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Abstract

A useful result about leftmost and rightmost paths in two-dimensional bond percolation
is proved. This result was introduced without proof in Gray (1991) in the context of the
contact process in continuous time. As discussed here, it also holds for several related
models, including the discrete-time contact process and two-dimensional site percolation.
Among the consequences are a natural monotonicity in the probability of percolation
between different sites and a somewhat counter-intuitive correlation inequality.
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1. Introduction

The main goal of this paper is to give complete proofs of a result originally presented in [4].
The result was stated for the continuous-time contact process in [4], but its proof is missing
in the literature. In that paper some interesting consequences were given which we believe
justify the writing of the proof here. In this paper we work in the context of oriented two-
dimensional percolation which is equivalent to a discrete-time version of the contact process.
In the latter part of this paper we discuss how our results apply to other models, and derive
some consequences following the ideas of [4].

Two-dimensional oriented bond percolation was studied in [3], where some of its most
important properties were proved. To introduce the model, let

� = {(x, y) : x, y ∈ Z, y ≥ 0, x + y ∈ 2Z}.
Then, draw oriented edges from each point (m, n) in � to (m+ 1, n+ 1) and to (m− 1, n+ 1).
In the percolation literature, the points in � and the edges between them are often called sites
and bonds, respectively. In this paper we focus on oriented bond percolation, and thus we
suppose that the edges are open independently of each other, and that each edge is open with
probability p ∈ (0, 1).

It is an easy matter to adapt the proof here to oriented site percolation, in which the points,
rather than the edges, are open with probability p, independently of each other. Either by
using the so-called ‘graphical construction’ of continuous-time interacting particle systems,
or by taking limits of discrete-time contact processes, our methods can also be applied to
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370 E. D. ANDJEL AND L. F. GRAY

various versions of the continuous-time contact process in one dimension. For more about such
extensions, we refer the reader to Section 3.

A path π in � is a sequence (x0, y0), . . . , (xn, yn) of points in � such that for all 0 ≤ i < n,
|xi+1 −xi | = 1 and yi+1 −yi = 1. The edges joining (xi, yi) to (xi+1, yi+1) for 0 ≤ i ≤ n−1
will be called the edges of π . We say that a path is open if all its edges are open. (In site
percolation, a path is open if all its points are open.)

For any n ∈ N0 let Ln = {(x, n) ∈ �}. Let 0 ≤ m < n and let A and B be subsets of
Lm and Ln, respectively. A path from A to B is any path starting in some point in A and
finishing at some point in B. A path π from a point in Lm to a point in Ln will be identified
with the function π : [m, n] ∩ Z → Z determined by: (π(j), j) is a point in the path π for all
m ≤ j ≤ n.

Given two paths π1 and π2 from Lm to Ln, we say that π1 is to the left of π2 (or that π2 is
to the right of π1) and write π1 ≤ π2 (or π2 ≥ π1) if π1(j) ≤ π2(j) for all m ≤ j ≤ n. This
creates a partial order between paths from Lm to Ln. If the inequality is replaced by a strict
inequality, then we say that π1 is strictly to the left of π2 (or π2 is strictly to the right of π1).

We find it useful to extend the notions ‘strictly to the left’ and ‘strictly to the right’ to subsets
of �. Let P1 : � → Z be the projection on the first coordinate: P1((x, y)) = x. In the usual
fashion, extend this function to sets �′ ⊂ � : P(�′) = {P1((x, y)) : (x, y) ∈ �′}. For G a
subset of �, we denote by �(G) the set of all points (j, k) ∈ � such that j < inf P1(G ∩ Lk),
and we denote by r(G) the set of points (j, k) ∈ � such that j > sup P1(G ∩ Lk). (Here by
convention, sup ∅ = −∞ and inf ∅ = ∞.) Thus, �(G) (r(G)) is the set of all points in �

that are strictly to the left (right) of G. If G, G′ are subsets of �, we say that G is strictly to
the left of G′ or, equivalently, G′ is strictly to the right of G, if G ⊂ �(G′), or, equivalently,
if G′ ⊂ r(G). And if π is a path, then we say that π is strictly to the left of G (strictly to
the right of G) if the set of points in π is strictly to the left of G (strictly to the right of G).
The notation �(·) and r(·) introduced here also applies to paths, thinking of them as sets. For
example, a path π is strictly to the left of a set G if and only if G ⊂ r(π). Please note that this
terminology and notation are consistent with our earlier definition of one path being strictly to
the left of another path, but that they now also apply to paths that do not necessarily start on
the same level Lm or end on the same level Ln.

