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SUMMARY

This paper describes a numerical algorithm to solve the
inverse kinematics of parallel robots based on numerical in-
tegration. Inverse kinematics algorithms based on numerical
integration involve the drift phenomena of the solution; as
a consequence, errors are generated when the end-effector
location differs from that desired. The proposed algorithm
associates a novel method to describe the differential
kinematics with a simple numerical integration method. The
methodology is presented in this paper and its exponential
stability is proved. A numerical example and a real
application are presented to outline its advantages.

KEYWORDS: Differential kinematics model; Error control;
Closed kinematics chains; Numerical stability.

1. Introduction

A kinematic chain is a system of bodies composed of an
assemblage of links connected by joints. When every link in
a kinematic chain is connected to at least two other links,
the kinematic chain forms one or more closed loops and it is
called a closed-loop chain or, in short, a closed chain. On the
other hand, if every link is connected to every other link by
one and only one path, the kinematic chain is called an open-
loop chain or an open chain. It is also possible for a kinematic
chain to be made up of both closed and open chains. We call
such a chain a hybrid kinematic chain.8

A robot is said to be a serial robot or open-loop manipulator
if its kinematic structure takes the form of an open-loop chain.
It is a parallel manipulator if it is made up of a closed-loop
chain and a hybrid manipulator if it consists of both open-
and closed-loop chains.

A robotic system typically consists of a mechanical
manipulator, an end-effector, a microprocessor-based
controller and a computer. A mechanical manipulator
comprises several links connected by joints constituting a
kinematic chain. Some of the joints in the manipulator are
actuated; the others are passive. Typically, the number of
actuated joints is equal to the degrees of freedom.

The concept of Assur virtual chains is described by
Campos et al.1 The virtual kinematic chains are used to
monitor or impose movement in a kinematic chain. When the
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Assur virtual chains are used to impose movements in serial
robot manipulators, the resultant mechanism is closed, or
represents parallel robot.1 Therefore, either for parallel, serial
or hybrid manipulators, with virtual chains, the kinematic
procedure will be that of a parallel manipulator. This article
discusses this general representation.

In this paper, we focus on the kinematics of closed chains
present in parallel manipulator. More specifically, we obtain
the positions of the passive joints given the positions of the
active joints by integrating the differential kinematics of
the closed chain using numerical techniques. The classical
numerical integration is based on the Euler method, better
known as resolved motion control.18,19

It is well known that in open-loop kinematic chains the
numerical integration of the differential kinematics involves
drift phenomena of the solution and, as a consequence,
the end-effector location corresponding to the computed
joint variables differs from that desired (see Sciavicco and
Siciliano,7 for example).

In closed-loop kinematic chains, besides the drift pheno-
mena the integration errors in the joint positions reflect in an
opening of the closed chain, which could be measured by a
closure error.6 For parallel robots, this drift must be treated
and minimized.

The main contribution of this paper is to introduce a
new method to model the differential kinematics of parallel
robots. The discussed method is applied to integrate nume-
rically the differential kinematics of closed chains, guara-
nteeing the exponential convergence of the error, in this case
a closure error.

To present the method, we first state the problem
conceptually. Next, the differential kinematics based on the
screw representation of the Davies Method is summarily
reproduced for completeness. We then present the proposed
algorithm and state its convergence properties. An example
outlines the main algorithm features.

2. Closure Error in Closed Chain Mechanisms

In closed kinematic chains not all of the joints can be
controlled independently. Thus, some of the joints are driven
by actuators whereas others are passive. In this paper, the
joints driven by actuators are called primary joints, and the
passive ones are called secondary joints.
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1018 New method to solve robot inverse kinematics

Let the primary joint variables be denoted by a vector qp

and the secondary joint variables be described by a vector qs .
The kinematic constraints imposed by the limbs can then be
written in the general form:8

f (qp, qs) = 0, (1)

where f is an n-dimensional implicit function of qp and qs , and
0 is an n-dimensional zero vector. Equation (1) is sometimes
referred to as the closure equation.

