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Based only on a geometrical approach, we present a technique to index powder diffraction diagrams.
This would allow us to find the cell parameters from the experimental data. It is well known that
methods proposed in the literature make a direct use of the experimental data to build the cell, whereas
our approach exploits them to calculate theoretical values, which could be multiples of two of the three
vectors’ lengths of the unit cell, and then uses them along with the experimental values. To show the
effectiveness of the proposed algorithm, several examples, requiring only minor limitations in linear
dimensions (<35 Å) and volume (<4500 Å3), are treated. For all considered cases, except the triclinic
symmetry that is time consuming, the corresponding FORTRAN routine is executed in a reasonable
time (<3 min with a 3 GHz processor). © 2012 International Centre for Diffraction Data.
[doi:10.1017/S088571561200070X]

Key words: powder diffraction, indexing

I. INTRODUCTION

In crystallography literature, whenever powder diffraction
data is of interest, indexing is the first step that a scientist
should be involved with. That is, since the 1960s, many
researchers have been interested in trying to find methods of
calculation, often analytical, to get efficiently through this step.

Among these methods, three have emerged and have been
frequently used, namely: ITO (Visser, 1969), TREOR (Werner
et al., 1985) and DICVOL91 (Boultif and Louër, 1991).
Nevertheless, these methods have shown their limits over
time in meeting requirements which have not been foreseen
or have needed more resources and efforts. For instance, we
may cite the zero-point error, the absolute angular error of
lines’ positions, the presence of impurities, and so on.
Therefore, improved versions are found in the literature.
That is, in DICVOL04 (Boultif and Louër, 2004; Louër and
Boultif, 2006), the authors have added the correction of the
zero-point error introduced in DICVOL91. In DICVOL06
(Louër and Boultif, 2007), they have introduced a new strat-
egy to limit the risk to miss a solution as in DICVOL04. On
the other hand, in N-TREOR (Altomare et al., 2000), the
authors have improved TREOR90, by making it more exhaus-
tive and capable of refining the selected unit cell automati-
cally. Finally, in N-TREOR09 (Altomare et al., 2009), the
authors have introduced a new figure of merit.

Moreover, the growth of the power of computing
machines and the resolution and accuracy of recording
devices, have yielded the emergence of other methods; all
aiming to increase the probability of obtaining good indexing.
To this end, GAIN (Kariuki et al., 1999) used the genetic
algorithm. It exploits the Le Bail method (Le Bail et al.,
1988) to fit the line profiles and X-Cell (Neumann, 2003)

explores the successive dichotomies combined with the search
of zero-point error by allowing unindexed lines. Furthermore,
McMAILLE (Le Bail, 2004) makes use of the Monte–Carlo pro-
cess and CRYSFIRE suite (Shirley, 1999) employs several pro-
grams in a complementary way, among them ITO,DICVOL and
TREOR. At this stage, it is worth noting that these methods
remain insufficient since the solution is not always unique, the
figure of merit, exploited for identifying the correct cell, can
be inefficient and it is up to the user to select the most suitable
one. The number of solutions depends mainly on the quality
of the data. It is clear that worse the data quality is, more sol-
utions we have and more likely the user gets confused.

Unlike the existing methods that are computationally
complex, here we present a method to solve the problem of
indexing in terms of a simple geometrical approach. The mul-
tiple cases that we treated numerically, showed the efficiency
of the proposed approach and its capability of resolving diffi-
culties associated with the zero-point error, the absolute angu-
lar error and so on. Note that the proposed method treats all
symmetries, except the rhombohedral one, which is included
in the hexagonal symmetry.

The paper is organized as follows. In Sections II, III and IV,
we present the theory of the considered approach, describe the
implementation of the proposed method and treat
the determination of the zero-point errors, respectively. In
Section V, we discuss the problem inherent to impurities.
In Section VI, we describe the proposed algorithm. Then, in
Sections VII and VIII, we treat numerical examples. Finally,
in Section IX, we end the paper with some concluding remarks.

II. THE METHOD

A. Principles

To clarify the basic idea used in this work, let us consider
three distances p1, p2 and p3. A triangle whose sides are p1, p2
and p3 may then be constructed (see Figure 1).
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Let (Oxy) be an orthonormal coordinate system in which
p1 is along the Ox axis. Therefore, point E, the intersection of
p2 and p3, has coordinates (x, y) such that

x = (p21 − p23 + p22)/2p1, (1)

y =
��������
p22 − x2

√
. (2)

Note that x may have negative values.
On the other hand, it is well known that an angle between

two sides may be easily derived geometrically. That is, if β* is
the angle between Ox and the line segment OE, then

cosb∗ = x/p2. (3)

For instance, if p1, p2 and p3 are the vectors in the reciprocal
lattice corresponding, respectively, to the reflections of indices
(100), (001) and (-101), then the triangle of Figure 1, would
describe a face of the reciprocal cell and β* the angle at the origin.

