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We study the hole-filling problem for the porous medium equation ut =
1
m
∆um with m > 1

in two space dimensions. It is well known that it admits a radially symmetric self-similar

focusing solution u= t2β−1F(|x|t−β), and we establish that the self-similarity exponent β is a

monotone function of the parameter m. We subsequently use this information to examine in

detail the stability of the radial self-similar solution. We show that it is unstable for any m > 1

against perturbations with 2-fold symmetry. In addition, we prove that as m is varied there are

bifurcations from the radial solution to self-similar solutions with k-fold symmetry for each

k= 3, 4, 5, . . . . These bifurcations are simple and occur at values m3 > m4 > m5 > · · · → 1.

1 Introduction

In this paper, we consider the hole-filling Aronson–Gravelau (AG) solutions of the porous

medium equation

mut = ∆um, (1.1)

which we shall write in terms of the pressure variable

v=
um−1

m − 1

as

vt = (m − 1)v∆v + |∇v|2. (1.2)

Here m is a fixed real and usually positive number. The space dimension is denoted by N.

Equation (1.1) arises in several applications and references go back as far as [22] in the

context of gas flows in porous media (m � 2), from which the equation derives its name.

It also arises in the context of high temperature hydrodynamics (with various values of

m) [25], mathematical biology [15], superconductors (with sign changing solutions) [14],

differential geometry (m < 0) [12] and in the study of flows of thin viscous films (m= 4)

[11]. It is a prototypical nonlinear extension of the linear diffusion equation ut = ∆u.

We restrict our attention to m > 1 and nonnegative (weak) solutions. Our main interest

is in the behaviour of the support of the solution. The Zel’dovich–Kompaneetz–Barenblatt
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(ZKB) point source solutions [24, 7], which, in terms of v, are given by

v(x, t) = t2β−1F(η), η =
x

tβ
, β =

1

(m − 1)N + 2
, F(η) =

(
C − β

2
|η|2

)
+

,

show that weak solutions have supports which propagate with a finite speed [4] given by

the length of the gradient of v at the boundary. Formally this behaviour is explained by

dropping the first term on the right-hand side of (1.2) at the boundary of the support.

Using ZKB solutions as subsolutions and the comparison principle for weak solutions,

one shows that the support of a solution eventually reaches every point in space. This

means that any holes in the support which may exist initially, disappear in finite time.

Assuming that such a hole vanishes at time t=T in one point x= x0 one can try to

describe this process by zooming in at (x0, T ) using self-similar variables

v(x, t) = (T − t)2β−1w(η, τ), η =
x − x0

(T − t)β
, τ = − log(T − t). (1.3)

In the new variables, the pressure equation (1.2) reads

wτ = (m − 1)w∆w + |∇w|2 − βη · ∇w + (2β − 1)w. (1.4)

The AG solutions are characterised by two properties: (i) they are radially symmetric

equilibria F(|η|) of (1.4) supported on the complement of a ball; and (ii) they define self-

similar solutions of (1.2) having a trace at t=T (so that the solution may be continued

for t > T ).

The first property implies that F(r) is a solution of the ordinary differential equation

(m − 1)F

(
F ′′ +

N − 1

r
F ′

)
+ F ′2 − βrF ′ + (2β − 1)F = 0, (1.5 a)

supported on an interval [r0,∞) with F(r) → 0 as r → r0. Formally, for a well-behaved

solution we will have F ′(r+0 ) = βr0. In fact, the weaker condition that F(r) is positive and

sub-linear as r → r0 already defines a unique local solution F(r) which only depends upon

r0 and this solution may be obtained by scaling the solution with r0 = 1. Thus, we need

only consider the solution of (1.5 a) with

F(1) = 0; F ′(1+) = β. (1.5 b)

With m > 1 fixed this solution F(r) depends only upon the similarity exponent β.

The second property imposes an algebraic growth condition on F(r) as r = |η| → ∞,

namely F(r) ∼ Crε with ε defined in (1.6) below. As we explain in § 2, there is only

one (positive) value of β, for which the solution of (1.5) has this property. The phase

plane reduction we use to analyse (1.5 a) is different from the one used in Aronson &

Graveleau [6], where the existence of a unique β and corresponding self-similar solution

was first proved.

Since the exponent β is not explicitly determined from a conserved quantity of solutions

(as in the case of the ZKB solutions), the AG solutions are self-similar solutions of the

second kind. For N > 1 we have the bounds 1
2
< β < 1 (see Aronson & Graveleau [6]),
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and in the limit t ↑ T

v(x, T ) = C|x − x0|ε, where 0 < ε =
2β − 1

β
< 1 and C > 0. (1.6)

Consequently solutions v of (1.2) may not be Lipschitz continuous in space as long as

they have holes in their supports. We note that β = 1 if N = 1. In Aronson et al. [5] it is

shown that ε → 0 as m → ∞ and ε → 1 as m → 1. Here we prove that ε, and thus β, is a

strictly decreasing function of m. Moreover, we prove that the leading term asymptotics

of ε are given by

1

m
∼ 2

ε
exp

(
−γ − 2

ε

)
as m → ∞,

where

γ = −
∫ ∞

0

exp(−s) log s ds

is Euler’s constant, and

1 − ε ∼ m − 1

4
as m → 1.

In Angenent & Aronson [1], it has been shown that for radial solutions of (1.2)

supported on a region between two concentric spheres, the inner sphere disappears as t

increases to some finite T with a rate proportional to (T − t)β . Moreover, in the variables

(1.3), the solution converges to F or one of its scalings. This phenomenon is called radial

focusing.

It was conjectured that the AG-solutions describe the generic disappearance of holes in

the supports of nonradial solutions and, in particular, that the AG-profiles are essentially

stable. A first step in attempting to prove this conjecture is the linearised stability ana-

lysis of the AG-profiles F as solutions of the partial differential equation (1.4). Roughly

speaking, the self-similar variables (1.3) do not ‘see’ what is happening away from the

focusing point (x0, T ) and so they do not see solutions which focus at other points in

space-time. Any linearisation of (1.4) around F will therefore have positive eigenvalues.

Differentiating the AG-solutions with respect to T and x0 one may identify a priori the

unstable eigenvalues ω= 1 and ω= β, even before finding the appropriate linearisation.

Moreover, since the AG-solutions contain an additional free parameter r0 we shall also

have an eigenvalue ω= 0. The corresponding instabilities and neutral stability are un-

avoidable, and we say that the AG-profiles are essentially stable if there are no additional

positive eigenvalues.

The two-dimensional hole-filling problem is studied numerically in Betelú et al. [9] and

Angenent et al. [3]. The results give clear evidence of the instability of the Graveleau

interface with respect to elongated perturbations (i.e. to perturbations with wave number

k= 2). In addition, they clearly indicate the possibility of self-similar nonradial focusing

with k-fold symmetry for k= 3 and m fairly close to 1, with k= 4, 5, 6, . . . emerging as

possible symmetries as m → 1. The existence of these bifurcations is proved in Angenent

& Aronson [2] for sufficiently large wave numbers k. The analysis in Angenent &

Aronson [2] is independent of the number of space dimensions N. The net result of

these investigations is the fact that the Graveleau profiles are not essentially stable. Here
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we investigate this instability in more detail for planar flows, and, in particular, answer

several of the questions left open in Angenent & Aronson [2].

In the appendix of Betelú et al. [9], a linearisation around the radially symmetric

AG solution is derived. Introducing polar coordinates x1 = r cos θ and x2 = r sin θ the

solution w is represented as a graph

p=w(r, θ, τ)

in the (r, p)-plane, parametrised by θ and τ. The relation between p and r is then inverted

and written as

r= S(p, θ, τ),

and the equation for S(p, θ, τ), which reads

(SSp)
2Sτ = (m − 1)p

(
S2Spp − SS2

p + SppS
2
θ − 2SpSθSpθ + SθθS

2
p

)
+ βS3S2

p − S2Sp − SpS
2
θ − (2β − 1)pS2S3

p , (1.7)

is linearised around Ψ =F−1. This produces a linear second order equation of the form

ξτ = Lξ

with coefficients independent of θ and τ and singularities in p= 0 and p= ∞ (see § 2).