We also extend these notions to edges: we say that an edge e is to the left (right) of a path γ

if each of the endpoints of e is either on γ or strictly to the left (right) of γ . If in addition, at
least one of these endpoints is strictly to the left (right) of γ , we say that e is strictly to the left
(right) of γ . Note that this differs slightly from our definitions of ‘strictly to the left’ for paths
or sets, because we do not require the whole edge to be strictly to the left of a path and one of
its endpoints may belong to the path.

Let �′ ⊂ �. Note that, if A ⊂ Lm and B ⊂ Ln are finite and there is at least one path from
A to B contained in �′, then there is a unique path from A to B contained in �′ which is to
the left of all paths from A to B contained in �′. This is called the leftmost path from A to B

in �′. And, if there is an open path from A to B contained in �′, then there is a unique open
path from A to B contained in �′ which is to the left of all open paths from A to B contained
in �′. This path will be called the leftmost open path from A to B in �′. Similarly, we define
the rightmost path and rightmost open path from A to B in �′.

Given a subset �′ of �, 0 ≤ m < n ∈ N and two finite subsets A and B of Lm and Ln,
respectively, ��′(A, B) will denote the set of paths from A to B contained in �′. If this set is
nonempty then μ�′(A, B) (ν�′(A, B)) will denote the conditional distribution of the leftmost
(rightmost) open path from A to B contained in �′ given that there is at least one open path
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from A to B in �′. In all these notations the subscript �′ will be omitted if �′ is the whole
set �, and when either A or B is a singleton, say {(x, y)}, we will often write (x, y) rather than
{(x, y)}.

Let 0 ≤ m < n, let A and B be finite subsets of Lm and Ln, respectively, such that �(A, B) is
nonempty, and let μ and ν be probability measures on �(A, B). We say that μ is stochastically
to the left of ν and write μ ≤ ν if for any increasing function � on �(A, B), we have

∫
�(A,B)

�(γ ) dμ(γ ) ≤
∫

�(A,B)

�(γ ) dν(γ ).

We can now state our version of the main result in [4].

Theorem 1. Let 0 ≤ m < n, let A and B be finite subsets of Lm and Ln, respectively, and let �′
and G be subsets of �. If ��′∩�(G)(A, B) is nonempty, we have μ�′∩�(G)(A, B) ≤ μ�′(A, B)

and ν�′∩�(G)(A, B) ≤ ν�′(A, B). If ��′∩r(G)(A, B) is nonempty, we have μ�′∩r(G)(A, B) ≥
μ�′(A, B) and ν�′∩r(G)(A, B) ≥ ν�′(A, B).

This result has the following immediate corollary.

Corollary 1. Let m < n, let �′ be a subset of �, let A and B be finite subsets of Lm and Ln,
respectively, such that ��′(A, B) is nonempty and suppose that A′ is a finite subset of Lm that is
strictly to the right of A. Then, μ�′(A∪A′, B) ≥ μ�′(A, B) and ν�′(A∪A′, B) ≥ ν�′(A, B).
Moreover, if B ′ is a finite subset of Ln that is strictly to the right of B, then μ�′(A, B ∪ B ′) ≥
μ�′(A, B) and ν�′(A, B ∪ B ′) ≥ ν�′(A, B). If, instead, A′ is strictly to the left of A (B ′ is
strictly to the left of B) then the first two (last two) inequalities are reversed.

The different parts of the corollary follow from the theorem by making appropriate choices
of the sets A, B, G. For example, for the first part of the corollary, replace A in the theorem by
A ∪ A′ and let G = A′. As an immediate consequence of this corollary we have the following
corollary.

Corollary 2. Assume that m, n, �′, A, and B are as in Corollary 1. If A′ is a subset of
Lm strictly to the right of A and ��′(A′, B) is nonempty, then μ�′(A′, B) ≥ μ�′(A, B) and
ν�′(A′, B) ≥ ν�′(A, B). Similarly, if B ′ is a finite subset of Ln strictly to the right of B and
��′(A, B ′) is nonempty, then μ�′(A, B ′) ≥ μ�′(A, B) and ν�′(A, B ′) ≥ ν�′(A, B).

Each of the four inequalities of this corollary is obtained by applying twice Corollary 1.
For example, to obtain the first of these inequalities write μ�′(A′, B) ≥ μ�′(A ∪ A′, B) ≥
μ�′(A, B).

