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When a laminar diffusion flame is established over a spinning, thermoplastic, polymer
fuel disc in a quiescent, oxidizing environment, the polymer melts and flows radially
outwards, causing some fuel to be lost and not transported to the diffusion flame. The
viscosity of the liquid in the melt layer retards the radial flow, thereby determining the
amount of fuel lost. The melt layer is analysed here for two limiting cases, namely
one in which the liquid viscosity depends strongly on temperature, leading to an
asymptotic analysis involving two zones in the liquid, and one in which the liquid
viscosity is constant, independent of temperature, so that there is only one zone in
the liquid. The utility of these two limits is assessed by comparing their predictions
with those of full numerical integrations for poly(methyl methacrylate) (PMMA) discs
burning in air at atmospheric pressure.

Key words: laminar reacting flows, solidification/melting

1. Introduction
Ever since the discovery by von Kármán (1921) of an exact solution to the

Navier–Stokes equations for the flow adjacent to a circular disc rotating steadily
about its axis, there has been interest in these von Kármán rotating flows from many
different viewpoints (Sparrow & Gregg 1960; Zandbergen & Dijkstra 1987; Kim,
Libby & Williams 1992; Nayagam & Williams 2000b; Urzay, Nayagam & Williams
2011). While most of the investigations have focused on the flow in the gas phase,
liquid-phase flow sometimes also is relevant (Wang 1989, 2007). For example, spiral
diffusion-flame patterns on a spinning fuel disc were first seen (Nayagam & Williams
2000b) in experiments with poly(methyl methacrylate) (PMMA), a polymer that
melts at a glass transition temperature and flows outwards radially somewhat in the
liquid phase during combustion. This liquid-phase flow can develop instabilities that
introduce departures from axisymmetry at the periphery of the disc. In experiments
with PMMA, such instabilities were observed by Hostler, Nayagam & Williams (2000)
to lead to elongated fingers extending radially outwards from the edge of the disc.
Descriptions of the liquid-phase flow in the polymer melt layer are needed if such
instabilities are to be properly addressed theoretically. The objective of the present
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Schematic illustration of
the experiment.

work is to derive suitably simplified descriptions of the liquid-phase flow in these
Kármán-swirl experiments that may enable stability analyses to be pursued relatively
easily.

The combustion processes themselves for rotating fuel discs in quiescent oxidizing
ambient atmospheres occur in the gas phase and have been studied both theoretically
(Holcomb & T’ien 1996; Nayagam & Williams 2000a; Nayagam, Balasubramaniam &
Williams 2009) and experimentally (Balakrishnan 1992; King, Nayagam & Williams
2000) in the past. The influences of the melt layer on the surface of the disc were
addressed by Nayagam et al. (2009), to which reference can conveniently be made for
information concerning properties of the liquid. In that paper, the coupled self-similar
ordinary differential equations describing both the gas phase and the condensed phase
were solved numerically. Such numerical solutions force numerical methods to be
employed when studying the instability patterns observed by Hostler et al. (2000).
Since the necessity of treating the liquid phase numerically can complicate the task
of analysing the instability and can tend to obscure the critical underlying physical
processes controlling the phenomena, it is desirable to seek simplified descriptions
of the liquid phase, as is done in the present work. In investigating the utility of
simplifications that enable liquid-phase solutions to be obtained analytically, it is found
here that such simplifications can produce reasonably accurate results for a number of
quantities of interest.

2. The gas-phase formulation and liquid-phase properties and energetics
Figure 1 illustrates the thermoplastic polymer disc, occupying a semi-infinite space

and rotating about its axis of symmetry with an angular velocity Ω , in a quiescent,
oxidizing environment. It is assumed that a steady, laminar diffusion flame is
established in the boundary layer above the disc in the gas phase, and a polymer melt
layer of thickness d that is to be determined is formed at its surface through the heat
transfer from the combustion process. In the coordinate system illustrated in figure 1,
the melt–gas interface is located along the plane z = 0. In this coordinate system, the
spinning solid translates at a steady rate in the positive z direction, corresponding to its
melting rate.
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240 V. Nayagam and F. A. Williams

2.1. The gas-phase equations
With the small effect of radiant energy transport in these blue flames neglected, the
conservation equations for mass, momentum, energy and species mass fractions in the
gas phase can be reduced to a set of nonlinear ordinary differential equations (see e.g.
King et al. 2000) by introducing the independent variable

η =

(
Ω

ν∞

)1/2 ∫ z

0

(
ρ

ρ∞

)
dz′ for 0 6 z 6∞ (2.1)

and the dependent variables

u=ΩrF(η), v =ΩrG(η), ρw= ρ∞
√
Ων∞H(η), (2.2)

T̃ =
T

q/cp
, ỸF = YF, ỸO = YO/σ, (2.3)

Q=
ỸO − ỸF + ỸF0

ỸO∞ + ỸF0

=
ỸO + T̃ − T̃0

ỸO∞ + T̃∞ − T̃0

, (2.4)

where (u, v,w) are the velocity components in the (r, θ, z) directions, T is the
temperature, YF is the fuel mass fraction, YO is the oxidizer mass fraction, Q is
the coupling function, ρ, ν and cp are the gas-phase density, kinematic viscosity and
specific heat, respectively, and q is the heat of combustion per unit mass of fuel
vapour consumed. In (2.3), σ is the stoichiometric oxygen-to-fuel mass ratio. Here, the
subscripts ∞ and 0 identify conditions far away from the disc and at the melt–gas
interface, respectively.