To construct the other faces of the cell, the above con-
struction process is repeated for all reciprocal distances, allow-
ing cell determination.

Note that the vector length pi = 1/dhkl, where dhkl is the
interplanar spacing.

B. Determination of powder diagram’s new lines

We start by exploiting the experimental data at hand,
noted set (A), which is used to build sets (B) and (C). These

two sets may then contain values that could be the lengths
of vectors b* and c*, respectively, and then, while carrying
out the building of all possible faces, we determine the miss-
ing data values which could be necessary for the construction
of the unit cell. In this way, we may build more triangles and
choose those whose point E has abscissa x lying in the interval
[−3p1/2, p1/2]. This interval has been chosen on the basis of
the minimum angular error criterion. That is, compared with
the reflections lying in the high 2θ region of the powder pat-
tern, the distances that correspond to those that appear in the
first part and the middle of the powder diagram, usually,
satisfy this criterion. Note that this interval is considered to
be sufficiently large such that the determination of the missing
values is made possible.

We recall that in high symmetries, the reciprocal unit
cell has two rectangular or square faces, whereas the third
one could be neither rectangular nor square. Let a*, b*
and c* be the three vectors basis of the reciprocal unit
cell. The rest of the paper assumes that the length differ-
ences of the basis vectors are not too large. Considering
the vector a* along Ox, we will first be interested in the con-
struction of the cell’s rectangular faces containing a vector
b* that is perpendicular to a*. In the following, we assume
that the distance p1 of set (A), could be a multiple of the
length of a*.

Then, we begin by looking for triangles such that abscissa
x of E′ is equal to 0 or –p1, Figure 2. If x =0, then the length
of OE’ could be a multiple of the length of b*. However, if
x = –p1, the ordinate y of E′ could be a multiple of the length

Figure 1. Description of a face of the reciprocal cell and the angle β* at the origin.
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of b*. In this manner, we can construct set (B) from values of
length of OE′ or from those of the ordinate y of E′.

To construct set (C), let us return to Figure 1. We can see
that, among the values of angle β*, the one that is the closest to
90° allows the nodes (001) and (00− 1) to remain in the area
bounded by the straight lines x = p1/2 and x =−p1/2 (i.e., x∈
[−p1/2, + p1/2]). The identification of these nodes’ positions
yields to the search of triangles for which point E is situated
between these two lines. In this case, we admit that the side
OE is a multiple of the length of c*. The periodic arrangement
of the nodes in the reciprocal lattice shows that the other nodes
of the same lines, i.e., (h01) and (h0−1), along Ox, are distant
hp1, from nodes (001) and (00− 1), respectively; all within
the area bounded by the straight lines x = hp1 + p1/2and x =
hp1− p1/2. In this way, the knowledge of one’s position,
determines the position of the other and vice versa. The con-
struction of triangle T2, whose distances are assumed to corre-
spond to the reflections of indices (100), (−101) and (−201),
allows us to know the position of node (−101), which in turn
gives the position of node (001). This follows from the fact
that if (x, y) are the coordinates of node (−101), then those
nodes (001) are (x + p1, y). Then, when x∈ [−3p1 /2, −p1/2],
i.e., h =−1, the side of the reciprocal lattice that could be a mul-
tiple of the length of c*, is obtained by the following:

p′ =
����������������
(x+ p1)2 + y2

√
. (4)

Note that the case x =−p1/2 is included in the first interval (i.e.,
[ −p1 /2, + p1 /2]) and therefore excluded from the second
because, according to Eq. (4), if x =−p1/2 then

p′ =
��������������
(p1/2)2 + y2

√
= OE, which again satisfies the hypoth-

esis of the first interval (i.e., OE is a multiple of the length of c*).
Finally, the selected values are gathered in set (C). In sum-

mary, for each value p1 of set (A), we have built two sets (B)
and (C). We should specify that, in the following, in addition
to set (A), sets (B) and (C) are built for the high symmetries.
However, only set (C) is necessary for triclinic symmetry.
Regardless of the original value of p1 (multiples of a* or
not), the procedure is repeated for p1 divided by 2 and 3.

C. Cell construction

The construction of sets (B) and (C) was done upon the
basis that there are two types of symmetries in the crystal sys-
tem; namely, the one in which the cells have two rectangular
or square faces and the other in which the cells possess neither
a rectangular nor a square face.