Separation of variables yields solutions of the form

ξki(p, θ, τ) = exp(ωkiτ)Aki(p) cos kθ, k, i= 0, 1, 2, . . . ,

where k is the wave number and i is the number of sign changes of the radial part Aki(p).

Our main interest is in the eigenvalues {ωki(m)}. The a priori considerations explained

above give

ω00(m) = 1, ω01(m) = 0, and ω10(m) = β(m) for all m ∈ (1,∞).

As shown in Angenent & Aronson [2], for each fixed m the eigenvalues are monotone in

both k and i. Thus the only eigenvalues which can be positive (or nonnegative) are the

ωk0(m) for k > 1. The corresponding radial part of the eigenfunctions Ak0(p) does not

change sign. One of the main results of this investigation is that

ω20(m) > 0 for all m ∈ (1,∞).

Thus the AG-profiles are not essentially stable for any value of m.

Besides, for each k > 2 we may find the values m=mk for which the stability changes

by solving

ωk0(m) = 0. (1.8)

As explained and proved in Angenent & Aronson [2], each such value of m leads to the

bifurcation from the radial branch of self-similar focusing solutions with k-fold symmetry.

Although we are essentially only interested in integer values of the wave number k, it

enters the equation for A as a real parameter. We prove that (1.8) defines a smooth
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function k= k(m) with

k(m) → ∞ as m → 1, and k(m) → 2 as m → ∞.

Moreover, k(m) is strictly monotone and hence invertible, so that mk is well-defined (single-

valued). It also implies that dωk0

dm
(mk) > 0, hence as m is varied a simple bifurcation from

the radial selfsimilar profile occurs at each of the values m3 > m4 > m5 > m6 > · · ·.
Let us briefly indicate the methods we use. We first reduce the ODE (1.5 a) for F to a

quadratic system of first order equations for the new unknown dependent variables

X =
rF ′

F
, Y =

βr2

(m − 1)F

as functions of log r. Starting from the resulting system for X and Y we obtain detailed

information about the relation between the AG exponent β and the exponent m in (1.2).

In terms of ε as given in (1.6) and

δ =
1

m − 1
, (1.9)

we obtain that δ is a strictly increasing function of ε and show that

δ ∼ 2

ε
exp

(
−γ − 2

ε

)
as ε → 0, (1.10)

and

4δ ∼ 1

1 − ε
as ε → 1. (1.11)

All this is done in § 2 and relies on the analysis of one (non-autonomous) first order

equation derived from the (autonomous) system for X and Y .

Next, in § 3 we reduce the equation for A=Aki(p) to a single first order equation which

may be appended to the system for

X =
rF ′

F
=

Ψ

pΨ ′ and Z =
Y

X
=

β

m − 1
ΨΨ ′

as functions of log r= logΨ , where Ψ is the inverse of F . The appropriate variable is

U =
ΨA′

Ψ ′A
.

Note that A has no sign changes if i= 0.

From the equation for U we can deduce the behaviour of well-behaved solutions at

p= 0 and p= ∞, and give a direct ODE proof of the existence of a simple first eigenvalue

ωk0 for every k. The positivity of ω20 is easily established. Moreover, setting ωk0(m) = 0

we prove monotonicity of mk for k > 2.

The first order equation for the ‘eigenfunction’ U naturally involves the profile of

the self-similar solution about which one linearises. To analyse this equation we shall

need qualitative information about the profile. Similarly, to study the dependence of the

eigenvalues on m, we need detailed information about the solution of the U-equation.

This means that in the next sections the theorems often include qualitative properties

of solutions which may not seem relevant at first glance, but which are crucial to the

subsequent analysis.
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2 The AG solution in the phase plane

In this section we analyse the ODE

(m − 1)F

(
F ′′ +

1

r
F ′

)
+ F ′2 − βrF ′ + (2β − 1)F = 0, (2.1 a)

for the AG profiles. Here we have already restricted attention to space dimension N = 2.

The AG profiles are all scalings of a solution F(r) with

F(1) = 0, F ′(1+) = β, F > 0 on (1,∞), lim
r→∞

F(r)r
1 − 2β

β > 0. (2.1 b)

In Aronson & Graveleau [6], equation (2.1 a) is transformed into a two-dimensional

autonomous system and the AG profiles are identified as corresponding to a connection

between a saddle and a saddle-node which is shown to exist for a unique β, which lies

between 1
2

and 1. The analysis here is based on a different transformation which also

leads to a two-dimensional quadratic autonomous system. Setting

X =
rF ′

F
, Y =

βr2

(m − 1)F
, t = log r, δ =

1

m − 1
, ε =

2β − 1

β
, (2.2)

we obtain

Ẋ = −(δ + 1)X2 + Y (X − ε); Ẏ = Y (2 − X), (2.3)

where we restrict the attention to orbits with Y > 0. The parameter δ > 0 ranges from

zero (m → ∞) to infinity (m → 1). The other parameter ε must satisfy 0 < ε < 2 in view of

β > 1
2
. We note that for N � 2 the right-hand side of the Ẋ-equation would also contain

the term (2 − N)X.

Transformations of this type have been used elsewhere [17, 21, 19, 20, 18]. The resulting

reduction requires a scaling invariance of the original second order equation (or system

of equations). The transformations may be derived by introducing an X as in (2.2) for

each unknown F in the system. For higher order equations one also has to introduce r2F ′′

F

etc. (e.g. see Bernis et al. [8]).

We briefly recall the phase-plane analysis of the system (2.3) [17, 19, 6]. There are two

finite critical points:

(X,Y ) = O = (0, 0) and (X,Y ) = P =

(
2,

4(1+ δ)

2 − ε

)
.

The origin O is a saddle-node. The only orbits coming out with Y > 0 are contained in

the second quadrant and escape to infinity in finite time with φ → π in terms of polar

coordinates X =R cosφ, Y =R sinφ. The corresponding solutions F(r) all hit zero with

infinite slope and this disqualifies them as possible solutions of (2.1). This includes the

solutions of (2.1 a) with finite F(0) > 0 which are contained in the orbit corresponding to

the eigenvalue 2. The other orbits coming out of O contain solutions of (2.1 a) which are

singular in r= 0.

The point P is a source for 1 < ε < 2 but as ε drops below 1 it undergoes a Hopf

bifurcation with an unstable periodic orbit emerging (see Aronson & Graveleau [6]).

Whether or not this periodic orbit is unique is not relevant here. Orbits going into P or

possibly a periodic orbit around P contain solutions F which grow too fast for (2.1 b) to
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hold and orbits coming out exist globally backwards in t and can therefore not contain

solutions F with F(1) = 0.

There are four critical points at infinity, characterised by R = ∞ and, respectively,

φ = 0, tanφ = δ, φ =
π

2
, φ = π. (2.4)

All these points may be found and classified using either a Poincaré transformation (see

Perko [23]) or rewriting (2.3) as a system for ρ and φ, where R = ρ
1 − ρ

(see Hulshof [17]).

The points with φ= 0 and φ= π are, respectively, a source and a sink with orbits coming

in/going out in finite time containing solutions F hitting zero with infinite slope.

The two relevant points at infinity are the ones with tanφ= δ and φ= π
2
. The first one

is a saddle with one orbit coming out of infinity in finite time. Normalising the t at which

it leaves infinity by t= 0 it follows from (2.2) that the corresponding F has F(1) = 0 and

F ′(1+) = β. The second one is a saddle-node with one unique orbit going in and this is the

only orbit that escapes slowly to infinity, meaning as t → ∞. The corresponding solutions

F have the appropriate algebraic growth required in (2.1 b). This follows from X(t) → ε,

Y (t) → ∞ and some additional manipulations that we omit here.

In terms of (2.3) the result in Aronson & Graveleau [6] may now be reformulated as

Theorem 2.1 Let δ > 0. For every 0 < ε < 2 there is a unique orbit of (2.3) coming out

of infinity in the first quadrant with Y ∼ δX and a unique orbit going into infinity in the

first quadrant with X → ε. There is a unique ε for which these two orbits coincide. This ε

satisfies 0 < ε < 1. The solutions contained in the connection exist on an interval (t0,∞),

where t0 is a free parameter. Setting t0 = 0 we obtain the solution of (2.1).

