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The Lagrangian approach is natural for studying issues of turbulent dispersion
and mixing. We propose in this work a general Lagrangian stochastic model
for inhomogeneous turbulent flows, using velocity and acceleration as dynamical
variables. The model takes the form of a diffusion process, and the coefficients
of the model are determined via Kolmogorov theory and the requirement of
consistency with velocity-based models. We show that this model generalises both
the acceleration-based models for homogeneous flows as well as velocity-based
generalised Langevin models. The resulting closed model is applied to a channel
flow at high Reynolds number, and compared to experiments as well as direct
numerical simulations. A hybrid approach coupling the stochastic model with a
Reynolds-averaged Navier–Stokes model is used to obtain a self-consistent model,
as is commonly used in probability density function methods. Results highlight that
most of the acceleration features are well represented, notably the anisotropy between
streamwise and wall-normal components and the strong intermittency. These results
are valuable, since the model improves on velocity-based models for boundary layers
while remaining relatively simple. Our model also sheds some light on the statistical
mechanisms at play in the near-wall region.

Key words: turbulence modelling, turbulent boundary layers

1. Introduction
Lagrangian stochastic models are widely used to describe complex turbulent

flows (Pope 2000; Fox 2003; Chibbaro & Minier 2014), and are of particular relevance
for turbulent dispersion (Wilson & Sawford 1996), reactive flows (Pope 1985; Fox
2003) and inertial particles (Minier & Peirano 2001; Peirano et al. 2006; Minier 2016).
They are also appealing when Lagrangian properties are under investigation (Yeung
& Pope 1989; Mordant et al. 2002; Meneveau 2011; Watteaux et al. 2019).

Lagrangian stochastic models produce collections of synthetic trajectories that
reproduce the statistical and, in some less accurate weak sense (i.e. the convergence
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is assured only in distribution), the dynamical properties of particles advected by
the flow (Pope 1985; Kloeden & Platen 1992). In this framework, stochastic models
focus generally on the dynamics of the one-point and one-time probability density
function (PDF) of the state vector of the system (Pope 2000).

The choice of the relevant variables for the model (i.e. the appropriate state
vector) is key to an accurate description of a given turbulent flow. In particular, it is
essential to retain enough variables to have a state vector that can be described as
Markovian (Onsager & Machlup 1953; Gardiner 1990; Marconi et al. 2008). Since
these models are mainly conceived to tackle general non-homogeneous flows relevant
for applications, the state vector is usually limited to the position and velocity of the
fluid particles (x, U). These observables are modelled as a diffusion process, which
is justified in relation to Kolmogorov theory (Pope 1994a). A variety of models have
been proposed for such a process (Lundgren 1969; Pope 1981), but one of the more
widely accepted is the so-called generalised Langevin model, which reads as

dxi =Ui dt,

dUi =−
1
ρ

∂〈P〉
∂xi

dt+Gij(Uj − 〈Uj〉) dt+
√

C0〈ε〉 dWi,

 (1.1)

where W is an isotropic Wiener process (Gardiner 1990) and

Gij =−
1
TL
δij +G a

ij and TL =

(
1
2
+

3
4

C0

)−1 k
〈ε〉
, (1.2a,b)

where G a
ij is a traceless matrix with the dimension of the inverse of time, k(x) is

the turbulent kinetic energy, 〈ε〉(x)= ν〈|∇u|2〉 is the average dissipation rate and C0
is a dimensionless constant of the model. The specification of C0 and Gij define the
particular model.

These models have some limitations, and their validity may become questionable in
some circumstances. In particular, in stationary isotropic turbulence the autocorrelation
of the velocity for such models is given by (Pope 2000)

ρ(s)=
〈U(t)U(t+ τ)〉
〈U2〉

= exp
(
−|s|
TL

)
. (1.3)

This formula shows that the autocorrelation is non-differentiable at the origin,
reflecting the fact that the velocity process is not differentiable. Only one time
scale, namely TL that is related to large energy-containing scales, is included in the
model, and there is no Reynolds-number effect. Indeed, the separation of time scales
τη� TL, where τη is the Kolmogorov time scale τη ≡ (ν/〈ε〉)1/2, allows these models
to neglect high time–frequency behaviour, and limit the state vector to fluid particle
position and velocity. This criterion is no longer met at low Reynolds numbers, with
the Reynolds number defined as Re=UL/ν, where U and L are typical velocity and
length of large scales and ν is the kinematic viscosity. This assumption is not valid
everywhere in a turbulent boundary layer, where the characteristic time scale of the
flow in the near-wall region is of the order of the Kolmogorov scale. In this case,
there is not a separation of scales sufficient to justify the Markovian description of
the process (x,U).

Some proposals have been made to address these issues in isotropic turbulence
(Krasnoff & Peskin 1971; Sawford 1991) by introducing a second time scale, which
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consequently introduces Reynolds-number dependence. Furthermore, experimental
measurements of Lagrangian fluid acceleration in isotropic flows (Voth, Satyanarayan
& Bodenschatz 1998; Voth et al. 2002; Mordant, Lévêque & Pinton 2004b) have
motivated several models with the purpose of fitting the experimental data, but
without a sound link to turbulence theory (Gotoh & Kraichnan 2004), with the
notable exception of Lamorgese et al. (2007). An important step forward has been
taken by Pope (2002), who has proposed the use of a general diffusion stochastic
model for fluid particle velocity and acceleration, and has considered in detail the
case of homogeneous anisotropic turbulence. The goal of that work was not to
propose a specific model, but rather to show that a diffusion process may reproduce
quite well the direct numerical simulation (DNS) data if coefficients are correctly
prescribed. However, no attempt has been made to develop a consistent model for
general non-homogeneous flows, although this is the more realistic and relevant
situation for applications.

