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Trailing vortices are generated in aeronautical and maritime applications and produce
a variety of adverse effects that remain difficult to control. A stability analysis
can direct flow control designers towards pertinent frequencies, wavelengths and
locations that may lead to the excitation of instabilities, resulting in the eventual
breakup of the vortex. Most models for trailing vortices, however, are far-field
models, making implementation of the findings from stability analyses challenging.
As such, we perform a stability analysis in the formative region where the numerically
computed base flow contains both a two-dimensional wake and a tip vortex generated
from a NACA0012 at a 5◦ angle of attack and a chord-based Reynolds number of
Rec=1000. The parallel temporal and spatial analyses show that at three chord lengths
downstream of the trailing edge, seven unstable modes are present: three stemming
from the temporal analysis and four arising in the spatial analysis. The three temporal
instabilities are analogues to three unstable modes in the spatial analysis, with the
wake instability dominating in both analyses. The helical mode localized to the vortex
co-rotates with the base flow, which is converse with the counter-rotating m = −1
instabilities of a Batchelor vortex model, which may be a result of the formative
nature of the base-flow vortex. The fourth spatial mode is localized to the tip vortex
region. The continuous part of the spectrum contains oscillatory and wavepacket
solutions prompting the utilization of a wavepacket analysis to analyse the flow field
and group velocity. The structure and details of the full bi-global spectrum will help
navigate the design space of effective control strategies to hasten decay of persistent
wingtip vortices.

Key words: vortex flows, vortex instability, wakes

1. Introduction
The flow past a wingtip is a widely studied and modelled flow configuration due

to its importance in both aeronautical and maritime applications. In aeronautical
applications, hazardous flight conditions during take-off and landing at airports
are encountered by smaller aircraft as their paths cross the wake of a larger plane.

† Email address for correspondence: aedstrand@fsu.edu
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Strongly destabilizing moments on the smaller vehicle can result, at best, in passenger
discomfort or, at worst, in irrecoverable loss of control (Spalart 1998). To ensure the
safety of aircraft with similar flight paths, air-traffic regulations call for minimum
following distances that depend on the size and weight of the leading as well as
following aircraft. These distances are meant to allow sufficient time for the strongly
vortical flow, forming off the wingtip, to weaken to a point where it no longer poses
a hazard to the following aircraft. In light of ever-increasing air traffic, especially
at major airport hubs, these impositions on the take-off and landing frequency are
responsible for growing air-traffic congestion and require the use of fuel-inefficient
and time-consuming holding patterns (Spalart 1998). Beyond aeronautical applications,
manoeuvring maritime vessels shed wake vortices, generating a measurable footprint
when stealth is desired (Wren 1997). It thus seems prudent to investigate the
dynamical and stability characteristics of the vortical wake structures, generated by the
wingtip or other control surface to lay a theoretical foundation for the manipulation
of their decay rates.

Despite the clear benefits from the hastened decay of these vortices, limited passive
or active control research has been applied to practical configurations. There is an
appreciable body of literature showing reasonable success in controlling wingtip
vortices (Matalanis & Eaton 2007; Margaris & Gursul 2010; Greenblatt 2012), but
optimization is generally performed through tedious exploration of a large parameter
space, after which the precise global optimum remains unknown. One way to help
navigate this parameter space and to support control efforts is to determine unstable
frequencies and wavelengths via a stability analysis.

Analyses of flow past a wingtip have thus far mainly concentrated on its two
principal components in isolation: the shed trailing-line vortex and the airfoil wake.
Regarding the former, the well-known Crow instability (Crow 1970) results from
the interaction of two counter-rotating vortices that shed from each wingtip and
excite growing oscillations that result in the eventual breakup of the vortices into
less hazardous vortex rings. It is a long-wavelength instability that can in turn be
utilized as a control device by varying the load distribution along the wing, either
by engaging the flaps and ailerons (Spalart 1998) or by rapidly actuating segmented
Gurney flaps (Matalanis & Eaton 2007). These techniques, however, may result in
accelerated structural fatigue due to the associated oscillatory loads.

Aside from the Crow instability, previous studies have also concentrated on
isolated trailing vortex flows. Batchelor (1964), using a far-field approximation,
derived an analytical expression that models these trailing vortices. This so-called
Batchelor vortex has been the subject of several, initially parallel, stability analyses
in both inviscid (Lessen, Singh & Paillet 1974) and viscous (Lessen & Paillet 1974;
Khorrami 1991; Mayer & Powell 1992; Fabre & Jacquin 2004) settings. These studies
provided neutral stability curves for a large range of swirl numbers, Reynolds numbers
and wavelengths. Initial studies showed that asymmetric disturbances opposing the
flow direction resulted in instability for a moderate swirl parameter. For a swirl
parameter larger than 1.5 the flow field was thought to be stable in the inviscid
limit (Lessen et al. 1974; Mayer & Powell 1992). However, Fabre & Jacquin (2004)
found that for very large but finite Reynolds numbers, viscous effects destabilize the
flow for all values of swirl. Relaxing the parallel flow approximation, a bi-global
parabolized stability analysis on the developing Batchelor vortex was conducted
using spectral element techniques (Broadhurst 2006) and higher-order finite-difference
methods (Paredes, Rodriguez & Theofilis 2013). Heaton, Nichols & Schmid (2009)
discretized both the radial and streamwise directions for a global approach, while
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FIGURE 1. A NACA0012 wing with the identified near, intermediate and far-field regions
and flow fields. The near field is defined as the region of vortex development along the
airfoil surface. The coordinate system is indicated with the origin at the trailing edge of
the wing tip, where x denotes the streamwise direction, z denotes the spanwise direction
and y completes the right-handed coordinate system. The green box designates the region
of interest for our stability analysis, ranging from x= 0 to 15. Note that although x= 0
is along the trailing edge, the green box does not reside directly along the trailing edge
for clarity.

also allowing for instabilities in both space and time. These analyses showed that
the global spectrum had similar structure to the parallel case, corroborating the
weakly non-parallel base-flow assumption in earlier studies. Despite this far-field
approximation, there has been reasonable agreement between the stability results of a
fit Batchelor vortex and experimentally obtained modes of a trailing vortex (Edstrand
et al. 2016).

While the aforementioned efforts provide valuable insights into the intrinsic
instabilities and their streamwise development, due to the far-field approximation
of the Batchelor vortex, the results are generally of limited use for control design as
the instabilities arise far from the wing surface and are thus difficult to manipulate by
common wing-mounted control devices. In the so-called intermediate field (figure 1),
the shed vortex shows a marked asymmetry, the vortex sheet is not fully rolled
up and the wake of the wing constitutes an important component of the base flow.
Consequently, the stability characteristics of the full base flow are expected to differ
from the results obtained for the Batchelor vortex.

Aside from the asymptotic trailing vortex, other stability analyses have considered
the wake of a two-dimensional airfoil using empirical fits (Mattingly & Criminale
1972), double Blasius profiles (Papageorgiou & Smith 1989) or Falkner–Skan profiles
(Woodley & Peake 1997) as models for the base flow. The empirical profiles
performed rather well in a stability analysis of the downstream domain, but the
results deteriorated in the vicinity of the trailing edge. Blasius and Falkner–Skan
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profiles provided good agreement with experimental data (Sato & Kuriki 1961) near
the trailing edge. Woodley & Peake (1997) introduced a critical Reynolds number,
which generally depends on the geometry and the induced adverse pressure gradient;
above this value, the onset of global linear instabilities is observed.

In contrast to these previous studies, the near wake behind a three-dimensional wing
contains spanwise velocity components, and the presence of the vortex developing
off the wingtip further complicates the base-flow velocity field. For this reason, even
though the instabilities of the wake may dominate the overall flow behaviour under
certain circumstances, only a global analysis of the composite wake–vortex flow field
can provide information about the presence of pertinent instability mechanisms and
their relative importance. For completeness, we compare the global analysis against the
canonical wake and vortex flows in § 4.5. Furthermore, with potential applications to
receptivity, we approximate the dispersion relationship through a second-order Taylor
series expansion in a so-called wavepacket analysis (Trefethen 2005; Obrist & Schmid
2010). This analysis may provide insight into the way the asymmetry of the base flow
affects the receptivity of the flow field to free-stream disturbances with relatively low
computational cost.

A schematic illustrating the development of the trailing vortex is provided in
figure 1, in which three regions are identified: the near-field development of the tip
vortex, the intermediate field involving the self-similar roll up and interaction with the
wake and the far-field region in which the vortex assumes an axisymmetric shape. Our
primary interest lies in the intermediate field, indicated by the green box in figure 1,
where the trailing vortex is asymmetric and prone to a strong wake interaction. In this
regime, the flow field is dominated by strong streamwise convection, with streamwise
diffusion causing only a weak non-parallelism in the base flow and a self-similar
vortex roll up (Devenport et al. 1996). Based on these observations, the present study
adopts a parallel-flow assumption in the streamwise direction as we expect the stability
characteristics to show only a minor dependence on the slow streamwise variation of
the base flow. For the cross plane at each streamwise location, a bi-global stability
analysis (Theofilis 2009, 2011) is performed. For more accurate results, a bi-global
parabolized analysis (Herbert 1997) that takes into account slow streamwise variation
should be utilized. However, for the parabolized analysis, the parallel approximation
is the initial condition and therefore the parallel assumption is a necessary first step
prior to moving forward to a parabolized analysis. Therefore, this paper provides
pertinent insight into future analyses that are parabolized in nature.

In the present study, we consider a low chord-based Reynolds number of Rec=1000,
such that the flow is laminar and fundamental in nature without the complications
that emerge from the treatment of turbulent stresses and their effect on the stability
analysis (Viola et al. 2014). This regime is also relevant for aerodynamic applications
related to biological flight and micro air vehicles. The wings seen in those fields
of study are characterized by their low-aspect-ratio planforms whose aerodynamic
characteristics are strongly influenced by tip vortices and three-dimensional effects
(Torres & Mueller 2004; Taira & Colonius 2009). Thus the present stability analysis
not only uncovers insights for potential vortex–wake mitigation but also provides
basic knowledge on tip-effect for low Reynolds number aerodynamics.