The statement of this theorem is illustrated in Figure 1, which shows a picture of the

phase plane for m = 3
2

with δ and ε related by (1.11). The connection is situated in the

vicinity of the two orbits drawn. In the subsections below we examine properties of the

relation between ε and δ.

2.1 Monotonicity

The orbit of (2.3) representing the AG profiles has a monotone X-component so we may

use X as the independent variable in a first order equation for Y . Since Y is unbounded

it is convenient to introduce a new dependent variable which is bounded. In fact, setting

V =
Y (X − ε)

X2
− δ = 1 +

Ẋ

X2
, τ =

2

X
, (2.5)

we arrive at
dV

dτ
=

δ + V

1 − V

(
1 − V

τ
− 1 − V

λ − τ

)
, where

λ= 2
ε

= 2β
2β − 1

, (2.6 a) with boundary conditions

V (0+) = lim
τ↓0

V (τ) = 0, V (λ−) = lim
τ↑λ

V (τ) = 1. (2.6 b)

Note that 1
2
< β < 1 implies ∞ > λ > 2.
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Figure 1. Two orbits close to the connection in the (X,Y )-phase plane for m = 3
2

(δ = 2). We have

taken ε related to δ by (1.11), i.e. ε = 7
8
, and solved starting from X = 8 with Y = 15.3165 and

Y = 15.3169.

The first condition in (2.6 b) is immediate from X → ∞, Y /X → δ and (2.5). As for

the second condition, V (τ) is defined for all 0 < τ < λ and the monotonicity of X implies

that V (τ) < 1 in view of (2.5). In view of the right-hand side of of (2.6) such a solution

either converges to 1 or to −∞ as τ ↑ λ. The latter is excluded because combined with

X(t) → ε it would follow from (2.5) that Ẋ(t) → −∞ as t → ∞, and this is impossible.

The equation for V is singular in τ= 0, τ= λ and V = 1. The orbits mentioned in the

first statement of Theorem 2.1 correspond to locally defined solutions of (2.6), respectively,

starting from τ= 0 and ending at τ= λ. We reformulate Theorem 2.1 in terms of (2.6) and

give a direct proof.

Theorem 2.2 Let δ > 0 and λ > 1. There exists a unique solution V =Vl(τ) of (2.6) with

Vl(0) = 0 defined in a right neighbourhood of τ= 0. This solution has

V ′
l (0

+) =
δ

1 + δ

(
1 − 1

λ

)
. (2.7)

Also, there exists a unique solution V =Vr(τ) with Vr(λ) = 1 defined in a left neighbourhood

of τ= λ. This solution has

V ′
r (λ

−) = 1 − 1

λ
.

For each λ > 2 there exists a unique δ = δ(λ) > 0 such that (2.6) has a solution, i.e. Vl ≡ Vr .

This solution has V ′ > 0 on [0, λ]. Finally, δ(λ) is a decreasing function of λ.
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Proof To prove local existence and uniqueness on the left, we rewrite (2.6) as

dV

dτ
+

(
1

λ − τ
+

δ

τ
− 1 − δ

)
V = δ

(
1 − 1

λ − τ

)
+ (1 + δ)

(
1 − 1

τ

)
V 2

1 − V
,

which implies, for any solution with V (τ) bounded as τ → 0, that

V (τ) =

∫ τ

0

e(1+δ)(τ−s)
( s

τ

)δ λ − τ

λ − s

[
δ

(
1 − 1

λ − s

)
+ (1 + δ)

(
1 − 1

s

)
V (s)2

1 − V (s)

]
ds. (2.8)

Local existence of a unique solution V (τ) of (2.8) follows from a standard contraction

argument in a small ball centred around the origin in Cb((0, T ]) (the space of bounded

continuous functions on (0, T ]) with T sufficiently small. The contraction estimate uses

the fact that∫ τ

0

e(1+δ)(τ−s)
( s

τ

)δ λ − τ

λ − s
ds ∼ τ

δ + 1
,

∫ τ

0

e(1+δ)(τ−s)
( s

τ

)δ λ − τ

λ − s

ds

s
∼ 1

δ
, (2.9)

as τ → 0.

Next we note that any solution V (τ) which remains bounded as τ → 0 has a well-defined

limit V (0). Taking τ → 0 in (2.8) this limit satisfies

V (0) = −1 + δ

δ

V (0)2

1 − V (0)
,

whence either V (0) = 0 or V (0) = −δ. The smallness condition on the ball Cb((0, T ])

needed to make the right-hand side of (2.8) a contraction excludes the possibility of

V (0) = −δ for the fixed point solution. In fact, V (0) = −δ corresponds to Y /X → 0, i.e.

to the source φ= 0 in (2.4).

Moreover, the part of the integral on the right-hand side of (2.8) containing V is o(V (τ))

as τ → 0 while the part not containing V is asymptotic to

δ

δ + 1

(
1 − 1

λ

)
τ

as τ → 0. Thus V satisfies (2.7). By the implicit function theorem, it depends smoothly on

all parameters.

For the solution on the right we turn the picture around by setting

V = 1 − W, σ = λ − τ, (2.10)

and obtain

dW

dσ
=

1 + δ − W

W

(
1 − 1 − W

λ − σ
− W

σ

)
, (2.11)

with initial condition W (0) = 0. Clearly the right-hand side of (2.11) suggests that

W ′(0) = 1 − 1

λ
, (2.12)
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so we set

W (σ) =

(
1 − 1

λ

)
σ(1 − G(σ)),

whence

dG

dσ
+

(
− 1 + δ

(λ − 1)2 σ
+

(1 + δ) λ

(λ − 1) σ2
− 2 λ − λ2 + δ

(λ − 1)2 (λ − σ)

)
G

= a(σ) + b(σ)
G2

1 − G

=
1

(λ − 1)2

(
λ2 − 3 λ − λ δ + 3 + 2 δ

σ
+

(λ − 2) (+λ − 2 − δ)

λ − σ

)

+
1 + δ

(λ − 1)2

(
1

σ
− λ(λ − 1)

σ2
+

1

λ − σ

)
G2

1 − G
.

The integrating factor for this equation is

σ
− 1+δ

(λ−1)2 (λ − σ)
2 λ−λ2+δ

(λ−1)2 e− (1+δ)λ
(λ−1)σ ,

so, assuming G(σ) bounded as σ → 0, we have

G(σ) =

∫ σ

0

( s

σ

) 1+δ

(λ−1)2
( λ − s

λ − σ

)2 λ−λ2+δ

(λ−1)2

e
(1+δ)λ
(λ−1) (

1
σ

− 1
s )

(
a(s) +

b(s)G(s)2

1 − G(s)

)
ds. (2.13)

Here we leave it to the reader to verify that solutions with G(σ) unbounded as σ → 0

cannot qualify to give solutions W (σ) with W (0) = 0.

In (2.13) we have

a(s) =
A(s)

s
, b(s) =

B(s)

s2
,

with A(s) and B(s) smooth near s= 0. We observe that, for any α > 0 and β > 0,∫ σ

0

( s

σ

)α
eβ(

1
σ

− 1
s )
ds

s
∼ σ

β
,

∫ σ

0

( s

σ

)α
eβ(

1
σ

− 1
s )
ds

s2
∼ 1

β
,

as σ → 0 (cf. (2.9)). As a consequence, local existence of a unique solution G(σ) of (2.13)

follows again from a standard contraction argument in a small ball centred around the

origin in Cb((0, T ]) with T sufficiently small. Taking σ → 0 in (2.13) and reasoning as

above this solution satisfies

lim
σ→0

G(σ) = G(0) =
B(0)

β

G(0)2

1 − G(0)
= − G(0)2

1 − G(0)
,

whence G(0) = 0. Thus, in addition to W (0) = 0, W satisfies (2.12).

