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The self-interaction force of dislocation curves in metals depends on the local arrangement of the
atoms and on the non-local interaction between dislocation curve segments. While these non-local
segment–segment interactions can be accurately described by linear elasticity when the segments
are further apart than the atomic scale of size ε, this model breaks down and blows up when the
segments are O(ε) apart. To separate the non-local interactions from the local contribution, various
models depending on ε have been constructed to account for the non-local term. However, there are
no quantitative comparisons available between these models. This paper makes such comparisons
possible by expanding the self-interaction force in these models in ε beyond the O(1)-term. Our
derivation of these expansions relies on asymptotic analysis. The practical use of these expansions is
demonstrated by developing numerical schemes for them, and by – for the first time – bounding the
corresponding discretisation error.
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1 Introduction

Dislocations in metals are curve-like defects in the atomic lattice. The emergent group behaviour
of many dislocations is the driving mechanism of plastic deformation of metals. One of the rea-
sons that describing plastic deformation is an active field of research is that there is no consensus
on a description for the self-interaction force of a dislocation curve. Such a description has been
sought for more than half a century; we cite several papers in the remainder of the introduction.
The aim of this paper is to contribute towards reaching consensus by developing a framework
for computing expansions for several descriptions of the self-interaction force.

To describe the complexity of describing the self-interaction force of a dislocation curve, we
first introduce the setting. To avoid long formulas and to keep the focus on the methodology, we
consider the simple setting where R

2 represents an isotropic elastic medium with shear modulus
μ> 0 and Poisson ratio ν ∈ (−1, 1

2 ). We consider a dislocation loop represented by a closed
regular curve � ⊂R

2 and set b = e1 as its Burgers vector, where {e1, e2} is the standard basis in
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FIGURE 1. Left: sketch of �. Right: sketch of �ε(x).

R
2. For readers unfamiliar with dislocations and their Burgers vector, we refer to the textbooks

[HB11, HL82]. For x ∈ �, we set

κ(x), τ (x) =
[− sin φ(x)

cos φ(x)

]
, n(x) =

[
cos φ(x)

sin φ(x)

]
, (1.1)

as respectively the curvature, tangent vector (counter-clockwise direction) and outward pointing
normal vector of � at x. Figure 1 illustrates the setting. Our sign convention is that κ(x)< 0 when
� is a circle.

Next, we describe the complexity of the self-interaction force on the dislocation � at x. For
practical applications such as dislocation dynamics, it is sufficient to focus on the (scalar-valued)
normal component of this force. For brevity, in the remainder, we simply refer to this normal
component as the self-interaction force. The reader familiar with the self-interaction force will
recognise formulas (1.2)–(1.6) below and can skip the following explanatory text up to (1.6).

Instead of the self-interaction force on � at x, let us first consider the easier expression for the
force that the second dislocation loop �̃ with the same Burgers vector b exerts on � at x. We
assume that �̃ is far enough away from � such that the interaction force is accurately described
by linear elasticity. Then, the force F̃(x) exerted by �̃ on � at x is found by first computing
the stress in the medium at x caused by �̃ (see, e.g. [dW60, (7.4)]), and then by applying the
Peach–Koehler formula [PK50] to convert this stress into a force. This yields

F̃(x) :=
∮
�̃

G(y − x) · τ (y) dy, (1.2)

where we have normalised the multiplicative constant to 1, and

G(z) :=
(

zT

|z|3
[

0 −1

1 − ν 0

])T

= 1

|z|3
[

(1 − ν)z2

−z1

]
.

Due to the singularity of G(z) at z = 0, the function F̃ : R2 →R is singular on �. This stems from
the fact that linear elasticity is a poor model for describing the stress field in the dislocation core.
The dislocation core is the tubular neighbourhood with radius of about 5 atoms (∼ 1 nm) around
a dislocation. In particular, this means that (1.2) cannot be used to describe the force that � exerts
on itself at any point x ∈ �.
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However, in practice, the width of the dislocation core is much smaller than the diameter of
�, which we take for the sake of explanation to be the typical value of 10μm. Then, scaling the
diameter of the dislocation loop to 1 dimensionless unit, the radius of the dislocation core is

ε∼ 10−4. (1.3)

In the remainder, we regard ε as a generic small parameter which indicates the length scale where
linear elasticity breaks down. We leave the choice of ε as a modelling issue.

The easiest modelling choice for avoiding the breakdown of linear elasticity inside the dislo-
cation core is to neglect the contribution of the dislocation core to the self-interaction force. To
describe the resulting force, we set

�ε(x) := � \ B(x, ε);

see Figure 1 for a sketch. Then, (1.2) implies that

Fε(x) :=
∫
�ε(x)

G(y − x) · τ (y) dy (1.4)

gives an acceptable approximation of the force exerted on � at x by �ε(x). This model can
be made more accurate by coupling it to an atomistic model which accounts for the local
contribution of � ∩ B(x, ε); see for example, [GHHK72, HH05, Clo11].