Differentiating Eq. (1) with respect to time, we obtain
a relationship between the input joint rates (primary joint
velocities q̇p) and the output joint rates (secondary joint
velocities q̇s) as follows:

Npq̇p + Nsq̇s = 0, (2)

where Np = ∂f /∂qp and Ns = ∂f /∂qs are dependent on the
position vectors qp and qs . From Eq. (2) we have:

q̇s = −N−1
s Npq̇p. (3)

The secondary joint position can be calculated by
integrating Eq. (3) as follows:

qs(t) − qs(0) =
∫ t

0
q̇s dt = −

∫ t

0
N−1

s Npq̇p dt. (4)

This technique for calculating the secondary joint positions
is independent of the solvability of the kinematic structure.
Nonetheless, the secondary matrix Ns must be square and
of full rank. When this matrix has more columns than
rows there are infinite solutions of Eq. (3). In this case,
a viable solution method is to formulate the problem as
a constrained linear optimization problem, as is usual in
redundant manipulator analysis. This approach and a method
to deal with singularities can be found in Sciavicco and
Siciliano.7

The integration can be performed in discrete time by
resorting to numerical techniques. The simplest technique is
based on the Euler integration method; given an integration
interval �t , if the joint positions and velocities at time tk−1

are known, the joint positions at time tk = tk−1+�t can be
computed as

qs(tk) = qs

(
tk−1

) − N−1
s

(
tk−1

)
Np

(
tk−1

)
q̇p(tk)�t. (5)

By calculating the secondary joint positions using Eq. (5),
a cumulative error in qs is introduced. Therefore, Eq. (1)
is not satisfied and an opening in the closed-loop chain
is introduced. To illustrate this, consider the four-bar
mechanism in Fig. 1.

The cumulative error in q̇s opens the closed chain, as
depicted in Fig. 2. To solve this problem, we present in
Section 4 a new method to model the robot differential
kinematic equation, where the position is obtained using
numerical techniques in which the closure error converges
exponentially to zero. To describe it, first we present the
fundamental kinematics tools used in this study.
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Fig. 1. Four bar planar closed chain.
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Fig. 2. Closure error in a four bar chain.

3. Fundamental Kinematics Tools

Our approach is based on the method of successive screw
displacement,8 on the screw representation of differential
kinematics, on the Davies method and on the Assur virtual
chain concept, which is briefly presented in this section.

3.1. Method of successive screw displacements
In this subsection, we describe a method to represent
the location of a rigid body in a kinematic chain with
respect to a coordinate frame, based on the successive screw
displacement concept. First, we present the transformation
matrix associated with a screw displacement, and then
describe the concept of the resultant screw of two successive
screw displacements.

3.1.1. Homogeneous transformation screw displacement
representation. The Chasles theorem states that the general
spatial displacements of a rigid body are a rotation about
and a translation along some axis. Such a combination of
translation and rotation is called a screw displacement.10

Below, we derive a homogeneous transformation that
represents a screw displacement.8

Figure 3 shows a point P of a rigid body, which is displaced
from a first position P1 to a second position P2 by a rotation
θ about a screw axis followed by a translation of t along
the same axis. The rotation brings P from P1 to P r

2 , and the
translation brings P from P r

2 to P2. In the figure, s = [sx sy

sz]T denotes a unit vector along the direction of the screw
axis, and so = [sox soy soz]T denotes the position vector of
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Fig. 3. Vector diagram of a spatial displacement.

a point lying on the screw axis. The rotation angle θ and the
translation t are called the screw parameters. These screw
parameters together with the screw axis completely define
the general displacement of a point attached to a rigid body
and, consequently, define the displacement of the rigid body
itself.

Representing the first position P1 by the vector p1 =
[p1x p1y p1z]T and the second position P2 by the vector
p2 = [p2x p2y p2z]T , the general screw displacement for a
rigid body can be given by the Rodrigues formula as

p2 = R(θ)p1 + d(t), (6)

where R(θ) is the rotation matrix corresponding to the
rotation θ about the screw axis and d(t) is the displacement
vector corresponding to the translation t along the screw
axis.

