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In the paper, Bifurcation analysis of the twist-Fréedericksz transition in a nematic liquid-crystal

cell with pre-twist boundary conditions (2009 Eur. J. Appl. Math. 20, 269–287) by da Costa

et al. the twist-Fréedericksz transition in a nematic liquid-crystal one-dimensional cell of

lenght L was studied, imposing an antisymmetric net twist Dirichlet condition at the cell

boundaries. In the present paper, we extend that study to the more general case of net

twist Dirichlet conditions without any kind of symmetry restrictions. We use phase-plane

analysis tools and appropriately defined time maps to obtain the bifurcation diagrams of the

model when L is the bifurcation parameter, and related these diagrams with the one in the

antisymmetric situation. The stability of the bifurcating solutions is investigated by applying

the method of Maginu (1978 J. Math. Anal. Appl. 63, 224–243).

Key words: Twist-Fréedericksz transition, Liquid-crystal cells, Non-homogeneous Dirichlet

two-point boundary value problems, Bifurcation of equilibria

1 Introduction

In the operation of liquid-crystal devices, the phenomena of Fréedericksz transitions in

nematic liquid-crystal cells are of paramount technological importance [8, Chapter 5] and

give rise to interesting and challenging mathematical problems [7, Section 3.4].

A nematic liquid-crystal cell is basically a thin layer (a few microns) of a nematic

liquid-crystal held between two glass plates whose inner surfaces are chemically treated

in such a way as to force a certain alignment (anchoring) of the rod like nematic
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liquid-crystal molecules lying close to the cell boundaries. This surface alignment induces

an alignment in the liquid-crystal molecules filling the cell bulk so that the total free

energy is minimized.

When an exterior electric or magnetic field is applied to the cell a competition takes

place between the reorienting effects of the field and the alignment imposed by the surface

anchoring. Minimization of the total free energy (field, elastic bulk, and anchoring) then

forces a realignment of the molecules in the cell bulk (and, in the case of the so called

weak anchoring conditions, also of those at the cell surface [2]) when the field intensity

increases above a threshold value dependent on the physico-chemical characteristics of

the device. This bifurcation phenomenon is called Fréedericksz transition, after the Soviet

physicist who discovered it [4].

If we model the rod-like nematic liquid-crystal molecules by a “director vector field”

n = n(x), with ‖n‖ ≡ 1, a system with strong anchoring of the molecules at the cell surface

occupying a region Ω has a total free energy of the director field given by

∫
Ω

w(n,∇n)dx,

where the free-energy density w embodies the competition between the energy cost of

distortions of the director field versus the energy reduction associated with aligning parallel

(or perpendicular) to the magnetic field, and is given by

2w = K1 (div n)2 + K2 (n · curl n)2 + K3 ‖n × curl n‖2 − μ0Δχ(H · n)2,

where K1, K2, and K3 are phenomenological elastic constants, μ0 is the free-space magnetic

permeability, Δχ = χ‖−χ⊥ is the difference between the diamagnetic susceptibilities parallel

to versus perpendicular to the director, and H is the (constant) applied magnetic field.

See, e.g., [7].

We consider the geometry of the twist-Fréedericksz transition, with an asymmetric

pre-twist at the boundary. Thus, we consider a thin slab of nematic liquid-crystal bounded

by two parallel planes a distance d apart from each other, unbounded and extending to

infinity in any direction parallel to these planes. Define a positively oriented orthogonal

coordinate system (x, y, z) such that z is perpendicular to the bounding planes. Let the

director field be represented by

n = (cosφ(z, τ), sinφ(z, τ), 0), (1.1)

where φ denotes the (twist) angle of the director. We will assume that in the liquid-crystal

cell the director is fixed in opposing orientations −φ0 and φ1 at the two opposing planes

bounding the device in the z direction. This induces a net twist of the director vector field

n across the cell (see Figure 1).

We will consider a magnetic vector field H applied along the constant direction (0, 1, 0)

with intensity H = ‖H‖ and are interested in studying the effect it induces in the stationary

director distribution, according to the Ericksen–Leslie theory [7].

In terms of the angle representation 1.1, the simplest model for the dynamics of the

director field in the absence of flow is the gradient flow on the free energy of the system

and, in dimensionless form, the initial-boundary value problem governing the behaviour
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Figure 1. Geometry of the liquid-crystal cell with asymmetric pre-twist. The director n orientation

inside the cell corresponds to the situation in branch Cr (with k = 0) in Section 3.1 below.

of the director field is then

∂φ

∂s
=

∂2φ

∂ζ2
+ λ sinφ cosφ, (s, ζ) ∈ �+ × (0, 1) (1.2)

φ(·, 0) = −φ0, φ(·, 1) = φ1, (1.3)

φ(0, ·) = φinitial (1.4)

where

s :=
K2

γ1d2
τ, ζ :=

z

d
, λ :=

μ0ΔχH
2d2

K2
, (1.5)

with all the material parameters positive for our system of interest. Observe that the

dimensionless control parameter λ is proportional to the square of the magnetic field

strength.