In this paper, we focus on the contribution from linear elasticity to the self-interaction force
on �. Since there is no clear splitting of the self-interaction force in terms of a linear-elastic
part and microscopic contributions, there are several choices on how to define the linear elastic
part. (1.4) is one such choice; it dates back at least to [HL82]. Other choices are derived by first
smearing out the singularity of the stress field within the dislocation core, and then by computing
the force from this regularised stress field. This is a popular approach, because it includes a
phenomenological model for the dislocation core, which then needs no additional treatment. The
smearing out of the dislocation core has been done either with a (singular) convolution kernel
(see [CAWB06] for a short review), or with a phase field approach (see [KEZ11] for a review).
In particular, we focus on the specific convolution kernel constructed in [CAWB06]. The feature
of this convolution kernel is that the convolution integral in the related expression for G can be
computed explicitly; see [CAWB06, (33)]1. The resulting self-interaction force is given by:

Fε(x) =
∮
�

Gε(y − x) · τ (y) dy, (1.5)

where

Gε(z)T := zT√|z|2 + ε2
3

[
0 −1

1 − ν 0

]
+ 3ε2zT

2
√|z|2 + ε2

5

[
0 0

1 − ν 0

]
. (1.6)

The difference with (1.4) is that the dependence on ε in the integral in (1.5) has shifted from the
integration domain to the integrand.

1
Precisely, we take the regularised stress field induced by a dislocation and use it in the formula for

the Peach–Koehler force applied to a (singular) dislocation.
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To summarise the above, Fε(x) and Fε(x) are two of the many choices for the (linear-elastic
contribution of the) self-interaction force on � at x. While attempts have been made to compare
different choices (see, e.g. [LeS04, CAWB06]), the comparisons mainly rely on unquantifiable
notions and practical experiences when using them in numerical computations. To quantify the
differences, one needs expansions of the self-interaction force in terms of ε. Constructing such
expansions is the first of the two aims of this paper. The second aim is to use these expansions to
construct accurate schemes by which they can be computed numerically. We pursue these two
aims, respectively, in Sections 1.1 and 1.2.

1.1 The expansions of Fε and Fε

Expansions for forces such as Fε and Fε in terms of ε have been constructed in [GB76, Lot92,
ZWX12] (each paper considers a different core regularisation; none of which equals Fε or Fε),
and in a more general setting than in this paper (either in three dimensions or for an anisotropic
medium). In all three works, the self-interaction force (reduced to our setting) expands as:

κ(x)
(
1 + ν − 3ν cos2 φ(x)

)
log

1

ε
+ O(1), (1.7)

as ε→ 0. The leading order term of O(| log ε|) is consistent in all works and also coincides with
the term obtain from phase-field models.

However, it is desired to specify the O(1) term too. Indeed, for the typical value of ε in (1.3),
the O(1) term may not be significantly smaller than the O(| log ε|) term. In particular, for parts
of � which are approximately straight (i.e. where |κ| is small), the prefactor of the O(| log ε|)
term is small, whereas the non-local contribution to the interaction force (which contributes to
the O(1) term) does not decay (in general) in κ for small |κ|.

Yet, the treatment and expression of the O(1) term is quite different in the three works cited
above. In [Lot92, (156)], this term is left unspecified. In [GB76, (7.1)], only a part of this term
is specified. In [ZWX12, (44)], the self-interaction force of the curve segment � ∩ B(x, ε′) at x
is expanded up to an error of O(ε′ + ε/(ε′)2), where ε′ is a phenomenological mesoscopic length
scale which satisfies

√
ε
 ε′ 
 1. The related O(1) term is explicit, but local (i.e. it depends on

� only through n(x) and κ(x) at x). The contribution of �
ε
′ on the self-interaction force is not

expanded.
Hence, the results in the literature that go beyond an unspecified O(1) term in (1.7) are very

limited. Our first main contribution (Theorem 1.1) extends these results by characterising com-
pletely the O(1) term in the expansions of Fε(x) and Fε(x), and by showing that the next order
term is O(ε). To state this result, we set

C(x) :=

⎧⎪⎨
⎪⎩

{tτ (x) : t ∈R} if κ(x) = 0

∂B

(
x + n(x)

κ(x)
,

1

|κ(x)|
)

otherwise,

as the tangent circle of � at x. Similar to �ε(x), we set

Cε(x) := C(x) \ B(0, ε).
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Theorem 1.1 (Expansions of Fε(x) and Fε(x)). Let � be a non-intersecting closed curve of class
C3 with finite length. Then, for all x ∈ �, the following limit exists

	(x) := lim
ε→0

∫
�ε(x)∪Cε(x)

G(y − x) · τ (y) dy, (1.8)

and

Fε(x) = κ(x)Aφ(x) log
1

ε|κ(x)| + κ(x)Bφ(x) +	(x) + O(ε), (1.9)

Fε(x) = Fε(x) + κ(x)Cφ(x) + O(ε), (1.10)

as ε→ 0, where

Aφ(x) := 1 + ν − 3ν cos2 φ(x), (1.11a)

Bφ(x) := 2
(

log 2 − (1 − log 2)ν − (3 log 2 − 2)ν cos2 φ(x)
)
, (1.11b)

Cφ(x) := 1

2

(− 3 − ν + 3(1 + ν) cos2 φ(x)
)
, (1.11c)

and O(ε) are uniformly bounded in x.