In Section 2 we provide a proof of our main theorem, based on a Markov chain that was
introduced in [5]. In that paper, the Markov chain was used to prove that the one-dimensional
nearest-neighbor contact process satisfies the following property. Starting from a deterministic
configuration η0 and conditioning on the event ηt (0) = 1, the collection of random variables
{1 − ηt (x) : x < 0} ∪ {ηt (x) : x > 0} is positively associated. Finally, in the last two sections,
we discuss extensions to other models and derive some consequences and applications of the
theorem and its corollaries following the ideas of [4].

2. Proof of Theorem 1

In section we provide a proof of Theorem 1, based on a Markov chain introduced in [5].
Without loss of generality, we assume that m = 0 and we let A and B be finite subsets of L0
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and Ln, respectively, such that ��′(A, B) �= ∅. Then, we let E be a finite set of oriented edges
in �′ containing at least one path from A to B and we let S = {0, 1}E . Each element η of
S determines the state of the edges in E in the natural way: e ∈ E is open (closed) for η if
η(e) = 1 (η(e) = 0). Now, we only consider paths whose edges are in E and we let T be the
subset of S consisting of the elements for which there is an open path from A to B. For η ∈ T ,
we let ��(η) (�r(η)) be the leftmost (rightmost) open path from A to B under configuration η.
We let σ(S) be the σ -algebra of all subsets of S and we let Pp be the product probability
measure on σ(S) whose marginals are Bernoulli with parameter p. On the probability space
(S, σ (S), Pp), we define for each e ∈ E a random variable Xe by means of Xe(η) = η(e).

Given a path γ from A to B whose edges are in E, we let σr(γ ) be the σ -algebra generated by
{Xe : e is to the right of γ } and we let σ ′

r (γ ) be the σ -algebra generated by {Xe : e is strictly to
the right of γ }. Similarly, we let σ�(γ ) be the σ -algebra generated by {Xe : e is to the left of γ }
and we let σ ′

�(γ ) be the σ -algebra generated by {Xe : e is strictly to the left of γ }. We now
note that the event {�� = γ } is σ�(γ )-measurable. Since the σ -algebras σ�(γ ) and σ ′

r (γ ) are
independent, this implies that under the conditional measure Pp(· | �� = γ ) the distribution of
the state of the bonds which are strictly to the right of γ remains a Bernoulli product measure
of parameter p. Similarly, under the conditional measure Pp(· | �r = γ ) the distribution of
the state of the bonds which are strictly to the left of γ remains a Bernoulli product measure of
parameter p. We now define a Markov chain on T . Its transition mechanism is given in two
steps. For a given initial state η0 ∈ T , first we choose η1/2 ∈ T by letting η1/2(e) = η0(e)

for all e to the left of ��(η0) (this includes the edges on ��(η0)) and for the other elements
of E, we let η1/2(e) be independent Bernoulli random variables with parameter p. Once we
have determined η1/2, we let η1(e) = η1/2(e) for all e to the right of �r(η1/2) (this includes
the edges on �r(η1/2)) and for the other elements of E, we let η1(e) be independent Bernoulli
random variables with parameter p which are also independent of the random variables used to
determine η1/2. In the sequel we will need to consider this Markov chain for different sets E.
We will call it the Markov chain associated to E. Besides this, we extend the notation of the
previous sections by letting �E(A, B) be the set of paths from A to B whose edges are in E.

Proposition 1. (Van den Berg et al. [5].) The measure Pp(· | T ) is invariant for the Markov
chain.

Proof. We show that if the initial state of the chain η0 is chosen according to the distribution
Pp(· | T ), then η1/2 has the same distribution. A similar argument will then show that η1 has
the same distribution as η1/2. Let γ be an arbitrary path in �E(A, B) and let

Sγ = {η ∈ T : ��(η) = γ }.
Then (Sγ : γ ∈ �E(A, B)) is a partition of T and Pp(· | T ) is a convex combination of
the measures (Pp(· | Sγ ))γ∈�E(A,B). Therefore, it suffices to show that if η0 is distributed
according to some Pp(· | Sγ ) then η1/2 is also distributed according to that measure. But this
is an immediate consequence of the way we obtain η1/2 from η0 and the already observed fact
that the under the conditional measure Pp(· | �� = γ ) the distribution of the state of the bonds
which are strictly to the right of γ remains a Bernoulli product measure of parameter p. �

Since the Markov chain associated to E is obviously irreducible and aperiodic, we deduce
the following corollary from this proposition.