In the first type of symmetry, we determine the triangle
that defines the first face. For this, we use two elements p1
and p2 of set (A) and an element p3′ of set (C). This triangle
has p1 as a basis and p2 and p3′ as sides that intersect at
point E. β* is the angle at the origin. It is obtained from Eqs
(1) and (3).

As in this type of symmetry, α* and γ* are equal to 90°,
the cell construction is completed once we place perpendicu-
larly to this face, an element p4′′ of set (B), which cuts off p1
and p3′ at point O.

In addition, this construction has also been realized using
doubles and halves values of p1 and p3′ in order to increase the
probability of obtaining the cell of concern.

Since the nature of the elements (primitives or multiples)
of sets (A), (B) and (C) is unknown, the unit cell is obtained by
further dividing by n (n = 1, 2, 3 and 4), p1, p4′′ and p3′.

Finally, to fully exploit the experimental data and thus to
have more chance of finding the solution, the above procedure
is repeated by assigning successively to p1, the first ten
elements of set (A) and to p2, p3′ and p4′′, all the elements
of sets (A), (C) and (B), respectively.

D. Extension to triclinic cases

In the triclinic symmetry, the three angles are different
from 90°. Then, we must determine the three faces of the
structure. To do this, we first start by building the first two tri-
angles. Knowing that these triangles must have a common
side, we take three elements p1, p2 and p3 of set (A), which
we combine with two elements p2′ and p5′ of set (C) to obtain
two triangles. Note that p1 intersects with p2′ and p5′ at O and
it is chosen to be a common side of the two triangles.

Using these triangles, we identify five parameters of the
reciprocal cell; namely the three sides p1, p2′ and p5′ and
two angles α* and γ*, which are derived similarly to β* by
equations such as Eqs (1) and (3). Specifically, we use for
α*, in Eq. (1), p2′ and p2 in place of p2 and p3, respectively,
and in Eq. (3), p2′ in place of p2, and for γ*, in Eq. (1), p5′

and p3 in place of p2 and p3, respectively, and in Eq. (3), p5′

in place of p2.
Note that, these two triangles in the trihedron could be at

the limit, either superposed; i.e., the angle between them is
equal to 0°, or completely spread out, i.e., the angle between
them is equal to 180°. As shown in Figure 3, according to
the above limits, we deduce that the smallest angle between
p2′ and p5′ is equal to |a∗ − g∗| (position 1) and the greatest
angle is equal to (α* + γ*) (position 2), where |·| designates
the absolute value.

The trihedron is defined completely only when we build
the third triangle. This is achieved by using sides p2′, p5′

and an element p4 of set (A) and taking into account that
the angle β* at O, between p2′ and p5′, must satisfy

a∗ − g∗
∣∣ ∣∣ ≤ b∗ ≤ a∗ + g∗. (5)

Figure 2. Description of a face of the reciprocal cell and the angle γ* = 90° at
the origin.
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To ensure that the reciprocal cell is elementary, the linear par-
ameters are further divided by a factor n′ (n′ = 1, 2).

Note that by assigning all values of sets (A) and (C) to p2,
p3 and p4, and p2′ and p5′, respectively, we may construct sev-
eral trihedra.

III. IMPLEMENTATION OF THE PROPOSED METHOD

To estimate the effectiveness of this method, a general
program, named ‘IGC’ (indexation by geometrical construc-
tion) was written in FORTRAN. This program implements
the techniques introduced above. It begins by building sets
(B) and (C) [or only set (C), in the triclinic case]. Then, it com-
bines their elements with the experimental values of set (A) to
construct a model of the cell which can be a solution to the
problem of indexation. When the data are affected by the zero-
point error, they are corrected. Therefore, more accurate unit
cell parameters are determined (see Section IV). Moreover,
the quality factors M20 (de Wolff, 1968) and F20 (Smith and
Snyder, 1979) are calculated to appreciate the validity of the
proposed solution.

Many examples (up to 150) have been treated with this
program. The results, similar to those obtained by other pro-
grams (e.g., Louër and Vargas, 1982) showed that the small
volume solution, provided by high quality data, is usually
the correct solution. It comes out that the strategy of this pro-
gram is the same as the one adopted by the majority of the
existing programs. This requires a volume cut into slices
whose volume is 400 Å3. The unit cells whose volumes are
less than a slice section belong to the slice in question. Such
a strategy can speed up the search process until one (or
more) solution(s) of smaller volume(s) is (are) found.