The associated equilibrium problem is given by

d2φ

dζ2
+ λ sinφ cosφ = 0, 0 < ζ < 1 (1.6)

φ(0) = −φ0, φ(1) = φ1. (1.7)

In the classical twist-Fréedericksz-transition problem, we have φ0 = φ1 = 0, the system

possesses a simple symmetry, φ(ζ) ↔ −φ(ζ), and the ground-state solution (φ = 0, which

is invariant under this symmetry) loses stability to a pair of symmetric solutions at a

pitchfork bifurcation at λc = π2.

In da Costa et al. [1] a system with antisymmetric pre-twist (φ0 = φ1 �= 0) was studied.

We no longer have the simple symmetry above. The problem still possesses �2 symmetry,

however it is now of the form φ(ζ) ↔ −φ(1 − ζ). The ground-state solution (which is

invariant under this symmetry) is no longer uniform. The problem still has a classical

pitchfork bifurcation diagram, with the symmetric solution branch bifurcating at a value
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λc, which is necessarily greater than π2, as was showed in da Costa et al. [1]. Observe that

the antisymmetric nature of the boundary data is crucial to this scenario.

In the present paper, we consider the asymmetric case (φ0 �= φ1, both non-zero). We

conclude that no pitchfork bifurcation points remain: the pitchforks that had not been

broken in the passage from the classical twist cenario to the antisymmetric one are now

broken when the φ0 becomes different from φ1, and the result is a bifurcation diagram

with only saddle-node bifurcation points, branches emanating from them, and single

non-bifurcating branch of solutions.

The approach will be based on the time maps and phase-plane methods developed

in da Costa et al. [1] for the antisymmetric case. The stability of these branches is also

studied by applying the results of Maginu [6], also based on the behaviour of time maps,

which allows the classification of the stationary solution branches as stable, asymptotically

stable, or unstable. A more detailed study of the stability indices of the equilibria and the

characterization of their connecting orbits will be the subject of a future paper.

2 Preliminaries

We will be concerned with the stationary solutions to (1.2)–(1.4), i.e., solutions of (1.6),

(1.7). Consider the change of variables t = t(ζ) :=
√

λ
2

(
ζ − 1

2

)
, and let ζ(t) be its inverse

function. Let

L :=

√
λ

8
. (2.1)

Then, φ(ζ) is a solution of (1.6), (1.7) iff x(t) := φ(ζ(t)) is a solution of

{
x′ = y

y′ = − sin 2x
(2.2)

x(−L) = −φ0, x(L) = φ1, (2.3)

where φ0, φ1 ∈ (0, π
2
), and (t, x, y) ∈ [−L,L]× [−π/2, π/2]×�. The bifurcation parameter

is now L > 0. Note that L ∝ H. We shall treat the independent variable t in (2.2),

(2.3) as the “time” of the dynamical system associated with (1.2). Note that this “time”

corresponds to the original spacial variable ζ and not to the original time s.

The study of the bifurcation structure of solutions to (2.2)–(2.3) when φ0 = φ1 was

done in da Costa et al. [1]. We now consider the general case, where no relation between

the values of φ0 and φ1 is imposed. As in da Costa et al. [1], we shall use the tools of

time maps and phase-plane analysis.

The phase portrait of (2.2) is presented in Figure 2.

For studying solutions to (2.2), (2.3) we need to consider some time maps measuring

the time spent by the orbits. These maps are easily obtained from the fact that (2.2), (2.3)

is a conservative system with energy

V (x, y) = y2 − cos 2x, (2.4)

which means that its orbits are subsets of the level sets of this function.
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Figure 2. Orbits of (2.2) with the Dirichlet boundary condition (2.3) marked by the dashed

vertical lines (with 0 < φ0 < φ1 < π/2).

Let α ∈
(
0, π

2

)
and denote by γα the orbit that, at time t = 0, intersects the x-axis at

(α, 0). Clearly γα is a periodic orbit (cf. Figure 2). Let P (α) be its period and define

T (α) :=
1

4
P (α) =

∫ α

0

dx√
cos 2x− cos 2α

, (2.5)

where the second equality arises from the symmetry of the system with respect to reflexions

in the x- and y-axis. Thus, T (α) is the time it takes for the point of intersection of γα with

the y-axis (which, by conservation of V along orbits, we easily conclude to be the point

(0, β) with β =
√

2 sin α) to reach the x-axis (at the point (α, 0), by construction).