Idea of the proof. The main idea for expanding Fε(x) is to add and subtract integration over
Cε(x). This idea dates back to [GB76]. The integral of G · τ over Cε(x) can be expanded explicitly
in terms of ε, which gives rise to the first two terms (i.e. the local contribution) in the right-hand
side of (1.9). The remaining two terms are the integrals over �ε(x) and Cε(x), which are given in
the right-hand side of (1.8). The leading order terms in the expansion of these two terms cancel
out, and the next order terms turn out to be (relying on Stokes’ Theorem) a Cauchy sequence in
ε, which implies the existence of the limit in (1.8). In Remark 2.1, we specify the extension of τ
from � to C(x) and the convergence rate of the limit ε→ 0 in (1.8).

For the expansion of Fε(x), we add and subtract integration over C(x). Since Gε is regular,
there is no need to remove B(x, ε) from the curves. The integral over C(x) can be expanded
explicitly, which gives rise not only to the first two terms in the right-hand side of (1.9), but also
to the new term κ(x)Cφ(x) appearing in (1.10). To expand the joint integral over � and C(x), we
show that it is close in value to the integrals of the ε-independent integrand G(y − x) · τ (y) over
�ε(x) and Cε(x). Then, the same value 	(x) appears naturally in the limit ε→ 0, and we obtain
the following alternative characterisation of 	:

	(x) = lim
ε→0

∮
�∪C(x)

Gε(y − x) · τ (y) dy. (1.12)

Remarks. We remark on two aspects of Theorem 1.1. First, instead of using Cε(x) in (1.8), there
are many other choices to cancel out the singularity of the integrand at y = x. The benefit of
using C(x) is that it depends on � only through the local information x, τ (x) and κ(x), and that
the integral of G(y − x) · τ (y) over Cε(x) can be explicitly expanded in terms of ε.

Second, part of the error O(ε) comes from a Taylor approximation of � at x, which we can
expand up to third order thanks to the assumption that � is of class C3. If � would only be of
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class C2,α for some α ∈ (0, 1) specifying the Hölder exponent of the second derivative, then the
error term becomes O(εα).

Contribution. The two main contributions of Theorem 1.1 to the literature are as follows. First,
the relative error of the expansions is O(ε), while the relative error in (1.7) is O(1/| log ε|).
Especially in view of the typical value ε∼ 10−4, this is a huge improvement.

Second, the difference between the two formulas for the forces is

Fε(x) − Fε(x) = κ(x)Cφ(x) + O(ε), (1.13)

as ε→ 0. The local nature of this difference stems from the result that the non-local term 	(x)
can be expressed in terms of the modelling assumptions that underly either Fε(x) or Fε(x); see
(1.8) and (1.12).

The value in (1.13) quantifies the difference between two inherently different models for the
self-interaction force. Since this difference is a local term which is relatively small with respect
to the leading order term in (1.9), there is no reason to believe that one of the two models is
superior over the other. This gives a new perspective to the comparisons made in [CAWB06,
Sect. 3]. In fact, in the next section, we will see that the self-interaction force in both models can
be discretised in a similar manner.

1.2 Discretisations of Fε and Fε

The expansions in Theorem 1.1 of Fε and Fε open up new possibilities to compute them numer-
ically from a discretised version of �. Such computations are necessary in discrete dislocation
dynamics, which is a substantial component in the current research on plasticity. We refer to
[LC20] for a review and cite several specific papers below.

The need for expansions in the numerical computation of Fε(x) and Fε(x) as opposed to using
their definitions in (1.4) and (1.5) can be understood as follows. The curve segments of � close to
x yield the main contribution to the integrals in (1.4) and (1.5). Hence, to avoid large errors, one
requires a fine discretisation of � around x, typically of size O(ε). Since dislocation dynamics
require Fε(x) and Fε(x) to be evaluated at many points x, this requires a discretisation of size
O(ε) everywhere along �, which is computationally expensive. A similar reason deems phase
field models impractical too.

Such fine discretisations of � are not needed when expansions such as those in Theorem 1.1
are used. Indeed, the terms in the expansions which need to be computed are independent of ε.
Therefore, we introduce a discretisation parameter h> 0 for the discretisation of � and treat it
independently of ε. Our second of the two aims in this paper is to develop accurate numerical
schemes for Fε(x) and Fε(x). Our main contribution (Theorem 1.2) is to quantify the accuracy
by estimating the error made when replacing Fε(x) and Fε(x) by their corresponding schemes.

To the best of our knowledge, there are no discretisation errors beyond O(1) in ε available in
the literature. This could explain the rather crude numerical schemes that are used in the litera-
ture. For instance, the approaches in [ZRH98, Sch99, ACT+07] first discretise � to a polygon and
then compute the self-interaction force from the known formula for straight dislocation segments
(see (1.24) below). A special treatment for connecting segments is made to avoid the singularity
in G. It is difficult to track the discretisation error made in this manner. In fact, our approach
below reveals that an approximation by straight lines may cause a large error if not dealt with
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FIGURE 2. Sketch of a possible discretisation �h of �.

carefully. Another set of examples are the schemes used in [GTS00, ZCA13] and in the paper
series by Beneš, Kratochvíl, Pauš et al. (see [KBKP18] and references therein), which are based
on the expansion in (1.7), but neglect the non-local contribution 	(x). This creates a relative
discretisation error of size O(1/| log ε|).

