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Abstract

Since their discovery, submarine hydrothermal vent systems have been pointed out as import-
ant places where chemical evolution on Earth could have occurred; and their role in the pro-
cess has been highlighted. Similarly, some hypotheses have considered these systems in origin
of life scenarios. In this way, many experiments have been developed, and the knowledge
about these systems has increased. Due to their complexity, many experimental simulations
have only included a few of the geochemical variables present in these environments, pressure
and temperature. Other main variables have hardly been included, such as mineralogy, ther-
mal and pH gradients, dissolved ions and/or redox reactions. As it has been understood, the
dynamism and heterogeneity of these environments are huge, and it comprises different
scales, from single vents to full hydrothermal fields. However, the vast majority of experiments
focus on a specific part of these systems and do not include salinity, mineralogy and pH gra-
dients. For this reason, in this paper, we pointed out some considerations about how this
dynamism can be interpreted, and included in some models, as well their importance in pre-
biotic chemistry experiments and their extrapolations regarding the hypothesis about the ori-
gins of life.

Introduction

Before the discovery of submarine hydrothermal vent systems (SHVS) (Corliss et al., 1979),
some scientists pointed out the importance of high temperatures in the first steps along the
formation of life. Markedly, R. B. Harvey suggested the thermal spring environments as prob-
able scenarios for the emergence of life (Harvey, 1924). On the contrary, Fox (1971) and
Ingmanson and Dowler (1977) suggested that temperature gradients would be important
for the generation and evolution of organic compounds under high-temperature environments
(e.g. brine pools associated with the axes of plate spreading, and hot springs associated with
submarine volcanism). A few years after, Corliss et al. (1981) and Baross and Hoffman
(1985) suggested that these environments ‘provide all conditions necessary for the creation
of life on Earth’ as consequence of the discovery of the first SHVS, the ‘Clambake 1’
(Ballard, 1977). These authors proposed the possibility that life could have originated in a
Precambrian hydrothermal oceanic system, based on a kind of chemosynthesis processes, as
a result of reactions through the gradients of temperature, pH and chemical composition.

As soon as these proposals permeated, several scientists tried to test them experimentally.
The first approximations showed that the organic molecules (e.g. amino acids, carboxylic acids
and nitrogen bases) are mainly decomposed at high temperatures (>100°C) (Povoledo and
Vallentyne, 1964; Vallentyne, 1964; Bernhardt et al., 1984; White, 1984; Miller and Bada,
1988; Qian et al., 1993; Bell et al., 1994; Bada et al., 1995; Larralde et al., 1995; Kohara
et al., 1997; Levy and Miller, 1998). Hence, Miller, Bada and Lazcano (Miller and Bada,
1988; Bada et al., 1995; Miller and Lazcano, 1995; Bada and Lazcano, 2002) argued that sub-
marine hydrothermal conditions, still considering thermal gradients, are hostile environments
because the organic molecules are essentially decomposed after their synthesis. In addition,
these authors considered that the most probable contribution of those environments was
rather the chemical regulation of the ocean–atmosphere system during the early Earth (e.g.
contribution of metals and dissolved ions). However, they did not discard that ‘some protective
mechanisms’ may have been available in hydrothermal systems and they could have improved
the stability of the organic molecules. In this way, considering that in a high pressure–tempera-
ture environment the organic molecules are essentially decomposed, what could be the
importance of submarine hydrothermal systems for chemical evolution?

Nowadays, several researchers have taken into account some previous ideas and they have
proposed interesting hypotheses about the steps that could have led to the formation of first-
living organisms in submarine environments (Wächtershäuser, 2006; Martin et al., 2008;
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Lane and Martin, 2012; Herschy et al., 2014; Sojo et al., 2016;
Barge and White, 2017). However, although these environments
harbour the basic requirements for life to emerge (i.e. energy,
water and organic molecules; Omran and Pasek 2020), there are
several questions that still need to be resolved. For example, the
decomposition of biomolecules versus their polymerization in
aqueous medium; or the formation and stability of lipid mem-
branes under high salt concentration (Cleaves et al., 2009;
Deamer and Georgiou, 2015). However, recent experiments
have shown that vesicular structures (i.e. decylamine : decanoic
acid) can be formed and remain stable under different conditions
(e.g. acidic pH, high salinity and/or high temperature) (Maurer,
2017; Maurer et al., 2018).