This time limitation is more perceptible when we deal
with the case of high symmetry systems. Going from the

lowest volume to the highest volume, it is known that sol-
utions usually appear from the lowest symmetry to the highest
symmetry. To have a wide field of search for solutions in the
monoclinic system, the angle β is set up to 125°. Then, if the
solution happens to be in a slice, the search of other solutions
in larger volumes will continue simply by attributing to β the
values 90° or γ = 120° in the case of a hexagonal symmetry.
This would enable solutions in the other symmetries to appear.

In practice, the first 20 lines are sufficient to index a pow-
der diagram. It is recommended that the considered phase be
pure and the absolute angular error of line positions be less
than 0.03° in 2θ.

The tests were performed on examples taken from the
Personal Computer Powder Diffraction File (PCPDF) using
a 3 GHz processor. The success rate was 96% and the
execution time for most of these examples did not exceed 3
min (except the triclinic symmetry that required more time).
The treated examples were cells with linear parameters less
than 35 Å and volumes not exceeding 4500 Å3.

IV. ZERO-POINT ERROR

The proposed method also treats problems that may arise
when the lines’ positions of the powder diffraction diagram
are not zero-point error free. This error appears clearly in
the harmonic lines series. It is perceptible through a small dis-
placement, in the same direction, of these lines.

In this work and, in a similar manner, by the reflection-
pair method (Dong et al., 1999), we determine the zero-point
error by looking for all pairs of the experimental data which
verify the following relation:

mi pm/ni pn ≈ 1, (6)

where pm and pn, elements of set (A), are lines corresponding
to the diffraction angles θm and θn, respectively. The multi-
pliers mi and ni are integers.

Equation (6) can be set exactly equal to ‘1’ if we simply
introduce a real value Zp, called the zero-point error, to yield

ni sin un + Zp
( ) = mi sin um + Zp

( )
. (7)

Following this reasoning, several values of Zp are obtained.
However, as in 98% of the treated cases, the correction of
zero-point error on θ has not exceeded 0.05°, i.e., |Zp|≤
0.05°. We kept only those that were less than this limit.
Note that since relation (6) holds for pm = pn, then a zero
value of the zero-point error is also expected.

V. TREATMENT OF IMPURITIES

To have a reliable indexing, we consider that all the lines
of the powder diffraction pattern are important and then hope
that the measurements of lines positions are correct, the com-
pound is pure, and that the phase is unique. Otherwise, in
order to get around any of these problems, we allow Ni lines
to be non-indexed.

In most indexed examples, Ni ≤ 2. However, in some
cases, the mixture of phases and the presence of impurities,
cause the appearance of a large number of fake lines.
Therefore, Ni may be greater than 2. To this effect, many sol-
utions could be obtained. The risk of finding them in a slice of

Figure 3. Illustration of positions (1) and (2) as extreme limits of p2′.
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volume less than the volume which contains the correct sol-
ution is considerable.

VI. PROPOSED ALGORITHM

As shown in Figure 4, the proposed algorithm works as
follows. It starts reading the experimental data (N values)
given as distances dhkl or diffraction angles 2θ. Using these
data and as explained earlier (Section II.B), it builds sets (B)
and (C). Then, it constructs the cell that could be a solution.
That is, using this cell, the algorithm calculates the theoretical
diffraction angles that are to be compared with the experimen-
tal ones (Test (1))

|2uTheoretical − 2uExperimental| ≤ D(2u)Global , (8)

where Δ(2θ)Global = Δ(2θ) + 2Zp and Δ(2θ) is the absolute
angular error. Test (1) assumes that Δ(2θ )Global > Δ(2θ).
That is, at this stage, we used only the upper bound value of
the zero-point error (Zp = 0.05°). Note that this test has con-
siderably reduced the computation time. Once Test (1) is sat-
isfied, the elements of (A), (B) and (C) which contributed to
the construction of the candidate cell are corrected by adding
Zp [calculated from Eq. (7)] to their respective diffraction
angles. As long as values of Zp are not used up, new cell par-
ameters and new diffraction angles are calculated and

compared with the experimental angles (Test (2))

2u Corrected−Theoretical − 2uExperimental

∣∣ ∣∣ ≤ D 2u( ). (9)

Once Test (2) is satisfied, Test (3) is performed according to
the well-known M20 and F20 figures of merit. Now, if Test
(3) is satisfied, which means that M20 and F20 are, in general,
greater than 10, then there exist at least one solution. This pro-
cedure is repeated until all the elements of sets (A), (B) and
(C) are used up. Note that, if there is no solution in the high
symmetries, the algorithm looks for solutions in triclinic sym-
metry. Finally, it ends either when there is no solution in both
high symmetries and the triclinic one or when there is at least
one solution in either one of them.