Our second main result, Theorem 1.2, guarantees a much smaller discretisation error. To define
the corresponding numerical schemes, we first discretize �. Let h> 0 be a spatial discretisation
parameter, which we assume to be small enough with respect to �. Let xi ∈ � be discretisation
points for i = 1, . . . , N . Figure 2 illustrates this setting. We consider x := (x1, . . . , xN ) ∈ (R2)N

as the complete list of variables which describe the discretisation of �. Here and henceforth, we
extend xi periodically over its index by setting xi+Nj := xi for any j ∈Z. In addition, we choose
the ordering of x1, . . . , xN such that, when transversing � in counter-clockwise direction, the
points xi appear with increasing index. We set

γi := {txi + (1 − t)xi−1 : 0 ≤ t ≤ 1} for i = 1, . . . , N ,

as the closed line segments connecting xi−1 to xi, and set

�h :=
N⋃

i=1

γi,

as the piecewise-affine closed curve which discretises �. To relate the choice of x to h, we assume
that |γi| ∼ h, i.e. there exists a universal constant C> 1 such that

1

C
max

1≤i≤N
|γi| ≤ h ≤ C min

1≤i≤N
|γi|. (1.14)

Our discretisation of Fε(xi) is

Fh
ε,i(x) := κh(xi)Aφh(xi)

2
log

|xi+mh − xi||xi−mh − xi|
ε2

+
N−mh∑

j=mh+1

∫
γi+j

G(y − xi) · τ (y) dy, (1.15)

where

mh := ⌈
h−1/3

⌉ ∈N, (1.16)

κh(xi) is the approximation of κ(xi) given by:

κh(xi) := 2

(
1

|y+| + 1

|y−|
)

y− · Qy+
(|y+| + |y−|)2

, (1.17)
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with

y± := xi±1 − xi and Q :=
[

0 1

−1 0

]
, (1.18)

and Aφh(xi) is explicit as a function of cos φh(xi) = nh(xi) · e1 (see (11a)), where

nh(xi) := ñh(xi)

|ñh(xi)| with ñh(xi) := Q

(
|y−| y+

|y+| − |y+| y−
|y−|

)
, (1.19)

is an approximation of n(xi). The expression (1.15) resembles the definition of Fε in (1.4) rather
than its expansion in (1.9). Indeed, if we replace in (1.4) the curve �ε by the discretised curve �h

and remove from it several line segments γj close to the point xi, we obtain (1.15) with a local
correction term. Yet, the construction of (1.15) relies on Theorem 1.1.

Finally, we introduce our discretisation of Fε(xi). It is simply given by:

Fh
ε,i(x) := Fh

ε,i(x) + κh(xi)Cφh(xi), (1.20)

where Cφh(xi) is – similar to Aφh(xi) – a function of the two components of the vector nh(xi).

Theorem 1.2 (Discretisation of Fε(x) and Fε(x)). Let � be a non-intersecting closed curve of
class C3 with finite length. Let ε, h ∈ (0, 1) be small enough with respect to �, and let x be as
above such that (1.14) holds. Then, for all i = 1, . . . , N∣∣Fh

ε,i(x) − Fε(xi)
∣∣+ ∣∣Fh

ε,i(x) −Fε(xi)
∣∣≤ C(ε+ h| log ε| + h2/3), (1.21)

where C> 0 is independent of ε, h, x.

Idea of the proof. The proof is constructive and motivates the scheme in (1.15) by starting from
the expansion of Fε(xi) in (1.9). This explains the appearance of ε in the error term. Since we
construct κh(xi) to be O(h) close to κ(xi), the logarithmic term in (1.9) leads to the error term
h| log ε| in (1.21).

The interesting part is the discretisation of 	(xi). The characterisation of 	(xi) in (1.8) is con-
structed carefully for the singularity in the integrand G(y − xi) · τ (y) to cancel out. By adding and
subtracting integration over C(xi) in this characterisation, we construct effectively an approxima-
tion of � around xi up to third order. However, the approximation of � by the polygon �h is
only of first order, which is not enough to cancel out the singularity. Hence, the replacement of
�ε(xi) = � \ B(xi, ε) in the definition of	(xi) in (1.8) by �h \ B(xi, ε) is expected to yield an error
which is large as ε→ 0.

To work around this problem, we rely on a byproduct from the proof of Theorem 1.1 (see
Remark 2.1). This byproduct states that the integral in (1.8) is O(ε) close to 	(xi). This creates
a trade-off with the previously mentioned error from replacing �ε(xi) by �h \ B(xi, ε), which
becomes larger as ε tends to 0. Instead of applying these error estimates for the given value of
ε in Theorem 1.2, we apply them for a possibly different, h-dependent εh for which both error
terms are of the same order. It will turn out that

εh ∼ h2/3.
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This explains the appearance of h2/3 in the error in Theorem 1.2. It also explains the use of the
number mh in (1.16), which is chosen such that

|xi±mh − xi| ∼ εh.