Corollary 3. From any initial distribution, the Markov chain associated to E converges to
Pp(· | T ).
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Proof of Theorem 1. We only prove the first inequality, since the other proofs are similar.
Let E be the set of edges belonging to paths in ��′(A, B) and let E�(G) be the set of edges
belonging to paths in ��′∩�(G)(A, B). We let T1 be the subset of elements of {0, 1}E for which
there exists an open path from A to B and we let T2 be the subset of elements of {0, 1}E�(G) for
which there exists an open path from A to B. We now construct a Markov chain in

X = {(η, ξ) ∈ T1 × T2 : ��(η) ≥ ��(ξ), �r(η) ≥ �r(ξ)}
whose first and second marginals are as the Markov chains associated to E and to E�(G),
respectively. This is constructed as follows. Assume that (η0, ξ0) ∈ X, then let {Ye : e strictly
to the right of ��(ξ)} be a collection of independent and identically distributed Bernoulli random
variables of parameter p. First note that by the definition of X, ��(η) ≥ ��(ξ), then define
η1/2 and ξ1/2 as follows:

• η1/2(e) = η0(e) for all e to the left of ��(η0);

• η1/2(e) = Ye for all e strictly to the right of ��(η0);

• ξ1/2(e) = ξ0(e) for all e to the left of ��(ξ0);

• ξ1/2(e) = Ye for all e strictly to the right of ��(ξ0).

After that, note that (η1/2, ξ1/2) ∈ X and let {Ze : e strictly to the left of �r(η)} be a collection
of independent and identically distributed Bernoulli random variables of parameter p which is
independent of the random variables Ye. Finally, define η1 and ξ1 as follows:

• η1(e) = η1/2(e) for all e to the right of �r(η1/2);

• η1(e) = Ze for all e strictly to the left of �r(η1/2);

• ξ1(e) = ξ1/2(e) for all e to the right of �r(ξ1/2);

• ξ1(e) = Ze for all e strictly to the left of �r(ξ1/2).

We can now complete our proof. Let � be an increasing function on �E(A, B) and let (η0, ξ0)

be an element of X. Then (ηn, ξn) ∈ X almost surely (a.s.) for all n. Therefore,

�(��(ηn)) ≥ �(��(ξn)) a.s. for all n.

Hence,
E(�(��(ηn))) ≥ E(�(γ�(ξn))) for all n.

Now, taking limits as n goes to ∞ and applying Corollary 3 to both sides of the inequality, we
obtain μ�′(A, B) ≥ μ�′∩�(G)(A, B). �

3. Generalizations and extensions of Theorem 1

We first discuss generalizations of the oriented bond percolation model that do not require
any change in our proof of the main results, then we consider oriented site percolation and the
contact process and after that we mention an extension of these results which require a quite
different proof.

It is easy to check that we never made any use of the assumption that all of the bonds have
the same probability of being open. In fact, we could assign a different probability to each
bond, and the proofs will continue to work without any changes. It may seem that this is
an uninteresting generalization, but we will see that it turns out to be relevant when we use
percolation models to approximate the continuous-time contact process.
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We now turn to oriented site percolation. Let

�̄ = {(x, y) : x, y ∈ Z, y ≥ 0}.

Fix integers a ≤ 0 < b, and for each (x, y) ∈ �̄, introduce oriented bonds from (x, y) to
(x + k, y + 1) for a ≤ k ≤ b. All of the bonds are open. The sites are open independently of
each other, with probability p ∈ (0, 1) (we could also allow different probabilities for different
sites). Paths are defined in the obvious way, and open paths are paths in which all of the sites
are open.

The case where a = 0 and b = 1 is equivalent to the standard oriented site percolation
in Z

2, where there are two bonds per site. Not surprisingly, our proofs of the main result can
be modified in a routine way to cover this case.

Once the case a = 0, b = 1 is handled, it is quite routine to further modify the proof to
cover arbitrary a ≤ 0 < b, which is to say that our main result holds for finite range oriented
site percolation in two dimensions. This highlights a significant difference between oriented
bond percolation and oriented site percolation. In oriented bond percolation, the leftmost and
rightmost paths may not even exist when there is the possibility that bonds cross one another,
as will be the case when b − a > 1. But in oriented site percolation, leftmost and rightmost
paths always exist, for any choice of a, b.