VII. EXPERIMENTAL RESULTS

In order to show the efficiency of the proposed algorithm,
this section is devoted to examples of different symmetries
that may occur in the construction of a powder pattern cell.
That is, most of the treated cases were chosen according to
the difficulties that may be encountered in the process of dia-
gram indexation such as the presence of zero-point error, the
absence of lines of indices (0k0) or (00 l ) or both, the absolute
angular error of lines’ positions, and the cell volume. In the
latter case, when we have a big cell volume, the powder

Figure 4. Flow chart of the proposed algorithm.
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pattern contains, generally, several lines, therefore, the space
between these lines is very narrow, which makes the zero-
point error and the absolute angular error of lines’ positions
very annoying. These conditions often permit the solutions
of low volume to appear, and to nearly miss the solution
that should appear in a slice of higher volume.

The aim of these examples is to find solutions that are clo-
sest, in terms of cell parameters and volume, to those given by
the Joint Committee on Powder Diffraction Standards
(JCPDS) file. Among these examples, there is one the proces-
sing of which has revealed all the potentials of the proposed
procedure. The example is C26H31GeO5P (Diethyl 1 –

(triphenylgermanyl)-3-Keto-2-oxapentylphophinate). It is
known that this compound should be indexed in monoclinic
symmetry. Using λ = 1.5406 Å, the powder diffraction did
not show any reflections of indices (0k0). The program has
to look for the reflections of indices (0k0) and those of indices
(00 l) before starting any cell construction. Among several
theoretical values of p4′′ and p3′, calculated in order to be
associated with the experimental line p1 (1/p1 = 13.929 Å)
indexed by (100), two values have led to the cell that consti-
tutes a good approximation of the desired solution. The first
value was 1/p3′ = 5.7084 Å which is less than half of the
experimental value (11.475 Å) indexed by (002), and the
second was 1/p4′′ = 4.057 67 Å whose experimental line is
totally absent. The unit cell parameters were ac = 14.248 Å,
bc = 8.101 Å, cc = 23.444 Å, βc = 103.725° and Vc =
2628.50 Å3. Note that the value 5.7084 has been retained in
cell construction while the value 11.475 has not.

Using this cell, 20 lines were indexed over the 20 initially
used lines. The tolerated absolute angular error Δ(2θ) =
0.045°. The uniqueness of the solution and the values of the
figures of merit (M20 = 7 and F20 = 18 (0.017, 63)) show that

the solution is acceptable. Note the zero-point error Zp =
0.020 23 degrees in θ.

The solution found in the JCPDS file is given by a =
14.30 Å, b = 8.115 Å, c = 23.46 Å, β= 103.68° and V =
2646.55 Å3. Although small, the disparities between these
parameters and ours are, generally, owing to the absolute
angular error of the lines’ positions. Note that these disparities
have an effect on the theoretical reflection lines calculated
using our unit cell parameters. This could favor, for certain
experimental lines, one indexing over another. For instance,
this appears in lines 4.0153 and 3.9728 indexed, respectively,
by (310) and (302), instead of being indexed, respectively, by
(213) and (015), as given in the JCPDS file.

For comparison purposes, the above example has also
been treated by programs, which are considered as bench-
marks in the crystallography literature, such as DICVOL06
and N-TREOR. Their results are reported in Table I.
Although the result given by our approach is closer to the
true solution in terms of volume and cell parameters, we
agree that, if we confine ourselves to the given example and
not others, the results given by DICVOL06 and N-TREOR
are better if we look at their figures of merit, which are higher
compared with those obtained by our approach. However, if
we compare the time and effort that have been used so far to
set these programs, we may conclude that our approach
needs to be improved and affined to attain such results.

We may observe that in this approach a lot of experimen-
tal data are directly or indirectly involved in the construction
of the cell. Thus, the effectiveness of the proposed method
is proven to be closely related to the accuracy of the
measurements.

To extend the study to more interesting examples, Table II
lists some of the results obtained from other compounds found

TABLE I. Unit cell parameters of C26H31GeO5P, obtained by applying, DICVOL06, N-TREOR and our method.

Program a (Å) b (Å) c (Å) β (°) M20 F20 Δ(2θ) V (Å3) Zero-point (2θ)

DICVOL06 14.2237 8.0962 23.3309 103.697 10.7 25.8 (0.0125, 62) 0.045° 2610.32 0.0783°
N-TREOR 23.3197 8.077 14.26 103.707 11 27. (0.0119, 63) – 2609.70 0.08°
I.G.C 14.248 8.101 23.444 103.725 7 18 (0.017, 63) 0.045° 2628.5 0.0404°
True cell 14.30 8.115 23.46 103.68 – – – 2646.55 –

TABLE II. Examples of unit cell parameters obtained by applying the proposed method.