Considering the augmented vectors p̂1 = [pT
1 1 ]T and

p̂2 = [pT
2 1 ]T the general displacement of a rigid body

(Eq. (6)) can be represented by a homogeneous
transformation given by

p̂2 = A(θ, t)p̂1, (7)

where

A(θ, t) =
[
R(θ) d(t)

0 1

]
, (8)

and the elements of R(θ) and of d(t), according to Tsai,8 are
given by

R(θ) =⎡
⎣ cos θ + s2

x (1 − cos θ) sysx (1 − cos θ) − sz sin θ szsx (1 − cos θ) + sy sin θ

sxsy (1 − cos θ) + sz sin θ cos θ + s2
y (1 − cos θ) szsy (1 − cos θ) − sx sin θ

sxsz(1 − cos θ) − sy sin θ sysz(1 − cos θ) + sx sin θ cos θ + s2
z (1 − cos θ)

⎤
⎦,

and

d(t) = ts + [I − R(θ)]s0.

3.1.2. Successive screw displacements. We now use the
homogeneous transformation screw representation to express
the composition of two or more screw displacements applied
successively to a rigid body.8

Figure 4 shows a rigid body σ which is guided to a fixed
base by a dyad made up of two kinematic pairs, denoted
by $1(q1) and $2(q2), respectively. The first kinematic pair

Fig. 4. Two-link chain and its associated screw displacements.

Fig. 5. Screw movement or twist.

connects the first moving link to the base, and the second
kinematic pair connects the second link (σ ) to the first. We
call the axis of the first kinematic pair the fixed joint axis and
the axis of the second kinematic pair the moving joint axis.

As the rigid body is rotated about and/or translated along
these two joint axes, the best way to obtain its resultant
displacement is to displace the rigid body σ about/along the
fixed axis and, subsequently, displace the body about/along
the moving axis. In this way, the initial location of the moving
joint axis can be used to derive the transformation matrix
A2(q2), which represents the $2(q2) screw displacement while
the fixed joint axis is used for the derivation of matrix A1(q1),
which represents the $1(q1) screw displacement (see ref. [8]).

Consequently, the resulting transformation matrix is
given by a premultiplication of the two successive screw
displacements, i.e.

Ar (q1, q2) = A1(q1), A2(q2). (9)

3.2. Screw representation of differential kinematics
The general spatial differential movement of a rigid body
consists of a differential rotation about, and a differential
rotation along an axis named the instantaneous screw
axis. In this way, the velocities of the points of a rigid
body with respect to an inertial reference frame O-xyz
may be represented by a differential rotation ω about the
instantaneous screw axis and a simultaneously differential
translation τ about this axis. The complete movement of the
rigid body, combining rotation and translation, is called screw
movement or twist and is here denoted by$. Fig. 5 shows a
body ‘twisting’ around the instantaneous screw axis. The
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ratio of the linear velocity to the angular velocity is called
the pitch of the screw h =‖ τ ‖ / ‖ ω ‖.

The twist may be expressed by a pair of vectors, i.e.
$ = [ωT; V T

p ]T, where ω represents the angular velocity of
the body with respect to the inertial frame, and Vp represents
the linear velocity of a point P attached to the body which is
instantaneously coincident with the origin O of the reference
frame. A twist may be decomposed into its magnitude and
its corresponding normalized screw. The twist magnitude,
denoted as q̇ in this study, is either the magnitude of the
angular velocity of the body ‖ω|, if the kinematic pair is
rotative or helical, or the magnitude of the linear velocity
‖Vp‖, if the kinematic pair is prismatic. The normalized
screw $̂ is a twist in which the magnitude is factored out,
i.e.

$ = $̂q̇. (10)

The normalized screw coordinates4 may be given by

$̂ =
[

s

s0 × s + hs

]
, (11)

where, as above, the vector s = [sx sy sz]T denotes a unit
vector along the direction of the screw axis, and the vector
so = [sox soy soz]T denotes the position vector of a point
lying on the screw axis.

Thus, the twist given in Eq. (10) expresses the general
spatial differential movement (velocity) of a rigid body with
respect to an inertial reference frame O-xyz. The twist can
also represent the movement between two adjacent links of
a kinematic chain. In this case, the twist $i represents the
movement of link i with respect to link (i − 1).