Finally, we briefly discuss the contact process. By treating the y-coordinate in � as the time
variable, one can obtain various versions of the discrete-time contact process from oriented
percolation. The standard model is equivalent to oriented site percolation. Variations on this
model can be obtained from oriented bond percolation, and also by looking at mixed models
in which both the sites and the bonds can be open or closed. Not surprisingly, our main result
applies to many mixed percolation models, and, hence, to many different discrete-time contact
processes.

One way to extend our results to the continuous-time contact process is to approximate
continuous time with discrete time. This method works easiest for the one-sided nearest-
neighbor contact process. Then we could use the oriented bond percolation model that is
the setting for most of this paper, but it is perhaps more natural to implement oriented bond
percolation on an equivalent graph: the set of sites is �̄ and the oriented bonds are those that
correspond to a = 0 and b = 1. That is, two oriented bonds emerge from each site (x, y),
a ‘vertical’ bond connecting it to the site (x, y + 1) and a ‘contact’ bond connecting it to
(x + 1, y + 1).

With this setup, we can approximate the continuous-time one-sided contact process by letting
the contact bonds be open with small probability h > 0 and letting the vertical bonds be open
with probability 1 − εh, where ε ≥ 0 is a parameter of the model. Then letting h ↓ 0 and
rescaling time by a factor of h produces the continuous-time model. This shows why it can be
desirable to allow the bonds to have different probabilities of being open.

We can use a similar approximation method for the two-sided nearest-neighbor contact
process. In this case, we use the graph � that is the setting for the bulk of this paper, but we
add additional oriented ‘vertical bonds’ that connect each site (x, y) ∈ � to the site (x, y + 2).
Then by assigning appropriate probabilities to the bonds (different for the vertical bonds than
for the diagonal bonds), we obtain a percolation model that depends on a parameter h, and
this model converges to the two-sided nearest-neighbor contact process as h → 0; see [2] for
further details. The key point is that the results in this paper all apply to both the one-sided and
two-sided contact processes in continuous time.
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Finally, the assumption of independence between bonds may be weakened. Keeping the
independence for bonds emerging from different sites but allowing the two bonds emerging
from the same site to be dependent, our main results still hold. But when the bonds emerging
from the same site are negatively correlated, Theorem 1 requires a completely different proof.
This proof uses a rather intricate inductive argument, that was hinted at in [4], rather than the
Markov chain of Section 2. For details of this proof we refer the reader to [1].

4. Applications of Theorem 1

One reason for our interest in extreme paths is that they provide us with a useful way to
analyze various conditional probabilities, and with the help of Theorem 1, we are able to make
comparisons that go beyond the usual correlation inequalities that are familiar in percolation
theory. The results in this section apply to the more general models discussed in the previous
section, except that Corollaries 5, 6, 7, and 8 require translation invariance, so that all of the
bond (or site) probabilities must be the same.

In this section we adopt the following notation. Given 0 ≤ m ≤ n, a fixed subset �′ of �

and finite subsets A and B of Lm and Ln, respectively, we let

H = {there exists an open path from A to B in �′}.
Then, if F is another event such that P(F ∩ H) > 0, we let μF

�′(A, B) be the distribution of
the leftmost open path from A to B in �′ given the event F ∩ H . The same notation will apply
to the distributions of rightmost paths where ν will substitute for μ.

We will rely on a key fact about extreme paths. If γ is a path, the event that γ is a rightmost
(leftmost) open path is measurable with respect to the states of the bonds that are to the right
(left) of γ and hence this event is independent of the states of the bonds that are strictly to the
left (right) of γ .

The following result and its proof show how we use this fact in conjunction with Theorem 1
to compare several different conditional probabilities.

Lemma 1. Let n > 0, let A be a finite subset of L0, and let B1, B2, B3 be finite subsets of Ln.
Suppose that B1 is strictly to the left of B2 and that B2 is strictly to the left of B3. For i = 1, 2, 3,
define the events

Hi = {there exists an open path from A to Bi}.
If the events H2 and H3 have nonzero probability, then

P(H1 | H2 ∩ Hc
3 ) ≥ P(H1 | H2) ≥ P(H1 | H2 ∩ H3) (1)

and
P(H1 | H2) ≥ P(H1 | H3). (2)

Furthermore, if A consists of a single site (x, 0) then P(H1 | H2) is nonincreasing in x for all x
such that the event H2 has positive probability.