Remarks. We remark on five aspects of Theorem 1.2. First, note that Theorem 1.2 requires no
estimates between ε and h, which means that (1.21) is valid in the two-dimensional parame-
ter space ε, h> 0 in a (complete) neighbourhood around 0. For practical purposes, ε > 0 is a
modelling parameter, and the choice of h is up to the discretion of the user. Then, the following
corollary of Theorem 1.2 is of more practical use: given the assumptions of Theorem 1.2, it holds
that

ε3/2 ≤ h ≤ | log ε|−3 =⇒ ∣∣Fh
ε,i(x) − Fε(xi)

∣∣+ ∣∣Fh
ε,i(x) −Fε(xi)

∣∣≤ Ch2/3 (1.22)

for some constant C> 0 independent of ε, h, x.
Second, the statement ‘ε, h are small enough with respect to �’ can be made more precise. In

fact, the proof requires ε and h to be small enough with respect to the four constants:

|�|, max
s∈R

|ϕ′′(s)|, max
s∈R

|ϕ′′′(s)|, min
s<t

t − s

|ϕ(t) − ϕ(s)| , (1.23)

where |�| is the length of � and ϕ is an arc length parametrisation of �. The fourth constant
above is large if, for instance, in the situation on the right in Figure 1, the second part of � would
be inside B(x, ε).

Third, note the practical property that Fh
ε,i and Fh

ε,i can be directly computed from x. Indeed,
the first term in (1.15) and the second term in (1.20) are explicitly expressed in terms of the five
points xi−mh , xi−1, xi, xi+1, and xi+mh . To express the remaining second term in (1.15) explicitly
in terms of x, we recall (see, e.g. [dW60, HL82]) the following formula for the force that a
line segment γx→y which connects x ∈R

2 to y ∈R
2 exerts on a curve segment at 0 in normal

direction:

I(x, y) :=
∫
γx→y

G(z) · τ (z) dz = 1

|x||y| + x · y

( x

|x| + y

|y|
)T

[
0 −1

1 − ν 0

]
(y − x). (1.24)

Using this explicit formula, the second term in (1.15) becomes

N−mh∑
j=mh+1

∫
γi+j

G(y − xi) · τ (y) dy =
N−mh∑

j=mh+1

I(xi+j−1 − xi, xi+j − xi),

which is indeed an explicit function of xi and xmh+i, xmh+i+1, . . . , xN−mh+i.
Fourth, the discretisations Fh

ε,i(x) and Fh
ε,i(x) are numerically suboptimal, because they do

not depend on xi±j for j = 2, 3, . . . , mh − 1. One could decide to require higher regularity on �
and use these points xi±j to develop a higher-order approximation for n(x) and κ(x) than those
in (1.19) and (1.17). This alone, however, will not decrease the size of the discretisation error
in (1.21).

Fifth, the description of the proof reveals that the relatively large error term h2/3 appears
because of the low regularity (Lipschitz, but not C1) of the discretised curve �h. By using a
higher-order discretisation based on splines (see e.g. [GTS00]), it might be possible to get this
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part of the error down to O(h), simply by taking mh = 1 and εh ∼ h. We leave this direction as an
open problem.

Contribution. The main contribution of Theorem 1.2 to the literature is that, for the first time, it
introduces and estimates the discretisation error made when computing the self-interaction force
from a numerical scheme. We consider this an important step towards building more accurate
methods for computing discrete dislocation dynamics.

1.3 Conclusion

Rather than the statements of Theorems 1.1 and 1.2, we consider their proofs to be the main
contribution of this paper. Indeed, these two theorems are merely stated for the simplest setting
of a two-dimensional, isotropic medium, and they only entail two out of several models for the
self-interaction force. Yet, we expect the methodology (i.e. the skeleton of the proof) to apply to
different models for this force (especially those constructed by smearing out the dislocation by a
convolution kernel) and to a three-dimensional setting.

Finally, we recall that expansions such as those in Theorem 1.1 account for the non-local
linear-elastic contribution of the self-interaction force of a dislocation, but that they do not pro-
vide a proper accounting for the contribution from the dislocation core. Yet, expansions as those
in Theorem 1.1 reveal the connection between different models for the non-local contribution
of the self-interaction force, which gives more freedom in constructing an appropriate coupling
with atomistic models.

The remainder of the paper is concerned with proving Theorems 1.1 and 1.2. Section 2
contains the proof of Theorem 1.1 and Section 3 contains the proof of Theorem 1.2.

2 Proof of Theorem 1.1

The notation convention in Sections 2 and 3 is as follows. Whenever convenient, we denote balls
such as B(x, ε) by Bε(x). We reserve c, C for generic positive constants which do not depend on
any of the important variables. We use C in upper bounds (and think of it as possibly large) and
c in lower bounds (and think of it as possibly small). While c, C may vary from line to line, in
the same display they refer to the same value. If different constants appear in the same display,
we denote them by C, C′, C′′, . . .. Finally, in local computations, we sometimes reuse notation.
For instance, in the computation of line integrals, the parametrisation of the corresponding curve
is an auxiliary step which is of no further use outside of the computation of the line integral; we
use the symbol ϕ to denote various parametrisations.