3.3. Davies’ method
Davies’ method is a systematic way to relate the joint
velocities in closed kinematic chains. Davies1 derives a
solution to the differential kinematics of closed kinematic
chains from the Kirchhoff circulation law for electrical
circuits. The resulting Kirchhoff–Davies circulation law
states that “The algebraic sum of relative velocities of
kinematic pairs along any closed kinematic chain is zero”.5

We use this law to obtain the relationship between the
velocities of a closed kinematic chain.1 Thus, considering
that the velocity of a link with respect to itself is null, the
circulation law can be expressed as

n∑
i=1

$i = 0, (12)

where 0 is a vector the dimension of which corresponds to
the dimension of the twist $i .

According to the normalized screw definition introduced
above, Eq. (12) may be rewritten as

n∑
i=1

$̂i q̇i = 0, (13)

where $̂i and q̇i represent the normalized screw and the
magnitude of twist $i , respectively.

Equation (13) is the constraint equation which, in general
can be written as

Nq̇ = 0, (14)

where N = [$̂1 $̂2 . . . $̂n] is the network matrix containing
the normalized screws, the signs of which are dependent
on the screw definition in the circuit orientation, and q̇ =
[q̇1 q̇2 . . . q̇n] is the magnitude vector.

A closed kinematic chain has actuated joints, here named
primary joints, and passive joints, named secondary joints.
The constraint equation, Eq. (14), allows the calculation of
the secondary joint velocities as functions of the primary joint
velocities. To this end, the constraint equation is rearranged
highlighting the primary and secondary joint velocities and
Eq. (14) is rewritten as follows:

[Np

... Ns
]

⎡
⎣ q̇p

. . .

q̇s

⎤
⎦ = 0, (15)

where Np and Ns are the primary and secondary network
matrices, respectively, and q̇p and q̇s are the corresponding
primary and secondary magnitude vectors, respectively.

Equation (15) can be rewritten as

Npq̇p + Nsq̇s = 0, (16)

which is Eq. (2) derived in another way.

3.4. Assur virtual chain
The Assur virtual kinematic chain concept, virtual chain
for short, is essentially a tool to obtain information on the
movement of a kinematic chain or to impose movements on
a kinematic chain.1

This concept was first introduced by Campos et al.,1 which
defines the virtual chain as a kinematic chain composed
of links (virtual links) and joints (virtual joints) and which
possesses the following three properties: (a) the virtual chain
is open, (b) it has joints whose normalized screws are linearly
independent and (c) it does not change the mobility of the
real kinematic chain, in other words, it is an Assur group.2,20

From the property (c) the virtual chain proposed by
Campos et al.1 is in fact an Assur group,2 i.e. a kinematic
subchain with null mobility that when connected to another
kinematic chain preserves mobility.

Due to the analogy with Assur groups and to avoid
possible confusions with other unrelated virtual chains in
the literature, we coined the name Assur virtual chain.

3.4.1. The orthogonal PPR Assur virtual chain. The PPR
virtual chain is composed of two virtual links (C1, C2)
connected by two prismatic joints, whose movements are
in the x and y orthogonal directions, and a rotational joint,
whose the movement is in the z direction (see Fig. 6). The
prismatic joints are called px and py, and the rotative joint is
called rz.

The first prismatic joint (px) and the rotative joint (rz) are
attached to the chain to be analysed (real chain). The joint
px connects the link R1 with the virtual link C1, the joint py
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Fig. 6. PPR Assur virtual chain.

connects the virtual link C1 with the virtual link C2 and the
joint rz connect the virtual link C3 with the real link R2.

Let the twist $px represent the movement of the link C1 in
relation to the link R1, twist $py represent the movement of
the link C2 in relation to the link C1 and twist $rz represent the
movement of the link R2 in relation to the link C2. Therefore,
the movement of the link R2 in relation to the real link R1

may be expressed by $px + $py + $rz.