The article is structured as follows. We first present the base flow, together with
the computational approach and the employed numerical methods for the stability
analysis. We then perform a temporal stability analysis, concentrating on the discrete,
continuous and wavepacket pseudomodal structures of the spectrum. These results
are then contrasted with a spatial linear analysis, and links between these two types
of analysis are established. In the final section, we summarize our results and offer
conclusions.
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2. Computational approach and validation
2.1. Base flow

The base flow behind a wing is a complex flow field for which no analytical solution
exists; therefore, the base flow is determined numerically. We utilize direct numerical
simulation to compute the flow around a NACA0012 profile with a flat wingtip
positioned at an angle of attack of 5◦. The chord Reynolds number is fixed at
Rec = 1000 with a half-span b/2 = 1.25 and a chord c = 1, allowing for all spatial
coordinates to correspond to their non-dimensional values based on the chord length.
In the transverse (y) direction, the computational domain extends over the interval
y ∈ [−15, 15], while in the spanwise (z) direction we take z ∈ [−1.25, 14.375]. The
streamwise direction extends in a semi-circular arc with a radius of 15 and progresses
downstream 15 chords, discretized by a C-grid.

An incompressible, finite-volume flow solver, Cliff (CharLES package), developed
by Cascade Technologies (Ham & Iaccarino 2004; Ham, Mattsson & Iaccarino
2006), is used, which is second-order accurate in both time and space. The boundary
conditions at the inlet are prescribed with (U, V, W) = (1, 0, 0), and at the outlet
a convective outflow boundary condition is employed. In the far field and on the
symmetry plane, we impose free-slip boundary conditions.

The flow around the wing is simulated with approximately 3.5 million elements.
The spatial field is discretized on a hybrid mesh, where the boundary layer and
wake regions are covered by a structured grid, while the far field outside this region
is computed on an unstructured grid consisting of tetrahedral elements. To ensure
the grid is sufficient, we locally increase the number of elements in the wake by
approximately 2.1 million in the wake region, showing that the refined case recreated
the same flow field that contains minimal differences. The computational domain is
chosen such that the cross-section of the wing contains a blockage ratio of less than
0.5 %, indicating that the domain size is sufficiently large. These results provide us
with confidence that the base flow accurately captures the trailing-line vortex in free
space.

The simulation ran until it reached a steady-state base flow, shown in figure 2. The
blue iso-surface visualizes the trailing vortex with the Q-criterion (Jeong & Hussain
1995). As shown, the vortex core evolves smoothly downstream, with the radius
slightly diminishing in size with downstream progression due to viscous diffusion. A
contour slice shows the streamwise velocity deficit in the wake of the airfoil at x= 3,
i.e. the plane to be examined in this paper. Our study focuses on this plane because
flow at this location is influenced by both the wake and the trailing vortex allowing
us to gain insight into both wake and trailing vortex instabilities.

The downstream development of the streamwise (U), transverse (V) and spanwise
(W) velocity profiles are shown in figure 3 at z=−1.25 and −0.25 (i.e. midspan of
the wing and 80 % span, respectively). At the midspan of the wing (corresponding to
z=−1.25, figure 3a), a streamwise velocity deficit is observed near the trailing edge.
This deficit advects downward, indicated by the dash-dotted line of the minimum
velocity, due to the downwash caused by the induced negative transverse velocity. At
z=−0.25 (figure 3b), the higher level of transverse velocity advects the streamwise
velocity deficit farther upstream, causing the wake to descend more rapidly. The
spanwise velocity, W, is zero at the midspan location, but increases approximately to
the level of the transverse velocity at z=−0.25. At x= 3, the effect of the wake is
significant, but not so overwhelming as to overshadow the effect of the developing
vortex on the stability analysis. Hence, we select x= 3 as a representative location to
examine the combined efforts from the wake and trailing vortex onto the stability of
the flow.
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FIGURE 2. The base flow at Rec = 1000, visualized with blue iso-surfaces, showing the
Q-criterion (Q=0.25). The dark grey region corresponds to the wing location. The contour
slice of the streamwise velocity at x= 3 illustrates the streamwise velocity deficit in the
wake region, while the Q-criterion visualizes the structure of the trailing vortex.
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FIGURE 3. Streamwise (U, dashed line), transverse (V , solid line) and spanwise (W,
dotted line) velocities (V and W are scaled up by a factor of 5 for graphical clarity) of the
wake of the wing at z=−1.25 (a) and z=−0.25 (b) with downstream progression from
x= 0 to 5. The dash-dotted line with the solid-dot markers shows the point of minimum
axial velocity deficit in the wake. The x-locations are x= 0, 1.5, 3 and 4.5.

2.2. Stability analysis approach and validation
We examine the modal behaviour of small perturbations about the given base flow.
Following standard linear stability analysis formulation, the state variable can be
decomposed into the steady base flow and an unsteady disturbance as

q̃(x, y, z, t)=Q(x, y, z)+ εq̂(x, y, z, t). (2.1)

Here, q̃ = (ũ, ṽ, w̃, p̃)T denotes the state vector, Q = (U, V, W, P)T is the known
steady base flow, q̂ = (û, v̂, ŵ, p̂)T represents the disturbance and ε stands for a
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small disturbance amplitude. By only considering small disturbances, we neglect the
nonlinear, O(ε2) terms in the incompressible Navier–Stokes equations, which in turn
results in the linearized disturbance equations (Schmid & Henningson 2001). In the
intermediate region behind the airfoil, the slow process of viscous diffusion relative
to streamwise convection produces a quasi-parallel flow, with streamwise gradients
being less than 2.75 % of the transverse gradients. This quasi-parallel assumption on
streamwise variations of the base flow leads to the disturbance equations with constant
coefficients in the streamwise direction and permits wave-like disturbance solutions of
the form

q̂(x, y, z, t)= q(y, z) exp (iαx− iωt). (2.2)

In the above expression, q(y, z) denotes the shape function, and the argument in
the exponent of (2.2) is the phase function, where α and ω represent the streamwise
wavenumber and radian frequency, respectively. Substitution of (2.2) into the linearized
disturbance equations results in a generalized eigenvalue problem. The specific form
of the eigenvalue problem depends on the type of stability analysis. For a temporal
stability analysis, we assume growth/decay in time and allow for a complex frequency
ω = ωr + iωi, with ωi > 0 denoting exponential growth at the radian frequency
ωr. The associated eigenvalue problem reads ATq = ωBTq where AT and BT are
defined in appendix A. Conversely, for a spatial stability analysis, the streamwise
wavenumber α represents the complex eigenvalue α = αr + iαi with αi < 0 indicating
spatial exponential growth. The corresponding eigenvalue problem is nonlinear in the
eigenvalue α, but can be recast into an equivalent linear problem ASqS = αBSqS via
a companion matrix technique (Tisseur & Meerbergen 2001). The operators AS and
BS are also defined in appendix A.

The spatial discretization of the respective stability matrices A and B is performed
using the Chebyshev-based spectral collocation method (Kopriva 2009). The Chebyshev
Gauss–Lobatto points ηj are mapped onto the transverse coordinate direction y using
(Hein & Theofilis 2004)

yj = g(ηj; κ, y∞)= y∞
tan
(κπηj

2

)
tan
(κπ

2

) , j= 0, 1, . . . ,Ny, (2.3)

where y∞ denotes the largest far-field y-value noted below, and the parameter κ adjusts
the spread of the points about y= 0. When examining the discrete branches that are
isolated in the vortex regions, we use a value of κ = 0.96. In contrast, when analysing
the continuous branch, we require a larger number of points in the free stream, and
thus relax the parameter to κ = 0.85, yielding more gradual stretching of the grid.

In the spanwise coordinate direction with z∈ [−1.25, 14.375], two nested mappings
are utilized. First, equation (2.3) is used to map ζj→ ζ ∗j , where ζj denotes the Gauss–
Lobatto points in the z-direction, and ζ ∗j are the mapped points per (2.3). Throughout
this study, κ in the z-direction is set to be equal to the value used in the y-direction.
We maintain the far-field value to be ζ ∗

∞
=1 to preserve the scale on ζ ∗ ∈[−1,1]. With

the points reclustered about the centre, we then apply the second mapping from ζ ∗ to
z ∈ [−1.25, 14.375] using a rational function (Hanifi, Schmid & Henningson 1996)

zj = h(ζ ∗j ; zmin, zmid, z∞)= zmin + a
1+ ζ ∗j
b− ζ ∗j

, j= 0, 1, . . . ,Nz, (2.4)
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Nz ×Ny Duct flow, (A= 1, α =π) Batchelor vortex Current study
ω1 α1 ω1

30× 30 2.9027652− 0.10354i 0.57− 0.182i 4.85+ 0.35i
50× 50 2.902765448− 0.10352493i 0.5434− 0.18546i 4.862+ 0.3399i
60× 60 2.902765451− 0.103524929i 0.5433979− 0.18545406i 4.863+ 0.34010i
80× 80 2.902765453− 0.1035249269i 0.54339786− 0.185454054i 4.8628+ 0.34018i
Literature 2.9027654541− 0.10352492635i 0.543− 0.185i –

TABLE 1. Validation of the present temporal and spatial analyses with duct flow (Theofilis,
Duck & Owen 2004) and the Batchelor vortex (Paredes 2014), respectively. Shown are the
least stable eigenvalues with convergence. Also included (rightmost column) are results
of our temporal stability analysis of the flow past a wingtip for α = 5.5 at Rec = 1000,
demonstrating convergence of the converged least stable eigenvalue as the grid is refined.

with

a=
zmidz∞

z∞ − 2zmid
, b= 1+

2a
z∞
. (2.5a,b)

We choose zmin=−1.25, zmid= 1.25 and z∞= 15.625. The above expression distributes
half the mapped collocation points to cluster below and above zmid prior to translating
the data by zmin.