The aim of the work reported here is to propose a first model that includes the
acceleration of fluid particles for the general case of statistical inhomogeneous
turbulence, and it follows recent experimental and DNS measurements of the
acceleration of tracer particles in a turbulent channel flow at high Reynolds
number (Stelzenmuller et al. 2017). The model is developed in the general framework
of a diffusion process for the fluid particle velocity and acceleration (Pope 2002),
and can be applied also to statistical unsteady flows, even though the present work
is focused on a statistical stationary channel flow. The coefficients of the model
are not constrained by measurements, but rather on the basis of Kolmogorov theory
and by the general analysis of the behaviour of the statistical moments, notably the
Reynolds stresses, which can be extracted from the model. In the simplest case of
isotropic flows, the model reverts to one that has been previously proposed (Krasnoff
& Peskin 1971; Sawford 1991). In non-homogeneous flows, when the acceleration
can be considered as a fast process, i.e. when the observation scale is much larger
than the characteristic acceleration scale, the model is consistent instead with the
standard Langevin models for the fluid velocity given by (1.1). The resulting model
therefore fulfils the criteria set down to characterise an acceptable model for general
applications (Pope 2000; Minier, Chibbaro & Pope 2014), and thus it could be
applied to realistic flows of practical interest. Still, limitations inherent to the present
approach are expected to require some improvements, at least in specific cases and
for particular questions. Some possible ameliorations are discussed in the conclusions.

As well as being interesting in its own right, we also regard the present model as
an intermediate step in the development of an improved Lagrangian stochastic model
for inertial particles. In particular, the possible Reynolds number dependency has not
yet been considered for such phenomena.

The paper is organised as follows. In § 2, we propose the new theoretical model
and how to specify the coefficients of the governing equations. The different limit
cases are also discussed. In § 3, the numerical approach is analysed, and we describe
the numerical scheme developed to deal with the set of stochastic equations, which
is stiff. In § 4, the results are reported: mean, variance and PDF of the acceleration
components are compared against DNS and experimental data. A discussion and
conclusions are given in § 5.

2. Theoretical model
In this work, we develop a Lagrangian stochastic model that consists of an ordinary

differential equation for U, which models the exact fluid particle velocity U+, and a
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stochastic differential equation (SDE) for an acceleration variable A, which models the
exact acceleration:

A+ =
dU+

dt
=A[X+(t), t], (2.1)

where X+(t) is the position of the fluid particle. The acceleration can be decomposed
into its mean and fluctuating parts, based on the mean (〈P〉, 〈U〉) and fluctuating (p′,u)
components of the pressure and velocity:

Ai =−
1
ρ

∂〈P〉
∂xi
−

1
ρ

∂p′

∂xi
+ ν

∂2
〈Ui〉

∂xk∂xk
+ ν

∂2ui

∂xk∂xk
. (2.2)

We propose a model in terms of a fluctuating component of the acceleration denoted
by a(t), as suggested in earlier works (Krasnoff & Peskin 1971; Pope 2002). The
model we propose reads as

dxi =Ui dt, (2.3)

dUi =−
1
ρ

∂〈P〉
∂xi

dt+ Dij(Uj − 〈Uj〉) dt+ ai dt, (2.4)

dai =−βai dt+
√

B dWi. (2.5)

Comparing equations (2.2) and (2.4) reveals that the mean pressure term is included in
the equation for the particle velocity, as well as a term that is linear in the velocity
fluctuations. This approach follows directly from the form of the first-order models
as expressed by (1.1), and the linear term models a part of the fluctuating pressure
gradient. Therefore, a(t) models the viscous contribution and pressure effects not taken
into account in the model. In particular,

Dij (Uj − 〈Uj〉)+ ai(t)≡ Ai(t)− 〈Ai(t)|x(t)〉, (2.6)

where x(t) represents the position of the model particle. The tensor coefficients depend
on space x, namely 〈P〉(x, t),Dij(x, t), 〈U i〉(x, t); also, in general, the coefficients β and
B are functions of x, as will be made explicit shortly.

The structure of the model is such that some terms contributing to acceleration,
namely those evolving on a slower time scale, are included directly in the equation for
the velocity (2.4); we recognise the mean pressure gradient and the return-to-the-mean
term modelling the pressure fluctuations in the generalised Langevin model (Pope
2000, 2002) as such terms. The other contributions to the acceleration, whose
dynamics are generally faster, are modelled via the SDE (2.5) for a(t). The neglected
part of the fluctuating pressure gradient and the viscous contribution are hence
included in this term. A similar reasoning informs the structure of the model
proposed in the framework of homogeneous turbulence (Pope 2002), when the
mean 〈A(t)|x(t)〉 is zero. In any case, this formulation is equivalent to that based
on the total acceleration A(t) = dU/dt, as pointed out by Sawford (1991) for the
isotropic case.

Within the present structure of the model, it is possible to highlight the differences
with respect to models that include only the position and velocity of the fluid parcels
(x,U), as shown in general in (1.1)–(1.2). Indeed, the model we propose is based on
the idea of retaining the generalised Langevin modelling for the mean and fluctuating
pressure gradients, while replacing the white noise appearing in the velocity equation
(1.1) with a differentiable process a, treated as an independent variable. In particular,
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Stochastic modelling of acceleration 892 A38-5

we replace the white-noise term, which is a delta-correlated stochastic process, with
a coloured noise, which is a differentiable process a with a finite correlation time. In
this work, we have chosen to model ai as an Ornstein–Uhlenbeck process (Gardiner
1990). This process is the solution of the linear stochastic equation (2.5), and is a
continuous process with time correlation given by

〈ai(t)aj(t′)〉 = 〈a2
〉 exp(β|t− t′|)δij; (2.7)

as a consequence, the typical time scale of a(t) is given by β−1. Given that a is the
fast fluctuating part of the total acceleration, this will also be a characteristic time
scale of the total acceleration, as already pointed out for homogeneous turbulence
(Sawford 1991; Pope 2002). This means that the choice of the time scale β−1 should
be directly related to the typical correlation time of the full acceleration.

