the appearance of a non-vanishing velocity hole. Left-hand column, downward:
t=0, 20, 40, 60; mid column, downward: t=80, 100, 120, 140; right-hand column, down-
ward: t=160, 180, 200, 220. In all frames, only a restricted, central part of the phase space
is shown: 1

8
� x/L � 7

8
, −1 � ve/vmaxe � 1.

at t = 0, we have two vanishing mean velocity holes. After a short time (t = 20),
four non-vanishing mean velocity holes appear and the classical behaviour of the
BGK holes, i.e. coalescence of the two vanishing mean velocity holes into one single
hole, sets in. As in the two-stream case considered above, the mean momentum Px

oscillates at a constant frequency, the only difference being the amplitude of the
oscillations (cf. Fig. 7).

https://doi.org/10.1017/S0022377803002101 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377803002101


Non-periodic holes 101

0.1

0.0

–0.1
0 100 200 300

Px

t

Figure 7. Oscillation of the total electron momentum in (3.3) during the development of
phase space holes in Fig. 6.

5. Free plasma expansion
In order to gather some insight into the results of the previous two sections (notably
the oscillations of the total electron momentum), in this section we attempt to
reproduce phase space holes in a less conventional situation: free expansion of a
plasma into vacuum. Since the Coulomb pull due to infinitely massive, cold ions
would prevent electrons from expanding, in this section we consider mobile ions, for
which the distribution fi(x, vi, t) obeys the normalized Vlasov equation

∂fi

∂t
+ vi

∂fi

∂x
+ E

∂fi

∂vi
= 0, (5.1)

subject to the same boundary condition of electrons

fi(x = 0, vi, t) = fi(x = L, vi, t) = 0. (5.2)

Here and in the following the range of the ion velocity is −vmax i � vi � vmax i,
where vmax i = 0.28 electrostatic units. Electrons obey (2.1), where the ion density
is now given by ni(x, t) =

∫ ∞
−∞ fi(x, vi, t) dvi, rather than by (2.2).

In the following both electrons and ions are initially in thermal equilibrium and
distributed in velocity according to a Maxwellian; ions are initially homogeneous
within the plateau D < x < 3D, whereas electrons are subject to an initial pertur-
bation:

fe(x, ve, t = 0) = hv(ve)[1 + ε cos(αk0x)]

fi(x, vi, t = 0) = (me/mi)1/2hv((me/mi)1/2vi)

}
for |x − 2D| < D,

fe(x, ve, t = 0) = fi(x, vi, t = 0) = 0 for |x − 2D| � D,

(5.3)
where mi is the ion mass.
For the simulation presented in Fig. 8, we choose k0 = 0.3, L = 32π/k0, ε =

0.2, α = 3
2 ,mi = 1837me; the electron and ion space and velocity coordinates x

and ve, vi are discretized by the same number of points, Nx = 2048 and Nv = 320,
respectively. The time step used in computation is ∆t = 0.1, for both electrons and
ions. For long-time behaviour and using a small (about 10) ion/electron mass ratio,
such a problem was treated by Manfredi et al. (1993) and by Figua et al. (1999).
However, in these works the appearance of the holes was hidden by a rescaling
procedure used to deal with long-time evolution.
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Figure 8. Evolution of the electron (left) and ions (right) distribution functions for the initial
condition in (5.3) (free expansion of a plasma into vacuum), where k0 =0.3, L=32π/k0,
ε=0.2, α= 3

2
,mi =1837me.Nx =2048,Nv =320 points were used. Frame pairs, downward:

t=0, 12, 24, 36. Notice the build–up of filamentary structures in the plasma interfaces, close
to the frames’ borders. In all frames, only a restricted, central part of the phase space
is shown: 0.48 � x/L � 0.52; − 2

3
� ve/vmaxe � 2

3
for electrons, −1 � vi/vmax i � 1

for ions.
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Figure 9. Oscillation of the total electron momentum in (3.3) during the development of
phase space holes in Fig. 8. Notice the attenuation of the oscillations, at variance with Figs 4
and 7.
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t

Figure 10. Same as in Fig. 9, but for ε=0.05. Note decreasing the amplitude and frequency
of the oscillations as compared with Fig. 9.

The behaviour of the total momentum is now different from that given in Secs
3 and 4: the frequency of the oscillations changes and their amplitude decreases in
time, as the electrons expand into free space (cf. Fig. 9). Furthermore, simulating
the expansion with a smaller perturbation leads to another important difference:
not only does the oscillation amplitude decrease, but also its frequency turns out
to be smaller than before (cf. Fig. 10).