Parameters calculated True parameters

Formula a (Å) b (Å) c (Å) β (˚) V (Å3) M20 F20 t (s) at (Å) bt (Å) ct (Å) βt (˚) Vt (Å3)

C12H12CaN2O12Zr-6H2O
(q) 10.92 – 18.81 90.00 2242.50 24 43(0.009, 51) 24 10.90 – 18.78 90.00 2232.61

Ca6Al2(SeO4)3(OH)12-26H2O
(H) 11.41 – 21.51 120.00 2426.45 32 69(0.009, 29) 32 11.39 – 21.46 120.00 2411.89

K3La2(NO3)9
(c) 13.67 – – 90.00 2556.31 57 86(0.007, 31) 21 13.66 – – 90.00 2549.29

Ce Mg(NO3)6-6H2O
(c) 12.57 – – 90.00 1986.48 107 182(0.004, 25) 25 12.57 – – 90.00 1986.26

C26H31GeO5P
(M) 14.25 8.10 23.44 103.72 2628.50 7 18(0.017, 63) 27 14.30 8.115 23.46 103.68 2646.55

C19H35Cl2N2O7P
(O) 22.12 9.99 11.88 90.00 2624.48 11 26(0.016, 42) 52 22.17 10.01 11.97 90.00 2659.14

C15H20ClN3O
(O) 18.30 11.06 15.38 90.00 3113.47 20 28(0.012, 52) 60 18.34 11.08 15.40 90.00 3132.44

Ca(ReO4)2.H2O
(O) 23.19 11.30 11.93 90.00 3127.57 14 34(0.013, 41) 57 23.18 11.33 11.97 90.00 3144.77

C24H21N7-H2O
(M) 18.21 12.43 9.97 91.36 2257.06 11 30(0.014, 43) 39 18.23 12.30 9.973 91.34 2236.91

C20H20As2Fe4O12S2
(M) 17.20 13.80 14.47 112.50 3171.91 13 23(0.013, 63) 31 17.22 13.83 14.48 112.46 3190.15

Al43Cr4Yb6
(H) 10.87 – 17.57 120.00 1797.09 29 40(0.013, 39) 26 10.86 – 17.57 120.00 1794.58

C11H14ClO2PS
(O) 25.73 6.26 8.19 90.00 1319.21 16 32(0.016, 37) 34 25.86 6.276 8.202 90.00 1331.32

C4BaO9Ti-4H2O
(M) 14.05 13.81 13.39 88.45 2598.60 48 160(0.003, 32) 24 14.04 13.81 13.38 91.48 2594.92

C36H48FeO12P3
(M) 25.37 8.55 19.3 98.12 4145.78 14 51(0.009, 41) 36 25.31 8.514 19.22 98.13 4102.81

C46H54N4O4Sr
(M) 18.16 19.89 12.59 108.41 4315.23 13 49(0.008, 48) 39 18.16 19.82 12.54 108.41 4287.92
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in the JCPDS files, which could be considered as a sample of all
the examples we have treated so far. The choices were made on
the basis of the difficulties encountered with diagram indexa-
tion. Referring to Table II, the compounds were indexed;
some completely and others partially, in a maximum time of
60 s. The number of non-indexed lines Ni≤ 2. The used lines
are 20, the absolute angular error Δ(2θ) = 0.045° or 0.06°,
β(max) = 125° and the zero-point error |Zp|≤ 0.05°. The sym-
bols (c), (q), (H), (O) and (M) designate cubic, tetragonal, hexago-
nal, orthorhombic and monoclinic symmetries, respectively.

In Table II, we show the best results according to their
M20 and F20. These solutions are not always unique.
Although, they do not often appear, at the head of the list of
the results, they are usually among the top five. Note that
we did not adopt any criterion to rank the solutions.

For each compound of monoclinic symmetry, the number
of solutions that appear is less than six. These solutions are not
very different neither in dimensions of the cell parameters nor
in values of merit factors M20 and F20. The gap between their
merit factors is less than 3, except in the case of compound
C4BaO9Ti-4H2O, where the difference is considerable
between the merit factors of the cell (a = 14.05 Å, b = 13.81
Å, c = 13.39 Å, β = 88.45°, V = 2598.60 Å3, M20 = 48, F20 =
160 (0.003,32)), considered to be the best and which appears
in the second place in the list of solutions and the solution that
has the lowest values of M20 and F20 (a = 14.1 Å, b = 13.86 Å,
c = 13.44 Å, β = 91.69°, V = 2624.62 Å3, M20 = 17, F20 = 57
(0,011, 33)) and which appears in the first position. This
shows that the program has used different lines to determine
the first and second solutions.