As in da Costa et al. [1], two other time maps will be needed. The time map

T1(α, φ) :=

∫ φ

0

dx√
cos 2x− cos 2α

, (2.6)

measures the time spent from the point of intersection of the orbit γα with the y-axis

to reach the line x = φ � α. Clearly T1(φ,φ) = T (φ). We will also consider a map T2

analogous to T1 but relevant for orbits crossing the y-axis on or above the heteroclinic

orbit γh connecting (−π/2, 0) to (π/2, 0), i.e., at a point (0, β) with β �
√

2, namely

T2(β, φ) :=

∫ φ

0

dx√
β2 + cos 2x− 1

. (2.7)

We can continuously extend this map to values β <
√

2 by T2(β, φ) := T1(α(β), φ), where

α(β) is defined to be the unique value of α for which the points (α, 0) and (0, β) are on

the same orbit. Since the orbits are contained in the level sets of V , a brief inspection of

Figure 2 allows us to conclude that β 
→ α(β) is a monotonically increasing function and
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thus, for each fixed φ, there is a smaller β for which T2(β, φ) is defined which is the value

βφ for which (βφ, 0) and (φ, 0) are on the same orbit. For β below βφ no orbit satisfies the

boundary condition at t = L.

Our analysis depends heavily on the following monotonicity properties of the time

maps defined above. A proof of these results can be checked in da Costa et al. [1].

Proposition 1 Let α ∈
(
0, π

2

)
, φ ∈ (0, α), and β � βφ. Then,

(1) the time-map T :
(
0, π

2

)
→ (0,+∞) defined by (2.5) is strictly increasing and converges

to π

2
√

2
as α → 0, and to +∞ as α → π

2
.

(2) for each fixed φ the time maps T1(·, φ) and T2(·, φ), defined by (2.6) and (2.7), respect-

ively, are strictly decreasing. The same holds for T2(·, π
2
).

3 Bifurcation analysis

The study of (2.2), (2.3) in the antisymmetric case φ0 = φ1 was done in da Costa et al. [1]

and will serve as a guide to our present study. In the antisymmetric case, a special role is

played by the solutions of (2.2), (2.3) that additionally satisfy the homogeneous Neumann

boundary condition y(−L) = y(L) = 0 (note that y = x′). The values of L for which these

solutions occur were termed “critical” (cf. [1, Figure 4 and Table 1]) and are pitchfork

bifurcation points of the system [1, Figure 9]. The orbits corresponding to these values of

L were denoted by γ∗.

Due to the symmetry of the vector field of (2.2) and the asymmetry of the boundary

condition (2.3) there are no solutions to (2.2), (2.3) satisfying homogeneous Neumann

boundary conditions at both t = −L and t = L. However, there are solutions that satisfy

such a condition at one, or the other, of the end points of the time interval. Although

these do not correspond to bifurcation solutions, and the corresponding values of L are

not bifurcation points of (2.2), (2.3), they are important solutions that help us to organize

the information and construct the bifurcation diagram in the asymmetric case, and relate

it to the antisymmetric case already studied.

The two asymmetric cases φ0 < φ1 and φ0 > φ1 give rise to different bifurcation

diagrams and will be studied separately below. Since the approach for both cases is the

same, we will present the first one in a more detailed way, and for the second will just

briefly refer to the corresponding results.

3.1 Case φ0 < φ1

3.1.1 The “critical” cases

Let γ∗ be the orbit of (2.2), (2.3) that satisfies the additional homogeneous Neumann

condition y(L) = 0. See Figure 3(a). It is clear from this figure and from the definition of

the time maps in the previous section that the time spent by γ∗ is T∗ := T (φ1)+T1(φ1, φ0).

Since the total time spent by every orbit is 2L, the corresponding half-length L is L∗ = 1
2
T∗.

In a similar way, the orbit that satisfies the homogeneous Neumann boundary condition

y(−L) = 0 will be denoted by γ∗. See Figure 3(b). The time spent in by this orbit is

T ∗ := 3T (φ1)−T1(φ1, φ0), and the corresponding half-length of the interval is L∗ = 1
2
T ∗.
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Figure 3. Two “critical” orbits of (2.2), (2.3) with φ0 < φ1: (a) γ∗ when

2L = T∗ := T (φ1) + T1(φ1, φ0); (b) γ∗ when 2L = T ∗ := 3T (φ1) − T1(φ1, φ0).

From the definitions of the time maps we easily observe that

T∗ = T (φ1) + T1(φ1, φ0) < 2T (φ1) < 3T (φ1) − T1(φ1, φ0) = T ∗, (3.1)

and these the inequalities turn to equalities if φ0 = φ1, which, as already pointed out, was

the case considered in da Costa et al. [1].