Stability analyses show relative insensitivity of the leading eigenvalue to the choice
of domain size owing to the exponential decay of its eigenfunction outside the
shear layer. For this reason, final computations are performed on the domain of
y ∈ [−10, 10] and z ∈ [−1.25, 10] in order to achieve satisfactory resolution within
the vortex and wake regions. The discretized eigenvalue problem is solved using the
implicitly restarted Arnoldi method with the shift-and-invert technique implemented
in ARPACK (Lehoucq, Sorensen & Yang 1996).

Our bi-global stability code is validated against stability analyses of two-dimensional
channel flow (Theofilis et al. 2004; Paredes 2014) and the Batchelor vortex (Fabre &
Jacquin 2004; Paredes 2014). The results of these validations are displayed in table 1.
For the present analysis, convergence towards a relative error of 10−4 is achieved for
a resolution of Nz × Ny = 60 × 60. Therefore, for cases that require a large number
of eigenvalue problems to be solved, we employ Ny × Nz = 60 × 60, and for single
case studies, we increase the number to Ny ×Nz = 80× 80 for more accurate results.

3. Temporal bi-global stability analysis

We begin with a series of temporal analyses and parametrically sweep the
streamwise wavenumber α to determine the most unstable condition (in our case,
for α = 5.5 for a chord-based Reynolds number of Rec = 1000). We then focus
on this streamwise wavenumber and present a detailed analysis of the bi-global
spectrum, identifying and examining the discrete branches, the continuous part (free
stream) and the region of the complex ω-plane that is dominated by wavepacket
eigenfunctions (see Trefethen 2005; Obrist & Schmid 2008, 2010). Each part of the
bi-global spectrum will be categorized and, where available, supported by analytical
or approximate computational results and scalings.
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FIGURE 4. Temporal growth rate, ωi, at x = 3 with varying streamwise wavenumber α,
with Nz = Ny = 60. The three instabilities are labelled as the principal wake instability,
wake instability and vortex instability, according to their modal features. The dashed line
indicates the wavenumber that we examine throughout the temporal analysis.

3.1. Parametric dependence on the streamwise wavenumber
Starting with a base-flow profile extracted at the streamwise position of x = 3, we
solve the bi-global temporal stability problem and vary the streamwise wavenumber
from α = 2 to 6.5 in increments of 1α = 0.5. Recall that the x = 3 location was
chosen to examine both wake and tip vortex influences. The results are shown in
figure 4. Three particular eigenvalues, representing a specific type of instabilities (see
more details in § 3.3), are tracked: the first is termed the ‘principal wake instability’,
the second eigenvalue is linked to a ‘vortex instability’ and the third, labelled ‘wake
instability’, displays features consistent with a higher-order wake mode. The principal
wake instability remains the primary instability throughout the range of α examined,
while the relative strength of the wake and vortex instabilities are dependent on the
streamwise wavenumber. For low-wavenumber disturbances (i.e. large wavelengths),
the vortex instability grows more rapidly than the wake instability.

The maximum growth rate of the principal wake instability is ωi ≈ 0.34, which is
achieved at a streamwise wavenumber of α= 5.5. At this wavenumber, both the wake
and vortex instabilities show a growth rate of ωi ≈ 0.18 and ωi ≈ 0.14, respectively,
suggesting a balance between the vortex instability and the wake instability. With the
wavenumber fixed at α= 5.5, we now present the bi-global spectrum and analyse the
associated modes in detail.

3.2. The temporal bi-global spectrum – an overview
For a streamwise wavenumber of α = 5.5 and a chord-based Reynolds number of
Rec = 1000, the temporal eigenvalue spectrum is displayed in the complex ω-plane
in figure 5. The unstable half-plane ωi > 0 is shaded in grey; instabilities, if any,
lie in this upper half-plane. The quantitative values of these growth rates, ωi, are
approximate due to the steady-state nature of the base flow, implying the discrete
branches may shift upward or downward in figure 5 (Sipp & Lebedev 2007). Despite
this, however, we retain confidence in the relative levels and qualitative structure of
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FIGURE 5. The eigenvalue spectrum from a temporal stability analysis at x= 3 for Rec=

1000, α = 5.5 and Nz = Ny = 80. The grey region represents the unstable half-plane. The
most unstable mode at ω= 4.862+ 0.340i corresponds to a wake-dominated mode denoted
the principal wake instability. The spectrum is annotated to help provide a physical
description of each branch of the spectrum.

these modes. Dividing ωr by the wavenumber α yields the streamwise phase speed,
i.e. the speed at which the associated modes travel. Invoking a critical-layer argument
(Schmid & Henningson 2001), this speed generally relates directly to the local speed
of the base flow, which implies that the disturbances with ωr < α are generally
confined to regions of velocity deficit.

The bi-global spectrum shows distinct branches of discrete eigenvalues. The
associated eigenmodes are spatially confined by the shear of the base flow which
acts as a wave guide, containing the modes between the critical layers while causing
exponential decay in the free stream. The discrete branch of the bi-global spectrum left
of the continuous branch (magenta vertical line) contains two pertinent sub-branches,
which we term a ‘wake branch’ and a ‘vortex branch’ (see figure 5). The disturbances
of the wake branch are spatially localized in both the wake and vortex regions,
usually along the entire span of the wake. The modal structures from the vortex
branch are almost entirely restricted to the vortex region. The top of the discrete
branch, containing the most unstable mode, represents a spatial structure that is
predominantly localized in the wake, with minor contributions in the vortex core.
We refer to this mode as a ‘principal wake instability’ (see figure 4). Progressing
farther down the wake sub-branch towards larger decay rates (i.e. ωi is decreasing),
we observe increasing interaction between the wake and tip region, while the wake
component shows structures with a higher spanwise wavenumber (see more details
below). Furthermore, a discrete branch to the right of the continuous branch, termed
the ‘azimuthal branch’, contains higher-order azimuthal modes (m > 1) localized
solely in the vortex region and is discussed at the end of § 4.3. As these modes are
stable, we reserve discussion of these modes until the spatial stability analysis in § 4.
In addition to the discrete branch, we also detect a continuous branch comprising of
free-stream oscillations that exponentially decay as they progress towards the wake
and vortex of the base flow. The apex of the continuous branch lies at ω=α− iα2/Rec.
Further details of the continuous spectrum are presented in § 3.4.
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FIGURE 6. Bi-global principal wake instability mode. (a) The eigenvalue spectrum plotted
with the corresponding eigenvalue circled in red. (b) Shows iso-surfaces of the Q-criterion
of the perturbation velocity with Q=±0.01 (blue and red, respectively). The contour slice
orients the figure to indicate where the wake is located. (c) Shows the streamwise vorticity
with solid line contours representing positive vorticity and dashed-lined contours denoting
negative vorticity. For a movie of (c), see movie 1 in the supplemental material.

3.3. The discrete branches
The discrete branch of the temporal spectrum shows an exponential instability
whose structure is shown in figure 6 and is termed the principal wake instability.
Figure 6(a) indicates (by a red circle) the location of the eigenvalue within the
bi-global spectrum, (b) shows iso-surfaces of the Q-criterion of the perturbation
velocity for Q=±0.01, visualized in blue and red, respectively. The contour slice of
the streamwise U-velocity of the base flow is projected at x=1 to provide reference to
the location of the wake and vortex region. Figure 6(c) shows the streamwise vorticity
of the eigenfunction, with the solid and dashed lines visualizing positive and negative
vorticity, respectively.

As the flow leaves the trailing edge, the wake of the wing contains a streamwise
velocity deficit. This deficit confines the wake instabilities and reduces the phase speed
of the disturbances in this region, with the velocity gradients of the base flow shearing
the disturbance, as shown by the aft-angle defined by the red and blue iso-surfaces.
Little spanwise variation is present in this mode until the vortex is reached. The rapid
decay of the mode as the disturbance approaches the vortex suggests an inhibitive
effect of the rotational motion on the wake mode; however, as the instability grows,
a helical vortex component that co-rotates with the base flow (see e.g. movie 1 of
the supplemental material available at https://doi.org/10.1017/jfm.2017.866) becomes
apparent that establishes a coupling between the wake and the vortex. As shown from
the figure 6(c), the perturbation is clearly localized to the base-flow shear, decaying
exponentially outwards toward the free stream. Similar to many previously studied
shear flows, the regions of shear act similar to walls, containing the mode within its
critical layers and showing evanescent decay outside.

Progressing farther down the wake branch we encounter a second instability with
ω = 4.813 + 0.1908i, labelled the higher-order wake instability. The corresponding
bi-global eigenfunction, shown in figure 7, contains disturbances localized in both
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FIGURE 7. Bi-global wake instability mode. Variables are plotted following the same
format as in figure 6. For a movie of (c), see movie 2 in the supplemental material.

regions of the wake and the vortex. The structure of this instability is similar to the
principal wake instability (figure 6); however, it contains a spanwise structure with a
higher wavenumber in this coordinate direction. The appearance of smaller scales in
the spanwise direction gives rise to larger viscous diffusion and, consequently, a lower
growth rate relative to the principal wake instability. Similar to the principal wake
instability, the disturbance is localized in the region of shear and exponentially decays
in the free stream (see figure 7c). The vortex region just inboard of (y, z)= (0, 0) also
shows a helical vortex structure that co-rotates with the base flow (see movie 2 of the
supplemental material).

Although the vortex instability, shown in figure 8, has the lowest growth rate (ωi=

0.146) of all unstable bi-global modes, its growth rate is comparable to the higher-
order wake instability. This type of instability is localized in the vortex core, where the
base-flow velocity is larger than in the wake, as reflected in a phase speed higher than
for the other instabilities. Due to its localization in the vortex core, we hypothesize
that the tip vortex drives this mode.

The vortex instability shows a two-lobed structure that co-rotates with the base flow.
This pattern may be analogous to the helical mode of vortex instabilities. However,
the azimuthal inhomogeneity of the base flow precludes an exact decomposition
of the helical nature into Fourier modes (i.e. with azimuthal wavenumbers m of
integer values). Nonetheless, the observed co-rotation with the base flow hints at an
azimuthal mode with m = 1 (see movie 3 of the supplemental material), contrary
to the Batchelor vortex which shows an instability for the m=−1 mode (Khorrami
1991; Mayer & Powell 1992). This implies that the presence of the wake significantly
alters the instability properties and furthermore necessitates one to cautiously treat
the implication of an analysis of the trailing-line vortex in isolation from the wake.
Although the disturbance is localized in the vortex region, the disturbance exists
inboard of the vortex region, showing a slight coupling with the wake.