The conservation equations, in terms of these variables, become

H′ + 2F = 0, (2.5)
F′′ − HF′ − F2

+ G2
= 0, (2.6)

G′′ − HG′ − 2FG= 0, (2.7)
Q′′ − PrgHQ′ = 0, (2.8)

where Prg = ν∞/α∞ is the gas-phase Prandtl number, and α is the thermal diffusivity
of the gas. The prime in (2.5)–(2.8) denotes differentiation with respect to η. In
deriving these equations, the product of density and viscosity, ρµ, Prg and cp are
assumed constant, and the Lewis number is set equal to unity. Also, a one-step,
infinite-rate, irreversible reaction in the gas phase is considered, and the conservation
equations for the fuel mass fraction ỸF, the scaled oxygen mass fraction ỸO and energy
have been combined to form a single equation in terms of the coupling function Q
defined in (2.4).

From the definitions, the boundary conditions at infinity for (2.5)–(2.8) are
F(∞) = 0, G(∞) = 0 and Q(∞) = 1. In addition, from (2.4), since oxygen does
not penetrate the diffusion flame, Q(0) = 0. Because the system is of seventh order,
three more boundary conditions are needed to determine a unique solution. These
additional boundary conditions are obtained from interface conservation equations at
the liquid–gas surface, which serve to couple the gas-phase differential equations to
the conservation equations for the condensed phase.

2.2. The liquid-phase viscosity and temperature
In general, the melt layer formed over a burning thermoplastic polymer behaves as a
non-Newtonian fluid with a shear-rate-dependent dynamic viscosity. The melt viscosity
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Melt phase combustion 241

strongly depends on its molecular weight as well as on the temperature, as explained,
for example, by Brydson (1981). In the present work it is assumed that the melt layer
behaves as a Newtonian fluid with a dynamic viscosity µl that may or may not vary
with temperature. When a temperature variation is considered, this variation is taken
to be given by an Arrhenius equation of the form µl = AeE/RT , where A is a constant,
E is the activation energy, R is the universal gas constant and T is the absolute
temperature. Justification for this last approximation is given by Brydson (1981), for
example.

The melt begins at a glass transition temperature Tg (Nayagam et al. 2009),
located at a distance d from the melt–gas interface, so that introduction of a suitable
non-dimensional temperature variable θ in the melt layer, defined to be 0 at Tg and 1
at T0, enables the liquid temperature to be expressed as T = Tg + (T0 − Tg)θ . When
there is a strong increase of the liquid viscosity with increasing temperature, it is
convenient to treat

ε = RT2
0/[E(T0 − Tg)] (2.9)

as a small parameter, whence the normalized melt viscosity, µ̃ = µl(T)/µl(T0),
becomes, after a little algebra,

µ̃= exp{(1− θ)/ε[1− (1− θ)(T0 − Tg)/T0]}, (2.10)

an expression that is appropriate for treatment of the melt layer in an expansion for
small ε. In the opposite limit of constant liquid viscosity, µ̃= 1.

In contrast to our earlier work (Nayagam et al. 2009), the liquid-phase velocity
components (ul, vl,wl) in the (r, θ, z) directions are scaled here on the basis that the
rotating disc is nearly in solid-body rotation and experiencing a mass loss rate per
unit area in the normal direction that is of the same order as the mass flux in the z
direction in the gas. This means that ul is small compared with Ωr, that vl is nearly
equal to Ωr and that

wl = (ρ∞/ρl)
√
Ων∞H(0)h, (2.11)

where h is of order unity. This definition has been selected so that, by mass
conservation at the surface, h = 1 at the liquid–gas interface, in view of (2.2), while
h will approach a constant value, h∞, deep within the condensed phase, a value that
will be greater than unity because of the mass loss radially from the melt layer. The
fraction of the liquid that is lost radially thus will be simply

l= (h∞ − 1)/h∞. (2.12)

Equation (2.11) indicates that the characteristic normal velocity component in the
liquid is smaller than that in the gas, (Ων∞)

1/2, by a factor of the small density ratio
(ρ∞/ρl), of the order of 10−3.