By analogy to the terminology used in da Costa et al. [1] for the antisymmetric case,

we shall call these solutions, orbits, etc., “critical”, although, as we shall see, they do not

correspond to any critical feature in the bifurcation diagrams. However, they will be very

useful for the remaining constructions. In particular, as a matter of terminology and when

appropriate, we will keep denoting by subcritical [resp., supercritical] those situations with

values of L smaller [resp., larger] than L∗ ou L∗.

3.1.2 The subcritical case relative to γ∗

By Proposition 1, it is clear that the function
(
φ1,

π
2

)

 α 
→ TA(α) := T1(α, φ1) +T1(α, φ0)

is monotonically decreasing and TA(α) ↑ T∗ as α ↓ φ1. The corresponding orbit of (2.2),

(2.3) is a subset of the level set V (α, 0) of V . Since the time it spends is 2L = TA(α) < T∗,

we call it subcritical relative to γ∗. Using the relation between the time maps T1 and T2,

we can extend this approach to orbits intersecting the y-axis above the heteroclinic orbit

γh. The time taken by these orbits is also smaller than T∗ and decreases as the ordinate

of the intersection point increases.

In Figure 4, we present two of these orbits subcritical relative to γ∗, together with the

critical orbit γ∗. The monotonicity of the time maps imply that, for each L ∈ (0, 1
2
T∗)

there is a single subcritical solution to (2.2), (2.3).

3.1.3 The supercritical case relative to γ∗

Consider again α ∈
(
φ1,

π
2

)
and the level set V (α, 0) of V . For α > φ1 but close to φ1, we

take an orbit of (2.2), (2.3) close to γ∗ which has its end point with y(L) < 0, as presented

in Figure 5. A brief inspection of this figure allows us to conclude that the time spent

by this orbit is TCr
(α) := 2T (α) + T1(α, φ0) − T1(α, φ1). (The notation TCr

was used in da

Costa et al. [1] for a branch of solutions with a given symmetry relative to the origin.

We use the same notation here because our Cr solutions will coincide with those of that

https://doi.org/10.1017/S0956792516000243 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000243


250 F. P. da Costa et al.

x

y

x = −φ0 x = φ1

−π
2

π
2

γ∗

Figure 4. Two orbits of (2.2), (2.3), with φ0 < φ1, subcritical relative to the orbit γ∗.
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Figure 5. An orbit of (2.2), (2.3), with φ0 < φ1, supercritical relative to the orbit γ∗.

paper when φ0 = φ1; the same will be done for other solution branches further down the

paper.) Clearly, TCr
(α) → T∗ as α → φ1.

We shall prove that TCr
(α) > T∗ for α > φ1, thus providing a justification for calling

these orbits supercritical relative to γ∗. From the expression of TCr
and Proposition 1 we

conclude that

dTCr

dα
(α) = T ′(α) +

∂T1

∂α
(α, φ0) −

∂T1

∂α
(α, φ1) >

∂T1

∂α
(α, φ0) −

∂T1

∂α
(α, φ1). (3.2)

To obtain the sign of the right-hand side observe that

∂

∂φ

∂T1

∂α
=

∂

∂α

∂T1

∂φ
=

∂

∂α

1√
cos 2φ− cos 2α

= − sin 2α

(cos 2φ− cos 2α)3/2
< 0.

From this inequality and the assumption that φ0 < φ1 we infer that

∂T1

∂α
(α, φ0) >

∂T1

∂α
(α, φ1),

and plugging this into (3.2) gives that TCr
is strictly increasing with α, concluding the

proof.

3.1.4 The supercritical case relative to γ∗

Consider an orbit in V (α, 0), with α ∈
(
φ1,

π
2

)
, as represented in Figure 6(a). From this

figure and the definition of the time maps we immediately conclude that the time spent
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Figure 6. (a) An orbit of (2.2), (2.3), with φ0 < φ1, supercritical relative to the orbit γ∗.

(b) The Ω− and Ω+ regions.

to travel this orbit is TD(α) := 4T (α) − T1(α, φ0) − T1(α, φ1) (see subsection 3.1.3 for a

justification of this notation).

Clearly TD(α) → T∗ as α → φ1. We shall prove that TD(α) > T ∗. In order to prove this,

consider the strips Ω− := (−π/2,−φ0)×�, and Ω+ := [−φ0, π/2)×�. Let γ∗± := γ∗∩Ω±.

Denoting by D an orbit of the type represented in Figure 6, let also D± = D ∩Ω±. Since

γ∗+ = γ∗, the time spent in γ∗+ is equal to T∗.