We prove Theorem 1.1 by establishing (1.9) and (1.10) in, respectively, Sections 2.1 and 2.2.

2.1 Expansion of Fε

In this section, we construct the expansion of Fε(x) as given in (1.9), which is the first of the two
parts of Theorem 1.1. We fix an x ∈ �, translate the coordinate system such that x is at the origin,
and remove x from the notation. Then, the definition of Fε(x) in (1.4) reads as:

Fε =
∫
�ε

G(y) · τ (y) dy =
∫
�ε

G · τ .

https://doi.org/10.1017/S0956792521000322 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000322


1042 P. Van Meurs

FIGURE 3. Sketch of the closed curve formed by �ε , Cε and γε .

Regarding (1.1), we express the curvature, tangent vector (counter-clockwise direction) and out-
ward pointing normal vector of � at 0, respectively, by κ0, τ0 and n0 (to avoid clutter, we denote
the related angle φ0 simply by φ). The statement in Theorem 1.1 that the error term is uniform in
x translates to the requirement that the error term O(ε) has to be uniform in φ ∈ [0, 2π ), κ0 and
other local information of � at 0. Depending on the sign of κ0, we split three cases.

The case κ0 > 0. Let r0 = 1/κ0 be the radius of the tangent circle C = ∂B(r0n0, r0) of � at 0. For
technical reasons, we first assume that � ∩ C = {0}, that is, � and C intersect only at 0. We treat
the general case afterwards.

The idea for expanding Fε is to replace �ε by

Cε := C \ Bε(0)

and to show that the error made by this replacement is of the form 	 + O(ε). With this aim,
let ε be small enough such that ∂Bε(0) intersects with � and C at precisely two points. Note
that this upper bound on ε can be constructed from the constants in (1.23), such that it does not
depend on the local information of � at 0. Let γε ⊂ ∂Bε(0) be the union of the two disjoint arcs
which connect the endpoints of �ε and Cε. Figure 3 illustrates these curves. We extend τ (i.e.,
the direction of the tangent vector on �) to Cε and γε such that there is a consistent direction in
which the closed curve �ε ∪ Cε ∪ γε is traversed. In particular, this means that τ is such that Cε
is traversed in counter-clockwise direction. Then, we decompose

Fε =
∮
�ε∪Cε∪γε

G · τ −
∫
Cε

G · τ −
∫
γε

G · τ =: F1
ε − F2

ε − F3
ε , (2.1)

and expand F1
ε , F2

ε and F3
ε independently.

We start with F3
ε . Let

ϕ(θ ) = ε

[
cos θ

sin θ

]
with α < θ < α+ δε,

be a parametrisation of one of the two arcs of γε, where α= φ − π
2 + O(ε) (recall φ from (1.1)).

For ε small enough, it follows from the C3-regularity of � that the endpoints of Cε and �ε are a
distance of O(ε3) apart. Hence, δε = O(ε2). Then, the contribution of this arc to the value of F3

ε is∫ α+δε

α

G(ϕ(θ ))ϕ′(θ ) dθ = −1

ε

∫ α+δε

α

(
(1 − ν) sin2 θ + cos2 θ

)
dθ = O(δε/ε) = O(ε).

The contribution of the second arc of γε can be treated analogously. This proves that F3
ε = O(ε).
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Next, we expand the term F1
ε in (2.1). With this aim, we first show that (F1

ε )ε is a Cauchy
sequence. Let ε > 0 be small enough and take δ ∈ (0, ε). Let � be the region enclosed by �.
Then,

F1
ε − F1

δ =
∮
∂ωδ,ε

G · τ ,

where the open set

ωδ,ε := Bε(0) \ Bδ(0) ∪ Br0 (r0n0) ∪� (2.2)

is a subset of the narrow wedges between � and C (see Figure 3). Since � and C intersect only at
0, ∂ωδ,ε consists of two disjoint closed loops. Then, by Stokes’ Theorem,∮

∂ωδ,ε

G · τ =
∫∫

ωδ,ε

g,

where

g(y) := curlG(y) = (1 + ν)y2
1 + (1 − 2ν)y2

2

|y|5 . (2.3)

Hence, ∣∣∣∣
∮
∂ωδ,ε

G · τ
∣∣∣∣≤ C

∫∫
ωδ,ε

1

|y|3 dy (2.4)

for some constant C which only depends on ν. To estimate this integral, we use polar coordinates
to write

ωδ,ε = {(r, θ ) : δ < r< ε, θ ∈�(r)}, (2.5)

where �(r) ⊂R/(2πZ) is the union of two intervals. Analogously to the argument for |γε| =
O(ε3), we obtain that |�(r)| = O(r2). Then,∫∫

ωδ,ε

1

|y|3 dy =
∫ ε

δ

∫
�(r)

1

r3
r dθdr =

∫ ε

δ

1

r2
|�(r)| dr = O(ε) (2.6)

uniformly in δ. Hence, (F1
ε )ε is a Cauchy sequence, and

F1
ε =	 + O(ε)

for some 	 ∈R.
Finally, we expand the term F2

ε in (2.1). With this aim, we parametrise the arc Cε in counter-
clockwise direction by:

