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1. Introduction

The idea that bounded harmonic functions are constant dates back to Liouville
and Cauchy in 1844. Several generalizations of this result, also involving nonlinear
equations and more general growth of the solution at infinity have since appeared
in the literature (see [11] for a detailed review of this topic).

The aim of this paper is to obtain a rigidity result for integrodifferential semilinear
equations of fractional order 2s, with s ∈ (0, 1).

We recall that fractional integrodifferential operators are a classical topic in
analysis, whose study arises in may different fields including harmonic analysis [25],
partial differential equations [5] and probability [1]. The study of these operators
is also relevant to concrete situations, in related real-world applications, such as
quantum mechanics [12], water waves [7], meteorology [6], crystallography [16],
biology [13], finance [22] and high technology [26].

The type of integrodifferential operators that we consider here are of the form

Iu(x) :=
∫

Sn−1×R

(u(x + ϑr) + u(x − ϑr) − 2u(x))
dµ(ϑ) dr

|r|1+2s
. (1.1)
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In this notation, r ∈ R is integrated by the usual Lebesgue measure dr, while
ϑ ∈ Sn−1 is integrated by a measure dµ(ϑ), which is called the ‘spectral measure’
in the literature; these measures satisfy the following non-degeneracy assumptions:
there exist λ, Λ ∈ (0, +∞) such that

inf
ν∈Sn−1

∫
Sn−1

|ν · ϑ|2s dµ(ϑ) � λ and µ(Sn−1) � Λ. (1.2)

Particularly famous cases of spectral measures are those induced by singular kernels,
i.e. when dµ(ϑ) = K0(ϑ) dHn−1(ϑ), with 0 < infSn−1 K0 � supSn−1 K0 < +∞.
Note that in this particular case the spectral measure is absolutely continuous with
respect to the standard Hausdorff measure on Sn−1, and the operator in (1.1) comes
from integration against the homogeneous kernel

K(y) := |y|−n−2sK0

(
y

|y|

)
, (1.3)

in the sense that

Iu(x) =
∫

Rn

(u(x + y) + u(x − y) − 2u(x))K(y) dy. (1.4)

Of course, the case when K is equal to constant boils down to the fractional Lapla-
cian, i.e. to the case in which, up to a normalization factor, I = −(−∆)s.

The literature has recently shown increasing efforts to study these types of
anisotropic operators (see, for example, [14, 15, 19–21]). Recall that the picture
given by the general operator in (1.1) is often quite special when compared with
the isotropic case, and sometimes even surprising: for instance, a complete regular-
ity theory in the setting of (1.1), (1.2) does not hold, and explicit counterexamples
can be constructed (see [20]).

We shall consider the equation Iu = f(u). This type of equation is often called
‘semilinear’ since the nonlinearity depends only on the values of the solution itself
(for this reason, solutions of semilinear equations may satisfy geometric properties
better than the solutions of arbitrary equations).

Our main result states that if f is non-decreasing, then solutions of Iu = f(u)
whose growth at infinity is bounded by |x|κ, with κ less than the order of operator,
must necessarily be affine (and, in fact, constant when the nonlinearity is non-
trivial). More precisely, we have the following.

Theorem 1.1. Let f ∈ C(R) be non-decreasing. Let u ∈ C2(RN ) be a solution of

Iu(x) = f(u(x)) for any x ∈ R
n. (1.5)

Assume that
|u(x)| � K(1 + |x|κ), (1.6)

for some K � 0 and κ ∈ [0, 2s).
Then the following classifications hold:

(i) if f is not identically zero, then u is constant, say u(x) = c for any x ∈ R
n,

and f(c) = 0;
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(ii) if f is identically zero, then u is an affine function, say u(x) = � · x + c, for
some � ∈ R

n and c ∈ R; in this case, if, in addition, κ < 1, then � = 0 and
u is constant.

Remark 1.2. Theorem 1.1 holds here for the very general integrodifferential oper-
ator in (1.1), (1.2). Moreover, to the best of our knowledge, theorem 1.1 is new,
even in the case of the regular spectral measure in (1.3), (1.4), and, perhaps quite
surprisingly, even in the isotropic case of the fractional Laplacian.