To obtain the connection, we fix λ> 2 and shoot from the left with the solution

V (τ) = V (τ; δ), δ > 0 being the shooting parameter. Examining the (τ, V )-plane, the

isocline V ′ = 0 is given by

V =
τ(λ − 1 − τ)

λ − 2τ
, (2.14)
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Figure 2. Two solutions close to the connection in the (τ, V )-plane, ε = 1
5
. The values of δ used in

the computation were 1.095 · δ0 and 1.096 · δ0 with δ0 given by the asymptotic formula (1.10).

which consists of two branches, one to the left and one to the right of 2τ = λ. Note that

a connection must have V ′ > 0 on (0, λ). If V (τ) does not connect to V (λ) = 1 it has to

follow one of two scenarios: either it hits V = 1 before τ= λ, or it crosses the right branch

of (2.14) (after which it must hit V = 0 before τ= λ). By standard continuity arguments

these two scenarios occur for, respectively, δ sufficiently large and δ sufficiently small, and

the sets of δ-values for which they occur are open. Thus there must exist at least one δ > 0

for which neither of the two occurs. For such δ the solution must connect to V (λ) = 1.

Suppose that there exists another δ-value for which the connection exists. It follows

immediately from (2.6) that the connection with the larger δ, which starts with a larger

slope, cannot cross the other connection. Consider the flow of (2.6) with the larger δ.

All solutions between the two connections are trapped and converge to V = 1 as τ → λ,

contradicting the uniqueness result for solutions of (2.6) with V (λ) = 1. Thus δ is unique

and depends only on λ.

We finish by showing that δ = δ(λ) is a decreasing function. Let λ > λ0 > 2 and let

δ � δ(λ0). In view of (2.7) and (2.6), the corresponding solution of (2.6) with V (0) = 0

starts above and cannot cross the connection corresponding to λ0. In particular, it cannot

connect to V (λ) = 1. Thus δ(λ) < δ(λ0). �

In Figure 2 we show a plot of two solutions of (2.6) with ε = 1
5

and two values of δ

close to the value given by (1.10). The actual connection lies close to the two graphs

drawn and connects (0, 0) to (λ, 1).

A direct consequence of Theorem 2.2 is Corollary 2.3.
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Corollary 2.3 The AG-exponent β is an increasing function of m.

There is also a monotonicity of the profiles but to see it we have to consider the problem

on a fixed interval. Setting

τ = λt, V (τ) = v(t), (2.15)

we consider the AG profiles as corresponding to the solution of

v′ =
dv

dt
=

δ + v

1 − v

(
λ − v

t
− 1 − v

1 − t

)
, v(0) = 0, v(1) = 1. (2.16)

We first list some properties of the solution of (2.16) for λ > 2 fixed, which will be very

useful later on.

Proposition 2.4 Let λ > 2. For δ = δ(λ) > 0 as in Theorem 2.2 the solution of (2.16)

satisfies

v′(0+) =
δ

δ + 1
(λ − 1), v′(1−) = λ − 1. (2.17)

v′(t) > 0, 0 < v(t) < t (0 < t < 1). (2.18)

Moreover, the function A(t) defined by

A(t) =
v(t)

t
+

1 − v(t)

1 − t
, (2.19)

satisfies

A(0+) = v′(0+) + 1 =
δ

1 + δ
(λ − 1) + 1, A(1−) = v′(1−) + 1 = λ, (2.20)

A′(t) > 0 (0 < t < 1). (2.21)

Proof From Theorem 2.2 we have (2.17), as well as 1 > v > 0 and v′ > 0 on (0, 1). To

prove v(t) < t we note that

v′|v=t =
δ + t

1 − t
(λ − 2) > 1 ⇐⇒ t >

1 − δ(λ − 2)

λ − 1
. (2.22)

We claim that

v′(0+) =
δ

1 + δ
(λ − 1) < 1. (2.23)

Suppose not, then δ(λ − 2) � 1 and, by (2.22), v′|v=t > 1 for 0 < t < 1. Thus the solution

with v(0) = 0 can intersect v = t at most once. If it does so then it has to be below v = t

for t small, whence all solutions between it and v = t are trapped as t → 0, and therefore

come out of v(0) = 0. This contradicts the uniqueness of the solution starting at v(0) = 0.

Thus the solution with v(0) = 0 does not intersect v = t and by the same argument it has

to be above v= t. However, then the connection has v′(1) � 1 which is impossible in view

of (2.17) and λ > 2. This proves (2.23) which implies that v(t) starts below v= t. Now
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Figure 3. Level curves of A. The two straight lines correspond to A = 2. The curves without

extrema have A > 2, the curves with extrema have A < 2.

suppose it crosses v= t. Then by (2.22) it stays above v= t, which is again impossible.

This proves (2.18).

As for A(t), from its definition and (2.17) we have (2.20). To prove (2.21) we note that

A′( 1
2
) = 4 > 0, that v′(t) > 0 implies that A(t) < λ, and that in any point where A′(t) � 0,

we necessarily have v′′(t) > 0. On the other hand, a direct computation shows that the

level curves of

A =
v

t
+

1 − v

1 − t
, (2.24)

see Figure 3, are strictly concave in 0 < v < t < 1. For t < 1
2

we have A < 2 and increasing

A increases v, while for t > 1
2

we have A > 2 and increasing A decreases v.

Suppose A′(t0) = 0 for some 1
2
< t0 < 1. Then the graph of v(t) and the level curve

A=A(t0) touch in t= t0. The strict concavity of A=A(t0) and v′′(t0) > 0 imply that

A′′(t0) < 0 whence A′(t) < 0 on some interval (t0, t1). If A′(t1) = 0 and t1 < 1, we repeat

this argument and conclude that A′′(t1) < 0 and A′(t) < 0 on some second interval (t1, t2)

as well as on (t0, t1). This is impossible so it follows that A′(t) < 0 and A(t) < A(t0) < λ

on (t0, 1), contradicting (2.20). Thus t0 cannot exist and A′ > 0 on [ 1
2
, 1).

Likewise suppose A′(t0) = 0 for some 0 < t0 < 1
2
. By the same reasoning as above we

now conclude that A′′(t0) > 0 and that A′ < 0 on (0, t0). Hence the graph of v, which

starts in the origin, where also the level curves of A with A < 2 start, must intersect a level

curve of A with A=A1 < A(0) for some t1 ∈ (0, t0). But then the graph of v lies above

this level curve for t ∈ (0, t1), while the first is convex (v′′ > 0 where A′ � 0) and the latter

concave. This is impossible, so again we conclude that t0 cannot exist and A′ > 0 also on

(0, 1
2
). This completes the proof of Proposition 2.4. �
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Proposition 2.5 Let δ = δ(λ) and v = v(t; λ) be the solution of (2.16). Then δ and v are

smooth functions of λ. Moreover, denoting derivatives with respect to λ by subscripts, we

have δλ < 0 and vλ(t) < 0.

Proof We noted in the proof of Theorem 2.2 that the solutions starting on the left and

on the right depend smoothly on δ and λ. Standard implicit function theorem arguments

(see also below) applied to these two solutions at any λ with corresponding δ and any

t ∈ (0, 1), imply that δ = δ(λ) and v = v(t; λ) are smooth in λ and that

v′
λ =

(
1 + δ

(1 − v)2

(
λ − 1

t

)
+

1

t
− 1

1 − t

)
vλ +

1

1 − v

(
λ − v

t
− 1 − v

1 − t

)
δλ +

δ + v

1 − v
, (2.25)

with

vλ(0) = vλ(1) = 0. (2.26)

Note that the coefficient of δλ is of fixed sign. This is in fact what guarantees that the

invertibility condition holds in the implicit function theorem application mentioned above,

whereby δ is smooth in λ. The sign of the coefficient of δλ coincides with that of v′ which is

positive. The last term in (2.25) also being positive we conclude that δλ has to be negative

because otherwise the whole inhomogeneous term in (2.25) is positive, impossible in view

of (2.26).