Proof. We begin by proving the following inequality:

νHc
3 (A, B2) ≤ ν(A, B2). (3)

The event Hc
3 is the disjoint union of events of the form {� = ϕ}, where � is the random set of

all edges that are contained in open paths that end in B3. The left-hand side of (3) is a convex
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combination of the measures ν{�=ϕ}(A, B2), and for each ϕ, ν{�=ϕ}(A, B2) = ν�(G)(A, B2),
where G is the set that contains the endpoints of the edges in ϕ. The inequality in (3) now
follows from Theorem 1.

We now use (3) to prove the first inequality in (1). Let � be the rightmost open path from
A to B2, assuming that such a path exists, which is the same as assuming that H2 occurs. The
left-hand side of (3) is the conditional distribution of � given H2 ∩ Hc

3 and the right-hand side
of (3) is the conditional distribution of � given H2. In either case, the event H1 occurs if and
only if there is an open path from A ∪ � to B1.

Let γ be any path from A to B2. Given the event H2 ∩ {� = γ }, the edges strictly to
the left of γ are each open with probability p and they are independent of each other. This
statement about the edges left of γ also holds given the event H2 ∩ Hc

3 ∩ {� = γ } because of
the assumption that B3 is strictly to the right of B2. In either case, whether or not there is an
open path from A ∪ γ to B1 is determined in the same way by the openness of the edges that
are strictly to the left of γ . Thus, there is a function ϕ on the set of all paths γ from A to B2
such that

ϕ(γ ) = P(H1 | H2 ∩ {� = γ }) = P(H1 | H2 ∩ Hc
3 ∩ {� = γ })

and we have

E(ϕ(�) | H2) = P(H1 | H2) and E(ϕ(�) | H2 ∩ Hc
3 ) = P(H1 | H2 ∩ Hc

3 ).

Assume that γ1 and γ2 are possible values of � such that γ1 ≤ γ2. Then, for i = 1, 2, we have

P(H1 | H2 ∩ {� = γi}) = P(A ∪ γi → B1),

where {A ∪ γi → B1} is the event occurring if and only if there is an open path from A ∪ γi

to B1. Since
{A ∪ γ2 → B1} ⊂ {A ∪ γ1 → B1},

the function ϕ(γ ) is decreasing with respect to the partial ordering on paths, so the first inequality
in (1) now follows from (3). The second inequality in (1) follows immediately from the first
inequality and the fact that the middle expression in (3) is a convex combination of the first and
third expressions.

To prove (2), we first use Corollary 2 to obtain

ν(A, B2) ≤ ν(A, B3).

Now (2) follows, in the same way that (1) followed from (3).
To prove the last part of the lemma, we note that by Corollary 2,

ν((x, 0), B2) ≤ ν((x + 2, 0), B2)

for all x such that there exist paths from (x, 0) and (x + 2, 0) to B2. The last part of the lemma
is now proved in the same way that (1) and (2) were proved. �

The first inequality in (1) may seem counterintuitive. We know that the occurrence of a
‘negative’ event like Hc

3 makes a ‘positive’ event like H1 less likely to occur. But the first
inequality says informally that once H2 occurs, the additional occurrence of the negative event
Hc

3 makes H1 more likely to occur. Here is another way to state this result.

Corollary 4. Let H1, H2, H3 be as in Lemma 1. Then given H2, the events H1 and H3 are
conditionally negatively correlated.
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Proof. The proof is elementary, using the second inequality in Lemma 1:

P(H1 ∩ H3 | H2) = P(H1 ∩ H2 ∩ H3)

P(H2)

= P(H1 ∩ H2 ∩ H3)

P(H2 ∩ H3)
P(H3 | H2)

= P(H1 | H2 ∩ H3)P(H3 | H2)

≤ P(H1 | H2)P(H3 | H2). �

Here is another application of Lemma 1. It is a rather natural monotonicity involving
certain percolation probabilities. It is somewhat surprising that its proof seems to require the
consequences of something as sophisticated as Theorem 1. We note that this result clearly
depends on some translation invariance, so it requires all of the bond probabilities (or site
probabilities in the case of oriented site percolation) to be the same. A different proof of this
result was given in [2], but we believe the one given here is more natural and easier to follow.

Corollary 5. Let 0 ≤ m < n and let x, y be integers such that (x, m) ∈ Lm and (y, n) ∈ Ln.
Let Ax,y be the event that there is an open path from (x, m) to (y, n). Then P(Ax,y) is non-
increasing in |x − y|.