Consider the C-reference system (C-system) attached to
the virtual link C2 at the joint rz. Therefore, there is no
rotation between the C-system and the B-system (attached
to the inertial base), and the joint rz is aligned with the z
direction. Thus, the normalized screws corresponding to the
virtual joints represented in the C-system are

C $̂rz =
⎡
⎣1

0
0

⎤
⎦ ; C $̂px =

⎡
⎣0

1
0

⎤
⎦ ; C $̂py =

⎡
⎣0

0
1

⎤
⎦ . (17)

It can be observed that the orthogonal PPR Assur virtual
chain represents the movements in a planar Cartesian system.
Other Assur virtual chains can be found in refs. [1–3].

3.4.2. The orthogonal 3P3R Assur virtual chain. To
represent the movements in the tridimensional Cartesian
system the 3P3R Assur virtual chain is used. The 3P3R virtual
chain is composed of three orthogonal prismatic joints (in the
x, y and z directions), and a spherical wrist, composed of three
rotative joints1 (in the x, y and z directions). Fig. 7 shows the
3P3R Assur virtual chain with the virtual links Ci labelled.

3.5. The direct graph notation
Consider a kinematic pair composed of two links Ei and
Ei+1. This kinematic pair has the relative velocity defined
for a screw R$j (joint j) in relation to a reference frame R.
The joint j represents the relative movement of the link Ei

with respect to the link Ei+1. This relation can be represented
as a graph,15 as shown Fig. 8.

Where vertices represent links and arcs represent joints.
The relative movement is also indicated by the arcs
directions. For instance in Fig. 8, the link Ei+1 moves with
respect to link Ei via the joint j.

Now consider the following example, where the joint j is
part of two closed chains. For each closed chain the circuit
direction is defined.1 Fig. 9 shows an example.

In a direct mechanism graph, if the joint has the same
direction as the circuit, the twist associated with the joint has
a positive sign in the circuit equation (Eq. (13)), and if the
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Fig. 7. 3P3R Assur virtual chain.

Fig. 8. Relative movement of link Ei with respect to link Ei+1
represented graphically.

Fig. 9. Relation between joint j and the circuits a and b.

joint has the opposite direction to the circuit, the sign will be
negative.

In the example, the twist R$j , associated with the joint
j, will have a positive sign in the circuit a equation and a
negative sign in the circuit b equation.

4. Integration Algorithm Using Assur Virtual Chains

An integration algorithm is necessary to integrate the
differential kinematics equation to obtain the joint
positions.19 The algorithm proposed in this paper has two
steps. The first step is to introduce a virtual chain to represent
the closure error resulting from the integration error as
shown in Fig. 2. For the same example of a four bar planar
mechanism, the resulting closed chain is shown in Fig. 10.

The constraint equation of this closed-loop chain results
in

Npq̇p + Nsq̇s + Neq̇e = 0, (18)

where Np and Ns are the primary and secondary network
matrices obtained by integration, q̇p and q̇s are the primary
and secondary magnitude vectors, respectively, Ne is the error
network matrix and q̇e is the error magnitude vector.
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The second step is to replace Eq. (3) by

q̇s = −N−1
s Npq̇p + N−1

s NeKeqe, (19)

where the gain matrix Ke is chosen to be positive definite and
qe is the position error vector.

4.1. Stability
The algorithm stability can be verified substituting Eq. (19)
into Eq. (18), obtaining

Neq̇e + NeKeqe = 0. (20)

Multiplying all terms by N−1
e (which always exists because

the virtual chain joint normalized screws are always linearly
independent), results in

q̇e + Keqe = 0. (21)

As the gain matrix is positive definite, Eq. (21) states that
the position error vector qe → 0 as t → ∞ exponentially.

Theoretically, the gains can be as great as desired, however,
in practice they are limited by the possibility of introducing
numerical problems, such as numerical oscillations and, in
some limit cases, instabilities. This gain limit can result in
undesirable errors. This difficulty is overcome by using gains
that do not introduce numerical problems combined with
various iterations which allow control over the error, as is
shown in the next subsection.