Continuing down the vortex branch, a stable vortex mode is shown in figure 9. This
mode again shows a two-lobed structure that co-rotates with the base flow, but also
contains higher-order structures inboard and beneath the vortex region, reminiscent
of the trend along the wake branch. As time increases, the disturbance convects
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FIGURE 8. Bi-global vortex instability mode. Variables are plotted following the same
format as in figure 6. For a movie of (c), see movie 3 in the supplemental material.
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FIGURE 9. Bi-global stable vortex mode. Variables are plotted following the same
format as in figure 6. For a movie of (c), see movie 4 in the supplemental material.

inboard from the tip region with a co-rotating helical mode, as shown in movie 4
of the supplemental material. For eigenfunctions farther down the vortex branch, not
shown for brevity, higher-order structures appear in the vortex and a more pronounced
interaction with the wake develops, together with increasingly smaller spanwise modal
scales.

Farther along the wake branch, shown in figure 10, the slow-phase-speed mode
remains restricted to the wake region. A spanwise variation of the mode is clearly
visible, showing three lobes across the span. The modal component in the vortex
region again represents a two-lobed structure akin to a helical mode that co-rotates
with the base flow (see movie 5 of the supplemental material). Progressing farther
down the branch (not shown), we encounter an increase in spanwise structures, while
the helical nature of the vortex region remains virtually constant.

From the analysis of the discrete branches of the bi-global spectrum, some general
observations are worth noting. The unstable region of the discrete branch decomposes
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FIGURE 10. Bi-global stable wake mode. Variables are plotted following the same
format as in figure 6. For a movie of (c), see movie 5 in the supplemental material.

into two sub-branches which capture (i) a coupled dynamics of the wake–vortex
system, and (ii) the instabilities of the vortex core. The principal instability arises
on the wake branch for a structure that is predominately wake dominated with
a coupled component in the vortex region. The remaining two instabilities, from
each of the branches, show similar growth rates, but differ in phase velocity. The
vortical components of higher modes show two-lobed structures that co-rotate with the
base-flow vorticity – in contrast to the stability behaviour of a Batchelor vortex that
counter-rotates with the base flow. This discrepancy points towards a significant effect
of the wake component on the dynamics of the trailing vortex in this intermediate
region. We hypothesize that the presence of the wake aft of the wing imparts
preference to the vortex modes to co-rotate with the base flow, shown in movies 1–5
of the supplemental material. Advancing along both branches towards larger decay
rates, an increase in spanwise structures is observed in the wake, as is a more
pronounced coupling between the wake and vortex dynamics.

3.4. The continuous branch
While the discrete part of the bi-global spectrum is dictated by the presence of
shear in the base-flow velocity field, the fact that we consider viscous flow in an
infinite domain introduces a continuous spectrum. This phenomenon has long been
recognized and studied in simpler flows such as the Blasius boundary layer (Mack
1976; Grosch & Salwen 1978). In order to study the continuous branch, we relax the
boundary condition at infinity and allow disturbances that are merely bounded at the
computational boundary, and thus oscillate in the free stream. Physically, this part
of the bi-global spectrum contains information about the interaction characteristics of
free-stream perturbations with their discrete counterparts, and thus describes receptivity
processes (Saric, Reed & Kerschen 2002). The dispersion relation associated with
the continuous spectrum gives insight into the filter behaviour of the flow to external
perturbations. This type of analysis uncovers which far-field perturbations interact
with the discrete instabilities and which perturbations do not pass the shear region to
trigger modal growth.
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Following standard procedure (see e.g. Schmid & Henningson 2001), we derive
an analytical expression for the continuous spectrum by taking the limit as
|y|, |z| → ∞, eliminating base-flow gradients and allowing the approximation of
(U, V, W) = (U∞, 0, 0). This step reduces the governing equations to a system of
partial differential equations with constant coefficients and thus allows solutions of
the form v= v̂ exp (iβy+ iγ z) with β and γ denoting wavenumbers in the respective
coordinate directions. Upon substitution, we obtain a system of algebraic equations
for β and γ . To further reduce this system of four equations, we eliminate the
streamwise disturbance velocity and pressure by utilizing the continuity equation and
streamwise momentum equation, while maintaining the disturbance velocities, v and
w. This results in an eigenvalue problem of the form

Âv̂ =ωB̂v̂, (3.1)

where Â and B̂ are derived in appendix B, and v̂= (v̂, ŵ)T. The eigenvalues then are
determined as solutions of a quadratic equation according to

ω=
−B±

√
B2 − 4AC

2A
, (3.2)

with

A= α2(ξ 2
− α2), B= 2iĉ∗A, C= ĉ2

∗
α2(α2

− ξ 2), (3.3a−c)

where

ĉ∗ = iαU∞ +
1

Rec
(α2
+ ξ 2), ξ 2

= β2
+ γ 2. (3.4)

Restricting ourselves to real wavenumbers, i.e. β, γ ∈R, yields an expression for the
classical continuous branch: a line that extends from ω=α− (α2/Re) i to ω=α−∞ i.
This solution of the continuous branch is shown as a red line in figure 11. The fact
that the continuous spectrum is a line, despite a dependence on the two parameters β
and γ , comes from the observation that ω depends on ξ =

√
β2 + γ 2 not on β and

γ individually and thus is only parametrized by a single (composite) wavenumber.
The discrete representation of the continuous branch of the bi-global spectrum

appears to cover a two-dimensional wedge-like area. Modes that deviate from the
analytical continuous branch show exponential decay as they approach the far-field
boundary, an observation that has previously been reported (see, e.g. Obrist &
Schmid 2003a,b; Mao & Sherwin 2011). Through inspection of the eigenfunctions,
we conclude that these modes may be modelled as wavepackets (see § 3.5 for more
details).

Eigenfunctions corresponding to eigenvalues along the continuous spectrum have
support in the free stream and show oscillations until they reach the computational
boundary. Moving down the continuous branch increases the number of oscillations in
the free stream, as can also be deduced from the analytical expression (3.2). Modes
farther from the continuous branch also oscillate in the free stream, see figure 12 for
the eigenvalue ω = 5.154 − 0.534i, but display an envelope that decays as (y, z)→
(±∞,∞). As the modes deviate farther from the analytical continuous branch, the
decay of the wavepacket envelope becomes increasingly rapid.
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FIGURE 11. Temporal continuous branch for Rec=1000 and α=5.5 for Ny=Nz=80. The
red line corresponds to the theoretical continuous branch, while the symbols · correspond
to the numerically computed eigenvalues from the bi-global stability analysis.
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FIGURE 12. Eigenmode associated with the eigenvalue ω = 5.154 − 0.534i, which lies
off the continuous branch. As in figure 6 with Q = 0.005. With the eigenvalue off the
continuous branch, the disturbance decays exponentially as it approaches the computational
boundary, taking the form of a wavepacket.

To further explore this phenomenon, we relax the boundedness condition, used
in the derivation of the continuous spectrum, to allow for exponential decay in the
free stream. This is equivalent to permitting complex transverse wavenumbers (i.e.
β, γ ∈ C), where the real component corresponds, as before, to the free-stream
oscillations, while the imaginary part describes the growth or decay in the transverse
directions. This formulation allows for a rudimentary model of wavepackets. Since the
disturbances must be bounded, we take the sign of the imaginary part appropriately
to enforce exponential decay as we approach the free stream, (y, z)→ (±∞,∞).

With the wavenumbers β and γ allowed to take on complex values, we can map
the lower half of the complex (β, γ )-plane under the analytical expression (3.2) for
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FIGURE 13. The complex (β, γ )-plane shown in (a) is then mapped to the complex phase-
speed plane, where c = ω/α shown in (b). The complex (β, γ ) results in a continuous
spectrum of an area in the complex c-plane, rather than a line (βi, γi = 0) as in classical
stability theory.

the continuous spectrum. Figure 13(b) shows the resulting parabolic spread in the
complex c-plane. With increasing magnitudes of βi and γi these parabolas spread
upward and outward, and the mapped half-plane covers an increasingly larger area of
the complex c-plane. It is important to note that these parabolas cover a continuous
area; the exact locations of the global eigenvalues in this region, however, are
affected by the numerical discretization and the choice of computational domain size
and depend sensitively on these numerical parameters.

3.5. Wavepacket analysis
We proceed by introducing a third manner of analysis of the spectral problem of
trailing-line vortices. Our first analysis in § 3.3 solved the full global eigenvalue
problem and was particularly suited to regions where the coefficients of our system
(given by the base flow and its derivatives) are rapidly varying; this analysis resulted
in the discrete modal structures. The second approach in § 3.4 considered the limit
of large distances from the regions of shear, where the base flow appears uniform
and our system can be approximated by a constant-coefficient set of equations; the
resulting wave solutions and the corresponding analytic dispersion relation (3.2)
constitute the continuous branch of the spectrum and describe oscillatory modal
solutions that spatially continue to infinity. In this section, we address the intermediate
regime where eigensolutions can be approximated by compact wavepackets. This
approximation becomes exponentially accurate as a small, user-defined parameter,
in our case h = 1/

√
Rec, tends to zero. This type of analysis covers structures in

the outer neighbourhoods of the vortex and wake and sheds light on the remaining
global eigenvalues which can neither be identified as discrete nor as continuous. An
analysis of this type has been successfully performed in simpler configurations (Obrist
& Schmid 2010; Mao & Sherwin 2011); here, we extend it to a two-dimensional
base flow. For the sake of focus, the mathematical details of the methodology are
relegated to the appendix C, while the motivation, a conceptual summary, the results
and physical interpretation are provided in this section.