Efficient formulation of the liquid-phase problem for small ε is facilitated by first
writing the complete outer solution for the condensed phase. In this case, the z
component of velocity throughout most of the condensed phase has a constant value
determined by h∞, so that, given the corresponding equation for energy conservation
(αl d2θ/dz2

− wl dθ/dz= 0), with the non-dimensional spatial variable

Z =−z/d, (2.13)

the temperature profile in the melt is determined at leading order by

θ = (e−β∞Z
− e−β∞)/(1− e−β∞), (2.14)
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242 V. Nayagam and F. A. Williams

where, in view of (2.11), in terms of the (constant) thermal diffusivity αl of the liquid
and the distance between the surface and the glass transition position,

β∞ = (ρ∞/ρl)(ν∞/αl)H(0)h∞d∗, (2.15)

in which

d∗ = d/
√
ν∞/Ω (2.16)

is the ratio of the thickness of the liquid layer to a characteristic thickness of the
gas-phase layer. In the opposite limit of constant liquid viscosity, the variation of the z
component of velocity cannot be neglected throughout most of the liquid, and so the
more complicated solution

θ =

∫ 1

Z
e−β dZ′

/∫ 1

0
e−β dZ (2.17)

is needed, where

β = d(ρ∞/ρl)
√
Ων∞H(0)

∫ Z

0
h dZ′/αl. (2.18)

2.3. Incorporation of the influence of the glass transition

The solution (2.14) can be used to show that the condition of energy conservation
across the surface of glass transition (namely, that the rate of heat conduction into that
surface from the liquid layer equals the sum of the rate of thermal energy convection
into that surface from the solid and the rate of heat absorption in the transition)
requires that

β∞ = ln(1+ Bm), (2.19)

where Bm, a thermodynamic transfer number for melting at the glass transition, is
the ratio of the thermal energy difference of the liquid, between the liquid–gas
interface and the glass transition, to the aforementioned sum of the thermal
enthalpy difference of the solid and the heat of glass transition, namely, Bm =

cpl(T0 − Tg)/[Lm + cps(Tg − T∞)]. Given this result, (2.11) and (2.14) then serve to
complete the leading-order outer solution to the condensed-phase problem for small ε,
in terms of the (still unknown) non-dimensional mass loss rate of the solid, H(0)h∞,
because (2.15) with use of (2.19) then determines d∗, and the outer condensed phase
is in solid-body rotation at this order. For constant viscosity, in place of (2.15), it is
more convenient to let β∞ denote the value of β obtained by putting Z = 1 in (2.18),
resulting in

Bm = h∞β∞eβ∞
∫ 1

0
e−β dZ

/∫ 1

0
h dZ, (2.20)

in place of (2.19), since the melt layer no longer is in solid-body rotation. The solution
then is coupled to equations for momentum conservation in the melt layer, since the
variation of h cannot be neglected throughout the region over which the temperature
varies appreciably. For these reasons, the two limiting cases now need to be analysed
separately.
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Melt phase combustion 243

3. Derivation of the liquid-phase velocity-field differential equations
The treatments of the velocity fields differ for the limits of constant and strongly

temperature-dependent liquid viscosities.

3.1. A strongly temperature-dependent viscosity
Since the inner region will be thin in comparison with the outer region for small ε,
to define the inner problem, equation (2.14) may be expanded about Z = 0, use being
made of (2.15) and (2.19) to evaluate dθ/dZ at Z = 0 for purposes of matching, and
the result may then be substituted into (2.10) to identify an appropriate inner variable
as

ξ =−(ρ∞/ρl)
√
Ων∞H(0)h∞z(1+ Bm)/(αlεBm), (3.1)

to be used in formulating the inner liquid-phase problem. This is the most convenient
choice because (2.10) then becomes simply

µ̃= eξ (3.2)

in the first approximation, resulting in a parameter-free viscosity description.
In view of (2.11) and (3.1), liquid-phase mass conservation, ∂(rul)/∂r + r∂wl/∂z= 0

dictates the scaling

ul =Ωrδf , (3.3)

where

δ = (ρ∞µ∞/ρlµl0) [H(0)]
2 h∞(Pr l0/ε)[(1+ Bm)/Bm], (3.4)

with the function f (ξ) being of order unity, so that, with a prime denoting
differentiation with respect to ξ in the liquid, conservation of mass in the melt layer
becomes simply

h′ = 2f . (3.5)

In (3.4) the liquid Prandtl number based on its viscosity evaluated at the liquid–gas
interface is Pr l0 = µl0/αl. The balance in (3.5) is essential if mass loss in the radial
direction is to occur in the melt layer. The excellent approximation vl = Ωr replaces
conservation of the azimuthal component of momentum in the liquid, and conservation
of the normal component serves only to determine the pressure profile in the normal
direction, so it is only the conservation of the radial component of momentum,

∂

∂z

(
νl
∂ul

∂z

)
− wl

∂ul

∂z
+
v2

l − u2
l

r
= 0, (3.6)

that remains to be considered.
When use is made of (2.11) and (3.1)–(3.3), along with vl = Ωr, it is found that

(3.6) in non-dimensional form is

(eξ f ′)
′

+(δ2hf ′ + 1− δ2f 2)/γ = 0, (3.7)

where

γ = 4h3
∞
/a, (3.8)

in which

a=

(
4

[H(0)]4

)(
ρlµl0

ρ∞µ∞

)2(
ε

Pr l0

)3( Bm

1+ Bm

)3

. (3.9)
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244 V. Nayagam and F. A. Williams