On the other hand, when I is replaced by the Laplacian (which is formally the
above case with s = 1) theorem 1.1 is a well-known result in the framework of
classical Liouville-type theorems (see, for example, [11,23]). As a matter of fact, the
counterpart of (1.5) in the classical case is the semilinear equation ∆u = f(u), set in
the whole of R

n. This equation has been studied extensively, not least in connection
with phase transition models (see, for example, [2, 17] and the references therein).
Its fractional analogue also has physical relevance, since it appears, for instance,
in the study of phase transitions arising from long-range interactions and in the
dynamics of atom dislocations in crystals (see, for example, [3, 4, 8, 9, 18,24]).

Our strategy for proving theorem 1.1 is to show that f(u(x)) must be identically
equal to zero in any case. Therefore, u is a solution of Iu = 0, and this will allow
us to use a Liouville-type theorem in order to obtain the desired classification.
Towards this goal, one uses the subcritical growth of the solution u to compare the
solution with suitable barriers. Of course, the construction of appropriate barriers
is the main novelty with respect to the classical case, since the non-locality of the
operator mostly comes into play in this framework.

Remark 1.3. We also stress that theorem 1.1 has a natural generalization when
only the second condition in (1.2) is satisfied : in this case, the thesis of theorem 1.1
becomes that

f(u(x)) = 0 for all x ∈ R
n. (1.7)

In particular, by (1.7), in this case we still have that Iu(x) = 0 for all x ∈ R
n, and

if a solution exists, then the nonlinearity f must have at least one zero.
Another consequence of (1.7) is that if f is not identically zero, then u must be

either bounded from above or bounded from below.
In addition, if the zeros of f are isolated, then one obtains for free that u is also

constant in this case.
On the other hand, to obtain the complete thesis of theorem 1.1, we need also to

assume that the first assumption in (1.2) is satisfied, in order to use a result in [19].

Note that theorem 1.1 has a natural, and simple, generalization that deals with
the case in which (1.6) is replaced by a one-sided inequality. In this spirit, we present
the following result.

Theorem 1.4. Let f ∈ C(R) be non-decreasing. Let u ∈ C2(RN ) be a solution of

Iu(x) = f(u(x)) for any x ∈ R
n.

Then, if
u(x) � K(1 + |x|κ),
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for some K � 0 and κ ∈ [0, 2s), we have that

Iu(x) � 0 for any x ∈ R
n.

Similarly, if
u(x) � −K(1 + |x|κ),

for some K � 0 and κ ∈ [0, 2s), we have that

Iu(x) � 0 for any x ∈ R
n.

We also point out that the regularity assumptions of u in theorems 1.1 and 1.4
were taken for simplicity, and in concrete cases one does not need u to be initially
smooth (for instance, in the setting of [15] one can deal with viscosity solutions,
and in the setting of [19] one can deal with weak solutions).

The rest of the paper is organized as follows. In § 2 we collect some preliminary
integral computations that will be used in § 3 to construct a useful barrier. Roughly
speaking, this barrier replaces the classical paraboloid in our non-local framework
(of course, checking the properties of the paraboloid in the classical case is much
simpler than constructing barriers in non-local cases). The proofs of theorems 1.1
and 1.4 are stated in § 4.

2. Toolbox

Below we give some preliminary integral computations that are needed in § 3 to
construct a suitable barrier. For convenience, we use the following notation:

I1v(x) :=
∫

Sn−1×(−1,1)
(v(x + ϑr) + v(x − ϑr) − 2v(x))

dµ(ϑ) dr

|r|1+2s

and

I2v(x) :=
∫

Sn−1×(R\(−1,1))
(v(x + ϑr) + v(x − ϑr) − 2v(x))

dµ(ϑ) dr

|r|1+2s
,

in order to distinguish the integration performed when |r| < 1 from that when
|r| � 1.

2.1. Estimates near the origin

We estimate I1v and I2v near the origin, according to the following lemmas.

Lemma 2.1. Let v ∈ C2(B3). Then, for any x ∈ B1,

I1v(x) � C

for some C > 0 possibly depending on n, s, Λ and ‖v‖C2(B2).