Wavepacket analysis helps depict the two-dimensionality of the eigenvalue spectrum
of the bi-global analysis through the solution of a system of algebraic equations. This
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methodology may yield efficient means of computing the spectrum that can be applied
to application of transient growth and potential applications such as aeroacoustics
where wavepackets are of prime importance. This motivates the extension of
wavepacket analysis from the simplified one-dimensional cases shown in Trefethen
(2005), Obrist & Schmid (2010), Mao & Sherwin (2011) to the two-dimensional case
where more complex flows are applicable.

Conceptually, wavepacket analysis assumes eigenfunctions of the general form
exp(if (y, z; h)) with f denoting an unknown phase function that depends on both
spatial coordinates as well as a small parameter h. This approach is reminiscent
and akin to a Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) procedure and utilizing
wavepacket analysis provides an approximate dispersion relation. Upon substitution
of our general form into the governing equations and introducing the spatially
local wavenumbers ∇f = ( fy, fz)

T
≡ (1/h)(β, γ )T, we arrive at a dispersion relation

for ω that depends on both (y, z) and the associated wavenumbers (β, γ ) and
thus contains a hybrid of physical and spectral components. This dispersion
relation is approximate but approaches the true dispersion relation exponentially
as h→ 0. Mathematically, this approximate dispersion relation is referred to as the
symbol (Trefethen 2005). Thus far, solutions of the form exp(if (y, z; h)) do not
necessarily represent wavepackets. Additional constraints have to be imposed to
ensure compactness of the eigenfunctions. A simple second-order Taylor expansion
about the peak of the wavepacket x∗ = (y∗, z∗) yields (we will use the subscript ∗ to
denote evaluation at peak location)

exp(if (y, z; h))∼ exp(if∗)︸ ︷︷ ︸
const.

× exp(ibT
∗
(x− x∗))︸ ︷︷ ︸

carrier wave

× exp(i(x− x∗)TC∗(x− x∗))︸ ︷︷ ︸
packet envelope

, (3.5)

with b = ∇f and C = ∇2f as the gradient and Hessian of f , respectively. Clearly, a
condition on C has to be imposed to ensure that the wavepacket envelope is compact,
rather than divergent. This condition is referred to as the twist condition (Trefethen
2005) and is given in appendix C.

The procedural steps of a wavepacket analysis are then as follows. We sweep over
y∗ and z∗ (the peak location of our wavepacket mode), covering the physical domain
of interest, e.g. the neighbourhood of the vortex or the wake; simultaneously, we also
sweep over the wavenumbers β∗ and γ∗, covering the spatial scales of interest. For
each point (y∗, z∗, β∗, γ∗) we verify the twist condition and discard points that do not
satisfy it, deeming them unphysical. The accepted points are then mapped, via the
symbol (i.e. approximate dispersion relation), into the complex domain where they
trace out a parameterized curve as (y∗, z∗, β∗, γ∗) are varied. Each point on this curve
constitutes an (exponentially) approximate eigenvalue associated with our wavepacket
eigenmode. Depending on the complexity of the symbol, these curves can intersect
one another on the complex plane, giving rise to multiple wavepacket solutions.
The parameterization by four parameters (y∗, z∗, β∗, γ∗) generally yields an area in
the complex plane that constitutes the spectral location of approximate wavepacket
solutions to our stability problem. The wedge-like clustering of discrete points about
the continuous spectrum in figure 5 about ωr ≈ 5.5 is a (discrete) manifestation of
this area spectrum. For more details, refer to appendix C.

The symbol can be used to assess the characteristics of the bi-global eigenvalue
spectrum. In figure 14(a), we select an eigenvalue (circled in red) to compare the
true eigenmode from our bi-global analysis with the corresponding approximate mode
computed through wavepacket analysis. To this end, we determine the parameters y∗
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FIGURE 14. Comparison of wavepackets to bi-global spectrum for the four wavepackets
nearest to the eigenvalue ω = 5.220 − i0.501. (a) Shows the eigenvalue spectrum
with the eigenvalue examined circled in red. (b) Shows the weighted sum over the
four wavepackets from the wavepacket analysis. (c) Shows the bi-global eigenmode
corresponding to the circled eigenvalue. (d) Is the projection of the disturbance velocity,
v, along the line z= 0, showing how the wavepackets (blue) compares with the bi-global
spectrum (black). The red lines denote the wavepacket locations.

and z∗, i.e. the location of the wavepacket, using (C 5) and β∗/h, γ∗/h, i.e. the
approximate wavenumbers, using (C 4). We then substitute these parameters into (C 5)
to obtain four distinct wavepackets. Although this provides the location and shape
of the wavepackets, the weighting of each individual approximation is still unknown.
We use the eigenfunction from the bi-global spectrum and minimize the least-squares
error between a linear combination of approximations and the true eigenfunction. The
resulting streamwise vorticity is shown in figure 14(b). Comparing the superposition
of the wavepacket modes with the bi-global eigenfunction in figure 14(c), we see that
the wavepackets capture the location and direction of the global mode, but lack the
curvature of the wavefronts in the global structure near y < 0, z ≈ 0. A slice across
the vortex core along z= 0 is shown in figure 14(d), with the blue line representing
the wavepacket results and the black line designating the global results. The red
lines indicate where the individual wavepackets are centred (i.e. the value of y∗).
A reasonable match between the bi-global analysis and the wavepacket analysis is
observed.

Due to the nature of wavepacket solutions and our access to an (approximate)
analytical expression for the dispersion relation, we are in a position to explore
and quantify the travel direction of modal wavepacket structure. We simply examine
the group velocity, ∂ω/∂k, where k denotes the wavenumber vector with β∗ and γ∗
aligning with the y- and z-directions, respectively. More specifically, an approximation
of the group velocity can be extracted directly from the terms in the twist condition,
∂f /∂β∗ and ∂f /∂γ∗ in (C 4). The group velocity of the dominant wavepacket (with
the largest coefficient in the above superposition) shows that the disturbance travels
inbound towards the vortex core, as indicated by arrows in figure 15(a,b). This inboard
direction is congruent with the results from the bi-global analysis (see e.g. movie 4
of the supplemental material). Interestingly, although the velocity field appears outside
the region of shear, the associated pressure field remains confined within the shear
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FIGURE 15. (a) The streamwise vorticity for the eigenvalue ω = 5.220− i0.501 and (b)
the corresponding disturbance pressure. The solid contour lines denoting the location of
the wake and the base of the arrow is the location of the wavepacket. The direction of
the arrow indicates the group velocity, ∂ω/∂k, of the wavepacket.

region as shown in figure 15(b). This may suggest a particular receptive behaviour
whereby velocity disturbances in the far field trigger disturbances in the shear region
via pressure perturbations, followed by a transfer of energy to the unstable discrete
branch or transient growth. The interaction of free-stream disturbances with regions of
shear is a common feature in receptivity studies (Saric et al. 2002). The underlying
mechanism behind this transfer from vorticity to pressure requires further research
but may be a result of non-normality of the eigenvectors.

Although figures 14 and 15 provide a single wavepacket, how the wavepackets
vary across the continuous branch wedge is now examined qualitatively for the
sake of brevity. When approaching the region near the analytical continuous branch
in figure 13, the envelope of the wavepacket analysis broadens in the free stream,
approaching the free-stream oscillation limit. Conversely, as the discrete branch is
approached, the energy of the wavepacket is more compact and approaches the
regions of shear. This physically aligns with continuous branch and discrete branch
limits of the wavepacket analysis, matching well with the bi-global analysis and
further providing confidence in the method.

This concludes the temporal stability analysis, which examined and identifies three
distinct types of instabilities from the discrete spectrum, and assessed the continuous
spectrum far from the shear flow. We then explored approximate wavepacket solutions.
We now proceed to complement the temporal results with a spatial stability analysis.

4. Spatial bi-global stability analysis
We begin the spatial analysis by first parametrically sweeping through the frequency

and, drawing upon similarities with the temporal spectrum, choose to analyse a
frequency of ω= 5.5. Then, we present the spatial eigenvalue spectrum and compare
it with the temporal spectrum, highlighting similarities through the complex phase
speed, followed by discussions on various spatial instabilities. We conclude with
explaining some peculiarities associated with the spatial continuous branch.

4.1. Frequency parameterization
By sweeping the frequency from ω= 2 to 8 in increments of 1ω= 0.5, we observe
a number of instabilities including the addition of a vortex instability that contains
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FIGURE 16. Spatial growth rate, −αi, at x= 3 with varying frequency ω, with Nz=Ny=

60. The four instabilities are labelled as wake mode, primary vortex mode, wake mode
and secondary vortex mode according to their modal features. The dashed line indicates
the wavenumber that we examined throughout the temporal analysis.

high growth at low frequencies as shown in figure 16. Aside from this instability,
the frequency sweep in figure 16 follows similar trends to the wavenumber sweep
of the temporal analysis, shown in figure 4, containing principal wake, wake and
vortex instabilities. As the spatial and temporal parametric sweeps contain similar
structures, we choose to examine the frequency counterpart to the temporal analysis,
which corresponds to ω= 5.5 indicated by the dashed line in figure 16.

4.2. Eigenvalue spectrum and its comparison with the temporal spectrum
Due to the ansatz in (2.2), the eigenvalue spectrum for the spatial analysis inverts
such that modally unstable eigenvalues reside in the lower half-plane αi< 0, as shown
by the grey region in figure 17(a). The discrete spectrum now sweeps over an area
upward from α≈ω+ iω2/Re, with discrete branches to its right and a single discrete
branch to its left. The discrete branches right of the continuous spectrum contain a
vortex and wake branch, analogous to their temporal counterparts. An additional third
branch contains vortex modes to the farther right than the wake branch. The branch
left of the continuous spectrum is analogous to the discrete branch to the right of the
temporal continuous branch, which corresponds to higher-order azimuthal modes.

The temporal and spatial spectra possess many similar features. For a more direct
comparison, figure 17(b) compares the temporal spectrum (red circles) to the spatial
spectrum (black dots) in the complex phase-speed plane, c=ω/α. In the c-plane, the
two spectra align, with the wake and vortex branches in the temporal analysis aligning
with the corresponding branches in the spatial spectrum. The leftmost vortex branch
in figure 17(b) aligns with stable modes in the temporal spectrum. The continuous
branches sweep over approximately the same area, except that the spatial spectrum
bends left as cr decreases – a phenomenon that is explained in § 4.4.