The Prandtl number of the liquid is large (of the order of 104 for PMMA of
low molecular weight (LMW-PMMA), to 107 for PMMA of high molecular weight
(HMW-PMMA); see Nayagam et al. 2009), but despite the appearance of this factor in
δ in (3.4), this parameter is small, as it must be for ul to be small compared with Ωr,
according to (3.3). This occurs because the ratio (ρ∞µ∞/ρlµl0) is very small (of the
order of 10−8 or less, since the ratio of the lowest value of the viscosity of the melt to
the viscosity of the gas is of the order of 105 at low molecular weight, to 108 at high
molecular weight, always large compared even with the large density ratio). Thus, the
differential equation becomes simply

f ′′ + f ′ =−e−ξ/γ. (3.10)

Matching to the outer solution requires f to go to zero as ξ approaches infinity in
the solution to (3.10), and f also must satisfy an interface boundary condition at ξ = 0.
In view of (3.5) and the boundary condition for h at ξ = 0, the solution

h= 1+ 2
∫ ξ

0
f dξ (3.11)

may be used to calculate h∞, thereby giving the fraction of material lost radially,
by use of (2.12), once f is found. Equation (3.10) therefore is the only differential
equation that needs to be solved for the liquid phase.

3.2. A constant liquid-phase viscosity
The variable ξ of (3.1) no longer is relevant when the viscosity is constant in the
liquid phase, and a prime therefore is used to denote differentiation with respect to Z
instead. In order to recover (3.5), then, the δ in (3.3) must be replaced by

δ = (ρ∞/ρl)H(0)/d∗. (3.12)

Instead of producing (3.7), (3.6) now gives

f ′′ + (δ2hf ′ + 1− δ2f 2)/γ = 0, (3.13)

where

γ = H(0)Γ/∆3, (3.14)

in which

Γ = (ρ∞µ∞/ρlµl)
2 Pr3

l (3.15)

and

∆= (µ∞/µl)Pr ld
∗. (3.16)

For small δ2, (3.10) is then replaced by

f ′′ =−1/γ, (3.17)

while ξ is replaced by Z in (3.11). In both cases, then, the velocity fields in the
melt layer can be obtained from solutions to a single second-order ordinary differential
equation, but that equation is different in the two limits.

4. Melt–gas interface boundary conditions
It may be recalled that three additional boundary conditions are needed for the gas

phase, in addition to those given in the last paragraph of § 2.1. Since (3.10) and (3.17)
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Melt phase combustion 245

are of second order and obey either a matching condition at infinity or a boundary
condition at zero, they require one more boundary condition, so it follows that a
total of four more independent boundary conditions are needed at the liquid–gas
interface. These conditions will come from continuity of the velocity components in
the radial and azimuthal directions, energy conservation and conservation of the radial
component of momentum across the surface. Conservation of the azimuthal component
of momentum across the surface becomes superfluous in the approximation vl = Ωr,
and the additional boundary condition for G then reduces to G(0) = 1 from (2.2).
From (2.2) and (3.3), continuity of the radial component of velocity results in

F(0)= δf (0), (4.1)

which in the first approximation for small δ is F(0) = 0. From (2.1), (2.2) and
(3.3), the condition for conservation of the radial component of momentum across
the interface, µ∂u/∂z = µl ∂ul/∂z, can be shown, by use of the definitions of the
non-dimensional coordinates and of δ and γ , in both cases, to be

f ′(0)=−[F′(0)/H(0)](δ/γ ), (4.2)

which is f ′(0) = 0 in the first approximation. Since none of these three additional
boundary conditions introduce any coupling between the gas-phase and liquid-phase
solutions at leading order, the liquid-phase solutions affect the gas-phase solutions
only through the interface energy conservation condition, and they also enable the
liquid-phase solutions to be determined prior to addressing the gas-phase problem.

Since radiant energy loss from the surface is negligible (King et al. 2000),
conservation of energy across the interface requires that the rate of conduction of
energy into the surface from the gas equals the sum of the rate of conduction of
energy out of the surface into the liquid and the vaporization rate times the latent
heat of vaporization. From (2.1)–(2.4), (2.13)–(2.15) and (2.19), this can be shown to
reduce to the non-dimensional equation, applicable for small ε,

(B/Prg)Q
′(0)= H(0)[1+ (1+ Bm)(Bl/Bm)h∞], (4.3)

where B is the usual transfer number defined by Nayagam et al. (2009), and Bl is the
ratio of the thermal enthalpy difference of the liquid between the liquid–gas interface
and the glass transition to its heat of vaporization, another known non-dimensional
thermodynamic parameter; specifically, B= (ỸO∞ + T̃∞ − T̃0)/(Lv/q) and Bl = cpl(T0 −

Tg)/Lv. Equation (4.3) also can be interpreted as an overall energy balance, saying that
the heat conducted into the liquid from the gas goes into causing vaporization of the
portion of the liquid that does not escape radially (the first term on the right-hand side)
and heating all of the condensed phase from its initial state to liquid at the liquid–gas
interface temperature (the last term). For small ε, all of the material that escapes is
heated to this temperature in the first approximation, and the additional factor h∞ in
the last term, which finally couples the gas-phase problem to the condensed-phase
problem, accounts for the fact that more material is heated than is vaporized. By
contrast, when the liquid viscosity is constant, some material escapes radially without
being heated entirely to the gas-interface temperature, and (4.3) is modified in that
(1+ Bm) is replaced by eβ∞ , since (2.19) no longer applies, and the energy transported
radially by material loss depends on β∞. The expression then becomes