Some properties of the model can be deduced even before fixing the coefficients. In
the case of homogeneous turbulence, the model takes the form of a linear SDE with
constant coefficients, and therefore it yields Gaussian processes. More specifically,
the two variables a(t) and U(t) are jointly Gaussian. While the one-point PDF of the
velocity has been found to be Gaussian (Tavoularis & Corrsin 1981), it is well known
from experimental measurements (Voth et al. 1998; La Porta et al. 2001; Mordant
et al. 2001) and numerical simulations (Yeung & Pope 1989) that acceleration is
highly non-Gaussian. This departure from Gaussianity in homogeneous turbulence
is not described by the present model. It is possible to correctly reproduce this
intermittent effect by making the coefficients stochastic processes (Pope & Chen 1990;
Lamorgese et al. 2007). However, since we consider here non-homogeneous flows
we retain constant coefficients, and do not attempt to represent these higher-order
effects. In fact, it is worth emphasising that the Gaussianity of the model is confined
to homogeneous turbulence. For inhomogeneous flows, non-Gaussian statistics such
as the velocity triple correlation can be accurately calculated by such linear stochastic
models, because the coefficients may change in space. The internal intermittent
corrections are usually negligible in these cases (Pope 2000).

In homogeneous isotropic turbulence, the mean gradients are zero and the
coefficients are isotropic, so the three components are statistically independent. In
this case, our model becomes simply

dU =D U dt+ a dt, (2.8)

da=−βa dt+
√

B dW. (2.9)

In this way, we retrieve the original model of Krasnoff & Peskin (1971), which is
in turn identical to the model proposed by Sawford (1991) in terms of different
coefficients. In this case, the velocity time correlation can be calculated analytically
as the sum of two decaying exponentials with two different time scales, which are
the inverse of the eigenvalues of the system (Pope 2002). The coefficients D, β and
B are unique functions of the variance of the processes 〈a2

〉, 〈U2
〉 and the integral

time scale TL. This shows again that the choice of the coefficient β is related to the
time scale of the acceleration. The fact that our model reverts to this previous model
in the isotropic case is valuable since the predictions of this model are excellent with
respect to DNS data (Sawford 1991).

Let us now fix the unknown coefficients. The first requirement we ask of the
model is to be consistent with the Langevin model for non-homogeneous flows given
by (1.1). This condition fixes immediately Dij=Gij. As displayed in (1.2), this tensor
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is composed of an isotropic term related to the integral time scale with the possible
addition of another anisotropic trace-less term. The first term forms the core of
the current PDF approach to turbulent flows, while the second term allows for a
more refined representation of the Reynolds-stress dynamics through the adequate
choice of the matrix G a

ij , as explained in detail by Pope (1994b). In particular, a
realisable Reynolds-stress model corresponds to each acceptable choice of this matrix,
and the adding of such a term is important in shear flows to reproduce complex
behaviour not properly taken into account by the isotropic term, notably the rapid
distortion effects (Pope 2000). It is important to stress here this correspondence
between the Lagrangian stochastic models of turbulence and the second-order
closures in anisotropic flows. Since in this work we use a refined Reynolds-averaged
Navier–Stokes (RANS) model (to obtain average quantities) together with the addition
of the acceleration variable in the stochastic model, we want to appraise the effect
of this inclusion and therefore we take G a

ij = 0 for the sake of simplicity. As will be
clear later, even with this approximation the model is satisfactory.

To fix the coefficients for the acceleration process a(t), first we use dimensional
arguments à la Kolmogorov to give an estimate of the time scale, and then we
impose that the form given by (1.1) is retrieved in the limit of infinite β, that is,
when the acceleration process is so fast that it can be considered as white noise and
adiabatically eliminated (Gardiner 1990).

Concerning the time scales of the problem, we consider the time increment δUτ =

|U(t + τ) − U(t)| and then the second-order Lagrangian structure function DL(τ ) =
〈(δUτ )

2
〉= v2

ηζ (φ), where the Kolmogorov scales have been used, vη≡ (ν/〈ε〉)1/4, τη≡
(ν/〈ε〉)1/2 and ζ (φ) is a universal function of a dimensionless time φ = τ/τη. In the
inertial range similarity hypothesis gives DL(τ )∼C0〈ε〉 τ , where C0 is the Kolmogorov
constant. This implies for the velocity autocorrelation function that

RL(τ )≡
〈U(t)U(t+ τ)〉
〈U2〉

= 1−
DL(τ )

2〈U2〉
∼ 1−

C0

2
τ

T
, (2.10)

with T the time scale of large scales, such that RL(τ )∼ 1 in the inertial range far from
boundaries when τ � T (Pope 1994a; Monin & Yaglom 2013). It is worth remarking
that C0 should not be confused with the model constant C0 as the link between the two
is not straightforward, notably in the inhomogeneous case. This issue will be discussed
later.