4.2. Error control
The exponential convergence is guaranteed in the general
case in which the primary positions and velocities varying
over time. It has the same property when the primary
positions and velocities are constant, as in a second iteration.
If the error is greater than the desired value, new iterations
can be performed until the error is within the admissible
tolerance. Consequently, the proposed algorithm allows
control over the error.

4.3. Position error vector
The screw displacement of a link in a kinematic chain can
be expressed by a homogeneous matrix, and the resultant
screw displacement in a link j can be calculated using the
successive screw displacement method (see Section 3.1) by

premultiplying the homogeneous matrices corresponding to
the preceding joint motions, i.e.

Aj =
j−1∏
i=1

Ai. (22)

As in a closed-loop chain, the first and the last links are
the same, and the orientation and position of a link with
respect to itself are given by a homogeneous matrix equal
to the fourth-order identity matrix. In a closed-loop chain
with np primary joints and ns secondary joints (Eq. (22)), the
closed-loop equation results in

np∏
i=1

[Ap]i

ns∏
i=1

[As]i = I, (23)

where [Ap]i , i = 1. . .np are the homogeneous matrices
corresponding to the primary joints, and [As]i , i = 1 . . .ns are
the homogeneous matrices corresponding to the secondary
joints.

Consider a closed-loop that has an error chain as shown
in Fig. 2. As in ref. [6], we represent the closure error
with a homogeneous matrix E, and the closed-loop equation
becomes {

np∏
i=1

[Ap]i

ns∏
i=1

[As]i

}
E = I. (24)

The closure error is calculated by

E =
{

np∏
i=1

[Ap]i

ns∏
i=1

[As]i

}−1

=
[
Re pe

0 1

]
, (25)

where pe = [pex pey pez]T is the position error vector and
Re is the rotation matrix error. The matrix Re corresponds
to errors measured in rex , rey and rez virtual rotative joints
considering their structural conception.

The ‘position’ error (which is a posture error involving
position and orientation) is given by the position error vector
qe = [rex rey rez pex pey pez]T .

4.4. Numerical implementation
Applying the Euler integration method in Eq. (20) we obtain

qs(tk) = qs(tk−1) − N−1
s (tk−1)Np(tk−1)q̇p�t

+ · · · + N−1
s (tk−1)Ne(tk−1)Keqe�t. (26)

5. Example

The method presented is illustrated by solving the position
kinematic of a planar four bar mechanism (Fig. 1.)

In this example, joint 1 is considered primary while the
others are secondary. Joint 1 moves from the initial position
π/4 to the final position π/2 according to qp(t) = π/4 +
π/4 sin(π t/8) from t = 0 to 4 s.

The magnitude of q̇p(t) can be obtained by differentiating

qp(t) : q̇p(t) = π2

32
cos

(
πt

8

)
.
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The kinematic parameters are l1 = 0.5 m, l2 = 1.0 m, l3 =
0.5 m and l4 = 1.0 m. The initial position vector is qs(0) =
[−π

4
−3π

4
−π
4 ]T rad. The integration interval is �t = 0.01 s.

Considering the reference frame attached to the last link
of the error chain, the network matrices result in:

Np =

⎡
⎢⎣

1

l3s4 + l2s34 + l1s123

l4 + l3c4 + l2c34 + l1c123

⎤
⎥⎦ ,

Ns =

⎡
⎢⎣

1 1 1

l3s4 + l2s34 l3s4 0

l4 + l3c4 + l2c34 l4 + l3c4 l4

⎤
⎥⎦ ,

Ne =
⎡
⎣0 0 1

0 1 ey

1 0 −ex

⎤
⎦ ,

where: ex , ey are the prismatic displacement of the Assur
virtual error chain; sij and cij are the sine and cosine of qi +
qj + · · ·.

The secondary position vector is calculated using Eq. (26)
and the resulting vector components are compared with the
analytical solution presented by Waldron and Kinzel.9

The solution of the planar four bar mechanism is obtained
choosing Ke = K I3, where K is a positive scalar and I3 is
the 3 × 3 identity matrix. Varying K from 10 to 190 and the
number of iterations from 1 to 4, we obtain the results shown
in Fig. 11.