(B/Prg)Q
′(0)= H(0)(1+ Bl/Bm)+ 2Bl∆

3eβ∞/(3Γ Bm). (4.4)
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5. The liquid-phase solutions
The solution to (3.10), subject to f ′(0)= 0 and f (∞)= 0, is

f (ξ)= [(1+ ξ)/γ ]e−ξ , (5.1)

which may be used in (3.11) to show that

h(ξ)= 1+ 4/γ − 2[(2+ ξ)/γ ]e−ξ . (5.2)

According to (5.2),

h∞ = 1+ 4/γ, (5.3)

so that from (2.12), the fraction of liquid lost radially is

l= 1/(1+ γ /4), (5.4)

with the γ of (3.8). Equation (5.3) yields

h3
∞
(h∞ − 1)= a, (5.5)

which determines h∞ in terms of H(0) for the small-ε limit. This quartic equation for
h∞ can conveniently be solved numerically for use in (4.3).

Similarly, for µ̃= 1, (3.17) may be integrated with f ′(0)= 0, yielding

f = f (0)− Z2/(2γ ), (5.6)

which, with the obvious additional no-slip boundary condition at the glass transition,
f (1)= 0, implies that f (0)= 1/(2γ ). Then, from (3.11),

h= 1+ Z(1− Z2/3)/γ, (5.7)

so that h∞ = h(1)= 1+ 2/(3γ ), and, from (2.12),

l= 1/(1+ 3γ /2), (5.8)

with the γ of (3.14). The solution for h may be substituted into the expression
for β, (2.18), which, in turn, will provide the solution for θ , the non-dimensional
temperature in the liquid phase, from (2.17). Since the integral of h from zero to one
is 1+ 5/(12γ ), it follows from the expression for β that

β∞ = [1+ 5/(12γ )] d(µ∞/µl)
√
Ω/ν∞H(0)Pr l. (5.9)

Use of these last results in (2.20) then provides an expression that, in principle,
determines d∗ in terms of other parameters, enabling δ and γ to be related to H(0).
The modified (4.3) then becomes(

B

Prg

)
Q′(0)= H(0)+

Bl

Bm

[
H(0)+

2∆3

3Γ

]
e1H(0)+(5/12)∆4/Γ , (5.10)

with ∆ required to satisfy

Bm =

[
1H(0)+

2∆4

3Γ

]
e1H(0)+(5/12)∆4/Γ

∫ 1

0
e−1H(0)Z−[∆4/(2Γ )](Z2

−Z4/6) dZ, (5.11)

from (2.20).
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6. The gas-phase solution and scalings
Equations (2.5)–(2.8) are to be solved subject to the boundary conditions

F0(∞)= G0(∞)= F0(0)= Q0(0)= 0, G0(0)= Q0(∞)= 1, (6.1)

and (4.3) for small ε or (5.10) for µ̃ = 1. The liquid-phase solution influences the
gas-phase solution through the value of h∞ in (4.3) for small ε, requiring use of
(5.5), and through ∆, determined by (5.11), for µ̃ = 1. Since H(0) appears in (3.9),
the solution to (5.5) for h∞ will introduce nonlinearity into the boundary condition
in (4.3). As h∞ approaches unity (small material loss radially), (4.3) becomes linear,
while, when most of the material is lost radially (that is, h∞ is large), (4.3) becomes(

B

Prg

)
Q′(0)= H(0)+

√
2Bl

(
1+ Bm

Bm

)1/4(
ε

Pr l0

)3/4(
ρlµl0

ρ∞µ∞

)1/2

, (6.2)

again linear. The problem, however, is simpler for small ε than for µ̃ = 1 because,
in using (5.10), it becomes necessary to evaluate the integral in (5.11) numerically,
to test whether the gas-phase solution satisfies that equation. The gas-phase solution
in principle must be obtained numerically in both limits, although earlier numerical
results given by Sparrow & Gregg (1960) could be curve-fitted to provide Q′(0) as a
function H(0), which would make it unnecessary to perform numerical integrations.

Nayagam et al. (2009) developed approximate scalings in dimensionless parameters
concerning dependences of mass loss rates and liquid-layer thicknesses on liquid-
phase properties, treating HMW-PMMA and LMW-PMMA separately, representative,
respectively, of small and large liquid-layer loss fractions. The present analytical
results for small ε shed some light on these scalings. The previously employed mass
loss and layer-thickness parameters were, respectively,

wl/
√
Ωνl0 = (ρ∞/ρl)

√
ν∞/νl0 H(0)h∞ (6.3)

and d/
√
νl0/Ω = d∗

√
ν∞/νl0, where use has been made of (2.11) and (2.16).

