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What Chains Does Liouville’s Theorem
Put on Maxwell’s Demon?*

Peter M. Ainsworth†‡

Recently Albert and Hemmo and Shenker have argued that, contrary to what is some-
times suggested, Liouville’s theorem does not prohibit a Maxwellian demon from op-
erating but merely places certain restrictions on its ability to operate. There are two
main claims made in this article. First, that the restrictions Liouville’s theorem places
on Maxwell’s demon’s ability to operate depend on which notion of entropy one adopts.
Second, that when one operates with the definition of entropy that is usual in this
debate, the restrictions put on Maxwell’s demon are not even as severe as Albert and
Hemmo and Shenker argue.

1. Maxwell’s Demon. Suppose we have a box divided into two com-
partments. Each compartment contains a gas. The gases are not at the
same temperature. There is a small hole in the wall between the com-
partments and a massless shutter that can be moved over the hole. When
the shutter is over the hole, the two compartments are thermally isolated.

Now suppose that the shutter is operated by a very observant demon.
The demon follows the following procedure: normally, he leaves the shut-
ter shut, so that the two gases remain isolated. But when he sees a molecule
from the cooler gas whose speed is greater than the average speed of the
molecules in the hotter gas coming toward the shutter, he opens the shutter
to let the molecule through. Similarly, he opens the shutter if he sees a
molecule from the hotter gas whose speed is less than the average speed
of the molecules in the cooler gas coming toward the shutter. (If the speed
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of the molecules is distributed according to the Maxwell-Boltzmann dis-
tribution, then there will be some such molecules.)

The effect of this will be to raise the temperature of the hotter gas and
lower the temperature of the cooler gas. Since it seems that the demon
need not perform any work, we apparently have here a process whose
sole thermodynamic effect is a transfer of heat from a cooler to a hotter
body, in violation of the second law of thermodynamics.1

Maxwell first summoned his demon in 1867 (in a letter to Peter Tait;
see Earman and Norton 1998, 438). He took it to show that the second
law is not, strictly speaking, true but only effectively true. This result may
have seemed surprising at the time, but in the light of Loschmidt’s re-
versibility objection to Boltzmann’s H-theorem (Loschmidt 1876-77) and
Poincaré’s recurrence theorem (1890), this result is now generally accepted
(see, e.g., Albert [2000], chap. 4, for a contemporary introduction to
Loschmidt’s reversibility objection and Poincaré’s recurrence theorem).

Nonetheless, there is still a huge debate as to whether Maxwell’s demon
can operate in a way that achieves a net decrease of entropy. There seem
to be two reasons for this. First, Maxwell’s thought experiment seems to
offer the prospect that we might, with sufficient ingenuity, be able to
contrive net entropy decreases ourselves.2 This would of course be tre-
mendously useful. In fact, it sounds too good to be true. Second, there
is an argument in the framework of the Boltzmann approach to statistical
mechanics that Liouville’s theorem prohibits Maxwell’s demon from
achieving a net decrease of entropy.3 This second reason is the focus of
this article.

2. Three Boltzmann Entropies. As noted, there is an argument in the
framework of the Boltzmann approach to statistical mechanics that Liou-
ville’s theorem prohibits Maxwell’s demon from achieving a net decrease

1. It is most transparently in (apparent) violation of Clausius’s formulation of the
second law, which states that no process whose sole thermodynamic consequence is
the transfer of heat from a cooler body to a hotter body is possible. But of course it
is also in (apparent) violation of the more usual modern formulation, which states that
the entropy of an isolated system cannot decrease.

2. To some extent, so does Loschmidt’s reversibility objection. But, intuitively, one
expects that it would be harder to carry out a Loschmidt reversal than to carry out
something like the operation performed by Maxwell’s demon.