We can generalise this result for the correlation of velocity derivatives in the case
of locally isotropic variables:

BL
n(τ )=

〈
dnU
dtn

(t)
dnU
dtn

(t+ τ)
〉
, (2.11)

where the same hypotheses yields

BL
n(τ )=

(
vη

τ n
η

)2

αn(φ)= ν
1/2−n
〈ε〉n+1/2αn(φ), (2.12)

where αn(φ) should be universal functions. In particular, using the definition of DL,
we find

BL
n(τ )=

(−1)(n−1)

2
d2nDL

dτ 2n
, (2.13)
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Stochastic modelling of acceleration 892 A38-7

which means

αn(φ)=
(−1)(n−1)

2
d2nζ (φ)

dφ2n
. (2.14)

If τ is in the inertial range, we require that the function BL
n be independent of ν. We

then obtain
BL

n(τ )≈ 〈ε〉τ
1−2n, i.e. αn(φ)∼ φ

(1−2n). (2.15)

For n= 1, the same formulas give for the mean square of the turbulent acceleration

〈A2
〉 =Kν−1/2

〈ε〉3/2, (2.16)

where K is a universal constant. Hence we can find the acceleration correlation
behaviour

RA(τ )=
〈A(t+ τ)A(t)〉
〈A2〉

∼
τη

τ
(2.17)

and in the same way that of the derivative of acceleration for n= 2

RȦ(τ )∼
(τη
τ

)3
. (2.18)

These formulas show that the turbulent acceleration and higher derivatives are
correlated for a time comparable to τη. Furthermore, the mean acceleration, as
displayed by (2.16), as well as its derivatives depend explicitly on the fluid viscosity
ν. Since for high Reynolds numbers the viscosity affects only the very small scales of
turbulent motion, in locally isotropic turbulence these variables are determined largely
by scales l 6 η. On the basis of these estimates, the fluid particle acceleration time
scale β−1 is taken as proportional to the local Kolmogorov time scale, and assuming
a constant of proportionality of one we get

β−1
= τη. (2.19)

Our derivation shows also that the higher the derivative the faster the process
loses correlation, so that higher-order variables can be considered random noise.
Nevertheless, for τ . τη this reasoning ceases to be true and higher-order models may
have some justification (Reynolds 2003b).

Once the time scale of the process a is fixed, the requirement of consistency
with the velocity model (1.1) allows us to fix the diffusion term in (2.5). The
SDEs (2.3)–(2.5) constitute a diffusion process, or more loosely are Langevin
equations, and therefore correspond to a Fokker–Planck equation for the Lagrangian
PDF (Gardiner 1990). In the case of the incompressible fluids treated here, this
equation is identical to the equation for the Eulerian PDF (Pope 1985). In this way,
starting from (2.3)–(2.5), it is possible to formally derive the corresponding equations
for the statistical moments, and notably the Reynolds-stress equations (Pope 1994b):

∂〈uiuj〉

∂t
+ 〈Uk〉

∂〈uiuj〉

∂xk
+
∂〈uiujuk〉

∂xk
= −〈uiuk〉

∂〈Uj〉

∂xk
− 〈ujuk〉

∂〈Ui〉

∂xk

+〈uiaj〉 + 〈ujai〉 −
2
TL
〈uiuj〉, (2.20)
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where the correlations 〈uiaj〉 are solutions of transport equations, which reflect the
non-zero memory effects due to the coloured noise in the velocity. Specifically, the
transport equations for the 〈uiaj〉 correlation are

∂〈uiaj〉

∂t
+ 〈Uk〉

∂〈uiaj〉

∂xk
+
∂〈uiajuk〉

∂xk
=−

1
TL
〈ajui〉 + 〈aiaj〉 − 〈ajuk〉

∂〈Ui〉

∂xk
−
〈uiaj〉

τη
; (2.21)

and for the covariance of the process a:

∂〈aiaj〉

∂t
+ 〈Uk〉

∂〈aiaj〉

∂xk
+
∂〈aiajuk〉

∂xk
=−2

〈aiaj〉

τη
+ Bδij. (2.22)

The finite value of the time scale τη is responsible for the memory effect. Thus, in
the limit of τη→ 0, the same source term in the Reynolds-stress equations as given
by the model (1.1) should be found. Considering the limit in the homogeneous case,
we have

〈aiaj〉→
Bτη
2
δij⇒〈uiaj〉 = τη

(
〈aiaj〉 −

〈uiaj〉

TL

)
, (2.23)

and thus

〈uiaj〉→
B
2
τη

(
1
τη
+

1
TL

)−1

δij; (2.24)

therefore, in order to have the correct limit, it is necessary to impose

B=
C0〈ε〉

τη

(
1
τη
+

1
TL

)
≈

C0〈ε〉

τ 2
η

. (2.25)

In this way, we have fixed all the parameters and the model is complete, except
for the value of the constant C0. Some comments are in order concerning this issue.
In principle, given the relationship between the Langevin equation (1.1) and the
Kolmogorov theory, one might think that C0 would be related to the Kolmogorov
constant C0 and hence should be universal. However, extensive analyses (Sawford &
Guest 1988; Pope 2000) have shown that this is not the case even in homogeneous
turbulence, and this is why we distinguish in the notation between the stochastic
model parameter C0 and the Kolmogorov constant C0. Specifically, even different
laboratory data of homogeneous turbulence are best fitted with different values of
C0 (Sawford & Guest 1988), and, for example, excellent agreement with atmospheric
data has been obtained with C0 ≈ 2.1 (Pope 2000), whereas best experimental and
numerical data indicate a value greater than 6 (Biferale et al. 2008) for isotropic
turbulence. As a matter of fact, C0 must be considered a free parameter that may
be calibrated for different test cases. In particular, as detailed in Pope (2000), in
the general case of non-homogeneous flows, C0 and the matrix G simply define the
particular model, and the only constraint is that C0 is non-negative and that C0 and
Gij are bounded to ensure the realisability of the model (Pope 1985). No link is now
present with the Kolmogorov constant C0. The value of C0 will be made clear once
the numerical approach is presented in the next section.