Introduction of (2.15) and (2.19) into the last of these expressions results in

d
√
νl0/Ω

=
(ρl/ρ∞)

√
νl0/ν∞

h∞H(0)Pr l0
ln
(

1+
1
Ja

)
, (6.4)

where the Jacob number Ja defined in Nayagam et al. (2009) is the reciprocal of
the thermodynamic transfer number Bm used in this paper. Explicit scalings can be
generated from these formulae in two limiting cases, namely h∞ = 1 and h∞ large.
The HMW-PMMA is closer to the former limit, and from these formulae, in which
(4.3) with h∞ = 1 is to be used for H(0), it is seen that both parameters in that
limit become proportional to ν

−1/2
l0 , consistent with the previous scaling as Pr−1/2

l0 ,
since the variation of the Prandtl number was dominated by that of the viscosity. The
LMW-PMMA, on the other hand, is closer to the latter limit, for which introduction of
(3.9) and (5.5) into these expressions results in

wl
√
Ωνl0

=
√

2
(

ε

Pr l0

)3/4( 1
1+ Ja

)3/4

(6.5)

and

d
√
νl0/Ω

=
1
√

2

Pr−1/4
l0

ε3/4
(1+ Ja)3/4 ln

(
1+

1
Ja

)
. (6.6)
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The predicted dependence on Pr l0 shown here is the same as in Nayagam et al.
(2009), while the Ja dependence is somewhat different but approaches the previous
Ja−3/4 dependence for the mass loss parameter and the Ja−1/4 dependence for the
liquid-depth parameter when Ja� 1. Equations (6.4)–(6.6) also provide additional
scaling information concerning dependences on other condensed-phase properties and
on gas-phase properties in these two limits.

7. The method of computation
Numerical integrations for this problem have been performed previously by

Nayagam et al. (2009) for two types of PMMA, one (LMW-PMMA) of low molecular
weight and the other (HMW-PMMA) of high molecular weight. Values of the physical
properties of these two types of PMMA are given in that paper. Although the
liquid melt-layer density is listed correctly there as ρl = 1.09 g cm−3, the calculations
actually were performed for ρl = 1.50 g cm−3. To facilitate comparisons, this last value
is also employed here; the differences in results for the two different values are all less
than 10 %, and so there is no effect on the conclusions.

For the problem with a strongly temperature-dependent viscosity, first the gas-phase
conservation equations (2.5)–(2.8) are solved numerically with the boundary conditions
given in (6.1) along with an assumed value of H(0), using the two-point boundary-
value-problem solver COLSYS (Asher, Christiansen & Russell 1981), which yields a
value for Q′(0), proportional to the heat flux from the gas into the surface. Equation
(4.3) is then used to calculate h∞. These known values H(0) and h∞ are substituted
into (5.5) to obtain an error estimate. Then, using Newton’s method, new guesses for
H(0) are successively obtained, such that the error in satisfying (5.5) is reduced below
a specified limit, taken to be 1 × 10−5 for results presented here. For cases in which
h∞ is large, (6.2) may be used directly as a boundary condition for the gas-phase
equations, along with equation (6.1), and H(0) is then calculated without the need for
any iterations; in this limit, (5.5) gives h∞ simply as a1/4.

For constant melt-phase viscosity, the solutions proceed in a similar fashion.
Equation (5.10) is used as one of the boundary conditions for the gas phase with
an initially guessed value for ∆. The resulting solution for H(0) and the guessed ∆ are
then used in (5.11), with the integral evaluated numerically, to obtain an error estimate.
Again, Newton’s method is used to improve successive guesses for ∆, such that the
error in satisfying (5.11) is reduced below the specified limit.

According to (2.2), H(0) is a non-dimensional measure of the gasification rate, and,
while analytical results based on universal solutions can be generated by expansions
for small values of H(0) (Urzay et al. 2011), the values are not sufficiently small in
the present application for those results to be accurate. Hence, as before (Nayagam
et al. 2009), the gas-phase solutions have to be generated numerically, the only
numerical-integration saving here being the very minor one of analytical condensed-
phase solutions. This computational saving is more than offset by the need for
iterations to satisfy the nonlinear equations. Computationally, therefore, the present
investigation is more involved than a simple numerical integration. Its contribution
instead lies in increased understanding and in providing analytical condensed-phase
solutions that facilitate stability analyses of fingering generation.

8. Comparisons and discussion
Figures 2 and 3 show profiles of the non-dimensional radial velocities ul/(Ωr) as

functions of the non-dimensional depth z/d in the liquid layer, for the LMW-PMMA
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( × 10– 4 )

FIGURE 2. Profiles of the radial velocity of the liquid, normalized by the rotational velocity,
as functions of the depth, normalized by the liquid-layer thickness, for LMW-PMMA:
solid curve, numerical results; dashed curve, constant-viscosity approximation; dotted curve,
composite solution generated from asymptotic results.