3. Even though the Gibbs’s approach is more commonly used for practical purposes,
the Boltzmann approach seems to be generally favored in foundational discussions of
statistical mechanics (cf. Lavis 2005, 246). The question of whether it should be pre-
ferred is not addressed in this article. See Frigg (2008) for a discussion of the merits
and problems of both approaches.
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of entropy. The entropy that is referred to in this argument is the Boltz-
mann entropy, SB, which is defined as follows:

S p k ln (W).B

In this equation, k is the Boltzmann constant. However, there is an am-
biguity as to what exactly the Boltzmann entropy is because there are at
least three interpretations of W in the literature: (i) W is the volume of
phase space that is compatible with the macrostate of the system (e.g.,
Jaynes 1965/1983; Callender 2006; Hemmo and Shenker 2006), (ii) W is
the number of arrangements compatible with the distribution of the system
(e.g., Albert 2000; Ainsworth 2005), and (iii) W is the probability of the
macrostate of the system (e.g., Swendsen 2008). It will be argued in the
next three subsections that these three interpretations of W are not, in
general, equivalent (although they are equivalent in special cases). Con-
sequently, they give rise to three different Boltzmann entropies. In this
article, these will be referred to as SB1, SB2, and SB3, respectively. For many
purposes it may not be necessary to decide which of these entropies is
intended. But, as we shall see in sections 3 and 4, the type of restriction(s)
(if any) that Liouville’s theorem places on Maxwell’s demon’s ability to
achieve a net decrease of entropy does depend on which entropy one has
in mind.

2.1. W as the Volume of Phase Space That Is Compatible with the
Macrostate of the System. The reference to “phase space” in this inter-
pretation of W refers to the g-space of the system. For an N particle
system (where each particle has 3 degrees of freedom), this space has 6N
dimensions (three for the x, y, and z coordinates of each particle and
three for the x, y, and z components of the velocity of each particle). The
microstate of the system is represented by a single point in g-space. We
can partition the g-space into regions, such that each region contains all
and only those points that correspond to microstates that are compatible
with a given macrostate of the system, where each macrostate corresponds
to a unique set of values for some selected macroscopic properties (e.g.,
temperature, pressure, volume). On this interpretation of W, the value of
W for a system is the volume of the region of g-space that contains all
the points that correspond to microstates that are compatible with the
actual macrostate of the system.

This interpretation of W is probably the one that is the most commonly
used, both in the physics literature and in the philosophy literature. For
example, Jaynes asks us to “recall Boltzmann’s original conception of
entropy as measuring the logarithm of phase volume associated with a
macroscopic state” (1965/1983, 83), and Callender claims that “Boltz-
mann’s great insight was to see that the thermodynamic entropy arguably
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‘reduced’ to the volume in g-space picked out by the macroscopic param-
eters of the system” (2006).

2.2. W as the Number of Arrangements Compatible with the Distribution
of the System. The easiest way to understand this interpretation of W is
to consider the m-space of the system. For an N particle system (where
each particle has 3 degrees of freedom), this space has six dimensions
(three for the x, y, and z coordinates of the particles and three for the x,
y, and z components of the velocity of the particles). The microstate of
the system is represented by N points in m-space (where each point rep-
resents the position and velocity of a particular particle). Suppose that
the m-space is “coarse grained,” that is, partitioned into a number of
equally sized cells of small but finite volume. The “distribution” of the
system is given by specifying the number of particles in each cell. The
“arrangement” of the system is given by specifying which particle is in
which cell. On this interpretation of W, the value of W for a system is
the number of arrangements that are compatible with the actual distri-
bution of the system.

How does this interpretation of W compare to the first? Each arrange-
ment of the system corresponds to a single coarse-grained cell in the
system’s g-space. So each distribution corresponds to a number of such
cells. So (in addition to the system’s g-space being divided into a number
of coarse-grained cells: one for each possible arrangement) we can also
think of it as being divided into a number of regions (one for each possible
distribution), where each region contains all and only those cells that
represent arrangements compatible with a particular distribution. So on
this interpretation, the value of W for a system is essentially the volume
of the region of g-space that contains all the cells corresponding to the
arrangements that are compatible with the actual distribution of the sys-
tem (as well as being the number of arrangements that are compatible
with the actual distribution of the system).