Next we use the monotonicity of A(t) in Proposition 2.4. Writing the inhomogeneous

term in (2.25) as FI (t)/(1 − v(t)) with

FI (t) = (λ − A(t))δλ + δ + v(t),

we see that F ′
I (t) > 0 so that FI (t) has at most one sign change. In view of (2.26) again

it cannot be of fixed sign so we conclude that there exists t∗ ∈ (0, 1) such that FI < 0 on

(0, t∗) and FI > 0 on (t∗, 1). Solving (2.25) from the left and from the right we find vλ < 0

on both (0, t∗] and [t∗, 1). This completes the proof of Proposition 2.5. �

2.2 Behaviour as m → 1

We continue the analysis in terms of the solutions of (2.16). Note that in view of (2.23)

δ(λ − 2) < 1.

Proposition 2.6 Let δ = δ(λ) and v = v(t; λ) be the solutions of (2.16). Then δ(λ) ↑ ∞ as

λ ↓ 2.

Corollary 2.7 In terms of m and β this means β ↑ 1 as m ↓ 1.

Proof Suppose the assertion is false. Then δ ↑ δ∗ < ∞. Taking the limit in (2.16) we

obtain a solution v = v∗ of

v′ =
dv

dt
=

δ∗ + v

1 − v

(
2 − v

t
− 1 − v

1 − t

)
, v(0) = 0, v(1) = 1,
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satisfying also

v′(0+) =
δ∗

δ∗ + 1
< 1, v′(1−) = 1.

Starting from t = 0 we see that v∗(t) < t for all 0 < t < 1 while starting from t = 1 we

find v∗(t) > t. This contradiction completes the proof of Proposition 2.6. �

Proposition 2.8 Let δ = δ(λ) and v = v(t; λ) be the solutions of (2.16). Then v(t; λ) ↑ t

uniformly on [0, 1] as λ ↓ 2.

Proof By Proposition 2.5 the solutions v(t; λ) increase to a limit as λ ↓ 2. Let A be defined

by (2.24) (and A(t) by (2.19)). The monotonicity, (2.17) and Proposition 2.6 imply that

v′(0+) ↑ 1, A(0) ↑ 2, v′(1−) ↓ 1, A(1) ↓ 2,

as λ ↓ 2. Since the graph of v is above all the level curves of A with, respectively, A = A(0)

for 0 < t < 1
2

and A = A(1) for 1
2
< t < 1, it follows that v(t; λ) ↑ t for every t� 1

2
, and

thus, in view of v′(t; λ) > 0, also for t = 1
2
. The convergence is uniform in view of Dini’s

theorem. This completes the proof of Theorem 2.8. �

Proposition 2.9 Let δ = δ(λ) and v = v(t; λ) be the solutions of (2.16). Then 2δ(λ − 2) →
as λ → 2.

Corollary 2.10 1 − β ∼ (m − 1)/4 as m → 1.

Proof Recall the ODE for v in (2.16),

v′ =
dv

dt
= Φ(t, v)

def
=

δ + v

1 − v

(
λ − v

t
− 1 − v

1 − t

)
.

The assertion in the proposition is equivalent to Φ( 1
2
, 1

2
) = (2δ + 1)(λ − 2) → 1. Suppose

this is false, then there exists a sequence λ → 2 (dropping the index of the sequence from

the notation) such that Φ( 1
2
, 1

2
) stays away from 1. Observing that

Φ =
δ + v

1 − v
(λ − A), λ → 2, A(t, t) = A

(
1

2
, v

)
= 2,

we see that, by continuity, Φ(t, v) stays away from 1 in one of the two intersections

O ∩ {A < 2} or O ∩ {A > 2} where O is small neighbourhood of ( 1
2
, 1

2
). Clearly this makes

it impossible to have v(t; λ) → t as λ → 2. This contradiction completes the proof of

Proposition 2.9. �

2.3 Behaviour as m → ∞

In view of Corollary 2.3, (1.9) and (2.6), m → ∞ corresponds to δ → 0 and λ → ∞. We

compute the asymptotic behaviour of δ and V in Theorem 2.2 as λ → ∞ in two steps.

First we compute a nontrivial limit for the solution and then we use the limit solution to

describe the asymptotics of δ.
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For the first step we turn the picture around as in the proof of Theorem 2.2 by (2.10),

i.e. set V = 1 − W , σ = λ − τ, and consider (2.11):

dW

dσ
=

1 + δ − W

W

(
1 − 1 − W

λ − σ
− W

σ

)
.

From Theorem 2.2 we know that

W (0) = 0, W ′(0) = 1 − 1

λ
, (2.27)

and

W (λ) = 1, W ′(λ) =
δ

1 + δ

(
1 − 1

λ

)
. (2.28)

We recall that in (2.27) and (2.28) the second condition for the derivative follows from

the first condition.

Proposition 2.11 As δ → 0 and λ → ∞ the solution W = W (σ; λ, δ) of (2.11) with (2.27)

converges to the unique solution Ŵ (σ) of

dŴ

dσ
=

1 − Ŵ

Ŵ

(
1 − Ŵ

σ

)
, Ŵ (0) = 0. (2.29)

The convergence is uniform on bounded intervals [0, T ].

Rewriting (2.13) with a parameter dependence on 1
λ

the proof of Proposition 2.11 is

straightforward and left to the reader. The limit problem (2.29) is solvable by integration.

Setting

1 − Ŵ = σy,

we write an equation for σ as function of y giving

dσ

dy
= σ − 1

y
, σy → 1 as y → ∞. (2.30)

The boundary condition at infinity follows from Ŵ (0) = 0. Problem (2.30) has the unique

explicit solution

σ = exp(y)

∫ ∞

y

exp(−s)
ds

s
= − log y + exp(y)

∫ ∞

y

exp(−s) log s ds,

so that

σ + log y →
∫ ∞

0

exp(−s) log s ds = −γ as y → 0,

whence

1 − Ŵ (σ) ∼ σ exp(−γ − σ) as σ → ∞. (2.31)

Now that we have a nontrivial limit for the profile, we use it to derive the asymptotics

of δ. To be able to use the limit solution for the asymptotics of δ we change the equations
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slightly before taking the limit. This is done by setting

W = (1 + δ)W̃ , σ = (1 + δ)σ̃,
1

1 + δ
= 1 − δ̃, λ = (1 + δ)λ̃, (2.32)

whence, omitting the tildes,

dW

dσ
=

1 − W

W

(
1 − 1 − δ − W

λ − σ
− W

σ

)
, (2.33)

and the AG connection has

W (0) = 0 and W (λ) = 1 − δ. (2.34)

The limit equation is the same as before (and also Proposition 2.5 carries over with a

slightly different proof). From (2.31) and (2.34) we guess that

δ = 1 − W (λ) ≈ 1 − Ŵ (λ) ∼ λ exp(−γ − λ).

Theorem 2.12

lim
λ→∞

δ exp(γ + λ)

λ
= 1.

The limit is for δ̃ and λ̃ but translating back to δ and λ the formula remains the same.

Proof We compare the solution W (σ) with the solution Ŵ (σ) of (2.29) and the solution

W1(σ; λ) of (2.33) with δ = 0 and W1(0) = 0. In view of the monotonicity of the right-

hand side of (2.33) with respect to λ and δ we have, by reasoning analogous to the proof

of Theorem 2.2, that W1(σ)<W (σ)<Ŵ (σ) for 0<σ<λ. The first inequality holds until

W1(σ) hits zero. This happens after it has achieved a maximum in some σλ between

σ = λ − 1 and σ = λ at the intersection with the isocline

1 − W

λ − σ
= 1 +

W

σ
. (2.35)

Thus

1 − Ŵ (λ) < δ = 1 − W (λ) < 1 − W (σλ) < 1 − W1(σλ; λ). (2.36)

In (2.36) we have from (2.31) that 1−Ŵ (λ) ∼ λ exp(−γ−λ) as λ → ∞. To finish the proof

we have to show that also

lim sup
λ→∞

(1 − W1(σλ; λ))
exp(λ)

λ
� exp(−γ). (2.37)

For (2.37) we need σλ to get close to λ which will follow from

W1(σλ; λ) → 1. (2.38)

To prove (2.38), let ε> 0. Then there exists T > 0 such that 0< 1 − Ŵ (σ)<ε for

all σ �T because Ŵ (σ) ↑ 1 as σ → ∞. But then, since Proposition 2.11 applies to

W1(T ; λ), which, being below W = 1−δ, increases with λ, there also exists Λ> 0 such that
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0<Ŵ (T )−W1(T ; λ)<ε for all λ�Λ. Thus, if also λ−1 �T , we have 0< 1−W1(σλ; λ) <

1 −W1(T ; λ) < 1 − Ŵ (T ) + Ŵ (T ) −W1(T ; λ) < 2ε. This proves (2.38). As a consequence

we have in, view of (2.35), that

λ − σλ → 0 as λ → ∞. (2.39)

Next we introduce

A1(σ, λ) =
exp(σ)

σ
(1 − W1(σ, λ)),

which satisfies

dA1

dσ
=

σ exp(−σ)A2
1

1 − σ exp(−σ)A1

(
1

λ − σ
− 1

)
. (2.40)

In view of (2.39) we have for every fixed b > 0 the existence of a Λ such that σλ > λ − b

for all λ � Λ. In (2.37) we may then use

(1 − W1(σλ; λ))
exp(λ)

λ
< A1(λ − b; λ)

λ − b

λ
exp(b).