Proof. Because of the natural symmetries built into the percolation model, we may assume
without loss of generality that m = 0, x = 0, and y ≥ 0. The obvious inductive argument
reduces the proof to showing that

P(A0,y) ≥ P(A0,y+2), (4)

where we may assume that y is such that there exists at least one path from (0, 0) to (n, y + 2).
Since y ≥ 0, this assumption implies that there also exists at least one path from (0, 0) to (n, y).

Under these circumstances, to prove (4), it is enough to prove that

P(A0,y | A0,y+2) ≥ P(A0,y+2 | A0,y) (5)

since the numerators in the expressions for the two conditional probabilities in (5) are the same
and since the denominators in these expressions are the two sides of (4) (in reverse order).

To prove (5), we first use left-right symmetry and then translation invariance to obtain

P(A0,y+2 | A0,y) = P(A0,−y−2 | A0,−y) = P(A2y+2,y | A2y+2,y+2).

Since we assumed that y ≥ 0, from the last part of Lemma 1 we have

P(A2y+2,y | A2y+2,y+2) ≤ P(A0,y | A0,y+2)

proving (5), and thus (4). Note that our assumptions about y ensure that all of the relevant events
in these applications of Lemma 1 have positive probability, as required by the hypotheses of
that lemma. �

For our last results we adopt the following notation. For (k, n) ∈ � we let X(k, n) be the
indicator function of the event {(0, 0) → (k, n)}, and if γ is a path in � we let Xγ (k, n) be the
indicator function of the event {γ → (k, n)}.
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Corollary 6. Let y ∈ Z and n ∈ N be such that (y, n) ∈ � and −n ≤ y ≤ n − 2. Then for
any k ∈ N and any increasing function f : {0, 1}k → R, we have

E(f (X(y + 2, n), . . . , X(y + 2k, n)) | X(y, n) = 1)

≥ E(f (X(y + 4, n), . . . , X(y + 2k + 2, n)) | X(y + 2, n) = 1).

Proof. On the event {X(y, n) = 1}, we let � be the leftmost open path from (0, 0) to (y, n).
Then

E(f (X(y + 2, n), . . . , X(y + 2k, n)) | X(y, n) = 1)

=
∫

γ

E(f (X(y + 2, n), . . . , X(y + 2k, n)) | � = γ ) dμ((0, 0), (y, n))(γ )

=
∫

γ

E(f (Xγ (y + 2, n), . . . , Xγ (y + 2k, n))) dμ((0, 0), (y, n))(γ ),

where for the second equality we used the fact that conditioning on the event {� = γ } does not
change the distribution of the state of the bonds strictly to the right of γ . Similarly,

E(f (X(y + 4, n), . . . , X(y + 2k + 2, n)) | X(y + 2, n) = 1)

=
∫

γ

E(f (X(y + 4, n), . . . , X(y + 2k + 2, n)) | � = γ ) dμ((0, 0), (y + 2, n))(γ )

=
∫

γ

E(f (Xγ (y + 4, n), . . . , Xγ (y + 2k + 2, n))) dμ((0, 0), (y + 2, n))(γ )

=
∫

γ

E(f (Xγ (y + 2, n), . . . , Xγ (y + 2k, n))) dμ((−2, 0), (y, n))(γ ),

where the last equality follows from translation invariance. But by the first inequality of
Corollary 2, μ((−2, 0), (y, n)) ≤ μ((0, 0), (y, n)), and the corollary follows from the fact that

F(γ ) = E(f (Xγ (y + 2, n), . . . , Xγ (y + 2k, n)))

is an increasing function on the set �({(−2, 0), (0, 0)}, {(y, n)}). �
Corollary 7. Let x ∈ N0 and n ∈ N be such that (x, n) ∈ � and let a1, . . . , ak be an increasing
sequence of elements of 2N0. Then

P(X(x + a1, n) = 1, . . . , X(x + ak, n) = 1)

≥ P(X(x + a1 + 2, n) = 1, . . . , X(x + ak + 2, n) = 1).