ϕ(θ ) := r0

[
cos φ + cos(θ + φ + π )

sin φ + sin(θ + φ + π )

]
with α < θ < 2π − α, (2.7)

where α ∈ (0, π ) is such that

ε2 = |ϕ(α)|2.
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For simplicity, we set

cφ := cos φ c := cos

(
θ

2

)

sφ := sin φ s := sin

(
θ

2

)

and

Qφ :=
[

cφ −sφ

sφ cφ

]

as the counter-clockwise rotation matrix by angle φ. Using trigonometric identities, we get

ϕ(θ ) = 2r0sQφ

[
s

−c

]
, |ϕ(θ )| = 2r0|s| = 2r0s and ϕ′(θ ) = r0Qφ

[
2sc

s2 − c2

]
. (2.8)

In particular,

ε2 = |ϕ(α)|2 = 4r2
0 sin2(α/2).

Hence,

α = ε

r0
+ O

(
ε3
)

,

where O(ε3) can be bounded uniformly in κ0 since 1/r0 = κ0 ≤ max� |κ|.
Noting that s> 0, we obtain from the preparations above that

F2
ε =

∫ 2π−α

α

G(ϕ(θ ))ϕ′(θ ) dθ

=
∫ 2π−α

α

1

4r0s2

[
s −c

]
QT
φ

[
0 −1

1 − ν 0

]
Qφ

[
2sc

s2 − c2

]
dθ

= κ0

4

3∑
k=0

Ck

∫ 2π−α

α

cks1−k dθ (2.9)

for some explicit constants Ck which only depend on ν and φ. By the symmetries of the sine
and cosine, the integrands corresponding to odd powers of the cosine (i.e. k = 1, 3) yield zero
integral. Then, substituting the explicit values of C0 and C2 and using c2 = 1 − s2, we obtain

F2
ε = κ0

4

(
2ν

(
1 − 2c2

φ

) ∫ 2π−α

α

sin

(
θ

2

)
dθ + (

3νc2
φ − ν − 1

) ∫ 2π−α

α

1

sin
(
θ
2

) dθ

)
. (2.10)

Computing the integrals, we get∫ 2π−α

α

sin

(
θ

2

)
dθ = 4 + O

(
α2

)= 4 + O
(
ε2
)
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and ∫ 2π−α

α

1

sin
(
θ
2

) dθ = 2 log

(
tan

θ

4

) ∣∣∣∣2π−α

θ=α
= 4 log

1

α
+ 8 log 2 + O

(
α2

)
= 4 log

r0

ε
+ 8 log 2 + O

(
ε2
)

.

Collecting the computations above, we obtain

F2
ε = −κ0

(
Aφ log

1

εκ0
+ Bφ + O(ε2)

)
, (2.11)

where Aφ and Bφ are defined in (1.11).
Finally, collecting all estimates on Fi

ε, (1.9) follows for the case in which � ∩ C = {0}.
Next, we generalise the proof of (1.9) to general curves � without any restrictions to the

number of intersections with C. In this case, the derivation of the expansions of F2
ε and F3

ε above
remain valid. The derivation of the expansions of F1

ε requires minor modifications. Indeed, since
� and Br0 (r0n0) may overlap, (2.2) may not be the correct region to consider.

To find an alternative definition for ωδ,ε, we take ε small enough so that both � ∩ Bε(0) and
C ∩ Bε(0) can be parametrised by height functions h1 and h2 on the part {tτ0 : |t|< ε} of the
tangent line of � at 0 (one can use Figure 3 for a visualisation). Note that

� ∩ Bε(0) ⊂ {tτ0 + h1(t)n0 : −ε < t< ε} ,

C ∩ Bε(0) ⊂ {tτ0 + h2(t)n0 : −ε < t< ε} .

Then, we define ωδ,ε as the open set inside the annulus Bε(0) \ Bδ(0) which is in between � and
C. Note that this definition is consistent with that in (2.2). The connected components of the
closed set

{t ∈ [−ε, ε] : h1(t) = h2(t)}
separate ωδ,ε into connected components. If the number of components is finite, then we can
apply Stokes’ Theorem as in (2.4) on each of the components and apply the estimate in (2.6) to
conclude that F1

ε =	 + O(ε). If the number of components of ωδ,ε is infinite, then we order
them in size, observe that this ordering shows that the number of components is countable,
write

ωδ,ε =
∞⋃

k=1

ωk

with |ω1| ≥ |ω2| ≥ . . ., and use that {ωk}∞k=1 are disjoint to estimate∣∣∣∣
∮
∂ωδ,ε

G · τ
∣∣∣∣≤ ∞∑

k=1

∣∣∣∣
∮
∂ωk

G · τ
∣∣∣∣= ∞∑

k=1

∣∣∣∣
∫ ∫

ωk

g

∣∣∣∣≤
∫∫

ωδ,ε

|g|.

The remainder of the argument for the expansion of F1
ε is analogous to the previous case in which

� ∩ C = {0}. This completes the proof of (1.9) for the case κ0 > 0.