1.00.80.60.40.20

1.2
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0.8
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0.2

1.4
( × 10–5 )

FIGURE 3. Profiles of the radial velocity of the liquid, normalized by the rotational velocity,
as functions of the depth, normalized by the liquid-layer thickness, for HMW-PMMA:
solid curve, numerical results; dashed curve, constant-viscosity approximation; dotted curve,
composite solution generated from asymptotic results.

and HMW-PMMA, respectively, considered previously (Nayagam et al. 2009). The
radial velocity is selected here because it provides the most information: temperature
profiles all agree closely and bow down only slightly from linearity; azimuthal
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H(0)

FIGURE 4. (Colour online) Comparisons of liquid-layer thickness, liquid-loss fraction and
burning rate for LMW-PMMA: solid curves, earlier numerical results; dashed curves,
constant-viscosity approximation; dotted curves, asymptotic results; dot-dashed curves, large
mass loss limit of asymptotic results.

velocities are in solid-body rotation; and normal velocities are simply obtained from
the radial velocities by integration. The previous numerical results (Nayagam et al.
2009), shown by the solid curves, are seen to be very close to the asymptotic results in
the dotted curves. The latter were generated by approximating the composite solution
as the inner solution from (5.1), minus the common part of the outer solution, taken
to be simply the value of the inner solution at z/d = 1. While this correction
by subtraction would be too small to be seen for LMW-PMMA, it is substantial
for HMW-PMMA, for which the value of ε is significantly larger. Unlike the
close agreement of the asymptotic and numerical profiles, the constant-viscosity
profiles, shown by the dashed curves, obtained from (5.6) employing the constant
values identified in the following paragraph, are seen to differ substantially from
the numerical results in both cases. This is understandable because they neglect
the variation of viscosity with temperature, which strongly influences the profiles.
Nevertheless, as indicated below, they still can give fairly reasonable melt-layer mass
loss fractions by averaging over the profiles.

Figures 4 and 5 compare the present results, respectively, for LMW-PMMA
and HMW-PMMA, with the numerical results of (Nayagam et al. 2009) for the
dimensionless fuel mass flux H(0) consumed in the gas-phase combustion, the fraction
l of liquid melt lost radially and the ratio d∗ of the liquid-layer thickness to the
gas-layer thickness. In each figure, the dotted lines correspond to asymptotic results
obtained for small ε, the dot-dashed lines represent the limiting case of asymptotic
results for large mass loss occurring along the edges (see (6.2)), the dashed lines
are for the constant-viscosity approximation, and the solid lines correspond to the
earlier numerical calculation. The results are presented as functions of an assumed
surface temperature T0, which depends on the kinetics of the depolymerization process
and increases with increasing gas-phase burning rate, among other things (Kashiwagi,
Omori & Nanbu 1990). Although this dependence could be approximated by an
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H(0)
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FIGURE 5. (Colour online) Comparisons of liquid-layer thickness, liquid-loss fraction and
burning rate for HMW-PMMA: solid curves, earlier numerical results; dashed curves,
constant-viscosity approximation; dotted curves, asymptotic results; dot-dashed curves, large
mass loss limit of asymptotic results.

Arrhenius expression, and such expressions can be generated for both materials,
ultimately relating T0 to their rotation rates Ω , that would introduce additional physics
and functional dependences that would further complicate explanations. Therefore, in
an effort to clarify interpretations, a range of surface temperatures is simply selected
here, covering experimentally measured values (Kashiwagi et al. 1990), as was done
earlier for the numerical calculations by Nayagam et al. (2009).

The values of the gasification-rate parameter H(0) predicted by the asymptotic
solution is seen to be very close to the exact numerical solution but slightly below
it, for both types of PMMA. The differences are associated with the value of ε of
(2.9) not being sufficiently small as assumed; that value, about 0.1 for LMW-PMMA
and 0.35 for HMW-PMMA, is consistent with the roughly 10 % differences observed.
A value of H(0) that is too small leads to a value of h∞, proportional to the ratio
of the solid consumption rate to H(0) according to (2.11), that is too large, as may
be seen, for example, from (3.9) and (5.5), and thereby produces from (2.12) a value
of the loss fraction l that is too large, resulting in the over-prediction of loss by the
asymptotic analysis, seen in the figures. While the difference remains of the order of
10 % for LMW-PMMA, it becomes nearly a factor of 2 for the HMW-PMMA, which
has a higher value of ε, leading to greater inaccuracy. This behaviour is understandable
because a smaller value of H(0) results in an increased heat flux from the gas phase to
the condensed phase as a consequence of the diffusion flame moving closer to the disc
surface. This increased heat flux leads to a higher amount of melting compared to the
amount of material being burned in the gas phase and proportionately higher amount
of mass loss fraction, with the energetic parameters B, Bl and Bm being fixed.

Now we examine why the mass loss fraction in general increases with increasing
surface temperature T0. As we increase the condensed-phase surface temperature, with
the gas-phase conditions fixed, it takes more energy to gasify the fuel, and so the
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flame moves closer to the fuel surface to maintain steady state. This in turn requires
that the mass flux to the gas phase (H(0)) be reduced to decrease the blowing effect,
and, as explained in the preceding paragraph, a reduction in H(0) leads to an increase
in mass loss fraction. Increasing the surface temperature also decreases the liquid
viscosity, contributing to an increase in mass loss fraction, though this effect is not
as strong as the effect of the increased surface heat flux melting more solid while at
the same time burning less in the gas phase. Beyond a surface temperature of about
630 K, where the curves from the asymptotic theory end for LMW-PMMA, the theory
predicts a gasification rate H(0) very close to zero and the flame almost collapses to
the surface. Under those high-temperature conditions for the LMW-PMMA, then, the
melt layer becomes so thin that the constant-viscosity limit is a better approximation.
Note that the linearized boundary condition (6.2), applicable in the limit of high
mass loss fraction, yields reasonable results only for LMW-PMMA around a surface
temperature of 630 K. As expected, this limit is not applicable for HMW-PMMA,
for which liquid loss is so small that the layer thickness actually increases with
increasing T0.