Finally, as discussed by Pope (2014), a link can be made between the acceleration–
velocity correlation and Reynolds-stress turbulence models. In the present acceleration-
based model, these correlations appear as closed terms in the equation for the second-
order velocity tensor equation (2.20). We can therefore deduce for our model the
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following relation:

〈uiAj〉 =

〈
p′

ρ

(
∂ui

∂xj
+
∂uj

∂xi

)〉
− 2ν

〈
∂uj

∂xk

∂ui

∂xk

〉
−

1
ρ

(
∂〈p′ui〉

∂xj
+
∂〈p′uj〉

∂xi

)
+ ν1〈uiuj〉

= 〈uiaj〉 + 〈ujai〉 −
2
TL
〈uiuj〉, (2.26)

where Ai = dUi/dt as above. The second term on the right-hand side of the first
line is the pseudo-dissipation that to an excellent approximation is equal to the mean
dissipation εij = (2/3)〈ε〉δij, and the last term is the viscous transport and is known
to be negligible in almost all situations. The second line clarifies how the pressure
transport and the viscous dissipation are modelled in the present picture. Taking the
trace of the equation, the equation for turbulent kinetic energy is retrieved, and hence
the mean dissipation rate is implicitly defined by the relation

∑
i

〈uiAi〉 = 2〈uiai〉 −
2
TL
〈uiui〉 ≈−〈ε〉. (2.27)

These relations are valuable, since measurements of the velocity–acceleration
correlation allow us to better reproduce the corresponding Reynolds-stress equation
terms in the model.

3. Numerical approach

We study the turbulent flow in a channel between two parallel walls separated by
a distance 2h using the same Reynolds number (Reτ = (uτh/ν) ≈ 1440) chosen in a
recent campaign of experiments and DNS (Stelzenmuller et al. 2017), where uτ is the
friction velocity associated with the shear stress τw at the wall and ν is the kinematic
viscosity. In the following, a superscript + indicates quantities expressed in wall units
by uτ and ν. By convention, x is the streamwise direction, y the wall-normal direction
and z the spanwise direction.

We give a brief account of how experimental data were obtained. More details
about the experimental techniques and their validation can be found in a recent
article (Stelzenmuller et al. 2017), where also the DNS approach is described.
Experiments are carried out with a centreline velocity U0 = 1.75 m s−1, which
corresponds to a bulk Reynolds number Re = U0h/ν = 34 000. The experiment
consists of measurements made in a closed-loop water tunnel. The experimental test
section is 3.2 m long with a cross-section of 37.5 mm × 316 mm. The development
length is 155h and the channel height is 16.9h, ensuring statistical homogeneity in
the streamwise and spanwise directions. The wall unit is δ = ν/uτ = 13 µm in our
conditions. Three-dimensional particle trajectories are measured by particle tracking
velocimetry (Ouellette, Xu & Bodenschatz 2006) in a 35 mm × 20 mm × 8 mm
measurement volume. Particle velocity and acceleration are obtained by convolution
of the trajectories with Gaussian differentiating kernels, which also serves to filter
out noise from the measurements (Mordant, Crawford & Bodenschatz 2004a). The
closest distance at which accurate detection of a particle was possible is y+ = 4, i.e.
about 50 µm. Thus our range of measurement spans the interval y+ ∈ [4, 1400], i.e.
more than two orders of magnitude in wall distance.
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3.1. Fluid–particle hybrid method
We must solve the SDEs (2.3)–(2.5) that contain several mean fields. To cope with
this issue, we use here a hybrid RANS–PDF approach. In this approach, first suitable
RANS equations are solved on a Eulerian grid for the necessary mean quantities,
namely 〈U〉, 〈P〉, 〈ε〉, k. Then, the stochastic equations are solved through a particle
method, and the mean quantities present in the coefficients are interpolated at the
position of the particles (Hockney & Eastwood 1988). This method guarantees
that the mean fields are not noisy, is efficient and therefore is the main tool for
the practical applications of stochastic models to fluid flows (Jenny et al. 2001;
Muradoglu, Pope & Caughey 2001), and the only viable choice for flows carrying
inertial particles (Peirano et al. 2006).

Concerning the RANS model, we have implemented the standard LRR-IP
model (Launder, Reece & Rodi 1975), with the addition of the near-wall model
based on the elliptic relaxation (Durbin 1991). We have used the same parameters
and boundary conditions suggested in the original proposal (Durbin 1993). These
Reynolds-stress equations together with the equation for 〈ε〉 are solved through a
standard finite-difference method.

As explained in the previous section, on the basis of the choice of C0 and the
matrix G, each Lagrangian stochastic model corresponds to a realisable Reynolds-
stress model (Pope 1994b). This points to a specific issue of consistency in the hybrid
RANS–PDF approach (Minier et al. 2014), which can be easily overlooked. In fact,
the final results in terms of Lagrangian particles are greatly impacted by the choice
of both the Eulerian RANS and Lagrangian models, and large errors may be found
when the Lagrangian and RANS models chosen are much different, i.e. inconsistent.
In particular, it has been shown numerically that directly using DNS values in the
coefficients of a standard stochastic model leads to unphysical results in terms of
the Reynolds stress (Chibbaro & Minier 2011). The choice of RANS model should
therefore inform the choice of the coefficients in the Lagrangian stochastic model to
ensure that the two models are as consistent as possible. In our case, the presence of
the acceleration variable in the Lagrangian model makes full consistency between the
RANS and Lagrangian models impossible.