6. Momentum oscillations
The oscillations of the total momentum in Figs 4 and 7 are a challenging task for
theory to explain: they cannot be related to the above-mentioned cyclic revolution
of holes in phase space: indeed, in Figs 3 and 6 we see that, for every positive
contribution to the total momentum, due to rightward-moving electrons, there is
a negative contribution, due to leftward-moving electrons which cancel the former
contribution. A second way of thinking is that the oscillations of Figs 4 and 7 are
due to perturbations of the plasma equilibrium. The nature of such an equilibrium
is doubtless very complicated: contrary to the case of a spatially homogeneous
plasma with periodic boundary conditions, holes do not reduce to a BGK state.
The study of their stability in the fully kinetic regime, as performed for periodic
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boundary conditions (e.g. Schwarzmeier 1979), falls outside the scope of the present
paper.
To simplify the situation we note that our equilibrium is formed by an inhomo-

geneous Maxwellian background on which the electrostatic component (holes) is
superimposed. We assume that the latter is not important in determining the
oscillation frequencies of the perturbations: in so doing we are supported by the fact
that the equilibria in Figs 3 and 6 (which have the same Maxwellian background,
but different hole configurations) have almost the same frequency of oscillation as
shown in Figs 4 and 7, respectively. To further simplify the situation we adopt a
fluid approach, since the quantity Px we are investigating is itself a fluid quantity.
Also, in view of the mainly Maxwellian nature of the equilibrium, we can assume
a vanishing heat flux (e.g. Boyd and Sanderson 1969), i.e. an adiabatic closure law.
As a last simplification, in view of the harmonic nature of the oscillations of Px,
we use a linear theory. It is thus easy to reduce Vlasov’s moment hierarchy to the
following equation for the momentum density px(x, t) =

∫ ∞
−∞ vefe(x, ve, t) dve:

∂2

∂t2
px − γ

∂

∂x

(
1
ni

∂

∂x
px

)
= 0, (6.1)

where γ = 5
3 is the adiabatic exponent for the electron gas and ni(x) is the inhomo-

geneous background density given in (2.2) and in Fig. 1. We remind the reader
that in (6.1) all electrostatic terms have been neglected, which reduces the normal
modes of this equation to electron sound waves. Such normal modes can be written
in the form px(x, t) = qx(x) exp(−iωt) and the following equation and boundary
conditions hold:

ω2qx + γ
∂

∂x

(
1
ni

∂

∂x
qx

)
= 0, qx(0) = qx(L) = 0. (6.2)

With reference to Fig. 1, (6.2) is first solved in the interval 0 � x < D − 2d
(ni = 0, qx = 0) and then in the interval D − 2d � x � D (ni is the Epstein
profile and qx is the hypergeometric series), by matching qx and its derivative at
x = D − 2d. As a result of this procedure a value qx(D) is found. Now we notice
that, in order to gather a non-vanishing total momentum Px(t) =

∫ L

0 px(x, t) dx,
we must consider only even solutions of (6.2) with respect to the point x = 2D (cf.
Fig. 1). The way to ensure this is to apply the same procedure used in the interval
0 � x � D to the interval 3D � x � L; as a result, the same value of qx(D) will be
found at x = 3D.
Finally, we integrate (6.2) in the intervalD < x < 3D, where ni = 1; the solution

satisfying the symmetry condition and the boundary conditions qx(D) = qx(3D) is

qx(x) = qx(D) cos(λx), ω = γ1/2λ. (6.3)

To compare the frequency ω with the results of the simulations we argue that
the wavenumber λ is the same as that of the initial perturbation: λ = αk0. Thus,
in the case of the simulation of Sec. 3 (α = 3

2 , k0 = 0.3) we obtain a period for the
oscillation T = 2π/ω = 10.82; for the simulation of Sec. 4 (α = 1, k0 = 0.427 12) we
obtain T = 2π/ω = 11.32. Such values are in good agreement with the results in
Fig. 4 (T � 10) and Fig. 7 (T � 10), respectively.
We notice that, on calculating Px =