Thus, in Ω+ we just need to compare T∗ with the time spent by D+. But D+ is really

an orbit of type Cr with α > φ1 and thus, by the previous subsection, TD+(α) > T∗.

In Ω− we need to compare the time taken by the orbit D− with that taken by γ∗−,

which a brief inspection to Figure 6(b) shows it is equal to 2T (φ1) − 2T1(φ1, φ0). Since

TD−(α) = 2T (α) − 2T1(α, φ0), α ∈ (φ1, π/2),

we have
dT

D−
dα

(α) = 2T ′(α) − 2 ∂T1

∂α
(α, φ0), and the monotonicity results in Proposition 1

imply that this derivative is positive, and thus TD−(α) > 2T (φ1) − 2T1(φ1, φ0).

Finally, from the above we have

TD(α) = TD−(α) + TD+(α)

> 2T (φ1) − 2T1(φ1, φ0) + T∗ = 3T (φ1) − T1(φ1, φ0)

= T ∗,

as we wanted to prove.

3.1.5 The subcritical case relative to γ∗

To complete the analysis, let us consider orbits in V (α, 0), with α ∈
(
φ1,

π
2

)
, as represented

in Figure 7.

It is clear from this plot that the time spent by this orbit is TC�
(α) := 2T (α)−T1(α, φ0)+

T1(α, φ1) (see subsection 3.1.3 for a justification of this notation TC�
).

It is also clear that TC�
(α) → T ∗ as α → φ1. We shall prove that, for α > φ1 sufficiently

close to φ1, we have TC�
(α) < T ∗. This is not as easy to prove as in the previous cases.

We start by considering in (2.5) and (2.6) a new variable α̃ := sin2 α, and changing in (2.5)
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Figure 7. An orbit of (2.2), (2.3), with φ0 < φ1, subcritical relative to the orbit γ∗.

the integration variable x 
→ θ where sin x =
√
α̃ sin θ. This allows us to write

TC�
(α) = T̃C�

(α̃) :=
√

2

∫ π/2

0

dθ√
1 − α̃ sin2 θ

+
1√
2

∫ φ1

φ0

dx√
α̃− sin2 x

, (3.3)

Differentiating we obtain

dT̃C�

dα̃
=

1√
2

∫ π/2

0

sin2 θ(
1 − α̃ sin2 θ

)3/2
dθ − 1

2
√

2

∫ φ1

φ0

dx(
α̃− sin2 x

)3/2
,

and computing the second derivative we obtain

d2T̃C�

dα̃2
=

3

2
√

2

∫ π/2

0

sin4 θ(
1 − α̃ sin2 θ

)5/2
dθ +

3

4
√

2

∫ φ1

φ0

dx(
α̃− sin2 x

)5/2
> 0.

Hence, T̃C�
is a convex function of α̃ := sin2 α ∈ (sin2 φ1, 1). From the definition of TC�

and T̃C�
, the above expressions, and Proposition 1, we also conclude that T̃C�

→ +∞ as

α̃ → 1, and
dT̃C�

dα̃
→ −∞ as α̃ → sin2 φ1; however, note that T̃C�

→ T ∗ as α̃ → sin2 φ1 (see

the start of this paragraph).

This behaviour obviously implies the existence of a single local extrema (a minimum)

of T̃C�
, and hence of TC�

, in the interior of their respective intervals of definition, and thus

TC�
(α) < T ∗ when α > φ1 sufficiently close to φ1. This justifies us calling this situation

a (local) subcritical case relative to γ∗. We emphasize that the situation is local : if α is

larger than the minimizer of TC�
(α), the value of this function increases without bound as

α → π/2, and thus at some point, it will certainly be larger than T ∗.

Collecting the results obtained in the subsections 3.1.1–3.1.5, we obtain the bifurcation

diagram in Figure 8. Note that, due to the symmetry of the system, the value of y(−L) of

the orbits γ∗ and γ∗ have the same absolute value (and different signs).

3.1.6 Other solution branches

In addition to the solution branches studied above and represented in Figure 8, (2.2)–(2.3)

has an infinite number of solution families, each corresponding to orbits circling the
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A

C

Cr

D

L

y(−L)

γ∗

γ∗

Figure 8. Solid lines: portion of the bifurcation diagram when φ0 < φ1 constructed from the

analysis of the time maps about γ∗ and γ∗ presented in subsections 3.1.1–3.1.5. Dashed lines: the

corresponding diagram when φ0 = φ1 (from da Costa et al. [1]). The designation of the orbits by

letters A, C�, Cr, and D correspond to those used in da Costa et al. [1]: see Table 1 and Figure 8

of that article.

origin a complete k number of times (k = 1, 2, . . .). As in the cases studied above, it

is convenient to start by considering orbits corresponding to solutions that satisfy the

additional boundary condition y(L) = 0, and, as before, we denote those orbits by a star,

in this case by γ∗k and γ∗k . Although they do not correspond to bifurcating points, they

are very useful in organizing our knowledge about the solution branches. In Table 1,

we present the orbit γ∗k and those which form a connected branch with it when L

changes from the value corresponding to γ∗k . In Table 2, we present the analogous picture

concerning the orbit γ∗k .