We have thus chosen the Lagrangian model in the following way. The RANS
models implemented have three components: (1) the Rotta IP model, (2) the LRR
term and (3) the elliptic near-wall treatment. We have chosen C0 and G consistent
with the first two terms. Consistency with the Rotta model leads in Lagrangian terms
to the relation CR= 1+ 3/2C0 and G a

= 0 in (1.2) (Pope 2000). Given that the typical
value of CR is in the range 1.5–1.8, this signifies C0 ∈ [0.3, 0.55]. Adding the LRR
terms, which gives the LRR-IP model, means for consistency to apply would lead to
the relations Gij =−1/2CRδij + C2∂〈U〉i/∂xj and CR = 1+ 3/2C0 + P/ε, from which
C0 can be computed. Parameter CR is still the Rotta constant and C2 is a constant
of the RANS LRR model whose standard value is 0.6. For C2 = 0, the Rotta model
is retrieved. The third term models the viscous and pressure contributions which are
important near the walls. Following the rationale behind our model structure, these
terms are modelled in the Lagrangian model by the new acceleration variable, at least
to some extent, and therefore we do not add other terms in the model. In fact, we
have tested our results with both the Rotta (C2 = 0) and the LRR-IP models without
finding any notable differences in the acceleration statistics, provided the near-wall
term is added. For this reason, results are presented in this work only for the simpler
Rotta model taking C2= 0. Moreover, the results are robust with regard to the choice
of the value of CR and hence C0, such that similar results are obtained in the range
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C0 ∈ [0.2, 1.5]. In the following, we show the results obtained with C0 = 0.35, which
is a standard value and appears to give best results. A thorough assessment of the
impact of changing Reynolds-stress modelling is certainly interesting for applications
and is left to future work.

3.2. Numerical scheme for the SDEs
The coefficients in the SDEs may diverge as the wall is approached. In particular, the
matrix Gij in the linear drift term of (2.4) becomes negatively unbounded. This can
be clearly seen from (1.2), since approaching the wall we have

Gij ∼ T−1
L δij ∼

−ε

k
δij ∼
−1
y2
δij (3.1)

and because of the no-slip condition on the velocity:

(Ui − 〈U〉i)∼ y. (3.2)

Using these relations in the the stochastic equations (2.3)–(2.5), which are of the form

dX=A dt+DX dt+B dW(t), (3.3)

we find that they are stiff, as we have

lim
y→0

det[D] =−∞, (3.4)

since the drift coefficient [D]U scales with 1/y and remains unbounded for y→ 0.
In our system, the matrix A may cause numerical problems, because the time scale

β−1 may be very small, and instabilities may also arise far from the boundaries if
the time step is greater than β−1 and the numerical scheme is not stable. For these
reasons, the stochastic equations must be solved with a special treatment. To address
these issues, we have developed a numerical scheme unconditionally stable for the set
of equations (2.3)–(2.5), using an approach similar to that of previous works (Dreeben
& Pope 1998; Peirano et al. 2006).

We solve the system (3.3) by taking the matrix coefficients A,D,B frozen during
a time step 1t in order to obtain analytical solutions using the integrating factor e−Dt.
Then, the numerical scheme based on analytical solutions reads

xn+1
i = xn

i + A Un
i + B an

i +C[Tn
LAn

U,i] +Ω
n
i , (3.5)

Un+1
i =Un

i exp(−1t/Tn
L)+ [T

n
LAn

U,i][1− exp(−1t/Tn
L)] +Dan

i + Γ
n

i , (3.6)

an+1
i = an

i exp(−1t/τ n)+ γ n
i . (3.7)

The coefficients A, B,C,D and AU,i are given by

A= Tn
L [1− exp(−1t/Tn

L)],

B= θ n
[τ n(1− exp(−1t/τ n))− A] with θ n

= (τTn
L)/(τ

n
− Tn

L),

C=1t− A,
D= θ n

[exp(−1t/τ n)− exp(−1t/Tn
L)],

AU,i =−(1/ρ)∂〈P〉/∂xi + 〈Ui〉/TL.
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FIGURE 1. Mean velocity profiles. Comparison between experiments (points), DNS
(squares–line) and the present model (solid line). All quantities are normalized in wall
units.

The stochastic integrals γi(t), Γi(t) and Ωi(t) are given by

γi(t)=
√

C0〈ε〉

τ
exp(−t/τ)

∫ t

t0

exp(s/τ) dWi(s), (3.8)

Γi(t)= exp(−t/TL)

∫ t

t0

exp(s/Ti) γi(s) ds, (3.9)

Ωi(t)=
∫ t

t0

Γi(s) ds. (3.10)

The stochastic integrals are then numerically solved using the Choleski decomposition
(Peirano et al. 2006).

For the integration of the SDEs, we have used N=5×105 tracer particles. The time
step used is 1t+ = 4× 10−2. Concerning the statistics, time average is taken on 106

independent steps whenever possible. Instead, conditional statistics have been obtained
tracking an ensemble of 1000 particles for each initial condition and averaging over
5000 independent ensembles.

4. Results
In figure 1, mean velocity profiles from experiments, DNS and model simulations

are compared. The agreement of mean velocity is overall very good. Notably the
model behaviour is analogous to that of the DNS, yet some small discrepancies can be
detected in the viscous and buffer layers (4< y+< 50), pointing to a small difference
between experimental and numerical results. As highlighted by Stelzenmuller et al.
(2017), the first experimental points computed in the vicinity of the wall are affected
by more important errors, due to experimental difficulties in the measurements. In
particular, the position is measured with some amount of error.

In figure 2 the turbulent kinetic energy k is plotted (figure 2a), as well as each
diagonal component of the Reynolds stress tensor (figure 2b). Given that we use a
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FIGURE 2. Comparison between experiments (points), DNS (squares–lines) and the
present model (solid lines). All quantities are normalized in wall units. (a) Turbulent
kinetic energy. (b) Reynolds-stress components.