In consequence, whether or not life originated in environments
such as SHVS, a possibility so far unproven, it is necessary to con-
strain the most feasible submarine hydrothermal vent scenarios for
chemical evolution to occur. In this sense, our goal in this paper is
not to justify the emergence of life in these environments; the idea
is to describe, according to our experience, what could be the
physico-chemical scenario in primitive SHVS that could have
boosted chemical evolution and how this knowledge can be useful
to the development of experiments in prebiotic chemistry.

Early earth environment

The Earth was and still remains as a dynamic system. New evi-
dence, supported by detrital zircons, suggest: (1) the probable
presence of liquid water on planet surface along the first 1000
Ma of the Earth’s history, (2) a proto-continental crust composed
by granitic rocks (TTG), (3) the presence of fluvial erosion pro-
cesses and (4) continental crust recycling during subduction
events (Cavosie et al., 2007; Harrison, 2009; Kemp et al., 2010;
Sleep, 2010; Arndt and Nisbet, 2012; Trail et al., 2013; Boehnke
et al., 2018). In consequence, it is highly probable that an intense
hydrothermal activity was present during the Hadaean and the
early Archaean and led to great changes in the geochemical pro-
cesses on Primitive Earth, such as: (1) a great hydrothermal min-
eral deposit formation (Schulte et al., 2006; Hazen et al., 2008;
Papineau, 2010; Schrenk et al., 2013; Wang et al., 2014;
Morrison et al., 2018), (2) the synthesis of organic molecules
(Novoselov and Silantyev, 2010; Konn et al., 2015; McDermott
et al., 2015), (3) an enrichment of gases and dissolved ions in a
neutral–alkaline ocean (Sleep et al., 2004; Shibuya et al., 2015)
and (4) the formation of oligomers and polymers as a prelude
to the development of biomolecules (Villafañe-Barajas et al.,
2020b, 2021). Therefore, it is very likely that SHVS were present
and abundant on early Earth, so they could have acted as niches
of chemical evolution (Kelley, 2005; Golding et al., 2011; Stüeken
et al., 2013).

In the next section, we explain how the dynamism of SHVS
could affect the chemical evolution process. Similarly, in an over-
all way, we justified the necessity to perform prebiotic chemistry
experiments that consider the spatial scales of venting.

Submarine hydrothermal vent systems: dynamic systems

The complexity of SHVS is intrinsically linked to a highly
dynamic environment. The convection processes in SHVS can
be separated into three spatial scales of venting: (1) the flow com-
ing from a single hydrothermal chimney (smokers) (10 m2), (2)
the vent field that includes all active hydrothermal fluids (both
at low, <100°C, and high temperatures, <400°C) (100 m2) and

(3) the active ridge segment (10 km2) that include hydrothermal
deposits and venting sites (Little et al., 1987). Thence, it is pos-
sible to consider hydrothermal fields, in an overall way, as
dynamic systems resulting from a constant interaction among
the hydrothermal fluids coming from several sources (e.g. rich
array of plumes, poly-metallic mounds, chimneys, buoyancy
fluxes and currents along topography). The hydrothermal field
can be dominated by one single vent, by several vents with enough
separation, or by clusters of vents that can interact with each other
(Lupton et al., 1985; Tao et al., 2013) (Fig. 1). This is crucial
because a change in spatial scale should affect the nature and
number of geochemical variables involved and that must be incor-
porated in simulations. As an example, it is important to be clear
if the experiments attempt to study the conditions in the chimney
or in the surroundings of the systems, this would affect the design
of the experiments and the outreach of it. The extrapolations can-
not be applied to all system conditions.