So there is a close link between these first two definitions of W. But
the two definitions will only be equivalent if there is a one-to-one cor-
respondence between the macrostates of the system and the distributions
of the system, and, in general, this is not the case. For example, suppose
we have an ideal gas (composed of identical molecules) whose temperature
is not close to 0 K. And suppose we define the macrostate of the system
by the values of the temperature, pressure, and volume of the system.
The pressure, P, and temperature, T, are given by

N 2P p c mAv S;1( )V
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2T p c mAv S.2

In these equations, c1 and c2 are constants, N is the number of molecules
in the gas, V is the volume of the gas, m is the mass of a single molecule
of the gas, and is the mean-squared velocity of the molecules of the2Av S
gas. There are several distinct distributions that can give rise to the same
values of T, P, and V (and thus the same macrostate). Here, for example,
are two:

i) A distribution in which the molecules are evenly distributed over
volume V, and all have velocity of magnitude u.

ii) A distribution in which the molecules are evenly distributed over
volume V, and half of the molecules have velocity of magnitude w,
such that w2 p 2u2, and half have velocity 0.

So, in general, the distribution of the system is not the same as its macro-
state. This point is sometimes ignored or glossed over in the literature,
which might lead one to mistakenly conclude that the first two interpre-
tations of W are equivalent. For example, Ainsworth sloppily asserts that
the distribution “is effectively the macrostate of the system” (2005, 631),
and Albert sometimes uses the term “macrocondition” to refer to “dis-
tribution” (see, e.g., 2000, 50), but he introduces the term “macrocon-
dition” as follows: “there is patently a possible science of these temper-
atures and pressures and volumes—a science (that is) of macroconditions”
(23), which seems to suggest that he takes macroconditions to be equiv-
alent to (what are here called) “macrostates.”

2.3. W as the Probability of the Macrostate of the System. The third
interpretation of W, as the probability of the macrostate of the system,
is the least common. However, it has been urged by Swendsen as not only
the interpretation that yields the most appropriate definition of entropy
but also as the one that is closest to Boltzmann’s own intentions: “The
equation on Boltzmann’s tombstone, S p klogW . . . does not refer to
the logarithm of a volume in phase space. The equation was first written
down by Max Planck, who correctly attributed the ideas behind it to
Boltzmann [Planck 1901, 1906]. Planck also explicitly stated that the sym-
bol ‘W’ stands for the German word ‘Wahrscheinlichkeit’ (which means
probability) and refers to the probability of a macroscopic state” (Swend-
sen 2008, 16). Swendsen himself argues for an epistemic approach to the
probabilities involved here (17), suggesting that the probability of a macro-
state is the degree of belief we have (or perhaps should have) that we will
find the system in that macrostate, other things being equal. But it seems
that one could also offer an ontological interpretation of the probabilities
involved here. For example, a frequentist might suggest that the proba-
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bility of a macrostate is the limit (as time goes to infinity) of the ratio of
the length of time the system is in that macrostate to the length of time
the system has existed.

How does this definition of W relate to the first?4 Clearly, if the volume
of g-space that represents the macrostate of a system is proportional to
the probability of that macrostate, then this definition of W is essentially
the same as the first. Advocates of SB1 suppose this to be the case (see,
e.g., Albert 2000, 96). However, Swendsen claims that this supposition is
not in general legitimate (so SB3 does not in general reduce to SB1). In
particular, he claims that it is not legitimate if we are dealing with a system
of strongly interacting particles.5 Intuitively, this seems right: if, for ex-
ample, there is a strong attractive force between the particles, then a
macrostate in which the particles are all bunched together seems to be
more likely than a macrostate in which the particles are spread out over
a large volume, notwithstanding the fact that, other things being equal,
the latter macrostate corresponds to a larger region of g-space. Consider,
for example, a cloud of gas that collapses to form a star. We know that
the gas particles are more densely concentrated in coordinate space after
the collapse. So, on the face it, we would expect the “star” macrostate to
correspond to a smaller region of g-space than the “dispersed cloud of
gas” macrostate. But presumably the collapse is not an entropy-decreasing
process. One way to make sense of what is going on here is to assign a
nonuniform probability distribution over g-space (and take entropy to be
a function of probability, not g-space volume). Relatively small regions
of g-space corresponding to gas all clumped together can then be judged
to be more probable (higher-entropy) states than large regions corre-
sponding to the gas widely dispersed.