Figure 11 shows the maximum error between the
numerical solution and the analytical solution as a function
of K. To maintain the error magnitude within an admissible
error we can choose the gain value combined with iterations
in order to obtain a result that is within a given tolerance
(‖qe‖ < ξ ). It can be observed that the best result is obtained
for K = 100, with any number of iterations.

6. Experimental Result

To evaluate the performance of the proposed method a real
application was implemented.

Fig. 11. Numerical solution results.

Fig. 12. The Roboturb prototype.

Fig. 13. Real experimental environment.

In this experiment a 7-DOF manipulator called the
Roboturb manipulator was used. The Roboturb manipulator
was conceived to recover blades with surfaces eroded by
cavitations, a phenomenon found in hydroelectric power
turbines.12 This manipulator is composed of one prismatic
joint, which comprises a mobile platform that moves on
a flexible rail and six revolute joint (including a spherical
wrist). Figure 12 depicts the Roboturb manipulator.

The Roboturb manipulator carries out the recovery through
an automated welding process, where the material is
deposited in parallel chords in interposed layers.13

The trajectories have to follow the recovery welding pro-
cess specifications14 and an eroded model was constructed to
represent the real eroded surface. Figure 13 depicts the real
environment and Fig. 14 the simulated environment.

To apply the proposed differential kinematics method,
the closed chains are firstly defined. To impose a desired
trajectory, a 3P3R Assur virtual chain is attached to the

Fig. 14. Virtual environment to calculate the weld trajectories.
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Fig. 15. Graph of two kinematic circuits.

end-effector with the base attached to the trajectory reference
frame, this closed chain defines circuit 1. To solve the
redundancy, a classical proposed solution is to define
the prismatic velocity through the projection of the end-
effector velocity.12 Adding a second 3P3R Assur virtual
chain attached to the mobile platform with the base at-
tached to the reference frame, a velocity can be imposed
activating some of the prismatic virtual joints to specify the
mobile platform (or prismatic) velocity, and this closed chain
defines circuit 2.

It can be seen that the resultant Roboturb solution is a
parallel robot with two closed chains defined by circuits 1
and 2.

To represent these closed chains, we enumerate each link
and joint and use graph notation.15 Figure 15 shows the
resultant graph obtained by the Davies method.
where:

• edges 1, 2, 3, 4, 5, 6 and 7 represent the Roboturb links;
• vertices 1, 2, 3, 4, 5, 6 and 7 represent the Roboturb joints;
• edges v1, v2, v3, v4 and v5 represent the virtual trajectory

links;
• vertices px, py, pz, rx, ry and rz represent the virtual

trajectories joints;
• edges t1, t2, t3, t4, t5 represent the virtual trajectory chain

links;
• vertices pxt, pyt, pzt, rxt, ryt and rzt represent the virtual

trajectory chain joints.

The direction of each edge indicates the joint direction.
To represent the numerical integration error the closed

kinematics must be opened at a convenient point. This point
must be selected in such way that each circuit possesses only
one opening: circuit 1 opened at link 7, forming links 7a and
7b; and circuit 2 opened at link 1, forming links 1a and 1b.

Figure 16 shows the direct graph opened at links 1 and 7.
In tridimensional space, the error chain must also be a

3P3R Assur virtual chain. Adding the error Assur virtual
chains to these two circuits, the following complement to
each circuit is obtained as depicted in Figs. 17 and 18.
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Fig. 16. Opening the circuits.
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where:

• edges e1t , e2t , e3t , e4t and e5t represent the links of the
virtual error trajectory;

• vertices pxet , pyet , pzet , rxet , ryet and rzet represent the
joints of the virtual error trajectory.

where:

• edges e1, e2, e3, e4 and e5 represent the links of the virtual
error chain for the redundancy solution;

• vertices pxe, pye, pze, rxe, rye and rze represent the joints
of the virtual error chain for the redundancy solution.

Considering the final closed chain according to the Davies
method, the differential kinematics can be represented by the
following matrices, to give Eq. (26).

https://doi.org/10.1017/S0263574709005426 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005426


New method to solve robot inverse kinematics 1025

Fig. 19. Calculated contour trajectory.