As we mentioned before, a significant number of prebiotic
experiments, simulating submarine hydrothermal vent condi-
tions, only focus on the stability and decomposition of organic
molecules at high temperatures and high pressures (i.e. >100°C
and >10 bar) (Larralde et al., 1995; Levy and Miller, 1998;
Alargov et al., 2002; Sato et al., 2004; Abdelmoez et al., 2007;
Cox and Seward, 2007a, 2007b; Klingler et al., 2007; Balodis
et al., 2012). Despite the tremendous complexity of submarine
hydrothermal environments, only recently a few experiments
have studied the role of different variables, such as minerals
(Andersson and Holm, 2000; McCollom and Seewald, 2003;
Ito et al., 2006, 2009; McCollom, 2013; Burcar et al., 2015;
Dalai et al., 2016), dissolved ions and gases (Marshall, 1994;
Yamaoka et al., 2007; Franiatte et al., 2008; Chandru et al.,
2013; Estrada et al., 2017), the quenching effect (350 –2°C)
(Ogasawara et al., 2000; Ogata et al., 2000; Islam et al., 2003;
Kawamura and Shimahashi, 2008), the pH effect and the redox
state (Yamaoka et al., 2007; Sakata et al., 2010; Lee et al., 2014)
on the stability and transformation of different organic com-
pounds (for a detailed review, see Colín-García et al., 2016,
2018) and have improved the understanding of the role of
physicochemical variables (coupled or individually) on the fate
of organic molecules in these environments. However, it should
be mentioned that most of the experiments are focused on a
small fraction of the SHVS. In other words, although they have
considered different variables in the same simulation, they are
focused on the first scale of the venting (i.e. single hydrothermal
chimney; smokers), and they do not take into account the dyna-
mism of the environment. As we will explain later, the process of
chemical evolution must have been presented in a wide space
throughout these systems. In the next sections, we will explain
some of the parameters that should be considered and have reper-
cussions in the fate or organic molecules along submarine sys-
tems. Notably, the dynamism in these systems suggest that
chemical evolution phenomena could be more prominent in the
surroundings of the vents, where diffuse low-temperature flows
and interactions between organic molecules and minerals could
be abundant, and not in the single hydrothermal chimneys as it
has been widely considered.

Flow and spread

Because SHVS are very dynamic, the hydrothermal fluids can
have different properties in their temperature and composition
as a consequence of differences in topography (Stein et al., 2013).
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The hydrothermal fluids can be released and transported by
several ways: either by localized hot vents (up to 400°C, 22–119
cm s−1 for fluid temperatures between 200 and 300°C), or by dif-
fuse flow warm plumes (<100°C) from other discharge sites (e.g.
cracks in lava flows and seafloor around the vent field, breccia,
collapse pits, lava rubble, mineral deposits and faults) at low
flow rates (e.g. vertical velocities of diffuse effluent rage between
0.9 and 11.1 cm s−1 for fluid temperatures between 3 and 33.5°
C) (Lupton et al., 1985; Little et al., 1987; Bemis et al., 2012;
Mittelstaedt et al., 2012). This warm diffuse flow could represent
the most important part of SHVS from a chemical evolution point
of view (Fig. 1). For instance, the physicochemical conditions in
this area could favour the accumulation of organic material due
to low temperatures as well as sorption phenomena in several
minerals, phenomena that are not possible at higher temperatures.
In other words, these surroundings can extend for kilometres, and
represent a continuous heat output fraction. Some authors have
reported that these diffuse flow warm plumes can represent up
to 90% of the total heat fraction of the system (Ramondenc
et al., 2006; Bemis et al., 2012).

The simplest model about the dynamic flux from hydrother-
mal fluid is the buoyant flow. Depending on the variables used
(e.g. ambient sea water buoyancy frequencies, source diameters,
source velocities, dissolved ions, density gradient, hydrographic
conditions, convection and conduction of heat and sea water
stratification), the vertical thermal diffusion can be different
(Wilcock, 1998; Coumou et al., 2006; Kadko et al., 2013; Tao
et al., 2013). Some models suggest that the maximum plume ris-
ing height can be ∼300 m (Tao et al., 2013) and that it can spread
laterally through diffusion and advection mechanism (Thomson,
2005). These models match the measured values height of the
plume Trans-Atlantic Geotraverse (TAG) hydrothermal site, for
example (German and Sparks, 1993).

When the vent water and sea water reach an equilibrium dens-
ity, they form a plume named conveyor belt. This plume can
spread laterally up to 100 km along the basement relief through
and driven by abyssal currents (Dymond and Roth, 1988;
Khripounoff et al., 2001). In this way, several reactions among
plume constituents and seawater can occur at different timescales
(e.g. oxidation, precipitation, dissolution, sorption and scavenging
reactions; Kadko et al., 1990). The organic matter suffers the most
important changes in the conveyor belt, not in the source (i.e.
chimneys) (see below).