The alignment of the temporal and spatial eigenvalue spectra in c-space has
relevance to Gaster’s transformation (Gaster 1962), which holds for regions near the
neutral stability curve. Gaster (1962) showed that for small growth rates, the temporal
and spatial growth rates can be related through the group velocity, cg = ∂ωr/∂αr.
From the relatively good alignment of the temporal and spatial spectra in c-space,
we conclude that the deviation of the spectra is a result of the fairly large growth
rates. Furthermore, the group velocity of the modes can be approximated, showing
that these instabilities (and modes in general) are convective in nature.
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FIGURE 17. The spatial eigenvalue spectrum for ω= 5.5 in the complex α-plane, (a), and
in the complex phase-speed plane, (b). In (b), the equivalent temporal spectrum is shown
for α = 5.5, denoted by the red circles. For comparison, the pertinent discrete branches
are labelled.
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FIGURE 18. Bi-global spatial principal wake instability mode. Variables are plotted
following the same format as in figure 6 with Q = ±0.0001. For a movie of (c), see
movie 6 in the supplemental material.

4.3. Discrete spatial bi-global modes
The striking similarities between the temporal and spatial spectra suggest that the two
spectra contain analogous eigenmodes on the matching branches. Thus, we expect
the most unstable eigenvalue to represent a wake mode, similar to its temporal
counterpart, which is confirmed in figure 18 (and movie 6 of the supplemental
material). Comparing figure 18 with its temporal counterpart (figure 6), we observe
that the disturbances remain localized to the wake region and contain nearly
identical structures, which instead grow with downstream progression because of
their instability. Furthermore, this instability has no spanwise zero crossings until the
vortex is reached, again highlighting that the wake aft of the wing is the cause of
this instability.

From these similarities, we expect that the modes farther down the wake branch
contain higher-order spanwise structures, seen in the third instability shown in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

86
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.866


880 A. M. Edstrand, P. J. Schmid, K. Taira and L. N. Cattafesta III

0.8 1.0

 0

0.05

 0.10

 –0.05

 –0.10

 –0.15

1
–1 0

–1

0

1
2

4

6

0 0.5–1.0 –0.5

 0.5

 0

 –0.5

0–0.10 –0.05 0.100.05

x

y
y

z z

(a) (b) (c)

FIGURE 19. Bi-global spatial wake instability mode. Variables are plotted following the
same format as in figure 6 with Q = ±0.0001. For a movie of (c), see movie 7 in the
supplemental material.

figure 19 (supplementary movie 7). This mode, lying close to its analogous temporal
mode (see figure 7), contains a higher number of zero crossings, indicating a higher
spanwise wavenumber. The same mode, however, decays more rapidly in the vicinity
of the vortex. If we continue down this branch, we follow the same trend shown in the
temporal section of higher-order spanwise structures in the wake region. Moreover,
we argue that the reduced structure size and increased viscous effects cause the
stabilization of these modes.

Continuing with the temporal analogues, along the vortex branch we observe that
the disturbances are localized to the vortex region, with a wavepacket below it;
compare figure 20 (supplementary movie 8) with figure 8. Contrary to the temporal
mode, the vortex mode from the spatial analysis contains a complex vortex structure
rather than the two-lobed structure that co-rotates with the base flow as in its temporal
counterpart. The complex structure and wake aligns better with higher-order temporal
vortex modes as shown in figure 9. Continuing down this branch confirms that the
wavepacket contains higher-order modes.

From the spatial analysis, a new instability emerged, which is linked solely to the
vortex region, with only fringe amounts of the disturbance localized in the wake,
shown in figure 21 (supplementary movie 9). This instability contains a two-lobed
structure where the inboard lobe originates from the region where the vortex and
wake pinch off to separate, and the other lobe coming from the vortex core region.
The rotation of this mode is difficult to discern with the disturbances traveling in the
upward and inboard direction. Higher-order modes further down this branch contain
smaller-scale structures in the transverse direction and comprise more disturbances in
the wake region.

The final mode we examine lies on a discrete branch to the right of the continuous
spectrum in the c-plane. This branch, termed the azimuthal branch in § 3.2, contains
vortex modes with higher azimuthal wavenumbers. The mode chosen in figure 22 is
an (m = 3)-mode that co-rotates with the flow (see supplementary movie 10) and
is confined to the vortex region of the base flow. Modes on this branch may be
significant at different frequencies, as Paredes (2014) shows that higher-order modes
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FIGURE 20. Bi-global secondary spatial vortex instability mode. Variables are plotted
following the same format as in figure 6 with Q = ±0.0001. For a movie of (c), see
movie 8 in the supplemental material.
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FIGURE 21. Bi-global primary spatial vortex instability mode. Variables are plotted
following the same format as in figure 6 with Q = ±0.0001. For a movie of (c), see
movie 9 in the supplemental material.

contain higher growth rates in the spatial analysis of the Batchelor vortex; however,
higher frequencies are beyond the scope of this study.

4.4. Spatial continuous spectrum
The spatial continuous spectrum contains a peculiar bending when plotted in the
complex c-plane, shown in figure 17(b). Following an approach similar to Grosch &
Salwen (1978), we examine the asymptotic limit of the spatial continuous spectrum
(for small ω and 1/Re), which in the complex α-plane is parameterized by ζ ∈ R
such that

α =ω+ i
1

Re
(ω2
+ ζ ). (4.1)
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FIGURE 22. Bi-global spatial higher-order azimuthal mode. Variables are plotted following
the same format as in figure 6 with Q=±0.0001. For a movie of (c), see movie 10 in
the supplemental material.

This is analogous to the temporal spectrum; however, differences become apparent
after transforming the spectrum into the complex c-plane. For the temporal case, we
scale the spectrum by the inverse of the real wavenumber, 1/α. Conversely, in the
spatial spectrum, equation (4.1) appears in the denominator. Finding the equivalent
c=ω/α results in

c=
ω2
− i

ω

Re
(ω2
+ ζ )

ω2 +
(ω2
+ ζ )2

Re2

, (4.2)

which corresponds to the black curve in figure 23 that represents the spatial continuous
branch in the complex c-plane. The curvature of this line matches the curvature of the
spatial spectrum, illustrated by the dots in figure 23. Note that we solved for 5000
eigenvalues, which explains why the results from our analysis only partially cover the
continuous branch. From these findings, we therefore conclude that the bending is a
result of the inverse relation between c and α.

4.5. Comparison of direct numerical simulation (DNS) stability results with
canonical base flows

The stability analysis performed on the computationally obtained base flow imparts
insight into the importance of the wake–vortex interaction on the stability of the
intermediate field. We now provide a basis for comparison by juxtaposing the spatial
spectrum from the computational base flow to matched canonical base flows; in
particular the Batchelor vortex and wake velocity profile.

To match the base-flow field of the Batchelor vortex, we first azimuthally average
the azimuthal and axial velocity components at x = 3 and fit a Batchelor vortex to
the average values by minimizing the least-squares residual. The result is the matched
parameters of the Batchelor vortex, with the swirl strength κ = 0.013, core radius δ=
0.138, axial velocity deficit γ = 0.229, which yields a swirl parameter q= 0.419. The
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FIGURE 23. (Colour online) The eigenvalues from the bi-global analysis (red dots), the
matched Batchelor vortex (blue circles), and the matched wake profile (yellow plus marks).
The black line provides the analytical continuous branch given by (4.2) (black line).

0 0.5 1.0 0 0.5 1.0 0.6 0.8 1.0

0.08

0.06

0.04

0.02

1.1

1.0

0.9

0.7

0.8

 0.5

 0

 –0.5

 –1.0

1.0

yU

U

(a) (b) (c)

FIGURE 24. Comparison of base flow with fit canonical base flows. The solid line
represents the DNS computed base-flow field and the dashed line denotes the canonical
base flow. For panels (a,b), the DNS base flow was first azimuthally averaged prior to the
Batchelor vortex being fit to the flow field; therefore, one must remember that the wake
component averages out in the solid line plot in (a,b). In (c), we compare the symmetry
plane of our computation to the base flow given by Mattingly & Criminale (1972).

axisymmetric base flow is then provided as

Vθ =
κ

r

[
1− exp

(
−

r2

δ2

)]
, U = 1− γ exp

(
−

r2

δ2

)
, (4.3a,b)

with the swirl parameter defined as q= κ/(γ δ). Figure 24(a, b) shows the comparison
between the azimuthally averaged base flow (solid line) and the matched canonical fit
(dashed line) for the azimuthal and axial velocity, respectively.

For the wake velocity profile, we extract the symmetry plane of the computed base
flow and fit the profile given by Mattingly & Criminale (1972) in a similar manner
to the Batchelor vortex. The profile is

U =U∞ + (Uc −U∞)sech2(σy), (4.4)

where U∞= 1.00, Uc= 0.626 and σ = 7.84. The resulting fit is shown in figure 24(c).
For more details of how the methodology of the fits, see Edstrand et al. (2016).

For the matched Batchelor vortex, we performed a bi-global spatial stability analysis
on the base flow for the same parameters as the trailing vortex flow field. The
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FIGURE 25. Comparison of the streamwise vorticity of the Batchelor vortex instability (a)
with the bi-global vortex instability (b). Although the discrete branches align, the Batchelor
vortex fails to capture the wake–vortex interaction.

resulting bi-global eigenvalue spectrum is shown in figure 23 denoted by the blue
circles. Here, we ensured that the discrete branch was unaffected by the choice of
the domain size. The spectrum shows two instabilities that aligns along the vortex
branch and the azimuthal branch (see, e.g. figure 17b) further reinforcing that the
modes along these branches are vortex modes. When comparing the eigenfunctions
in figure 25, we note that the disturbance of the computationally obtained base flow
has strong wake–vortex interaction that is lacking in the Batchelor vortex instability.
This lacking wake component, although expected as the base flow is axisymmetric,
motivates the need for the wake and vortex component in the base flow; however
a matched Batchelor vortex does result with a reasonable approximation of phase
speeds and growth rates.