Observe that these orbits are analogous to those studied in the previous subsections,

which can be considered the case k = 0 in this description (i.e., the orbits do not complete

a full turn around the origin). The amounts of time spent by each of these orbits are

exactly those of the corresponding ones in subsections 3.1.1–3.1.5 with the addition of

4kT (α), which is the time of k full turns about the origin.

The following conclusions are easily drawn:

(a) From the definitions of the time maps it follows that T ∗
k (φ1) < T(k+1)∗(φ1).

(b) From (3.1), we immediately get Tk∗(φ1) < T ∗
k (φ1).

(c) From the results in subsections 3.1.3 and 3.1.4 and the fact that the time spent by the

orbits with k > 0 is equal the to the time spent by those with k = 0 plus 4kT (α), we

easily conclude that TCr
(α) > T∗k(φ1) and TD(α) > T ∗

k (φ1).

(d) The study of the relation between TC�
(α) and T ∗

k (φ1), for α > φ1 sufficiently close to

φ1 proceeds exactly as in subsection 3.1.5, paying attention to the fact that we need

to add 4kT (α) to those computations. Since T ′(α) → T (φ1) ∈ (0,+∞) as α ↓ φ1, and
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Table 1. Branch of solutions to (2.2), (2.3), with φ0 < φ1, winding k full times around 0

and containing the solution γ∗k. (For k = 0 the portion of the orbits with a thin trace should

be disregarded)

Orbit γα,k
(winds k times around 0) Time taken by the orbit γα,k

A

TA(α) := 4kT (α) + T1(α, φ0) + T1(α, φ1)

γ∗k

T∗k(φ1) := (4k + 1)T (φ1) + T1(φ1, φ0)

Cr

TCr (α) := (4k + 2)T (α) + T1(α, φ0) − T1(α, φ1)

Table 2. Branch of solutions to (2.2), (2.3), with φ0 < φ1, winding k full times around 0

and containing the solution γ∗k . (For k = 0 the portion of the orbits with a thin trace should

be disregarded)

Orbit γα,k
(winds k times around 0) Time taken by the orbit γα,k

C

TC� (α) := (4k + 2)T (α) − T1(α, φ0) + T1(α, φ1)

γ∗
k

T ∗
k (φ1) := (4k + 3)T (φ1) − T1(φ1, φ0)

D

TD(α) := 4(k + 1)T (α) − T1(α, φ0) − T1(α, φ1)

T̃ ′′(α̃) > 0, the addition of 4kT (α) to the right-hand side of (3.3) does not change the

conclusion. Hence, we have TC�
(α) < T ∗

k (φ1), for α − φ1 > 0 sufficiently small. Also,

the other conclusions inferred from the convexity of α̃ 
→ T̃C�
(α̃) remain valid.

(e) Finally, it remains to study the relation between TA(α) and T∗k(φ1). The analysis also

follows that presented in subsection 3.1.5. Changing variables as in subsection 3.1.5,
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Figure 9. Solid lines: portion of the bifurcation diagram when φ0 < φ1 constructed from the

analysis presented in subsections 3.1.1–3.1.6. Dashed lines: the corresponding diagram when φ0 = φ1

(from da Costa et al. [1]). The designation of the orbits by letters A, C�, Cr and D correspond to

those used in da Cos ta et al. [1]: see Table 1 and Figure 8 of that article.

we can write an expression for TA(α) similar to (3.3), namely

TA(α) = T̃A(α̃) :=

:= 2
√

2k

∫ π/2

0

dθ√
1 − α̃ sin2 θ

+
1√
2

∫ φ0

0

dx√
α̃− sin2 x

+
1√
2

∫ φ0

0

dx√
α̃− sin2 x

.

Now, the convexity argument employed in subsection 3.1.5 and also used in case d

above, can again be applied to conclude that, for α − φ1 > 0 sufficiently small, type

A orbits satisfy TA(α) < T∗k(φ1) and the corresponding branch in the diagram L vs.

y(−L) is convex. Note that, in contrast to the case studied in subsection 3.1.5, but as

was the case in da Costa et al. [1], the branches of type A solutions have a (unique,

by convexity) saddle-node, since we know that, from Proposition 1, TA(α) → +∞ as

α → π
2
.