Bottom currents

Another factor that should not be underestimated is bottom cur-
rents. They influence the turbulent mixing and venting activity,
and result in environmental thermal gradients (5–10°C cm−1 at
timescales of hours and days). Bottom currents also contribute
to the lateral transport of the fluids over a large region, on kilo-
metres’ scale (Bates et al., 2010; Mittelstaedt et al., 2012). These
low temperatures could induce the precipitation of minerals
from the suspended particles in hydrothermal clouds at distances
until 100 km from the ridge crest (Baker et al., 1985; Hannington
et al., 2001). In consequence, suspended mineral particles can
favour the retention of organic molecules on their surfaces and,
together with low temperatures, allow concentration mechanisms
to prevail over decomposition reactions on a considerable spatial
scale.

Thermal gradients

Organic matter is easily destroyed at high temperatures, so ther-
mal gradients present in SHVS could be fundamental for assuring
the formation of more complex organics. The variations of

Fig. 1. SHVS are highly dynamic environments. Any experiment intended to that simulate some of the conditions present in these systems should be clear in the
scale of the venting (e.g. smokers, diffuse and low-temperature vents or the active ridge segment) as well as in the scope of their results. The details are fully
described in the text.
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temperature can be associated with several phenomena. For
instance, it could be the result of changes in the porous diffusive
system in the chimney, tidal cycles, hydrothermal fluid discharge
or the turbulent mixing with the environment (Chevaldonné
et al., 1991; Khripounoff et al., 2001). Other phenomena such
as thermophoresis, on the micro-scale, can result in the accumu-
lation of organic molecules on the convection chamber (Braun
and Libchaber, 2004; Mast et al., 2013). It has been reported
that fluids, associated with turbulences and that were mixed
between sources, exhibit high temperature differences (e.g. 50°
C) on the centimetre scale (Fornari et al., 1998). Some models
suggest that the rise of a plume until maximum height of rise is
reached in ∼1 h and that quenching phenomenon occurs in
about 30 s (Mcduff, 2013). Other models suggest important ther-
mal gradients along the chimney wall (McCollom and Shock,
1997). As we can see, thermal gradients can be crucial in the
organic molecules spreading, but again, the discharge of the tur-
bulent fluids seems to be so powerful that the most important
temperature differences could be more representative along the
plume (100 m2).

Chemical interactions along plume and sea water

Hydrothermal fluids can be considered as multicomponent elec-
trolytes with high metal concentrations, and an important
amount of organic and volatile components (Lemke, 2013). The
ability to form ligands, among metal and organic matter, can
have important repercussions on the fate of molecules. For
instance, the interaction of organic compounds with dissolved
metals forms very high stable complexes, and they can be widely
distributed along hydrothermal systems (Sander and Koschinsky,
2011). Klevenz et al. (2010) mentioned that 90% of metals in
hydrothermal fluids can be present as metal-organic molecules
complexes (e.g. amino acids) and that the turbulent mixing may
result in different thermal stabilities of the amino acids. These
complexes eventually precipitate, enriching the amino acid con-
centration of the low temperature (5−100°C) hydrothermal sedi-
mentary environments, compared to the high-temperature vent
fluid habitats (T > 150°C).

In this way, the study of organic-metal complexes is crucial to
understand the fate of organic compounds in hydrothermal envir-
onments. On the one hand, the complexation reactions in hydro-
thermal brines (i.e. rich in Na+, Ca2+, Cl−) suggest that they
depend on the solubility of organic salts, their concentration
and the pH conditions (Hennet et al., 1988). On the other
hand, it has been shown that supercritical water enhances the
solubility of organic compounds and reduces solvation properties
for ionic species due to its loss of aqueous hydrogen bonding
(Simoneit, 1992). In addition, the ability of hydrothermal fluids
to transport ions and other aqueous species, into and away
from alteration zones, is strongly correlated with changes in the
electrostatic properties of the fluid (Shock, 1992).