For the wake velocity profile, the eigenvalue spectrum (denoted by the yellow
plus marks in figure 23) aligns well with the wake branch of the computational
base flow (again, see figure 17b). The phase speed and growth rate of the principal
wake instability, which contained uniform spanwise variation along the wake, aligns
well with the canonical wake, indicating this is indeed a result of the wake aft of
the wing. Furthermore, the eigenfunctions, not shown for brevity, match with the
canonical value in both size and structure.

The comparisons of the computational base flow with the Batchelor vortex and
the wake profile reinforces both the interpretation of the sub-branches in the discrete
branch and the necessity to incorporate the wake and vortex structures in the base
flow. We therefore conclude that although the canonical flow fields lack the necessary
characteristics to fully illustrate the structure of the disturbance, the stability results
do yield adequate approximations to phase speed and growth rates, indicating these
canonical configurations are indeed a valuable first approximation.

5. Conclusions
A modal stability analysis of a simulated trailing vortex flow generated from a

NACA0012 half-wing with a half-span of b/2 = 1.25, chord c = 1 and a chord
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Reynolds number of 1000. The stability analysis was performed in the intermediate
field containing both a wake behind the wing and a developing vortex at the wingtip.
The stability analysis was bi-global in the spanwise and traverse directions and
focused on a streamwise location three chords downstream of the trailing edge. At
this location, both the wake and the vortex component of the base flow were still
significant, yielding unstable modes with respective characteristics within both the
temporal and spatial frameworks.

Beginning with a temporal analysis, we first introduced the bi-global spectrum
of this complex flow field. The spectrum consisted of discrete branches containing
three distinct instabilities. We should note that due to the steady-state nature of the
base flow, the quantitative value of the growth rates of these instabilities may shift
upward or downward on the spectrum. However, we retain confidence in the relative
levels of the growth rates and the qualitative description of the modes for the various
sub-branches. The continuous branch covered an area in the complex plane rather
than a line as analytically expected. An additional discrete branch to the right of the
continuous branch was observed, but no corresponding instabilities have been found at
the wavenumbers examined. The primary discrete branch contained two sub-branches:
a vortex branch and a wake branch, which comprised disturbances confined to their
respective base-flow regions. The principal instability was mainly associated with the
wake aft of the wing; the remaining two instabilities were identified as a higher-order
wake and a vortex instability, the former showing spanwise structures in the wake
region. Moving down these discrete branches produced higher-order modes and more
pronounced wake–vortex interactions. All temporal instabilities were helical in nature,
containing two lobes that co-rotated with the base flow. This co-rotation is opposite
to analyses of the Batchelor vortex, which is characterized by primary instabilities
counter-rotating to the base flow. The second discrete branch contained higher-order
azimuthal modes that also co-rotated with the flow.

The continuous part of the spectrum covered an area, contrary to and complementing
a derived analytical expression that resulted in a parametric line. By examining the
eigenfunctions away from the continuous line branch, compact-support eigenfunctions
have been found which prompted a wavepacket analysis (Trefethen 2005; Obrist &
Schmid 2010). This type of analysis provided approximate information on the area
covering the continuous part of the spectrum. We conjecture that the favoured motion
of the wavepacket disturbances may have relevance with respect to receptivity. A
more detailed analysis of this issue is left for a future investigation.

The spatial eigenvalue spectrum showed similar characteristics with analogous
discrete and continuous branches. However, the discrete branch contained four
instabilities, with an additional instability spatially localized in the base-flow vortex
region. The similar shape and structure allowed a comparison of the two branches
in the complex phase-speed plane, which resulted in the identification of analogous
vortex, wake and higher-order azimuthal branches, with an additional vortex branch
at a lower phase speed. The three instabilities that fall on analogous temporal
sub-branches showed strong similarities between the two analyses.

The spatial continuous spectrum, mapped to the complex phase-speed plane, shows
a leftward bend, stemming from the inverse relation between the phase speed and the
streamwise wavenumber (Grosch & Salwen 1978). Similar to the temporal case, the
continuous branch sweeps over an area in the complex plane – a result of wavepacket
solutions linking the near-field solutions of the discrete branches to the oscillatory free-
stream solutions of the continuous line branch.

The results of this study add insight into the stability of a trailing vortex wake and
tools for analysing complex flow fields. The co-rotation of the instability with the
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base flow contradicts the counter-rotation of a classical vortex instability; however, the
relevance of this observation should be examined with caution, as this is a parallel
analysis at x= 3 and the base-flow vortex may need additional space for development
of the vortex instability. To examine the development of a vortex instability, a
parabolized stability analysis is required; however, these results provide a necessary
first step because the parallel approximation is the initial condition of a parabolized
analysis. The characterization of the continuous spectrum sweeping over an area
through wavepacket analysis provides an expansion on previous tools (Trefethen
2005) to be applied to more complex flow fields.

Although the chord Reynolds number is significantly lower than the fixed-wing
aircraft regime, there are many applications at this Reynolds number in micro
air vehicles and biological flight. Furthermore, Devenport et al. (1996) show
that the vortex core is laminar with similar structure to their higher Reynolds
number case. With this similar structure and laminar characteristics, we do expect
quantitative changes in a higher Reynolds number case, but argue that the qualitative
characteristics would be retained; namely wake and vortex branches of the discrete
spectrum and structure of the continuous spectrum.

With respect to flow control, the results from the spatial and temporal analyses
presented a total of seven instabilities that may be leveraged for control of the
wake behind the wingtip. The wake instabilities dominated in both analyses for the
wavenumber and frequency explored in this study. This result may imply that actuation
at the wingtip may not necessarily be optimal for control, but rather the wake
region results in more growth to break up the vortex. A more detailed investigation,
particularly regarding the controllability of the instability modes under realistic
conditions (including higher Reynolds number) is required to furnish definitive
solutions and suggestions for effective control strategies. In this effort, the efficiency
of using modal instabilities to break up vortical and other coherent structures in
the wake of a wingtip has to be assessed as well. Experimental validation of the
instabilities and their role in a control effort would also be desirable.

From a methodical point of view, the analysis of approximate, compact wavepacket
solutions has provided supplementary insight, beyond standard tools, into the stability
characteristics of the flow. It is hoped that this technique will find further applications
in the study of stability and receptivity measures in complex fluid flows.
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Appendix A. Stability operators
This appendix lists the stability matrices for the temporal and spatial analyses. The

temporal matrices for the form ATq=ωBTq with q= [u, v,w, p]T are given as

AT =

cT Uy Uz iα
0 cT + Vy Vz Dy
0 Wy cT +Wz Dz
iα Dy Dz 0

 , (A 1)
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with

cT = iαU + VDy +WDz −
1

Re
(D2

y +D2
z − α

2) (A 2)

and

BT =

 i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0

 . (A 3)

Here, Dy and Dz are the derivative operators in the y- and z-directions, respectively.
The spatial analysis results in a nonlinear eigenvalue problem that is reduced

to a linear eigenvalue problem through the companion matrix method (Tisseur &
Meerbergen 2001). The resulting stability matrices in the form ASq∗ = αBSq∗ with
q∗ = [u, v,w, p, vx,wx] are

AS =


cS Uy Uz 0 0 0
0 cS + Vy Vz Dy 0 0
0 Wy cS +Wz Dz 0 0
0 Dy Dz 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (A 4)

with

cS =−iω+ VDy +WDz −
1

Re
(D2

y +D2
z ) (A 5)

and

BS =



−iU
i

Re
Dy

i
Re

Dz i 0 0

0 −iU 0 0
i

Re
0

0 0 −iU 0 0
i

Re
−i 0 0 0 0 0
0 i 0 0 0 0
0 0 i 0 0 0


. (A 6)

Appendix B. Stability operators for the continuous spectrum

This appendix lists the corresponding stability matrices for the temporal and spatial
analyses of the continuous part of the spectrum. The temporal matrices for the form
ATq=ωBTq with q= [u, v,w, p]T are derived as

AT =

cT 0 0 iα
0 cT 0 iβ
0 0 cT iγ
iα iβ iγ 0

 , (B 1)
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with

cT = iαU∞ +
1

Re
(β2
+ γ 2

+ α2) (B 2)

and

BT =

 i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0

 . (B 3)

The spatial analysis of the continuous spectrum is again based on a nonlinear
eigenvalue problem that can be recast as a linear eigenvalue problem using a
companion matrix method (Tisseur & Meerbergen 2001). The resulting stability
matrices for the form ASq∗ = αBSq∗ with q∗ = [u, v,w, p, vx,wx] read

AS =


cS 0 0 0 0 0
0 cS 0 iβ 0 0
0 0 cS iγ 0 0
0 iβ iγ 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (B 4)

with

cS =−iω+
1

Re
(β2
+ γ 2) (B 5)

and

BS =



−i −
1

Re
β −

1
Re
γ i 0 0

0 −i 0 0
i

Re
0

0 0 −i 0 0
i

Re
−i 0 0 0 0 0
0 i 0 0 0 0
0 0 i 0 0 0


. (B 6)

Appendix C. Methodology of wavepacket analysis
The following exposition of the wavepacket analysis follows previous work

(Trefethen 2005; Obrist & Schmid 2008, 2010; Mao & Sherwin 2011). We also
introduce tools specific to the analysis of our two-dimensional base-flow fields.