However, Albert (2000, 90) suggests that we can account for what is
going on in this case without resorting to a nonuniform probability dis-
tribution over g-space. He suggests that the “star” macrostate will cor-
respond to a larger region of g-space than the “dispersed cloud of gas”
macrostate because, although the particles in a star are more densely
concentrated in coordinate space, they will be more widely dispersed in
momentum space. But while it seems plausible that the particles will be
somewhat more dispersed in momentum space (simply because the mean-
square velocity of the particles will be higher), it is not obvious that this

4. I will not explicitly address the issue of how this definition of W relates to the
second. I hope that this will be clear enough from the following discussion and the
preceding discussion of how the first two definitions of W are related to each other.

5. In fact, the idea is that it is not strictly legitimate unless we are dealing with non-
interacting particles but that it is a reasonable approximation to make if we are dealing
with weakly interacting particles (e.g., dilute gases).
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will be sufficient to compensate for the fact that the particles are more
densely concentrated in coordinate space. Moreover, it is not clear that
this kind of answer will be at all plausible in other cases where we have
a system of interacting particles.

3. What Chains Does Liouville’s Theorem Put on Maxwell’s Demon’s
Ability to Reduce SB1? As noted, in classical statistical mechanics the mi-
crostate of a system at a given time is represented by a point in the system’s
g-space. In general, the microstate of the system will change over time.
The evolution of its microstate over time can be represented by a line in
the system’s g-space. As the system is governed by the laws of classical
mechanics, and these laws are deterministic, the line does not branch.
Moreover, we can, in principle, determine exactly what the line will look
like, if we know exactly what the initial microstate of the system is.

But suppose that we do not know exactly what the initial microstate
of the system is (as is of course generally the case). Suppose we only know
that the system is initially in one of several possible microstates. We can
represent our knowledge of the system’s microstate by a region of its g-
space: the region that contains all the points corresponding to the mi-
crostates that, for all we know, the system might initially be in. Call that
region A. We can use the laws of classical mechanics to work out what
the possible microstates of the system are at some later time by “evolving”
all the points in region A. This will give us a new region, B. In general,
B will not have the same shape as A. But Liouville’s theorem states that,
if the system is isolated, the volumes of regions A and B will be the same.

3.1. Iron Chains? Recall that SB1 is the Boltzmann entropy we get when
we interpret W as the volume of g-space that is compatible with the
macrostate of the system. Liouville’s theorem suggests an argument that
Maxwell’s demon cannot operate to decrease the SB1 of the gas without
increasing his own SB1. The argument runs as follows: first, let’s consider
what happens to the gas, ignoring what happens to the demon. The gas
begins in some macrostate GA and ends up in some macrostate of lower
SB1, GB. Let’s call the region of g-space that contains all the points that
represent microstates that are compatible with macrostate X “R(X).” As
GB is a macrostate of lower SB1 than GA, R(GB) is smaller than R(GA).
It seems that the initial microstate of the gas could be almost any of those
that are compatible with GA, and the demon would still be able to operate.
So the point representing the microstate of the gas could start off from
nearly anywhere in R(GA) and would end up somewhere in R(GB). So—
as R(GB) is smaller than R(GA)—the volume of the region that represents
the possible microstates of the gas decreases (this is not forbidden by
Liouville’s theorem, as the gas is not an isolated system).
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We know from Liouville’s theorem that for an isolated system the vol-
ume of the region that represents the possible microstates of the system
cannot decrease as the system evolves. The volume of the region that
represents the possible microstates of a joint system is the product of the
volumes of the regions that represent the possible microstates of the sep-
arate systems. By assumption, the gas � demon system is an isolated
system. So if the volume of the region that represents the possible mi-
crostate of the gas decreases (and we saw above that it does), the volume
of the region that represents the possible microstate of the demon must
increase. So the volume of the region that represents the possible final
microstates of the demon is greater than the volume of R(DA) (where DA

is the initial macrostate of the demon). Suppose the final macrostate of
the demon is DB. The region that represents the possible final microstates
of the demon must be contained within R(DB).6 So the volume of R(DB)
must be greater than the volume of R(DA). So the SB1 of the demon must
increase.7