Another fundamental aspect to consider is the chemical reac-
tions along the plume because oxidation/reduction reactions can
be kinetically slow for some metals (e.g. Fe and Mn)
(McCollom, 2000). For example, dissolved Mn(II) has residence
times close to 1 month; although, it is highly dependent on pre-
cipitation mechanisms (e.g. coordination polymers with sodium
azide) (Mandernack and Tebo, 1993). Some species (e.g. H2S)
can be removed by their precipitation as oxides (Mottl and
McConachy, 1990; Gartman et al., 2011). Other chemical species,
such as methane, remain in dissolution for 1 week before their

complete oxidation. The latter can represent an important carbon
source to the surroundings of the vent field (10 km) (De Angelis
et al., 1993). Considering the previous information, it is clear that
organic molecules are not isolated in the systems, so the experi-
ments that have reported their high decomposition rates should
be complemented by the analysis of metal-organic complex for-
mation. This will result in more consistent simulations.

One of the most discussed problems in chemical evolution is
the concentration and the availability of organic molecules on
early Earth. Since the SHVS are open systems, it seems extremely
difficult to reach high-organic concentrations in them. On the one
hand, to delimitate the amount of organic carbon along the
hydrothermal plumes is very difficult, due to the biological pro-
duction and consumption. In present day systems, the concentra-
tion of amino acids reported can be affected by in situ production
of microbial biomass in the sediment (Haberstroh and Karl,
1989). Some differences among the dissolved organic carbon
(DOC) and the particulate organic carbon (POC) concentrations
(DOC: 38–47 μM and POC: 0.16–3.81 μM), in the mid-ocean
ridge hydrothermal systems, have been reported. These differ-
ences are associated with the heterogeneous physical conditions
of the system (i.e. subsurface biological production, sorption
onto mineral surfaces, thermal decomposition, etc.). Essentially,
DOC is depleted both at high-temperature ridge-axis vents as in
warm off-axis vents (<10 μM) (Lang et al., 2006; Bennett et al.,
2011). On the other hand, the distribution of organic species
can be controlled by the seawater mixing, temperature and cool-
ing effects and the CO2–CO–H2 thermodynamic equilibria
(Foustoukos et al., 2009). Although some amino acids have
been detected in hydrothermal fluids (directly collected from
deep-sea hydrothermal systems), it is necessary to consider several
things to calculate the real concentration of this molecules in
these scenarios. First of all, it is not easy to distinguish between
the amino acid contribution of organisms (direct biological ori-
gin), and those produced by hydrolysis of polymeric forms (i.e.
derived from organisms and bio-debris) (Horiuchi et al., 2004).
Similarly, it is also unclear which part of a hydrothermal area
(i.e. the chimney (hot spots) or the low-temperature hydrother-
mal fluids) is the most important source for amino acids
(Fuchida et al., 2014). Nonetheless, it has been suggested that low-
temperature hydrothermal fluids can be an important source of
amino acids, and not the hydrothermal plume per se (Svensson
et al., 2004; Lang et al., 2013).

Finally, it is essential to consider the gas and particle distribu-
tion in SHVS. As we can expect, gas diffusion should be very
quick. For instance, hydrogen (H2) is removed from the plume
within hours while manganese (Mn) is removed after 2 weeks
(Kadko et al., 1990). The particle distribution will depend on min-
eral phase and solubility (e.g. sulphate and sulphite particles have
a slower process of dissolution than hydrous iron) (Lilley et al.,
2013). Similarly, some data suggest that the particle recycling
and re-entrainment in the plume can occur over a length of 1–
10 km (German and Sparks, 1993). Besides, this dissipation of
material could be replaced by a continuous input from low-
temperature water-rock reactions (Mayhew et al., 2013). In add-
ition, the scavenging processes could impact these processes and
affect the ocean geochemical cycles (German et al., 2002).

A consistent submarine hydrothermal vent scenario?

As we can deduct from the previous arguments, a more compre-
hensive submarine hydrothermal scenario includes not only high
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pressures and high temperatures as main conditions. The fluids
discharged by different sources from hydrothermal systems
experience a chemical change as they interact with seawater
(Kadko et al., 1990) and hardly remain at high temperatures
(>100°C).