∫ L

0 qx(x) dx, the contribution coming from
the central plateau (D < x < 3D) averages to zero, due to periodicity of qx, but the
contribution coming from the interfaces (D − 2d � x � D and 3D � x � 3D + 2d)
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is generally non-zero. We conclude that the observed oscillation of Px owe their
existence to the interfaces, and thus they vanish if the background plasma is strictly
homogeneous.
We now come to Sec. 5 and to Figs 9 and 10 in which the wavenumber of the

initial perturbations is αk0 = 0.45; for such a value the frequency of Langmuir
waves is about 1.35 and its Landau damping rate would be about 0.11 (Canosa
1973): such values are noticeably different from those observed in Figs 9 and 10. It
is thus unlikely that the oscillations observed are due to Landau-damped Langmuir
waves. Nevertheless, we have to explain how an apparent attenuation can occur in
our otherwise non-dissipative system.
To do so, let us attempt a fluid interpretation of the attenuated oscillations of

Figs 9 and 10. We expect (Sack and Schamel 1987) that, as the plasma expands,
the width of the interfaces 2d increase. In the limiting case, as d → ∞, we would
have no interface at all and, as noted above, the oscillations of the total momentum
should vanish; this is in qualitative agreement with what is shown in Figs 9 and
10. More specifically, rewrite (6.2) as

∂2

∂s2
qx +

ω2

γ

1
ni

qx = 0, (6.4)

where s =
∫

ni(x) dx is a monotonically increasing function of x in the interface
D − 2d � x � D. Since, due to conservation of total mass, ni decreases as the
plasma occupies larger and larger volumes of space, then, according to (6.4), the cur-
vature of qx increases to the stage that the gradients of qx will become much steeper
than the gradients of ni, which can thus be regarded as a constant. This leads to a
sinusoidal solution of (6.4), possessing a larger and larger wavenumber as the plasma
expands: in this way the distribution function develops the filamentary structures
which are indeed observed in Fig. 8. Since such a sinusoidal solution averages to
a smaller and smaller value as its ‘corrugation’ increases, it is easy to see that the
contribution to the total momentum provided by the interface is attenuated, as
indeed shown in Figs 9 and 10.
It is thus shown that the attenuation is just an instance of phase mixing and it

can occur even in our non-dissipative system, in the same way as it does for Landau
damping, for which ‘corrugation’ occurs in the velocity space (Sedláček 1995).

7. Conclusions
In this article we studied the effect of non-periodic boundary conditions on the
development of holes in the phase space of a non-collisional, hot plasma governed
by the Vlasov–Poisson system of equations. Four situations were considered through
the prescription of four different initial conditions: (a) development of a sinusoidal
wave; (b) development of the two-stream instability; (c) development of an ab initio
BGK state; (d) free expansion of the plasma into vacuum. In cases (a)–(c) ions were
kept immobile; in case (d) they move with a realistic mass of 1837 electron masses.
In situations (a)–(c) the development of the plasma subject to periodic bound-

ary conditions was extensively investigated in the literature and it is fairly well
understood: holes appear in phase space which may have both a vanishing mean
velocity (e.g. case c) and a non-vanishing mean velocity (e.g. case b). The former
may sometimes coalesce into a single hole, a phenomenon which also took place
under the non-periodic boundary conditions of our present investigation.
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On the other hand, under periodic boundary conditions, non-vanishing velocity
holes move at a constant speed along the space coordinate: they leave the compu-
tational box on one side and re-enter it from the other side. Since this possibility
is prevented under the non-periodic boundary conditions used in our present work
(cf. 2.3 and 5.2), the question arises at to what is the fate of these holes as they
approach the plasma boundaries.
Our investigation reveals that approaching the right boundary, positive mean

velocity holes ‘turn’ clockwise and move along the velocity coordinate: they are first
decelerated, then accelerated to acquire a negative velocity (thus becoming negative
mean velocity holes) and then turn clockwise again (thus reversing their original
sense of motion). When they reach the left boundary, again they turn clockwise,
are decelerated and then accelerated to acquire a positive velocity (thus becoming
positive mean velocity holes again). This fact results in a periodic revolution of
holes in phase space.
A second major result of our investigation is the appearance of time oscillations of

the total electron momentum Px (cf. 3.3) over the electron time scale. For immobile
ions these oscillations have a remarkably periodic behaviour (cf. Figs 4 and 7); on the
other hand, for mobile ions, the plasma expands into vacuum and the oscillations
are attenuated in time (cf. Figs 9 and 10). We proved that these oscillations are
related neither to electrostatic holes nor to electron plasma waves.
Rather, by means of a simplified model, we showed that the oscillations are

due to electron sound waves caused by the same initial perturbations leading to
electrostatic holes; these waves are trapped in the plasma interfaces and they are
attenuated during plasma expansion, as sound waves phase-mix in the wider and
wider expanding interfaces. The fact that, for all the cases studied in this paper,
these oscillations never grow in time is an encouraging result in favour of the
stability of the electrostatic hole structures.
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