As, going from the lowest volume to the highest volume,
the solutions usually appear from the lowest symmetry to the
highest symmetry. Consequently, the strategy followed in our
program is to let the solutions appear in their natural order.
Therefore, the solutions of compounds of high symmetries
(except the monoclinic symmetries), usually appear alone in
their volume section; making them easy to detect.

Finally, we should point out that the execution time is
acceptable. It could be further shortened if we reduce the num-
ber of experimental values of p1. In effect, to increase the
probability of having one of the lines (h00), the first ten values
of set (A) are assigned to p1. Knowing that, in the high
symmetry case, one of the (h00) lines may be present in the
first five experimental lines, then, except for the monoclinic
and triclinic symmetries, the execution time could be divided
by 2.

VIII. BETHANECHOL CHLORIDE BENCHMARKS

To test the robustness and the limits of our program, we
investigated more interesting operational cases through the
use of the ‘Bethanechol Chloride (C7H17ClN2O2) bench-
marks’ (Bergmann et al., 2004). The two entries ICDD PDF
43-1748 and 46-1964 were the subject of the following
tests. These tests are presented in the form of 10 different
lists of which each one contains 20 lines. They are listed as
follows:

A. Indexing the raw data. A(1) for ICDD PDF entry 43-1748
and A(2) for 46-1964.

B. Indexing the data with I≥ 5% (I/Imax). B(1) and B(2) as
above. T
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C. Indexing data corrected for zeroshift. C(1) and C(2) as
above.

D. Indexing data corrected for zeroshift and having I≥ 5% (I/
Imax). D(1), D(2) as above.

To these 2 × 4 tests, are added two further and considerably
easier tests:

E. Indexing new laboratory X-ray data.
F. Indexing synchrotron data.

These conditions correspond probably to more than 50%
of the crystal structures stored in the ICSD and CSD database.
The indexing programs should be applied to the following
series of 10 data sets in automatic and manual modes.
According to these benchmarks, the results of some of these
indexing programs are reported in Table III as follows: ‘1’
point means that the correct cell was found in the first FoM
position among the proposals; ‘0’ means that the correct cell
is mixed with the incorrect ones, not at the head of the list,
but listed among the first ten; The ‘−1’ means that the correct
cell was not found at all, or at a position larger than 10 in the
lists.

These tests show that our approach gives results that are
comparable to those given by other routines. The examples
in which our routine has failed are examples A(1), A(2) and
C(1). In A(1), the number of impurity lines was 9. Thus, the
number of lines of the phase that we wanted to index (11)
was not sufficient to compute the missing lines such as
(0k0) and (00 l); in A(2) and C(1), the real solutions were
found but appeared after the tenth. The merit factors of the
other examples obtained by our method were, sometimes,
smaller than those found by others. These drawbacks will be
taken into consideration in future works to improve the pro-
posed approach.

The global note in the last column in Table III is obtained
by adding the 20 results (1, 0 or−1). Note that ‘na’ is taken as
−1 when computing the totals.

For the easiest example F(4) given in Table IV, we remark
that, as far as the cell parameters obtained by the different
approaches are concerned, the difference is not noticeable.
Nevertheless, it appears important in terms of figures of
merit, but not to the point to doubt about one method or
another.

IX. CONCLUSION

In this study, we have presented a technique to index pow-
der diffraction diagrams. Unlike the existing methods that are

computationally complex, we have introduced a method to
solve the problem of indexing in terms of a simple geometrical
approach. To show the effectiveness of the proposed algor-
ithm, several examples have been treated. We have shown
that the first example has treated the problems inherent to
the absence of lines (0k0) and (00 l) and the zero-point
error, by introducing two new calculated values and correcting
the zero-point error. Regarding the simplicity of the proposed
algorithm, we should point out that the obtained results are
comparable to those given in the JCPDS files with an accep-
table execution time. Finally, we think that our method can
be improved if some crystallographic aspects and other math-
ematical tools are further exploited.

ACKNOWLEDGEMENTS

The authors would like to thank Pr. Armel Le Bail from
University of Maine and Dr Toufik Laroussi from
University Mentouri at Constantine, for their valuable
assistance.

Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Rizzi, R.,
and Werner, P.-E. (2000). “New techniques for indexing: N-TREOR in
EXPO,” J. Appl. Crystallogr. 33, 1180–1186.

Altomare, A., Campi, G., Cuocci, C., Eriksson, L., Giacovazzo, C., Moliterni,
A., Rizzi, R., and Werner, P.-E. (2009). “Advances in powder diffraction
pattern indexing: N-TREOR09,” J. Appl. Crystallogr. 42, 768–775.

Bergmann, J., Le Bail, A., Shirley, R., and Zlokazov, V. (2004).
“Renewed interest in powder diffraction data indexing,” Z. Kristallogr.
219, 783–790.

Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for
low-symmetry lattices by the successive dichotomy method,” J. Appl.
Crystallogr. 24, 987–993.

Boultif, A. and Louër, D. (2004). “Powder Pattern Indexing with the dichot-
omy method,” J. Appl. Crystallogr. 37, 724–731.

De Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder
pattern Indexing,” J. Appl. Crystallogr. 1, 108–113.

Dong, C., Wu, F., and Chen, H. (1999). “Correction of zero shift in powder
diffraction patterns using the reflection-pair method,” J. Appl.
Crystallogr. 32, 850–853.

Kariuki, B. M., Belmonte, S. A., McMahon, M. I., Johnston, R. L., Harris,
K. D. M., and Nelmes, R. J. (1999). “A new approach for indexing powder
diffraction data based on whole-profile fitting and global optimization
using a genetic algorithm,” J. Synchrotron Radiat. 6, 87–92.

Le Bail, A. (2004). “Monte Carlo indexing with McMaille,” Powder Diffr.
19,, 249–254.

Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure deter-
mination of LiSbWO6 by X-ray powder diffraction,”Mater. Res. Bull. 23,
447–452.

Louër, D. and Vargas, R. (1982). “Indexation automatique des diagrammes de
poudre par dichotomies successives,” J. Appl. Crystallogr. 15, 542–545.

TABLE IV. Unit cell parameters of example F(4) obtained by different programs.

Program a (Å) b (Å) c (Å) β (°) V (Å3) M20 F20

ITO13 8.876 16.409 7.135 93.829 1036.78 159.8 –

DICVOL91 8.855 16.408 7.135 93.828 1036.86 150.2 862.3 (0.0007, 31)
DICVOL04a 7.137 16.411 8.876 93.825 1037.46 147.6 858.2 (0.0008, 31)
TREOR90 8.875 16.408 7.135 93.829 1036.87 157 880.(0.0007, 30)
DICVOL04b 7.134 16.409 8.875 93.830 1036.73 161.6 856.2 (0.0008, 31)
McMAILLE 7.134 16.409 8.875 93.830 1036.78 167.9 888.18 (0.0008, 30)
I.G.C 8.875 16.411 7.134 93.837 1036.78 161 828 (0.0008, 31)

DICVOL04a: fast default and manual tests made by A. Le Bail.
DICVOL04b: manual tests made by D. Louër.

250 Powder Diffr., Vol. 27, No. 4, December 2012 M.L. Ettorche et al. 250

https://doi.org/10.1017/S088571561200070X Published online by Cambridge University Press

https://doi.org/10.1017/S088571561200070X


Louër, D. and Boultif, A. (2006). “Indexing with the successive dichotomy
method, DICVOL04,” Z. Kristallogr. Suppl. 23, 225–230.

Louër, D. and Boultif, A. (2007). “Powder pattern indexing and the dichotomy
algorithm,” Z. Kristallogr. Suppl. 26, 191–196.

Neumann, M. A. (2003). “X-Cell: a novel indexing algorithm for routine tasks
and difficult cases,” J. Appl. Crystallogr. 36, 356–365.

Shirley, R. (1999). http://www.ccp14.ac.uk/tutorial/crys/program/crysfire.
htm

Smith, G. S. and Snyder, R. L. (1979). “FN: A criterion for rating powder dif-
fraction patterns and evaluating the reliability of powder-pattern index-
ing,” J. Appl. Crystallogr. 12, 60–65.

Visser, J. W. (1969). “A fully automatic program for finding the unit cell from
powder data,” J. Appl. Crystallogr. 2, 89–95.

Werner, P.-E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semi-
exhaustive trial-and-error powder indexing program for all symmetries,”
J. Appl. Crystallogr. 18, 367–370.

251 Powder Diffr., Vol. 27, No. 4, December 2012 A novel powder diagrams indexing, using classical geometry 251

https://doi.org/10.1017/S088571561200070X Published online by Cambridge University Press

https://doi.org/10.1017/S088571561200070X