hybrid approach, all the Reynolds stresses are computed in the model by the RANS
method. In the present model only the turbulent kinetic energy k (i.e. the trace of the
Reynolds stress tensor) is used in the Lagrangian stochastic model, so this is the key
quantity for its performance. As shown in figure 2(a), the agreement among the three
datasets is quite satisfactory. In particular, the model correctly represents the physics
in the near-wall region, while it underestimates a little the turbulent energy far from
the wall. Figure 2(b) shows that the Reynolds-stress model equipped with elliptical
relaxation gives a satisfactory representation of each component of the Reynolds stress,
notably in the near-wall region. A previous study (Pope 2000) has shown that these
RANS models tend nonetheless to underestimate the streamwise component in the log-
layer region in very high-Re flows, and that explains the slight discrepancy already
noted for the turbulent energy for y+> 200 (see figure 2a). The model used is the best
available among realisable RANS models for general wall-bounded flows (Pope 2000),
and the development of RANS models is not the focus of this work. Furthermore, as
explained in § 3.1, it is more crucial to have consistency between the Eulerian and
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FIGURE 3. Mean (a) and variance (b) acceleration profiles. Comparison between
experiments (points), stochastic model simulations (squares) and DNS (lines). Error bars
are displayed for the x component of variance in experiments. As already remarked, the
first experimental data are affected by large errors both in value and in position.

the Lagrangian models than to get perfect agreement with experiments at the level
of mean fluid observables. The chosen model is therefore considered satisfactory with
regard to the present purpose.

Figure 3 shows the acceleration mean and the acceleration variance profiles obtained
from experiments, DNS and the model. The average acceleration is well predicted
by the stochastic model in both directions. Notably the model gives correctly the
negative peak of mean streamwise acceleration at y+ ≈ 7, which is a viscous effect.
This shows that the acceleration model together with a RANS model including the
boundary layer is able to describe this effect, despite the absence of ad hoc low-
Reynolds-number terms in the stochastic model. It is also interesting to remark that
the anisotropy between streamwise and wall-normal acceleration is correctly captured.

Profiles of acceleration variance (figure 3b) reveal a qualitative overall agreement,
although larger discrepancies are found for the model concerning the acceleration
variance. A slight overestimation of the streamwise variance is present with respect to
DNS, even though the value found is within the experimental error bars. The other two
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FIGURE 4. Lagrangian autocorrelations of (a) streamwise (ρxx), (b) wall-normal (ρyy) and
(c) spanwise (ρzz) fluid particle acceleration. Experimental results are shown by blue lines
with crosses, DNS results by solid green lines and model results by red circles. Curves
are shifted vertically by increments of 0.5 for clarity. From bottom to top, the curves
correspond to particles located initially at y+0 = 20, 60, 200, 600 and 1000. Horizontal grid
lines show the zero-correlation level for each y+0 .

components are instead slightly underestimated, notably the wall-normal component.
Furthermore, the model displays a small degree of anisotropy between the y and
z components, both in amplitude and in the position of the peak, which is found
at around the same position, whereas experiments and DNS show some variability.
Yet at their respective peaks the standard deviation of the acceleration is larger than
the magnitude of the mean acceleration for all sets, which is one of the salient
characteristics of the acceleration process. This indicates that the present stochastic
model is able to reproduce the main features of the acceleration fluctuations that
govern the dynamics near the wall, although it fails to reproduce the anisotropy
between the spanwise and the wall-normal components.

Figure 4 shows x, y and z components of the acceleration correlation tensor ρij
calculated at different initial wall distances y+0 . Correlations are computed as

ρij(τ , y0)=
〈A′i(t0, y0)A′j(t0 + τ , y0)〉

〈A′2i (t0, y0)〉1/2〈A′2j (t0 + τ , y0)〉1/2
, (4.1)

where A′j(t0 + τ , y0)= Aj(t0 + τ , y0)− 〈Aj(t0 + τ , y0)〉 is the fluid particle acceleration
fluctuation relative to the Lagrangian average, with i = x, y or z. The agreement is
satisfactory, showing that the stochastic model fairly reproduces both the inhomogeneity
and the anisotropy of the flow, since all components are different and the decorrelation
time changes with the distance, as displayed by experiments and DNS. It is worth
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noting that the spanwise and wall-normal components as given by the stochastic
model are a little more isotropic than the experimental results, yet more similar to
DNS ones.

Some small differences for small time displacements, notably in the near-wall
region, can be traced back to the presence of a white noise in the acceleration
process which overlooks very short-memory effects. For long times, although the
overall agreement remains fairly good, the stochastic model slightly overestimates
the correlation time, so that acceleration appears to remain correlated over a longer
time. This can be partially related to the choice of the coefficients of the model, and
in particular we have chosen the time scale of the acceleration equal to τη, while
a coefficient of the order of, but different from, 1 might be used. Moreover, the
statistical convergence of the correlations is particularly difficult and, therefore, a
small residual bias error may be also present, for a finite number of particles have
been used. The bias error is inherent to the stochastic models that include mean
fields in the coefficients, whenever these coefficients are computed as averages over
particles (Kloeden & Platen 1992; Xu & Pope 1999; Minier, Peirano & Chibbaro
2003). This is precisely our case, as pointed out by formula (4.1).

Figure 5 shows the PDFs of the three acceleration components. All curves
present very long tails corresponding to extremely high acceleration events usually
associated with intermittency (Mordant et al. 2002). The model closely reproduces
the experimental and DNS results. In particular, the model captures well the skewness
of the acceleration, displaying a positive skewness for the wall-normal component
and a negative skewness for the streamwise component. The spanwise component
is correctly not skewed. The tails of the extreme events (P < 10−4) appear slightly
over-predicted by the model for the streamwise component. However, statistical error
in this range is significant.

5. Discussion and conclusions

In this work, we have developed a novel stochastic model including fluid particle
acceleration for general non-homogeneous turbulent flows, focusing on wall-bounded
flows. This model generalises previous propositions of Lagrangian stochastic
models for acceleration in isotropic flows, as well as the velocity-based models
for non-homogeneous flows. Model results are compared against experimental and
DNS measurements in a channel flow.