Since b > 0 may be chosen arbitrarily small it remains to show that

A1(λ − b; λ) → exp(−γ).

Note that for fixed σ

A1(σ, λ) → Â(σ) =
exp(σ)

σ
(1 − Ŵ (σ)).

and

Â(σ) → exp(−γ) as σ → ∞.

Now fix ε> 0. There exists T > 0 such that |Â(σ)−exp(−γ)|<ε for all σ �T . Subsequently

there also exists Λ such that |A1(T ; λ) − Â(T )|<ε for all λ�Λ. Thus

|A1(T ; λ) − exp(−γ)| < 2ε. (2.41)

For every λ � Λ let Tλ � λ−b be the maximal value of σ such that |A1(σ; λ)−exp(−γ)| <
3ε on the interval [T ,Tλ]. Then on this interval

A1(σ; λ)2

1 − σ exp(−σ)A1(σ; λ)
�

(γ + 3ε)2

1 − T exp(−T )(γ + 3ε)
� M, (2.42)

for some M > 0. We may take M to be fixed as we take smaller ε- and larger T -values.

It follows from (2.40) and (2.42) that

|A1(σ; λ) − A1(T , λ)| < M

(
1

b
+ 1

)
(T + 1) exp(−T ), (2.43)

for every T � σ � Tλ. On the right-hand side of (2.43) M and b are independent of T so

we may a priori adjust the choice of T above to ensure that also

M

(
1

b
+ 1

)
(T + 1) exp(−T ) < ε. (2.44)
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From (2.41), (2.43) and (2.44) we then conclude for every λ � Λ that

|A1(σ; λ) − exp(−γ)| < 3ε,

for every T � σ � Tλ = λ − b, and in particular that

|A1(λ − b; λ) − exp(−γ)| < 3ε.

This establishes the limit in Theorem 2.12. Inverting (2.32) this formula does not change

and thus the proof is complete. �

3 The eigenvalue problem

In this section we consider the linearisation of (1.7) around the steady state Ψ (p) and

analyse solutions of the form

ξ(p, θ, τ) = exp(ωτ)A(p) cos(kθ), k = 0, 1, 2, . . . .

Here ω is the eigenvalue. Throughout this section, β (and hence ε) is the exponent cor-

responding to the AG solution and Ψ (p) is the inverse function of the solution F of (2.1).

The radial part A(p) is a solution of the linear second order ODE

(m − 1)pΨ 2A′′ + [2βΨ 3Ψ ′ − Ψ 2 − 2(m − 1)pΨΨ ′ − 3(2β − 1)p(ΨΨ ′)2]A′

+ [(m − 1)(1 − k2)p + (β − ω)Ψ 2](Ψ ′)2A = 0. (3.1)

The coefficients contain the inverse AG solution Ψ and its derivative Ψ ′. As explained in

Betelú et al. [9] the eigenfunctions A(p) should satisfy the conditions

A′(0+) =
ω − β

β2
A(0), A(p) ∼ Cp

β−ω
2β−1 (p → ∞). (3.2)

For each k = 0, 1, 2, . . . this gives a decreasing sequence of real eigenvalues ω, of which we

only have to consider the first one and its corresponding positive eigenfunction A(p).

We analyse the system consisting of the nonlinear second order ODE for Ψ (p) and

(3.1) using the independent variables

X =
rF ′

F
=

Ψ

pΨ ′ , Z =
Y

X
=

β

m − 1
ΨΨ ′, U =

ΨA′

Ψ ′A

as functions of the new independent variable log r = logΨ . With

δ =
1

m − 1
, ε =

2

λ
=

2β − 1

β
, µ =

ω

β
,

we obtain a system of three equations:

Ẋ = −X((1 + δ)X − Z(X − ε)); Ż = Z(2 + δX − Z(X − ε)); (3.3)

U̇ = k2 − (U − 1)2 + εZ(µ − 1 + U) + Z(X − ε)(µ − 1 − U). (3.4)
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In terms of X and Z the AG solution (see Theorem 2.1) corresponds to a solution of

(3.3) with

X(0) = ∞, Z(0) = δ, X(∞) = ε, Z(∞) = ∞.

Proposition 3.1 Let ω be an eigenvalue with a positive eigenfunction A(p). Then the cor-

responding solution U(s) of (3.4) satisfies

U(0) = µ − 1, U(∞) = 1 − µ. (3.5)

Proof The boundary condition at s = 0 follows immediately from (3.2) and (2.1 b).

Note that any solution U(s) not satisfying U(0) = µ − 1 converges to ±∞ as s → 0

because X(s) ∼ 1/s and Z(s) → δ for the AG connection. Likewise, if U(s) does not satisfy

U(∞) = 1 − µ, it must converge to ±∞ as s→ ∞ because X(s) → ε and Z(s) → ∞. But

then also pA′/A→ ± ∞ which excludes algebraic behaviour. Thus, we conclude that

U(∞) = 1 − µ and pA′/A → (1 − µ)/ε, i.e. we have algebraic behaviour as p→ ∞. The

additional argument giving the stronger statement that A(p) ∼ Cp(1−µ)/ε is omitted. �

3.1 The first eigenvalue

The first eigenvalue corresponds to the unique µ-value for which (3.4) has a solution

satisfying (3.5). As in Theorem 2.1 this µ-value may be obtained by shooting from the left

and from the right. We shall use the variables v and t = ε
X

introduced in (2.15), with the

AG solution being a solution of (2.16), i.e.

dv

dt
=

δ + v

1 − v

(
λ − v

t
− 1 − v

1 − t

)
, (3.6 a)

with boundary conditions

v(0) = 0, v(1) = 1. (3.6 b)

Equation (3.4) transforms into

dU

dt
=

1

1 − v

(
k2 − (1 − U)2

2
λ − (v + δ)

(
U − µ + 1

t
+

1 − µ − U

1 − t

))
, (3.7 a)

the boundary conditions being

U(0) = µ − 1, U(1) = 1 − µ. (3.7 b)

We now prove the existence of a unique first eigenvalue µk for all k � 0 and obtain the

bounds 2−k <µk < 1 for k > 1. Besides, we establish some properties of the ‘eigenfunction’

U; in particular, we put some effort into proving that µ − 1 � U � 1 − µ, which will be

very useful in what follows.

Theorem 3.2 Let δ = δ(λ) as in Theorem 2.2, let v(t) be the solution of (3.6) and let µ and

k � 0 be real numbers. There exists a unique solution U = Ul(t) of (3.7 a) with Ul(0) = µ−1
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defined in a right neighbourhood of t = 0. This solution has

U ′
l (0

+) =
(k2 − (2 − µ)2)λ

2(δ + 1)
− 2(1 − µ)δ

δ + 1
.

Also there exists a unique solution U = Ur(t) with Ur(1) = 1 − µ defined in a left neigh-

bourhood of t = 1. This solution has

U ′
r(1

−) =
(k2 − µ2)λ

2(δ + 1)
− 2(1 − µ).

For each k � 0 there exists a unique µ = µk such that (3.7) has a solution, i.e. Ul ≡ Ur .