Np =
[

0 −


$px −


$py −


$pz −


$rx −


$ry −


$rz

−


$pyt 0 0 0 0 0 0

]

Ns =
[




$1




$2




$3




$4




$5




$6




$7



$1 0 0 0 0 0 0

0 0 0 0 0

−


$pxt −


$pzt −


$rxt −


$ryt −


$rzt

]

Ne =
[




$pxet




$pyet




$pzet




$rxet




$ryet




$rzet
0

0 0 0 0 0 0 −


$pxe

0 0 0 0 0

−


$pye −


$pze −


$rxe −


$rye −


$rze

]

The desired trajectory was calculated considering the
contour of the delimitation path in Fig. 13. The delimitation
path is composed of a set of 493 nodes as shown in Fig. 19.

The contour trajectory was obtained from the results of
the laser sensor analysis.16 Using the Bezier formulation the
mathematic model of the eroded surface was obtained and
using the Coons surface approximation,17 the final surface
was obtained. Thus, the delimitation path was computed from
the intersection of the surfaces using the cube algorithm.11

Applying the proposed differential kinematics model, and
using the Euler numerical integration method, the inverse
kinematics can be calculated. For this application, and as a
particular case of the modelling method, we approximate the
primary joint velocities q̇p(t) as follows:

q̇p(t) ≈ qp(tk) − qp(tk−1)

�t
. (27)

The control variable is ‖qe‖, i.e. the norm of the error
displacements qe, at each instant tk . Setting the admissible
limit error ξ to 10−6 the joint trajectories were calculated
using the following algorithm:

Algorithm 1. Inverse kinematics using the proposed
integration method.

1. Set parameters Ke, ξ , qs(t0) and qp(t0)
2. for each instant tk do

a. Set qp=qp(tk)
b. Calculate ‖qe‖, Eq. (25)
c. while ‖qe‖ > ξ do

i. Calculate Ns , Np and Ne

ii. Calculate qs , Eq. (26)
iii. Calculate ‖qe‖, Eq. (25)

d. end while
e. save qs(tk)

3. end for

The convergence is shown for a set tk instants (t128, t129

and t130) in Fig. 20.

Another important result can be seen in the first iteration to
each tk instant: where the error decrease is more accentuated
in comparison with the other iterations.

Figure 21 shows the final results of this experiment, where,
using a pen fixed at the end-effector, the desired trajectory is
correctly obtained by the Roboturb manipulator.

7. Conclusion

A new method to obtain the differential kinematics model
for closed-chain robots is presented.

The differential kinematics equation is integrated numer-
ically to obtain the joint positions. The model guaranteeing
the closure error exponential convergence is presented and its
stability properties are shown theoretically. The modelling
method is based on the use of screw theory, Assur virtual
chains and Davies method.

The error control is outlined and the influence of various
iterations is analysed considering a numerical example.

Fig. 20. Error ‖qe‖ convergence at instants tk (t128, t129 and t130).
Notice that after 1–3 iterations, ‖qe‖ converges in region B. In
region A, just after the convergence, qp assumes a new value qp(tk);
a new qe arises, and the whole process repeats.

Fig. 21. Final result for the task of delimiting a contour.
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These results show that there is a compromise between error,
number of iterations (computer time) and algorithm gains.

The differential model was applied to a 7-DOF mani-
pulator in a real application know as Roboturb. In this
application was validated the method for a 3D workspace
was validated and the closure error convergence was within
the desired limit.

The purpose of this study is to include the proposed
technology in an application for the Roboturb manipulator
in order to avoid collisions. This application improves the
effective operation of the Roboturb manipulator.
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“Automation of the processes of surface measurement and of
deposition by welding for the recovery of rotors of large-scale
hydraulic turbines,” J. Mater. Process. Technol. 179(1–3), 231–
238 (2006).

15. L. W. Tsai, Mechanism Design: Enumeration of Kinematic
Structures According to Function (CRC-Press, New York,
USA, 2001).

16. T. L. F. Pinto, Avaliação de desempenho de robôs industriais
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