Thus, we conclude from these results that, for each k, the relation of the various types

of orbits among themselves is the same as existed in the case k = 0 illustrated in Figure 8.

We collect the results obtained thus far in the bifurcation diagram of Figure 9. Observe

that, due to the symmetry of the system, the value of y(−L) of the orbits γ∗k are the same

for all k, and the same happens for γ∗k ; as was the case when k = 0, for all k these values

in γ∗k and in γ∗k have the same absolute value (and different signs).

3.2 Case φ0 > φ1

The analysis of the case φ0 > φ1 proceeds in a way entirely similar to the case φ0 < φ1

and so we will not present the details of the arguments in what follows. We will, in the
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(a)

x

y

x = −φ0 x = φ1

−π
2

π
2

γ∗
(b)

x

y

x = −φ0 x = φ1

−π
2

π
2

γ∗

Figure 10. Two “critical” orbits of (2.2), (2.3) with φ0 > φ1: (a) γ∗ when

2L = T∗ := T (φ1) + T1(φ1, φ0); (b) γ∗ when 2L = T ∗ := 3T (φ1) − T1(φ1, φ0).

(a)

x

y

x = −φ0 x = φ1

−π
2

π
2

γ∗ (a)

x

y

x = −φ0 x = φ1

−π
2

π
2

γ∗

Figure 11. Orbits of (2.2), (2.3), with φ0 > φ1 which are: (a) subcritical relative to the orbit γ∗;

(b) supercritical relative to the orbit γ∗.

(a)

x

y

x = −φ0 x = φ1

−π
2

π
2

γ∗ (b)

x

y

x = −φ0 x = φ1

−π
2

π
2

γ∗

Figure 12. Orbits of (2.2), (2.3), with φ0 > φ1 which are: (a) subcritical relative to the orbit γ∗

(for α− φ0 > 0 sufficiently small); (b) supercritical relative to the orbit γ∗.

next figures, exhibit the plots of the several types of orbits and the bifurcation diagram

obtained. We start, in Figure 10, with the orbits that, at t = −L, satisfy the additional

boundary condition y(−L) = 0, which we designate by “critical” orbits, as done in the

similar situation in subsection 3.1.1.

Due to the symmetry of the problem relative to the transformations x 
→ −x and

φ0 ↔ φ1, we conclude that from each “critical” orbit emerges two branches, a subcritical

and a supercritical one, with exactly the same properties as obtained for the corresponding

branches in subsections 3.1.2–3.1.5. These orbits are illustrated in Figures 11 and 12.
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Figure 13. Solid lines: portion of the bifurcation diagram when φ0 > φ1 constructed from what

was presented and discussed in subsection 3.2. Dashed lines: the corresponding diagram when

φ0 = φ1 (from da Costa et al. [1]). The designation of the orbits by letters A, C�, Cr, and D

correspond to those used in da Costa et al. [1]: see Table 1 and Figure 8 of that article.

In an entirely analogous way to what was presented in Section 3.1.6, we also have the

solution branches corresponding to orbits circling the origin a complete number k � 1 of

turns.

Collecting these results, we can plot the bifurcation diagram corresponding to the case

φ0 > φ1. This is done in Figure 13. To understand the apparently drastic difference relative

to the diagram for the case φ0 < φ1 presented in Figure 9 we need to bear in mind the

fact that in both cases what is being plotted in the vertical axis is the value of y(−L)

of the corresponding orbit. If, in the case φ0 > φ1, we choose to plot the value of y(L)

instead, by the symmetry considerations alluded to above, the corresponding bifurcation

diagram will be equal to that of Figure 9.

4 Stability analysis of the equilibria

In this section, we present a brief study of the stability of the equilibria using the approach

of Maginu [6]. We believe it is possible, by a modification to methods originally developed

for homogeneous Neumann boundary conditions (see, e.g., [3] and [5, Section 4.3]) to

provide more detailed information about the unstable solutions, in particular clarifying,

for each unstable equilibrium, which directions are unstable, and to characterize their

heteroclinic connections. This will be postponed to a later work.

We classify as stable, asymptotically stable, or unstable the branches of equilibria

determined in the last section. The results of Maginu [6] relevant to our case are the

Theorems 3.1–3.3. What the first two of these theorems state is that solutions (x(t), y(t))

of (2.2)–(2.3) are asymptotically stable as stationary solutions of the corresponding partial
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differential equation (1.2)–(1.4) if y(t) has no zeros in [−L,L) or in (−L,L]; and are

unstable if y(t) has two or more zeros.

Clearly, these results take care of the stability characterization of all the branches of

solutions with k � 1 (they are all unstable), and also when k = 0 of the branch denoted

by A (which is asymptotically stable), and by D (which is unstable).