Excluding the high temperatures for LMW-PMMA, where the asymptotic analysis
is inapplicable, the difference between the asymptotic and numerical predictions of
the ratio of melt-layer to gas-layer thickness, d∗, is of the order of 10 %, comparable
with that for H(0). That the asymptotics under-predicts the melt-layer thicknesses is
understandable because the numerical integrations extend accurately throughout the
melt layer, including the deep part near the glass transition where the viscosity is
very high. Although the numerical results certainly are more accurate, in applying the
results to addressing liquid-phase flow and instabilities, the high-viscosity melt deep
within the layer is unlikely to be relevant, and so the analytical results may actually
provide a better estimate of the thickness of the layer that should be considered.

In the constant-viscosity calculations, it is necessary to select the temperature at
which the viscosity is evaluated, since this temperature affects the predictions strongly.
The arithmetic mean of the surface temperature and the glass transition was employed
for the results shown in the figures. This is the simplest choice, and trials with other
selections, such as weighting with radial flow velocities, proved less satisfactory. If
the surface temperature is used, then the predicted loss is much too high, and if the
glass transition is used, then there is essentially no loss at all. The selected average
is seen in the figures to over-estimate H(0) for LMW-PMMA and to under-estimate it
(by the same amount as the asymptotic analysis) for HMW-PMMA. Associated with
this is an under-prediction of the loss for the first material and an over-prediction for
the second, by a factor of 2 or more in the second instance. The constant-viscosity
results thus are inferior for HMW-PMMA, while they tend to be nearly as good as the
asymptotic results for LMW-PMMA, and they extend to temperatures beyond which
the asymptotics can be applied in that case, albeit with decreasing accuracy that could
be improved only by choosing a lower temperature at which to evaluate the viscosity.

9. Conclusions
It may be concluded from this study that analytical descriptions of the behaviour

of the melt phase of spinning thermoplastic polymer fuel discs supporting diffusion
flames can be developed that yield burning rates and melt-layer flow rates with
reasonable accuracy. For most purposes, a two-zone asymptotic analysis treating
the temperature dependence of the liquid viscosity as a large parameter produces
better results than a one-zone, constant-viscosity approximation, and, moreover, it
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leads to a simpler formulation. The asymptotic approach, however, fails at high
radial loss rates of liquid in the melt, where the outer zone becomes too thin for
the asymptotics to apply. Under such conditions, a constant-viscosity approximation
is better, but it suffers from uncertainty concerning the temperature at which the
constant viscosity is to be evaluated. The analytical descriptions of the melt phase
can facilitate future investigations of melt-layer flow and instabilities that lead to
non-axisymmetric patterns.

von Kármán swirling flows arise in many different contexts in fluid mechanics.
Combustion processes constitute only one of many examples. There are, however,
interesting combustion processes, involving diffusion flames, as well as premixed
flames, for which further investigations of this flow configuration can be revealing.
Besides polymer melts with finger formation, such investigations could address flame
extinction in swirling flow, spiral-flame development and observed meandering of
flame motions over fuel surfaces.

This work was supported by the Fire Prevention, Detection, and Suppression Project
at the NASA Glenn Research Center and directed by Dr G. Ruff.
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VON KÁRMÁN, TH. 1921 Über laminare und turbulente reibung. Z. Angew. Math. Mech. 1,
232–252.

KASHIWAGI, T., OMORI, A. & NANBU, H. 1990 Effects of melt viscosity and thermal stability on
polymer gasification. Combust. Flame 81, 188–201.

KIM, J. S., LIBBY, P. A. & WILLIAMS, F. A. 1992 Influence of swirl on the structure and
extinction of strained premixed flames. Part II. Strong rates of rotation. Phys. Fluids A 4 (2),
391–408.

KING, M. D., NAYAGAM, V. & WILLIAMS, F. A. 2000 Measurements of polymethyl methacrylate
diffusion flames in von Karman swirling flows. Combust. Sci. Technol. 160, 151–163.

NAYAGAM, V., BALASUBRAMANIAM, R. & WILLIAMS, F. A. 2009 Diffusion flames over a melting
polymer disk in von Karman swirling flows. Combust. Flame 156, 1698–1704.

NAYAGAM, V. & WILLIAMS, F. A. 2000a Diffusion-flame extinction for a spinning fuel disk in an
oxidizing counterflow. Proc. Combust. Inst. 28, 2875–2881.

NAYAGAM, V. & WILLIAMS, F. A. 2000b Rotating spiral edge flames in von Kármán swirling flows.
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