Proof. If x, y ∈ B1, we obtain from a Taylor expansion that

|v(x + y) + v(x − y) − 2v(x)| � ‖D2v‖L∞(B2)|y|2.
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Hence, by integration, we get

I1v(x) �
∫

Sn−1×(−1,1)
‖D2v‖L∞(B2)|r|2

dµ(ϑ) dr

|r|1+2s

� Λ‖D2v‖L∞(B2)

∫ 1

0
|r|1−2s dr

due to (1.2), which gives the desired result.

Lemma 2.2. Let
γ ∈ (0, 2s). (2.1)

Let v : R
n → [0, +∞) be a measurable function such that v(x) � |x|γ for any x ∈ R

n.
Then, for any x ∈ B1,

I2v(x) � C,

for some C > 0 possibly depending on n, s, Λ and γ.

Proof. Let x ∈ B1 and y ∈ R
n \ B1. Then |x| � 1 � |y| and so

|v(x + y) + v(x − y) − 2v(x)| � |v(x + y)| + |v(x − y)| + 2|v(x)|
� |x + y|γ + |x − y|γ + 2|x|γ

� 2(|x| + |y|)γ + 2|x|γ

� (2γ+1 + 2)|y|γ .

So, we integrate, recalling (1.2), and we see that

I2v(x) �
∫

Sn−1×(Rn\(−1,1))
(2γ+1 + 2)|r|γ dµ(ϑ) dr

|r|1+2s

� 2(2γ+1 + 2)Λ
∫ +∞

1
rγ−1−2s dr. (2.2)

Then we use (2.1) to obtain the desired result.

2.2. Estimates far from the origin

Now, we estimate Iv = I1v + I2v at infinity.

Lemma 2.3. Let γ be as in (2.1) and let v : R
n → R be a measurable function such

that v(x) � |x|γ for any x ∈ R
n.

Assume also that v(x) = |x|γ for any x ∈ R
n \ B1. Then, for any x ∈ R

n \ B1,

Iv(x) � C

for some C > 0 possibly depending on n, s, Λ and γ.

Proof. Fix x ∈ R
n \ B1. Then v(x) = |x|γ . Moreover, v(x ± y) � |x ± y|γ , and so

v(x + y) + v(x − y) − 2v(x) � |x + y|γ + |x − y|γ − 2|x|γ .
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Therefore, setting ω := x/|x| and changing variable r := |x|	, we have that

Iv(x) =
∫

Sn−1×R

(v(x + ϑr) + v(x − ϑr) − 2v(x))
dµ(ϑ) dr

|r|1+2s

�
∫

Sn−1×R

(|x + ϑr|γ + |x − ϑr|γ − 2|x|γ)
dµ(ϑ) dr

|r|1+2s

= |x|γ−2s

∫
Sn−1×R

(|ω + ϑ	|γ + |ω − ϑ	|γ − 2)
dµ(ϑ) d	

|	|1+2s

= |x|γ−2s

∫
Sn−1×R

g(ϑ	) + g(−ϑ	) − 2g(0)
|	|1+2s

dµ(ϑ) d	, (2.3)

where, for any η ∈ R
n, we set g(η) := |ω + η|γ . Note that

|g(η)| � (|ω| + |η|)γ = (1 + |η|)γ . (2.4)

Moreover, g ∈ C∞(B1/2) and, for any η ∈ B1/2, we have that

∂ig(η) = γ|ω + η|γ−2(ωi + ηi),

∂2
ijg(η) = γ(γ − 2)|ω + η|γ−4(ωi + ηi)(ωj + ηj) + γ|ω + η|γ−2δij .

Consequently, for any η ∈ B1/2,

|D2g(η)| � C0|ω + η|γ−2

for some C0 > 0 depending on γ and n, and |ω + η| � |ω| − |η| � 1
2 . Therefore,

‖D2g‖L∞(B1/2) � 22−γC0.

This, together with a Taylor expansion, implies that, for any η ∈ B1/2,

|g(η) + g(−η) − 2g(0)| � ‖D2g‖L∞(B1/2)|η|2 � 22−γC0|η|2.