Proof. Write

P(X(x + a1, n) = 1, . . . , X(x + ak, n) = 1)

= P(X(x + a2, n) = 1, . . . , X(x + ak, n) = 1 | X(x + a1, n) = 1)

× P(X(x + a1, n) = 1) (6)

and

P(X(x + a1 + 2, n) = 1, . . . , X(x + ak + 2, n) = 1)

= P(X(x + a2 + 2, n) = 1, . . . , X(x + ak + 2, n) = 1 | X(x + a1 + 2, n) = 1)

× P(X(x + a1 + 2, n) = 1). (7)

Now we need only show that the right-hand side of (6) is greater than or equal to the right-hand
side of (7), but this follows immediately from Corollaries 5 and 6. �
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Remark 1. Of course, unlike Corollary 6, this last result does not hold if we do not assume
that x ≥ 0. It falls short of proving that under the same hypothesis the random vector (X(x +
a1, n), . . . , X(x + ak, n)) is stochastically above (X(x + a1 + 2, n), . . . , X(x + ak + 2, n))

but we conjecture that this also holds.

Our last application generalizes Corollary 5.

Corollary 8. Let 0 ≤ m < n, let k ∈ N, and let x, y be integers such that (x, m) ∈ Lm

and (y, n) ∈ Ln. Let Ax,y,k be the event that there is an open path from (x, m) to {(y −
2k, n), . . . , (y + 2k, n)}. Then P(Ax,y,k) is nonincreasing in |x − y|.

Proof. As in the proof of Corollary 5, we may assume without loss of generality that m = 0,
x = 0, and y ≥ 0 and an obvious inductive argument reduces the proof to showing that

P(A0,y,k) ≥ P(A0,y+2,k). (8)

This inequality is trivial if there are no paths from (0, 0) to (y + 2k + 2, n). Hence, we may
assume that

|y + 2k + 2| ≤ n. (9)

Now, (8) follows from

P(A0,y,k ∩ Ac
0,y+2,k) ≥ P(Ac

0,y,k ∩ A0,y+2,k).

This last inequality is equivalent to

P(X(y − 2k, n) = 1, X(y − 2k + 2, n) = 0, . . . , X(y + 2k + 2, n) = 0)

≥ P(X(y + 2 + 2k, n) = 1, X(y + 2k, n) = 0, . . . , X(y − 2k, n) = 0).

The left- and right-hand sides of this inequality can be written respectively as

P(X(y − 2k + 2, n) = 0, . . . , X(y + 2k + 2, n) = 0 | X(y − 2k, n) = 1)

× P(X(y − 2k, n) = 1)

and
P(X(y + 2k, n) = 0, . . . , X(y − 2k, n) = 0 | X(y + 2 + 2k, n) = 1)

× P(X(y + 2 + 2k, n) = 1).

Hence, the corollary will follow from

P(X(y − 2k, n) = 1) ≥ P(X(y + 2 + 2k, n) = 1) (10)

and

P(X(y − 2k + 2, n) = 0, . . . , X(y + 2k + 2, n) = 0 | X(y − 2k, n) = 1)

≥ P(X(y + 2k, n) = 0, . . . , X(y − 2k, n) = 0 | X(y + 2 + 2k, n) = 1). (11)

Now, (10) follows from Corollary 5 and our assumption on y, hence it remains to prove (11).
To do so, first note that by symmetry the right-hand side of (11) can be expressed as

P(X(−y − 2k, n) = 0, . . . , X(−y + 2k, n) = 0 | X(−y − 2 − 2k, n) = 1). (12)
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Proceeding as in proof of Corollary 7 and recalling (9), we see that this can be written as
∫

γ

P(Xγ (−y − 2k, n) = 0, . . . , Xγ (−y + 2k, n) = 0) dμ((0, 0), (−y − 2 − 2k, n))(γ ),

which by translation invariance is equal to
∫

γ

P(Xγ (y − 2k + 2, n) = 0, . . . , Xγ (y + 2k + 2, n) = 0) dμ((2y + 2, 0), (y − 2k, n))(γ ).

Since the left-hand side of (11) is equal to
∫

γ

P(Xγ (y − 2k + 2, n) = 0, . . . , Xγ (y + 2k + 2, n) = 0) dμ((0, 0), (y − 2k, n))(γ ),

the result follows from Corollary 2, our assumption on y, and the fact that

P(Xγ (y − 2k + 2, n) = 0, . . . , Xγ (y + 2k + 2, n) = 0)

is a decreasing function of γ on the set �({(0, 0), (2y + 2, 0)}, {(y − 2k, n)}). �
Remark 2. We did not find a way to complete the proof of [4, Theorem 5] which remains as
an open problem.
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