Although the properties of water and chemical species are
clearly affected by physicochemical gradients through the circula-
tion in hydrothermal systems, they are often ignored in prebiotic
chemistry experiments (Holm and Hennet, 1992). Over the last
two decades, the scientific community has noted these ideas
and developed more complete experiments related to the geo-
chemical parameters available in SHVS.

For example, Seewald et al. (2006) reported the formation of
reduced carbon compounds (e.g. HCOOH and CH3OH) as a con-
sequence of thermal gradients and reversible reactions between
dissolved gases (i.e. CO2, CO and H2). Additionally, theoretical
models suggest that it is thermodynamically possible, considering
temperature gradients and oxidation–reduction reactions, to syn-
thesize organic molecules from some common gases (e.g. CO2

and H2) (Shock, 1993; Shock and Schulte, 1998; Shock and
Canovas, 2010; McDermott et al., 2015). These experiments
seem to be consistent with the availability of organic compounds
in SHVS. For instance, Lang et al. (2010) reported, based in iso-
topic evidence, the abiotic production of organic molecules (i.e.
formate: 158 μmol kg−1; acetate: 35 μmol kg−1) from alkaline
hydrothermal vents (i.e. Lost City hydrothermal field). A recent
experimental result suggested that HCO3/CO2 can be reduced
to formate and trace amounts of acetate, using metal sulphides
as catalysts, and H2S as a reductant at hydrothermal conditions
(300°C, 3 h, basic pH) (He et al., 2019). On the other hand,
Ying et al. (2019) showed that the formation of dipeptides
increase with rising pressure (300 bar, T < 50°C, amino acid,
P3M, pH 10.7) because the high-hydrostatic pressure increases
the equilibrium constant of the reaction. Also, the interaction
among minerals (olivine and orthopyroxene) with amino acids
during several days (147 days) at 200 bar with periodic thermal
cycling (30–100°C) leads to the synthesis of dipeptide species
and their chemisorption (Takahagi et al., 2019). Other researchers
have focused on the thermolysis and polymerization reactions of
hydrogen cyanide under simple hydrothermal conditions (Das
et al., 2019; Villafañe-Barajas et al., 2020a, 2020b) and showed
the formation of several organic compounds, suggesting that
this kind of reactions could occur in the vicinity of hydrothermal
vents. Moreover, other studies suggest that ferrocyanide solutions
are stables at lower pCO2 , temperature <25°C and higher pH (6.9–
9.3); for example, in environments saturated in carbonate or
bicarbonate brines (Toner and Catling, 2019). As we can see,
there are many gaps in prebiotic chemistry studies simulating
SHVS, and there is no clear knowledge about the role of geochem-
ical variables present in them. Therefore, it is necessary to develop
more experiments with a clearer idea about the conditions and
variables that must be considered and replicated (Holm and
Andersson, 2005).

Even though there are several proposals about submarine
environments and their role in chemical evolution and the origin
of life, it is necessary to be cautious with the assertions and extra-
polations about these ideas. For example, some of these ideas have
suggested the emerge of the first protometabolic pathway from the
interaction of hydrothermal fluids (considering redox and pH dis-
equilibria) with mineral, in an ancient submarine hydrothermal
vent (Wächtershäuser, 1988a, 1988b, 2006; Cartwright and
Russell, 2019). Although these ideas have stimulated the thinking

of the scientific community about the role of these scenarios,
according to our point of view, we must be careful and gather
more information before giving categorical answer to the role of
these environments in the origin of life. Nevertheless, it is
worth mentioning that these kinds of hypotheses have considered
the dynamism of hydrothermal as the main argument to reach
chemical complexity (i.e. the interactions of minerals with organic
molecules where the pH has a dramatic role).

Until now, there is not a single proposal of a primitive envir-
onment that could have fulfil all the necessary conditions for the
development of the three fundamental components of life (i.e.
metabolism, genetic material and membranes). However, the
dynamism presented in submarine hydrothermal systems seems
to be a good starting point. It should be kept in mind that any
experiment that tries to simulate some of the conditions present
in SHVS must be clear in the scale it represents (e.g. smokers, dif-
fuse and low-temperature vents or the active ridge segment), and
thus, be consistent with the conditions prevailing on those scales.
Also, it is necessary to be cautious and consistent with the scope
of the results, to avoid overestimations about the role of these sys-
tems on chemical evolution and eventually, in the origin of life.
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