So it seems that Maxwell’s demon can only successfully decrease the
SB1 of the gas at the cost of increasing his own SB1. So it seems that
Liouville’s theorem prevents him from achieving a net decrease of SB1.
Much of the literature on Maxwell’s demon can be thought of as trying
to give a physical explanation as to why the demon’s SB1 must increase.
The main suggestion is that the demon’s SB1 must increase because to
carry out his job the demon must gain information about the position
and velocities of the molecules in the gas and that there is an SB1 cost
associated with either (i) acquiring this information or (ii) erasing this

6. But note that it need not be equal to R(DB). Which microstates are possible final
microstates of the demon is determined not only by the final macrostate of the demon
but also by his initial possible microstates and the laws of evolution governing the
system.

7. Put a little more formally, let the volume of a region X be V(X). The volume of
the region (in the g-space of the gas) that represents the possible initial microstates of
the gas is V(R(GA)), and the volume of the region (in the g-space of the demon) that
represents the possible initial microstates of the demon is V(R(DA)). So the volume of
the region (in the g-space of the joint system) that represents the possible initial mi-
crostates of the joint system is V(R(GA)) # V(R(DA)). Similarly, the volume of the
region (in the g-space of the joint system) that represents the possible final microstates
of the joint system is V((GB)) # V(B) (where B is the region representing the final
possible microstates of the demon). And by Liouville’s theorem V(R(GA)) # V(R(DA))
p V(R(GB)) # V(B). So, as V(R(GB)) ! V(R(GA)), V(B) 1 V(R(DA)). The region that
represents the possible final microstates of the demon must be contained within R(DB).
So V(B) ≤ V(R(DB)). So V(R(DA)) ! V(R(DB)). So the SB1 of the demon must increase.
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information.8 These claims have been criticized by Earman and Norton
(1998, 1999) and Norton (2005).

3.2. Aluminium Chains? Albert (2000, chap. 5) and Hemmo and
Shenker (2006) point out that there is a flaw in the argument presented
in the previous subsection.9 As we have seen, Liouville’s theorem, together
with the fact that the region of g-space that represents the final possible
microstates of the gas is smaller than the region that represents the initial
possible microstates of the gas, shows that the region of g-space that
represents the final possible microstates of the demon must be larger than
the region that represents the initial possible microstates of the demon.
But it is only if we assume that the demon has only one possible final
macrostate that we can conclude that the whole of this region must be
contained within a single macrostate. If the demon has several possible
final macrostates: DB, DC, and so on, then all we can conclude is that the
union of R(DB), R(DC), and so on, must contain the whole of the region
representing the final possible microstates of the demon. And of course
it is possible that R(DB), R(DC), and so on, are all individually the same
size or even smaller than R(DA). So the SB1 of the demon might remain
the same or even decrease.

This shows that the chains placed on Maxwell’s demon by Liouville’s
theorem are not as restrictive as we had initially thought. But note that
it still seems that the theorem places limitations on the operation of the
demon. It seems to show that if the SB1 of the demon does not increase,
then there must be some uncertainty as to what the final macrostate of
the demon will be. (Although, Hemmo and Shenker [2006] point out that
in principle this uncertainty as to what the final macrostate of the demon

8. Even if there is an entropy cost associated with erasing information, it is not im-
mediately obvious why that is relevant because it is not immediately obvious why the
demon would need to erase the information. The claim is that either (i) he needs to
do this because he must return to his initial state or (ii) he will have to do it sooner
or later because he only has a finite memory.

9. It is reasonable to ask what definition of entropy Albert and Hemmo and Shenker
work with. In the case of Hemmo and Shenker, it is clear that by entropy they mean
SB1: “S at time t is defined as the logarithm of the Lebesgue measure of the macrostate
of S at time t,” where “macrostates correspond to the values of some classical mac-
roscopic observables” (2006). But, it is not so clear that this is the definition of entropy
that Albert is working with. When he initially defines the Boltzmann entropy, he clearly
intends SB2, but, as noted, he goes on to refer to distributions as “macroconditions,”
which appear to be equivalent to what are here called “macrostates.” This seems to
suggest that he does not think there is any significant difference between SB1 and SB2.
However, as we shall see in sec. 4, the difference between them is significant in this
context.
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will be can be translated into uncertainty as to what the final macrostate
of the environment will be.)