Theorem 3.3 of Maginu [6] is one of a series or results characterizing the case when

y(t) has a single zero in [−L,L], located in (−L,L). Maginus’ result states that such an

equilibrium E is asymptotically stable if the corresponding time map TE(α) is strictly

increasing, and is unstable if it is strictly decreasing.

Applied to our case, this result will allow us to determine the stability of the remaining

cases, namely: the branches Cr and C� when k = 0.

Consider φ0 < φ1. Let us start with the Cr branch. Clearly such solutions are of the

type considered in Maginu [6, Theorem 3.3] (the existence of a single time instant for

which y(t) = 0). In Subsection 3.1.3, we concluded that
dTCr

dα
> 0. Hence, Maginu’s result

imply the branch is asymptotically stable.

Let us consider now the case of the C� branch. The relevant computations are the

ones in subsection 3.1.5, where we concluded that TC�
(α) is convex, with a single local

minimum. This means that
dTC�

dα
< 0 for the part of the C� branch to the left of the

γ∗ and to the right of the leftmost point of the branch, i.e., the saddle-node bifurcation

point (which corresponds to the orbit for which TC�
(α) attains its unique minimum.) So,

by Maginu [6, Theorem 3.3], these equilibria are unstable. For the remaining part of the

C� branch, i.e., for points of the orbit below the saddle-node bifurcation point, we have
dTC�

dα
> 0, and thus, again by Maginu [6, Theorem 3.3], the corresponding equilibria are

asymptotically stable.

These stability conclusions for the k = 0 branches are collected in Figure 14.

Exactly the same results can be applied to the case when φ0 > φ1 with analogous

results: by Theorems 3.1 and 3.2 of Maginu [6] all the k � 1 branches are unstable,

as well as the D branch, whereas the A branch is asymptotically stable. An analysis

corresponding to that in subsections 3.1.3 and 3.1.5 and the application of theorem 3.3

of Maginu [6] results in the conclusion that C� is an asymptotically stable branch, and

the portion of the Cr branch between y∗ and the leftmost point (a saddle-node) of the

branch corresponds to unstable equilibria, whereas the points above this last point are

asymptotically stable equilibria.

These conclusions about the stability of the k = 0 branches are collected in Figure 15.

5 Conclusions

In this paper, we study a model for the twist-Fréedericksz transition in a nematic liquid-

crystal cell with pre-twist at the boundary.

The case of an antisymmetric pre-twist (the director alignment angle at opposing sides

of the cell boundary have the same absolute value φ0 but opposite signs) was studied

in da Costa et al. [1] where it was shown that the bifurcation diagram occurring in the

case without pre-twist (which is just a non-linear pendulum equation with homogeneous

Dirichlet conditions φ0 = 0 at the boundary) is modified such that all the even numbered

pitchfork bifurcations are broken and saddle-node points appear in their stead. The
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u
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Figure 14. Enlargement of the bifurcation diagram of Figure 8. The saddle-node bifurcation point

referred to in the text is denoted by SN, and the letters s and u denote branches of stable and

unstable solutions, respectively. The remaining notation is as in Figure 8.

odd-numbered pitchforks remain unbroken, occurring at an higher field value than

in the absence of pre-twist. For instance, the first bifurcation point now occurs at a

magnetic field value Hc ∝
√
λc where λc ≈ π2

(
1 + 1

2
φ2

0

)
, for small values of the pre-twist

φ0.

We complement the antisymmetic study in da Costa et al. [1] by considering the more

general asymmetric case where the opposing sides of the cell boundary have fixed director

angles −φ0 < 0 and φ1 > 0, with different absolute values. This condition leads to the

breakup of those pitchfork bifurcations that remained in the antisymmetric case, so that

the system bifurcation diagram now consists in a series of saddle-note bifurcations. The

first saddle-node always occurs at a larger magnetic field value H ∝ L than the first

pitchfork bifurcation magnetic field value in the antisymmetric case, Hc (cf. Figures 14

and 15.)

A stability study of the bifurcating branches as stationary solutions to the partial

differential equation (1.2)–(1.4) is done using the method in Maginu [6]. We con-

clude that stable solutions are those corresponding to the non-bifurcating branch

containing the monotonic increasing solutions at small magnetic field (denoted by

A in Sections 3 and 4), as well as one of the bifurcating branches from the first

saddle-node.

In order to fully understand the dynamics of (1.2)–(1.4), an important feature is the

analysis of the heteroclinic connections between stationary solutions. We expect to proceed

with these studies in the future.
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Figure 15. Enlargement of the bifurcation diagram of Figure 13. The saddle-node bifurcation

point referred to in the text is denoted by SN, and the letters s and u denote branches of stable and

unstable solutions, respectively. The remaining notation is as in Figure 13.
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