This µk is between µ = 1 and µ = 2 − k if k > 1. This solution U lies between its boundary

values µ − 1 and 1 − µ. Finally, µk is monotonically decreasing in k.

Corollary 3.3 (Instability of the AG solution) µ2 > 0.

Proof The local existence and uniqueness from both sides is proved along the same lines

as in the proof of Theorem 2.2. The value of the derivative in t = 1 follows because the

second factor on the right-hand side of (3.7 a) must vanish as t → 1. This occurs because

the first factor is proportional to a multiple of 1/(1 − t) as t → 1. The value of the

derivative at t = 0 is immediate from taking the limit t → 1 in (3.7 a). By monotonicity

arguments, Ul is increasing in µ while Ur is decreasing in µ. This gives uniqueness of the

µ-value for which the two coincide.

To see that such a µ-value must exist, we first assume that k > 1. If µ = 1 the right-hand

side of (3.7 a) is positive at U = 1 − µ = 0, and also U ′
l (0

+) > 0 and U ′
r(1

−) > 0. This

guarantees that, for as long as they exist, Ul > 0 > Ur on (0, 1). In particular Ul > Ur

and clearly the set of µ for which this is the case is open. To find µ such that the other

inequality holds we choose µ = 2 − k, making the right-hand side of (3.7 a) negative at

U = µ − 1 = 1 − k and U ′
l (0

+) < 0, so Ul < 1 − k < 0 < Ur . Again the set of µ-values

for which Ul < Ur holds is open. Thus there must exist a µ ∈ (2 − k, 1) such that Ul and

Ur are not ordered which is only possible if they coincide. This completes the proof for

k > 1.

For k = 1 the solution is simply µ = 1 and U ≡ 0. Concerning 0 � k < 1 we note that

all the signs in the argument above are reversed so now the existence of µ ∈ (1, 2 − k) for

which Ul and Ur coincide follows.

Following the similar arguments as for the monotonicity of δ(λ) in λ (Proposition 2.5),

it is not difficult to show that dµ
dk

< 0.

Finally, we prove the solution U lies between its boundary values. We consider the case

k > 1 (k < 1 is analogous). The function

k2 − (2 − µ)2

4
λ − (v(t) + δ)

1 − µ

1 − t

is increasing in t. Hence the right-hand side of (3.7 a) at U = µ − 1 changes sign at most

once on [0, 1) (from positive to negative). It follows that the solution U � µ − 1, and in
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particular U ′(0+) � 0, or equivalently

(k2 − µ2)λ � 4(1 − µ)(δ + λ). (3.8)

The argument to show that U � 1 − µ on [0, 1] is more involved. First, we note that it

follows from (3.8) that

U ′(1−) =
(k2 − µ2)λ

2(δ + 1)
− 2(1 − µ) > 0.

Next, we assert that the right-hand side of (3.7 a) at U = 1 − µ change sign exactly once

for t ∈ (0, 1), from positive to negative. This claim implies that the solution U � 1 − µ on

[0, 1].

Consider

P (t)
def
=

k2 − µ2

4(1 − µ)
λ − v(t) + δ

t
.

Clearly, the right-hand side of (3.7 a) at U = 1 − µ is zero if and only if P = 0. Notice

that P (0) = −∞ and P (1) > 0. Setting P = 0 one obtains k2 − µ2

4(1 − µ)
λt = v + δ < t+ δ, which

shows that P (t) can only have zeros for

t �
δ

k2 − µ2

4(1 − µ)
λ − 1

�
δ

λ + δ − 1
, (3.9)

where we have used (3.8).

We now prove that if P (t) = 0 then P ′(t) > 0, from which we infer that P has at most

and hence precisely one zero. In fact P ′(t) > 0 for t � δ
λ+ δ − 1

, the bound on zeros of P

derived above. Differentiation gives

P ′(t) = −v′

t
+

v + δ

t2
=

v + δ

(1 − v)t2
(−t[λ − A(t)] + 1 − v),

where A(t)
def
= v

t
+ 1 − v

1 − t
. Qualitative properties of A were obtained in Proposition 2.4. Define

Q(t)
def
=

(1 − v)t2

v + δ
P ′(t) = −t[λ − A(t)] + 1 − v.

Using the surprisingly useful property A(t) > A(0) = δ
δ+1

(λ − 1) + 1 we obtain

Q(t) > −t[λ − A(t)] + 1 − t > 1 − t[1 + λ − A(0)] = 1 − t

[
λ − δ

δ + 1
(λ − 1)

]

and using (3.9) we continue the estimate

Q(t) > 1 − δ

λ + δ − 1

[
λ − δ

δ + 1
(λ − 1)

]
=

λ − 1

(λ + δ − 1)(δ + 1)
> 0.

Hence P ′(t) > 0 and the proof of the assertion is finished. This also completes the proof

of Theorem 3.2. �
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3.2 Dependence of the eigenvalues on m

We first examine the behaviour of the eigenvalues for large m.

Proposition 3.4 Let µk be as in Theorem 3.2. Then µk → 2 − k as λ → ∞.

Proof We turn to the time variable σ = λ(1 − t). We note that, as λ → ∞ and µ → µ̂, the

solution Ũr(σ) = Ur(1 − σ/λ) converges to the unique solution of

dÛ

dσ
=

1

Ŵ

(
(1 − Û)2 − k2

2
+ (1 − Ŵ )

1 − µ̂ − Û

σ

)
, Û(0) = 1 − µ̂. (3.10)

Here Ŵ (σ) is the function defined in Proposition 2.11. Suppose the theorem is false for

k > 1. Then there must exists a sequence λ → ∞ along which µk converges to a limit µ̂

contained in (2 − k, 1] and the solution Ũ(σ) = U(1 − σ/λ) converges to the solution of

(3.10), uniformly on compact intervals contained in the maximum interval on which Û

exists. This limit solution is easily seen to have Û(σ) → 1 − k < µ − 1 as σ → ∞ and this

forces Ũ(σ) to drop below µ − 1 before σ reaches λ, provided λ is large, in contradiction

with Theorem 3.2.

For 0 � k < 1 the argument is similar, the only difference being that the limit solution

blows up in finite time if µ̂ is in [1, 2 − k). This completes the proof of Proposition 3.4.

�

Corollary 3.5

lim
m→∞

ωk0 = 1 − k

2
.

Before we examine the other limit m→ 1 we note that changes in stability can only

occur when µk = 0 for some integer k and m> 1. However, in (3.7 a), there is no reason to

restrict k to the integers. Thus we consider (3.7 a) with µ = 0 for all real k > 0, and write

u = 1
2
(U + 1) to simplify notation:

u′ =
1

1 − v

[(
k2

4
− (1 − u)2

)
λ − (v + δ)

(
u

t
+

1 − u

1 − t

)]
. (3.11 a)

The boundary conditions are

u(0) = 0 and u(1) = 1. (3.11 b)

Theorem 3.6 Let δ = δ(λ) as in Theorem 2.2, let v(t) be the solution of (3.6). Then there

exists a unique k = k(λ) > 2 such that (3.11) has a solution. This solution u lies between its

boundary values 0 and 1. The function k(λ) is smooth, k(λ) → 2 as λ → ∞ and k(λ) → ∞
as λ → 2.

Proof Existence and uniqueness of k are proved along the lines of the proof of

Theorem 3.2, the right-hand side of (3.11 a) being monotone in k. With µ = 0 we have

https://doi.org/10.1017/S0956792503005229 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792503005229


508 D. G. Aronson et al.

that ul < 0 if k � 2, ul and ur are monotone in k, and choosing k large ul has to grow

above 1. That u lies between its boundary values 0 and 1 follows from Theorem 3.2. The

smoothness of k(λ) follows again from the implicit function theorem (cf. Proposition 2.5).