C.1. Formulation of the symbol and twist condition
For the linearized stability equations with variable coefficients (in y and z), we assume
eigenfunctions of the form

q(y, z)= q̃ exp (if (y, z; h)), (C 1)
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where f (y, z; h) is the phase function. A small parameter h is introduced that scales
with 1/

√
Rec. Under the above assumption, the spatial derivatives in the governing

equations become

Dyq(y, z) −→ ifyq≡ i
β∗

h
q and Dzq(y, z) −→ ifzq≡ i

γ∗

h
q, (C 2a,b)

which introduces the transverse wavenumbers β∗ and γ∗. Due to the definition of
the wavenumbers through the gradient of the phase function f , we must assume they
are dependent on the spatial coordinates y and z. The above substitution simplifies
our differential eigenvalue problem to an algebraic eigenvalue problem. In contrast to
the derivation of the continuous spectrum (see § 3.4), however, we retain the base-
flow variations and the associated gradients via their parameterization of the algebraic
system. To further reduce the set of equations from four to two, we eliminate both
the streamwise disturbance velocity and the pressure to finally obtain an eigenvalue
problem of the form

ωAṽ =ω

(
A11 A12
A21 A22

)(
ṽ
w̃

)
=

(
B11 B12
B21 B22

)(
ṽ
w̃

)
=Bṽ, (C 3)

where the coefficients are provided in appendix D. The final simplification involves
a transformation of the generalized eigenvalue problem into a standard eigenvalue
problem by inverting A to obtain Cṽ = ωṽ. Solving this eigenvalue problem yields
two eigenvalues of the form

f (y, z, β∗, γ∗)=ω=
(tr C)±

√
(− tr C)2 − 4(det C)

2
, (C 4)

where tr C denotes the trace of C and det C represents the determinant of C. This
latter expression is referred to as the ‘symbol’ (Trefethen & Embree 2005), which
constitutes an approximation to the full dispersion relation.

The form of (C 1) does not guarantee compact eigenfunctions in the form of
wavepackets. Rather, conditions on the phase function f have to be imposed to arrive
at compact solutions for q. To this end, we expand (C 1) in a second-order Taylor
series about a spatial reference point (y∗, z∗). We obtain

exp (if (y, z)) = exp[if (y∗, z∗)]
× exp[ify(y∗, z∗)(y− y∗)+ ifz(y∗, z∗)(z− z∗)]

× exp

[
i
1
2

((
y− y∗
z− z∗

)T (
fy∗y∗ fy∗z∗
fy∗z∗ fz∗z∗

)(
y− y∗
z− z∗

))]
× · · · . (C 5)

In the above expression, we identify ( fy, fz) = (β∗/h, γ∗/h) as the local transverse
wavenumbers, which are real and, as we recall, parameterized by y∗ and z∗.
The second-order term represents a bi-variate Gaussian function that describes a
wavepacket envelope centred at (y∗, z∗). To ensure bounded solutions as |y|, |z|→∞,
we have to place restrictions on the curvature of the Gaussian function. The resulting
condition is referred to as the ‘twist condition’ (Trefethen & Embree 2005). In
one dimension, it ensures that the curvature of the Gaussian at y∗ is negative,
which translates, via the chain rule, into the condition that the imaginary part of
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FIGURE 26. The twist condition (C 6) for z∗ =−0.68 (a,b) and γ∗/h=−15: the shaded
region denotes the area in the y∗-β∗/h plane where the twist condition is not satisfied. The
two solutions of the quadratic problem (C 4) are shown in (a,b) in the near field and (c,d)
in the far field.

(∂f /∂y∗)/(∂f /∂β∗) be negative. For our two-dimensional problem in (C 5), we have
to enforce a negative definite imaginary part of the covariance matrix

eig
{

Im
[(

fy∗y∗ fy∗z∗
fy∗z∗ fz∗z∗

)]}
< 0. (C 6)

At the point (y∗, z∗, β∗, γ∗) where the twist condition (C 6) is satisfied, the
corresponding mode satisfies the governing stability equations and the boundary
conditions within an exponentially small error (in the limit as h→ 0), making it a
pseudomode of the stability operator (Trefethen 2005).

The exploration of the wavepacket part of the bi-global spectrum then consists
of a parametric sweep through the four-dimensional (y∗, z∗, β∗, γ∗)-space, scanning
for wavepacket modes, centred at y∗, z∗ with a local transverse wavenumber β∗, γ∗
(representing the carrier wave under the wavepacket envelope and thus the spatial
scale of the mode). Satisfying the approximate dispersion relation (C 4) as well as the
condition in (C 6) at each (y∗, z∗, β∗, γ∗) produces (approximate) eigenvalues ω and
therefore information about the temporal stability characteristics (i.e. phase velocity,
growth/decay rate) of the associated wavepacket pseudomode.

To facilitate our discussion, we restrict the four-dimensional parameter space to two
regions: crossing the shear layer in the near field at z∗ =−0.68, and the far field at
z∗= 4.09. It is instructive to first determine the range of y∗ and β∗ that, by satisfying
the twist condition, permits wavepacket solutions. As shown in figure 26(a,b),
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for α = 5.5 and γ∗/h = −15, the twist condition is satisfied for a rather small
parameter region with β∗/h > 0. Near β∗/h → 0+, the twist condition is satisfied
up to the boundary at y∗ = 10, showing that long-wavelength disturbances can exist
in this region, while in the region of shear, we encounter compact wavepackets for
all β∗/h > 0. Similar to Obrist & Schmid (2010), β∗/h = 0 rarely satisfies the twist
condition. The physical significance is that the wavelengths of the disturbances are
infinitely long and hence are rarely supported by our finite computational domain. In
the far field, shown in figure 26(c,d), the twist condition is satisfied at large negative
values of y∗ across most of the positive β∗/h-region.

We proceed by investigating individual symbol curves (i.e. the approximate
dispersion relation) in the near field for constant y∗, z∗ and γ∗/h, while varying
β∗/h (see figure 27). We fix γ∗/h = 0 in the near field, shown in figure 27(a,b),
and the far field, shown in figure 27(c,d). In the near field, the different coloured
curves correspond to z∗=−1.07,−0.67 and −0.40 for the black, blue and red curves,
respectively. In other words, we traverse the wake and vortex parts of the base flow at
different locations and evaluate the (approximate) stability properties of corresponding
wavepacket modes.

In the near field, approaching the vortex broadens the parabolic curves, caused by
the increasing velocity gradients, which eventually approach the discrete branch of the
spectrum. This phenomenon is most pronounced at the vortex core, where spanwise
gradients are comparable to transverse gradients: the associated symbol curves indeed
exist in the discrete branch, implying that wavepacket analysis may be able to model
the discrete spectrum as well.

In the far field, we traverse the base-flow field along parameterized curves with
constant z∗ = 7.08, 4.09 and 2.40. As the far field lacks large velocity gradients,
it provides a more controlled environment to analyse the symbol curves in the y∗-
and z∗-directions. In the y∗-direction, for −8.54 < y∗ < 8.54, the parabolas broaden
with increasing |y∗|, becoming broader as |y∗| → 10. Conversely, as z∗ increases, the
velocity gradients decrease in magnitude, narrowing the parabolas in figure 27(c,d),
thus approaching the analytical continuous branch. These differences in the y- and
z-directions are attributed to the pressure gradient caused by the curvature of the
wing. Obrist & Schmid (2010) show that for swept Hiemenz flow, similar parabolic
symbol curves broaden with increasing y∗, which is a result of the velocity field
maintaining a y-dependence as y→∞.

To determine the effect of the local spanwise wavenumber γ∗/h, we examine the
influence of varying γ∗/h by fixing z∗ = −0.67 in the near field and z∗ = 4.09
in the far field. For γ∗/h = −15, 0, 15 (corresponding to black, blue and red
curves, respectively), the two solutions in the near field, in figure 28(a,b), show
near symmetry with γ∗/h = ±15. For increasing values of γ∗/h, the symbol curves
progress towards the neutral line and in the same direction as the β∗/h-parabolas. For
larger values of |β∗/h| and |γ∗/h|, shorter-wavelength oscillations are assumed in the
y- and z-directions, inducing more viscous dissipation and therefore more damped
modes (i.e. decreasing ωi). Similarities with respect to the continuous branch can be
drawn, where the more damped parts of the continuous branch also exhibited more
rapid oscillations and smaller spatial scales. In the far field, the parabolas narrow
per the aforementioned description, approaching the analytical continuous line: with
increasing γ∗/h, the curves follow a similar trend as the near-field case.

Appendix D. Matrices for wavepacket analysis
This appendix provides the stability matrices for the wavepacket analysis in

appendix C. Starting with the linear disturbance equations, we utilize continuity
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FIGURE 27. (Colour online) Symbol curves for constant γ∗/h = 0 in the near field, (a)
and (b), and the far field, (c) and (d), for the first and second solution, respectively. The
line colours correspond to z∗ =−1.07 (black), z∗ =−0.67 (blue) and z∗ =−0.40 (red) in
the near field and various y∗ and β∗/h values. In the far field, the line colours correspond
to z∗ = 7.08 (black), z∗ = 4.09 (blue) and z∗ = 2.40 (red). The dashed lines correspond
to where the twist condition is not satisfied, while the solid lines denote where the twist
condition is satisfied. The top figure shows the locations of each z∗ slice in the near field
and far field.

and the x-momentum equation to remove the streamwise velocity and pressure terms.
This results with a system of equation with the form of (C 3). In this equation, the
stability matrices A and B are found to be

A=

i+ i
β2
∗

α2h2
i
β∗γ∗

α2h2

i
β∗γ∗

α2h2
i+ i

γ 2
∗

α2h2

 (D 1)
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FIGURE 28. (Colour online) Symbol curves for constant z∗ = −0.67 in the near field,
(a) and (b), and z∗ = 4.09 the far field, (c) and (d), for the first and second solutions,
respectively. The line colours correspond to γ∗/h = −15 (black), γ∗/h = 0 (blue) and
γ∗/h= 15. The dashed lines correspond to where the twist condition is not satisfied, while
the solid lines denote where the twist condition is satisfied. The top figure shows the
locations of each z∗ slice in the near field and far field.

and

B=


(

1+
β2
∗

α2h2

)
c∗ + Vy −

β∗

αh
Uy

β∗γ∗

α2h2
c∗ + Vz −

β∗

αh
Uz

β∗γ∗

α2h2
c∗ +Wy −

γ∗

αh
Uy

(
1+

γ 2
∗

α2h2

)
c∗ +Wz −

γ∗

αh
Uz

 , (D 2)

with

c∗ = iαU + i
β∗

h
V + i

γ∗

h
W +

1
Rec

[
α2
+

(
β∗

h

)2

+

(γ∗
h

)2
]
. (D 3)
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