3.3. Paper Chains ? Let us distinguish two types of Maxwellian demon:
“brazen demons” and “subtle demons.” A brazen demon wears its de-
monic powers on its sleeve, in the sense that everything that has the same
macroscopic properties as a brazen demon is itself a (brazen) Maxwellian
demon. Subtle demons do not wear their demonic powers on their sleeves,
in the sense that not everything that has the same macroscopic properties
as a subtle demon is itself a Maxwellian demon.

Intuitively, one might expect that any Maxwellian demon would be a
subtle demon: if all we know about the (alleged) demon is really that he
is in a certain macrostate (i.e., that he has certain values of temperature,
pressure, volume, etc.), then it seems unlikely that we would know that
he actually is capable of carrying out the operations required to reduce
the SB1 of the gas. It seems that there could be lots of things that have
the same macroscopic properties as the demon but cannot affect these
operations. Or, to put it the other way round, if we know that the demon
really is capable of carrying out the operations required to reduce the SB1

of the gas, then it seems that we know more about him than that he is
in a certain macrostate. However, for present purposes there is no need
to claim that a Maxwellian demon must be a subtle demon; it suffices to
note that a Maxwellian demon could be a subtle demon.10

Albert and Hemmo and Shenker do not draw the distinction between
brazen and subtle demons and consider (in effect) only brazen demons.
The central claim put forward in this article is that subtle demons are not
subject to even the limitation suggested by Albert and Hemmo and
Shenker: it is contended here that it is possible for a subtle demon to
decrease the SB1 of the gas and end up (with certainty) in the same macro-
state that he began in. This state of affairs is, intuitively, what the original
thought experiment seems to suggest is possible. The operations that the
demon is required to perform by Maxwell do not appear to be the sort
of operations that would in any way alter the macrostate of the demon
(as characterized by his macroscopic properties: temperature, pressure,
etc.). So the claim of Albert and Hemmo and Shenker that there must
necessarily be some uncertainty as to the final macrostate of the demon
seems rather surprising (as does the claim they refute: that the final macro-

10. A referee suggested that we could not build a subtle demon, as we are macroscopic
beings. This seems to me wrong because we can manipulate systems at the microscopic
level: this is what nanotechnologists do. However, it is certainly true that if we did
build a subtle demon, then we would know more about it than is given by a specification
of its macroscopic state.
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state of the demon cannot be the same as his initial macrostate but must
be a macrostate of higher SB1).

11

Consider a subtle demon (whose initial macrostate is DA). We may or
may not know that he is a subtle demon (see n. 10). But either way, given
that he really is a subtle demon, his possible initial microstates are actually
only a subset of those that are represented by all the points in R(DA).
From Liouville’s theorem (together with the fact that the volume of g-
space that represents the final possible microstates of the gas is smaller
than the volume of g-space that represents the initial possible microstates
of the gas), we know that the volume of g-space that represents the final
possible microstates of the demon is bigger than the volume of g-space
that represents the initial possible microstates of the demon. But as the
initial possible microstates of the demon are actually only a subset of
those that are represented by points in R(DA), this does not imply that
the volume of g-space that represents the final possible microstates of the
demon cannot wholly lie in R(DA). So the final macrostate of the demon
could be (with certainty) the same as his initial macrostate.

Call the subregion of R(DA) representing the microstates that the demon
could initially be in (given that he is in macrostate DA and that he really
is able to operate as a demon) A. Suppose the final macrostate of the
demon will be (with certainty) the same as his initial macrostate (i.e., DA).
We know by Liouville’s theorem and the fact that the gas is in a lower-
entropy state at the end of the experiment that the subregion of R(DA)
representing the microstates that the demon could be in at the end of the
experiment is larger than A. So at the end of the experiment, the “demon”
might not be in A. If he is not, he will not be able to repeat his demonic
machinations (i.e., he will no longer be a demon) since, by hypothesis, A
contains all the microstates (in region R(DA)) from which he really is able
to operate as a demon.