Hence, recalling (2.4) and (1.2), we obtain that∫
Sn−1×R

g(ϑ	) + g(−ϑ	) − 2g(0)
|	|1+2s

dµ(ϑ) d	

� C

( ∫
Sn−1×(−1/2,1/2)

|	|2
|	|1+2s

dµ(ϑ) d	

+
∫

Sn−1×(R\(−1/2,1/2))

(1 + |	|)γ

|	|1+2s
dµ(ϑ) d	

)

� CΛ

( ∫
(−1/2,1/2)

|	|2
|	|1+2s

d	 +
∫

R\(−1/2,1/2)

(1 + |	|)γ

|	|1+2s
d	

)

� C ′Λ (2.5)

for some C, C ′ > 0, due to (2.1). We insert this into (2.3) to obtain the desired
estimate (by possibly renaming the constants).

We observe that condition (2.1) has been used to make some integrals converge
(e.g. those in (2.2) and (2.5)). In addition, when γ � 2s, the fractional Laplacian
of functions growing with |x|γ is not well defined.
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3. Construction of an auxiliary barrier

Here we use the estimate in § 2, and borrow some ideas from [10] to construct a
useful auxiliary function.

Lemma 3.1. Let γ ∈ (0, 2s). There exists a function v ∈ C∞(Rn) such that, for
some C > 0,

v(0) = 0, (3.1)
0 � v(x) � |x|γ for any x ∈ R

n, (3.2)
v(x) = |x|γ if |x| � 1, (3.3)

sup
x∈Rn

Iv(x) � C. (3.4)

Proof. Let τ ∈ C∞(Rn) be such that 0 � τ � 1 in the whole of R
n, and let τ = 1

in B1/2 and τ = 0 in R
n \ B1. We define v(x) := (1 − τ(x))|x|γ . In this way,

conditions (3.1)–(3.3) are satisfied.
Furthermore, v satisfies all the assumptions of lemmas 2.1–2.3. Thus, using such

results, we obtain condition (3.4).

4. Proof of the main results

Proof of theorem 1.1. The proof relies on a modification of a classical argument
(see, for example, [11,23]). In our setting, the barrier constructed in lemma 3.1 will
replace (at least from one side) the classical paraboloid. The details of the argument
are as follows. Let f , u, K and κ be as in theorem 1.1. Let γ := 1

2 (2s + κ). By
construction,

γ ∈ (κ, 2s), (4.1)

so we can use the barrier v constructed in lemma 3.1. We fix ε > 0 and an arbitrary
point x0 ∈ R

n, and we define

w1(x) := u(x) − u(x0) + 2ε − εv(x − x0),
w2(x) := u(x) − u(x0) − 2ε + εv(x − x0).

}
(4.2)

Note that

lim sup
|x|→+∞

w1(x) � lim sup
|x|→+∞

[u(x) + |u(x0)| + 2ε − εv(x − x0)]

� lim sup
|x|→+∞

[K(1 + |x|κ) + |u(x0)| + 2ε − ε|x − x0|γ ]

= −∞

and

lim inf
|x|→+∞

w2(x) � lim inf
|x|→+∞

[u(x) − |u(x0)| − 2ε + εv(x − x0)]

� lim inf
|x|→+∞

[−K(1 + |x|κ) − |u(x0)| − 2ε + ε|x − x0|γ ]

= +∞,
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where we have used (1.6), (3.3) and (4.1). Consequently, the maxima of w1 and w2
are attained, i.e. there exist y1, y2 ∈ R

n such that

w1(y) � w1(y1) and w2(y) � w2(y2) for any y ∈ R
n. (4.3)

Accordingly, for any y ∈ R
n, we have

w1(y1 + y) + w1(y1 − y) − 2w1(y1) � 0,

w2(y1 + y) + w2(y1 − y) − 2w2(y2) � 0.