The limit λ → ∞ is similar to Proposition 3.4. For the other limit λ → 2 we argue by

contradiction and assume k remains bounded along a subsequence. Since δ → ∞ and, in

view of Proposition 2.8, v(t) → t, it follows that the right-hand side of (3.11 a) goes to

+∞, uniformly on sets where u stays away from u = 1. This makes it impossible for u to

connect from u = 0 to u = 1 if λ is close to 2, and this is a contradiction. �

Remark 3.7 Since both k and δ tend to infinity as λ → 2, in this limit the terms in the

right-hand side of (3.11 a) with k and δ must balance. This implies that k2 ∼ 2δ, i.e.

k2 ∼ 2

m − 1
as m → 1.

Finally, we prove that the function k(λ) defined in Theorem 3.6 is monotone, i.e. dk
dλ

< 0

for λ ∈ (2,∞). This implies that it is invertible and dλ
dk

< 0. Besides, since µ(λ, k(λ)) = 0,

we have ∂µ
∂λ

= − ∂µ
∂k

dk
dλ

< 0 at µ = 0. A transformation to the original parameter m (i.e.
dm
dλ

= −δ−2δλ > 0) finishes the proof of the assertions at the end of § 1.

Theorem 3.8 Let k(λ) be as in Theorem 3.6. Then dk
dλ

< 0 for λ ∈ (2,∞).

Proof We denote differentiation with respect to λ by subscripts. We recall that vλ < 0 and

δλ < 0 by Proposition 2.5. Differentiating equation (3.11 a) with respect to λ gives

u′
λ =

1

1 − v

{
vλ

[
u′ −

(
u

t
+

1 − u

1 − t

)]
− δλ

(
u

t
+

1 − u

1 − t

)

+

(
k2

4
− (1 − u)2

)
+

kλkλ

2
+ uλ(. . .)

}
, (3.12)

where the dots represent the u-derivative of the second factor in the right-hand side of

(3.11 a). The boundary conditions are uλ(0) = 0 and uλ(1) = 0, and

u′
λ(0) =

(
k2

4
− 1

)(
1

δ + 1
− δλ

(δ + 1)2

)
− δλ

(δ + 1)2
+

kkλλ

2(δ + 1)
,

u′
λ(1) =

k2

4

(
1

δ + 1
− δλ

(δ + 1)2

)
+

kkλλ

2(δ + 1)
.

Now suppose by contradiction that kλ � 0 for some λ. Then u′
λ(0) > 0 and u′

λ(1) > 0,

hence uλ(t) has a zero where it goes from positive to negative. At this point the fifth term

in the right-hand side of (3.12) is zero, the second and third are positive and the fourth

is nonnegative. If we show that

u′ −
(
u

t
+

1 − u

1 − t

)
� 0 (3.13)

then we conclude that u′
λ > 0, a contradiction.
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We thus study

H(t)
def
= u′ −

(
u

t
+

1 − u

1 − t

)
.

Clearly H(0) = −1 and H(1) = −1. We claim that H(t) � 0, i.e. (3.13) holds. Arguing by

contradiction, we suppose H(t) > 0 for some t, and we define

t0
def
= inf{t |H(t) > 0}

and

t1
def
= sup{t̃ > t0 |H(t) > 0 on (t0, t̃)}.

We have 0 < t0 < t1 < 1 and H has the following properties: H(t0) = H(t1) = 0, H(t) > 0

on (t0, t1), H
′(t0) � 0 and H ′(t1) � 0.

Using the differential equation we obtain

H(t) =
1 + δ

1 − v

{(
k2

4
− (1 − u)2

)
λ

1+ δ
−

(
u

t
+

1 − u

1 − t

)}
.

Define

G(t)
def
=

1 − v

1 + δ
H(t) =

(
k2

4
− (1 − u)2

)
λ

1+ δ
−

(
u

t
+

1 − u

1 − t

)
.

All the properties of H listed above naturally carry over to G.

Differentiate:

G′(t) = 2(1 − u)
λ

1+ δ
u′ −

[(
1

t
− 1

1 − t

)
u′ − u

t2
+

1 − u

(1 − t)2

]
,

and in the points t0 and t1 one has u′ = u
t
+ 1 − u

1 − t
, hence

G′(ti) = 2(1 − u)
λ

1+ δ

(
u

ti
+

1 − u

1 − ti

)
−

[(
1

ti
− 1

1 − ti

)(
u

ti
+

1 − u

1 − ti

)
− u

t2i
+

1 − u

(1 − ti)2

]

= 2(1 − u)
λ

1+ δ

u(1 − ti) + ti(1 − u)

ti(1 − ti)
− 1 − 2u

ti(1 − ti)

=
B(ti)

ti(1 − ti)
,

for i = 0, 1. Here

B(t)
def
= 2(1 − u)

λ

1+ δ
[u(1 − t) + t(1 − u)] + 2u − 1,

and the properties of G imply that B(t0) � 0 and B(t1) � 0. However, we will show that

this leads to a contradiction.

First we note that since H(t) > 0 on (t0, t1), we have u′(t) > 0 on [t0, t1]. Also, notice

that B(t) > 0 if u(t) � 1
2
, i.e. B(t) � 0 implies u(t) < 1

2
.
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Differentiate again:

B′(t) = 2(1 − u)
λ

1+ δ
(1 − 2u) + 2u′(t)

[
1 +

λ

1+ δ
(−u(1 − t) − t(1 − u) + (1 − u)(1 − 2t))

]

= 2(1 − u)
λ

1+ δ
(1 − 2u) + 2u′(t)

[
1 +

λ

1+ δ
(4tu − 2u − 3t + 1)

]
.

We use the fact that B − u
1 − u

+ 1 = λ
1+ δ

(−4tu + 2u + 2t) to rewrite

B′(t) = 2(1 − u)
λ

1+ δ
(1 − 2u) + 2u′(t)

[
λ

1+ δ
(1 − t) − B − u

1 − u

]
. (3.14)

Now either B(t0)> 0, or B(t0) = 0 hence u(t0)<
1
2

and B′(t0)> 0 (just substitute B = 0

above and use that u′(t0)> 0). In both cases B is positive in a right neighbourhood of t0
and

t2
def
= sup{t > t0 |B(t) > 0}

is well-defined. Since B(t1) � 0, one has B(t2) = 0, hence u(t2)<
1
2
, and B′(t2) � 0. Moreover,

t2 � t1 and thus u′(t2)> 0. Evaluating (3.14) in t2 and using this information, we obtain a

contradiction.

We have thus proved (3.13) and conclude that kλ < 0. �

4 Conclusion

Our results on the parameter dependence of the AG exponent β settles the long standing

question of its monotonicity. The asymptotic behaviour of β for m→ 1 and m→ ∞ was

computed in Galaktionov & King [13] using formal PDE methods. Their results are

confirmed by our ODE computation and proof.

Several questions concerning the parameter dependence of the critical eigenvalues of

the linearisation of the porous medium pressure equation about the AG-profiles are

raised in the concluding remarks to Angenent & Aronson [2]. This paper answers

these questions for two spatial dimensions. First, concerning the linearised stability with

respect to perturbations with wave number k = 2, we have shown that the AG-solutions

are unstable with respect to such perturbations for all m ∈ (1,∞). Thus there are no

self-similar focusing solutions with two-fold symmetry bifurcating from the circular AG-

branch, and as shown in Angenent & Aronson [2], there are also no further radially

symmetric branches. Solutions whose support is the complement of an elongated hole are

studied in Angenent et al. [3].

As for the bifurcations with higher wave number, our analysis show that all of them

indeed occur, that the bifurcations are simple and that they occur for a sequence

m3 > m4 > m5 > m6 > · · · → 1,

as was suggested by the numerical results in Betelú et al. [9].

Although the bifurcation problem was studied in Angenent & Aronson [2] for arbitrary

dimension N � 2, most of the analysis of the properties of the AG solutions has been

limited to N = 2, which, as far as the parameter dependence is concerned, is a little
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exceptional because the X-equation derived by setting (2.2) contains a term with coefficient

2 −N. We conjecture though that the main results of this paper may be proved in exactly

the same fashion for N � 2.

Finally we mention that other degenerate nonlinear diffusion equations give rise to

similar questions, e.g. see Aronson et al. [5] for the case of the p-Laplacian equation. Our

ODE-reduction of the linear stability question may be expected to be applicable to any

equation with a scaling invariance similar to that of (1.1).
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