This is illustrated in figure 1 in which the dimensions representing the
degrees of freedom of the gas are collapsed onto the y-axis, and the
dimensions representing the degrees of freedom of the demon are collapsed

11. Perhaps it might be objected that this is taking the initial thought experiment too
literally and that, since the demon is something very far removed from our everyday
experiences, we cannot really trust our intuition that his macrostate will not be changed
as he performs his operations. But imagine we just scale the whole thing up. Instead
of a gas of atoms, suppose we have a “gas” of footballs. And instead of a demon,
suppose we have a human being operating the massless shutter. Since all he has to do
is watch carefully the footballs heading toward the shutter and estimate their speeds
(he does not need to know them exactly; he will still achieve the desired result even if
he only lets the balls through that are clearly moving fast enough/slow enough) and
move a massless shutter up and down, we should surely not expect any change in his
macroscopic properties.
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Figure 1. g-space of the system at the start (A) and end (B) of the experiment.

onto the x-axis (cf. Hemmo and Shenker 2006). In figure 1A, the dashed
lines enclose the region of phase space compatible with the initial mac-
roscopic properties of the system (demon in state DA and gas in state GA).
The solid lines enclose the region compatible with the macroscopic prop-
erties of the system and the fact that the demon is (initially) really a
demon. In figure 1B, the dashed lines enclose the region of phase space
compatible with the final macroscopic properties of the system (demon
in state DA and gas in state GB). The solid lines enclose a region (com-
patible with the final macroscopic properties of the system) of the same
volume as is enclosed by the solid lines in figure 1A. Evidently, there are
some points in this region in which the “demon’s” microstate does not
lie in region A. If the system ends in one of these microstates, then the
“demon” is no longer a genuine demon.
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Suppose, for the sake of definiteness, that the region representing the
final possible microstates of the demon is three times as big as region A
(as in fig. 1). Then, other things being equal, in the best case scenario,
the chance that the demon will not be able to repeat the operation is 2/
3. But suppose that the demon can repeat the operation (i.e., he does end
up in region A). We know that, second time around, he might end up in
a microstate that does not lie in A (because, once again, the volume of
g-space representing the possible microstates of the gas has decreased, so
the volume of g-space representing the possible microstate of the demon
must increase). So, even if he can repeat the operation once, he might not
be able to repeat it a second time. And the chance that he will be able
to carry out the operation N times tends to zero as N tends to infinity:
sooner or later the demon will not be able to operate.

So, although Liouville’s theorem does not prohibit the existence of a
Maxwellian demon that (i) can cause a net decrease of SB1 and (ii) is
guaranteed to end up in the same macrostate that he began in, it does
imply that if the demon fulfills these conditions then there is no guarantee
that he will be able to repeat the operation, and the chance that he will
be able to carry out the operation N times tends to zero as N tends to
infinity.

4. What Chains Does Liouville’s Theorem Put on Maxwell’s Demon’s
Ability to Reduce SB2 and SB3? Recall that SB2 is the Boltzmann entropy
we get when we interpret W as the number of arrangements compatible
with the distribution of the system, and SB3 is the Boltzmann entropy we
get when we interpret W as the probability of the macrostate of the system.
In this section, we consider how the arguments of the previous section
are affected if one changes one’s concern from the demon’s ability to
achieve a net decrease of SB1 to its ability to achieve a net decrease of SB2