The Lagrangian stochastic model proposed has the structure of a diffusion process
for the variables x, U, a, where a is a random acceleration process. The system
appears as a set of SDEs, and it is closed using similarity arguments à la Kolmogorov
and consistency with previous models in some limit cases. The coefficients of the
resulting equations are functions of space and time, as well as being dependent on
average fields. To find the fluid averages necessary for calculating the coefficients,
we have used a hybrid RANS–PDF approach, typically used in realistic computations,
where average velocity and Reynolds stress are computed in a Eulerian framework.
In particular, we have chosen the elliptic-relaxation Reynolds-stress model to get a
fair agreement between the RANS fields and the experimental ones.

The inclusion of acceleration in this stochastic model was motivated by the
importance of this variable in the modelling of fast processes, which become
especially important in the near-wall region. The results presented here are useful for
disentangling to what extent the accurate modelling of the acceleration is important,
and to what extent more complex closures are required.
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FIGURE 5. The PDFs of the (a) spanwise (z), (b) wall-normal (y) and (c) streamwise (x)
fluid particle acceleration. Experimental results are shown as solid black lines, DNS results
as blue lines and model results as red lines. The PDFs are normalized by the root-mean-
square value of acceleration (denoted σi for each component) Reynolds number. The PDFs
displayed represent an average over the whole channel in all cases. In experiments as well
as in numerical simulations, we have released fluid parcels at different initial positions y+0 ,
from y+0 = 15 to y+0 = 1200, every y+ = 10. The global PDF is computed integrating the
conditional statistics over y0.

The overall agreement between the model and experiments is good, showing
that the present model captures most of the features revealed by experiments. In
particular, the average acceleration is in very good agreement with experiments and
DNS. The Lagrangian autocorrelation given by the model reproduces correctly the
time scale and the non-homogeneous effects. These results are very encouraging for
the modelling approach we have presented here, especially considering the relative
simplicity of the model used for the acceleration variable, and that no free parameter
has been calibrated.

The PDFs are also fairly well captured, displaying skewness, anisotropy and highly
non-Gaussian tails. In homogeneous turbulence, the very wide tails of the acceleration
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PDF are associated with intermittency (Mordant et al. 2001). In order to reproduce
these features in stochastic models of homogeneous turbulence, a multiplicative
component is added in the noise term to take into account the fluctuations of the
dissipation rate ε that are often assumed to follow log-normal statistics and to have
a rather long correlation time close to TL (Pope & Chen 1990; Mordant et al. 2002;
Reynolds 2003a; Zamansky, Vinkovic & Gorokhovski 2010). Our model does not have
such a multiplicative term in (2.5). However, the term B incorporates the dissipation
rate 〈ε〉 which varies in space along the particle trajectory due to the inhomogeneity
of the flow. It is thus a multiplicative term only related to inhomogeneity, and not with
respect to the stochastic fluctuations of ε. This contribution is enough to reproduce
the wide-tail PDFs of the acceleration components. This confirms that in wall flows
most of the extreme events are related to non-homogeneity (Lee, Yeo & Choi 2004).
It also shows that the present model is able to capture the main statistical features of
the near-wall structures that are responsible for the intermittency.

To further assess the acceleration model, we have also carried out simulations
with the present stochastic model coupled with a simpler RANS model without the
elliptical relaxation (see § 3). In this case, we assure consistency with the coefficients
used in the velocity equation, but we lose the description of the near-wall region. For
this reason, such a RANS model is much less accurate in wall flows; notably it is
known to exaggerate the isotropy of the Reynolds stress, and to underestimate the
kinetic energy (Pope 2000). Interestingly, while the results obtained with this simpler
model are inferior to those obtained with the complete model, the qualitative picture
is similar and a fair agreement for all acceleration observables is still obtained. This
shows robustness with respect to the RANS model used for the mean fields.

It is important to discuss now the deficiencies of the present model and to point
out how to improve it.

(a) The anisotropy of the flow is not fully captured in the present framework. While
anisotropy in mean acceleration and the PDF is correctly reproduced, acceleration
variances in the spanwise and wall-normal directions turn out to be barely different,
yet experiments and DNS show a more significant difference. Even if to a lesser
extent, the same deficiency is found also looking at the correlations. This issue is
mainly related to the modelling of the slow part of the fluctuating pressure gradient
in the velocity equation (2.4), which is given in terms of the matrix Gij. The simple
Langevin model used here, equation (1.2) with G a

ij = 0, is known to lead towards
isotropy with respect to the two components (Pope 2000). While the additional
acceleration variable partially corrects this tendency, it is found to be insufficient to
get a quantitative agreement. An elliptical-relaxation model should be implemented
also in the Lagrangian stochastic model, as developed by Dreeben & Pope (1997).
Furthermore, that would make the hybrid RANS–PDF approach more consistent,
probably helping to recover a better level of the amplitude of the variances.

(b) The mean viscous term in the acceleration, equation (2.2), and the viscous
transport term in the Reynolds-stress equations are neglected in the present approach,
as displayed by (2.27). These terms are known to be very small except in a tiny region
adjacent to walls (Pope 2000). That is consistent with the fact the mean acceleration
is so well reproduced by the present model. However, the viscous transport term
would introduce explicitly the viscous time scale in the model and could help to
further improve the prediction of the variances. Various models have been already
proposed to include these terms (Dreeben & Pope 1998; Wacławczyk, Pozorski &
Minier 2004).

(c) Although most of the intermittency is already captured, it would be possible
to add also the internal intermittency due to the fluctuations of the turbulent
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dissipation (Pope 2000; Lamorgese et al. 2007). Of course, these improvements
bring a price in terms of computational and mathematical complexity.

In conclusion, despite some limitations, we believe that the present form of the
stochastic model is adequate for modelling the acceleration dynamics in wall flows
relevant for applications. As for general perspectives, concerning fluid flows, it would
be interesting to pursue the analysis of conditional statistics for dispersion studies.
Finally, the present model should be the starting point for developing an acceleration-
based model for inertial particles.
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