}
(4.4)

On the other hand,

w1(y1 + y) + w1(y1 − y) − 2w1(y1)
= u(y1 + y) + u(y1 − y) − 2u(y1)

− ε(v(y1 + y − x0) + v(y1 − y − x0) − 2v(y1 − x0)),

w2(y2 + y) + w2(y2 − y) − 2w2(y2)
= u(y2 + y) + u(y2 − y) − 2u(y2)

+ ε(v(y2 + y − x0) + v(y2 − y − x0) − 2v(y2 − x0)).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

By comparing (4.4) and (4.5), we obtain that

0 �
∫

Sn−1×R

(w1(y1 + ϑr) + w1(y1 − ϑr) − 2w1(y1))
dµ(ϑ) dr

|r|1+2s

= Iu(y1) − εIv(y1 − x0),

0 �
∫

Sn−1×R

(w2(y2 + ϑr) + w2(y2 − ϑr) − 2w2(y2))
dµ(ϑ) dr

|r|1+2s

= Iu(y2) + εIv(y2 − x0).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

Therefore, using and (1.5) and (3.4), we obtain that

0 � f(u(y1)) − Cε and 0 � f(u(y2)) + Cε. (4.7)

Now, we observe that w1(x0) = 2ε � 0 and w2(x0) = −2ε � 0 due to (4.2) and (3.1).
So, if we evaluate (4.3) at the point y := x0, we obtain that

0 � w1(x0) � w1(y1) and 0 � w2(x0) � w2(y2). (4.8)

Furthermore, using the fact that v � 0 (recall (3.2)), we see from (4.2) that

w1(y1) � u(y1) − u(x0) + 2ε and w2(y2) � u(y2) − u(x0) − 2ε.

By comparing this with (4.8), we conclude that

u(y1) � u(x0) − 2ε and u(y2) � u(x0) + 2ε.

Therefore, since f is non-decreasing, we deduce that

f(u(y1)) � f(u(x0) − 2ε) and f(u(y2)) � f(u(x0) + 2ε).
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We plug this information into (4.7) to obtain

0 � f(u(x0) − 2ε) − Cε and 0 � f(u(x0) + 2ε) + Cε. (4.9)

Note that x0 was initially fixed at the beginning and so it is independent of ε
(conversely, the points y1 and y2 in general may depend on ε). This means that we
can pass to the limit as ε → 0+ in (4.9) and use the continuity of f to obtain

0 � f(u(x0)) and 0 � f(u(x0)),

i.e. f(u(x0)) = 0. Since x0 is an arbitrary point of R
n, we have proved that

f(u(x)) = 0 for any x ∈ R
n. (4.10)

Thus, again using (1.5), we obtain that

Iu = 0 in R
n.

From this and [19, theorem 2.1], we obtain that u is a polynomial of degree d ∈ N,
with d less than or equal to the integer part of κ. In particular, d � κ < 2s < 2.
Hence, d ∈ {0, 1}, and thus u is an affine function. So we can write u(x) = � ·x+ c,
for some � ∈ R

n and c ∈ R.
Incidentally, note that, since d � κ, when the additional assumption κ < 1 holds

we have that d = 0, and consequently � = 0 and u is constant. These considerations
establish theorem 1.1(ii).

Now we prove that

if f does not vanish identically, then � = 0. (4.11)

Indeed, if, by contradiction, we have � �= 0, then, given any r ∈ R, we can take
x� := (r − c)|�|−2�. Then

u(x�) = � · x� + c = r.

Thus, by (4.10), we get that f(r) = f(u(x�)) = 0. Since r was arbitrary, this means
that f vanishes identically, contradicting our assumptions. This proves (4.11).

By (4.11) and (4.10) we obtain theorem 1.1(i). This completes the proof of the-
orem 1.1.

Proof of theorem 1.4. The proof of theorem 1.4 follows in this case by considering
only the function w1 (to obtain the first statement of theorem 1.4), or only the
function w2 (to obtain the second statement).

Acknowledgements

The authors are supported by European Research Council (ERC) Grant no. 277749
‘EPSILON elliptic PDEs and symmetry of interfaces and layers for odd nonlin-
earities’ and by Progretti di Ricerca di Interesse Nazionale (PRIN) Grant no.
201274FYK7 ‘Critical point theory and perturbative methods for nonlinear dif-
ferential equations’.

https://doi.org/10.1017/S0308210516000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000391


1018 A. Farina and E. Valdinoci

References
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