or SB3.
How do things change if we substitute SB2 for SB1 in the foregoing

arguments? The initial argument and the response of Albert and Hemmo
and Shenker to this argument are essentially unchanged. However, the
final argument, which purports to show that Liouville’s theorem does not
prohibit the existence of a Maxwellian demon that (i) can cause a net
decrease of SB1 and (ii) is guaranteed to end up in the same macrostate
that he began in, does not go through if we substitute SB2 for SB1. This
argument relied on the supposition that there could be a subtle demon,
that is, that there could be a demon that could only operate from a special
subset of the microstates compatible with its initial macrostate. The an-
alogue of a subtle demon in the case of SB2 would be a demon that could
only operate from a special subset of the arrangements compatible with
its initial distribution. But it seems that there could be no such demon:
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different arrangements compatible with a given distribution are permu-
tations of one another, and it seems that if a demon is actually capable
of carrying out the operations that Maxwell’s demon carries out when he
has one arrangement, then he should also be able to carry out those
operations if he has a permutation of that arrangement. So, it seems that
Liouville’s theorem does prohibit the existence of a Maxwellian demon
that (i) can cause a net decrease of SB2 and (ii) is guaranteed to end up
with the same distribution that he began with.

If we substitute SB3 for SB1, then the argument does not even get off
the ground. Liouville’s theorem puts restrictions on how volumes of g-
space evolve. In the case of SB3, W is taken to be the probability of the
macrostate of the system (and, in general, it is not assumed that there is
a straightforward connection between probabilities and g-space volumes).
So, in general, Liouville’s theorem puts no constraints on what happens
to SB3.

In particular, if we are taking entropy to mean SB3, then the fact that
the gas goes from a higher- to a lower-entropy state no longer means that
the region representing the macrostate of gas at the end of the procedure
is smaller than the region representing the macrostate of gas at the start
of the procedure since W is now taken to be the probability of the macro-
state of the system, not the volume of the region that represents it in g-
space. Moreover, as the volume of the region representing the possible
microstates of the gas need not change over the course of the operation,
the volume of the region representing the possible microstates of the
demon need not change over the course of the operation. So, the region
representing the final possible microstates of the demon could be exactly
the same as the region representing the initial possible microstate of the
demon. So, in this case the demon could continue to operate indefinitely.

However, if the demon operates on a gas of noninteracting particles
(so the probability of a macrostate of the gas is essentially the same as
the volume of the region that represents it in g-space), the fact that the
gas goes from a macrostate of higher SB3 to macrostate of lower SB3 does
mean that the region representing the macrostate of the gas at the end of
the procedure is smaller than the region representing the macrostate of
gas at the start of the procedure after all. And this means that the region
representing the final possible microstates of the demon must be larger
than the region representing the initial possible microstates of the demon.
So we have essentially the same results as in the case of SB1.

5. Summary of Results. The main results of the article are (1) Liouville’s
theorem does not prohibit the existence of a Maxwellian demon that (i) can
cause a net decrease of SB1 and (ii) is guaranteed to end up in the same
macrostate that he began in, but it does imply that (iii) if the demon fulfills
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these conditions then there is no guarantee that he will be able to repeat
the operation, and the chance that he will be able to carry out the op-
eration N times tends to zero as N tends to infinity. (2) Liouville’s theorem
does not prohibit the existence of a Maxwellian demon that (i) can cause
a net decrease of SB2, but it does imply that (ii) if the demon fulfills this
condition then there is no guarantee that he will end up with the same
distribution that he began with. (3) Liouville’s theorem does not prohibit
the existence of a Maxwellian demon, operating on a gas of interacting
particles, that (i) can cause a net decrease of SB3, (ii) is guaranteed to end
up in the same macrostate that he began in, and (iii) can repeat his
machinations indefinitely. (4) Liouville’s theorem does not prohibit the
existence of a Maxwellian demon, operating on a gas of noninteracting
particles, that (i) can cause a net decrease of SB3 and (ii) is guaranteed to
end up in the same macrostate that he began in, but it does imply that
(iii) if the demon fulfills these conditions then there is no guarantee that
he will be able to repeat the operation, and the chance that he will be
able to carry out the operation N times tends to zero as N tends to infinity.
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von Körpern mit Rücksicht auf die Schwerkraft.” Wiener Berichte 73:128–42, 366–72;
75:287–98; 76:209–25.

Norton, John D. 2005. “Eaters of the Lotus: Landauer’s Principle and the Return of Max-
well’s Demon.” Studies in History and Philosophy of Modern Physics 36:375–411.
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