The case κ0 = 0. This case can be treated with two minor modifications to the proof in the case
κ0 > 0. We list these modifications below.
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FIGURE 4. Sketch of a situation as in Figure 3 when κ0 < 0.

The first modification is that we put C as the tangent line of � at 0. Rather than a modification,
this choice of C is the natural extension of the tangent circle as κ0 ↓ 0. While C is unbounded, it
follows from the quadratic decay of G(z) as |z| → ∞ that the splitting in (2.1) remains valid.

The second modification is the expansion of F2
ε . Since G is odd, we get immediately

F2
ε =

∫
Cε

G · τ = 0,

which holds without any error terms depending on ε.

The case κ0 < 0. Let r0 = 1/|κ0| be the radius of the tangent circle C = ∂Br0 (−r0n0). As in the
case κ0 > 0, we extend τ from � to Cε and γε such that �ε ∪ Cε ∪ γε has a consistent direction
in which it is traversed. In particular, Cε is traversed in clockwise direction, which is opposite to
the case κ0 > 0. See Figure 4 for a sketch in the simple situation where C ⊂�∪ {0}.

The splitting of Fε in (2.1) in terms of F1
ε , F2

ε , F3
ε still holds, and similar to the case κ0 > 0

we obtain F1
ε =	 + O(ε) and F3

ε = O(ε). To compute F2
ε , we parametrise Cε by ϕ̃(θ ) := −ϕ(θ ),

where ϕ is the parametrisation used in the case κ0 > 0; see (2.7). Since this parametrisation
traverses Cε in the opposite direction (i.e. counter-clockwise), we obtain as in (2.9)

F2
ε =

∫
Cε

G · τ

= −
∫ 2π−α

α

G(ϕ̃(θ ))ϕ̃′(θ ) dθ

= −
∫ 2π−α

α

G(ϕ(θ ))ϕ′(θ ) dθ

= −|κ0|
4

3∑
k=0

Ck

∫ 2π−α

α

cks1−k dθ

with the same constants Ck . Then, the result (2.11) of the computation below (2.9) yields

F2
ε = −κ0

(
Aφ log

1

ε|κ0| + Bφ + O(ε2)

)
.

This completes the proof of (1.9).
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Remark 2.1 (A more precise characterisation of 	(x)). The proof above shows that

	(x) =
∮
�ε∪Cε(x)∪γε(x)

G(y − x) · τ (y) dy + O(ε), (2.12)

where the curves Cε(x) and γε(x), the direction in which they are traversed, and the existence of
the limit as ε→ 0 are detailed in the proof. The proof also shows that the contribution of γε(x)
to this line integral is O(ε) (uniformly in x), and thus its contribution may be left out in (2.12).

2.2 Expansion of Fε

In this section, we complete the proof of Theorem 1.1 by proving (1.10). The preparation is
analogous to that in Section 2.1; we fix an x ∈ �, translate the coordinate system such that x is
at the origin and remove x from the notation. Again, we set κ0, τ0 and n0 as respectively the
curvature, tangent vector (counter-clockwise direction) and outward pointing normal vector of �
at 0. In addition, in view of the definition of Gε in (1.6), we set

Rε(y) :=
√

|y|2 + ε2

for y ∈R
2 and extend this definition to scalars t ∈R by Rε(t) = √

t2 + ε2. Depending on the sign
of κ0, we split three cases.

The case κ0 > 0. Similar to (2.1), we split

Fε =
∮
�∪C

Gε · τ −
∮
C

Gε · τ =: F1
ε −F2

ε , (2.13)

where C is traversed in counter-clockwise direction. Since Gε is regular at 0, there is no need to
avoid the origin, and thus the splitting above is simpler than that in (2.1). Again, we first assume
that � ∩ C = {0} and treat the general case afterwards.

We start with showing that F1
ε =	 + O(ε). We recall Cε and γε from Section 2.1 (see

Figure 3) and extend the definition in (2.2) to

ωε :=ω0,ε := Bε(0) \ Br0 (r0n0) ∪�,

that is, ωε is the union of the two narrow wedges inside Bε(0) between � and C. Then,

F1
ε =

∮
∂ωε

Gε · τ +
∮
�ε∪Cε∪γε

(Gε − G) · τ +
∮
�ε∪Cε∪γε

G · τ . (2.14)

By (2.12), the third term equals 	 + O(ε). Hence, it remains to show that the first two terms are
error terms of size O(ε).

We start with the first error term in (2.14). In preparation for applying Stokes’ Theorem, we
compute

curlGε(y) = (1 + ν)y2
1 + (1 − 2ν)y2

2 − (2 − ν)ε2

R5
ε(y)

+ 3

2
(1 − ν)

ε2(y2
1 − 4y2

2 + ε2)

R7
ε(y)

. (2.15)

Similar to (2.3), it is easy to see that there exists a constant C> 0 which only depends on ν such
that ∣∣curlGε(y)

∣∣≤ C/|y|3 for all ε > 0, y ∈R
2.
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Then, applying Stokes’ Theorem to the first error term in (2.14), and then estimating the result
analogously to (2.6), we obtain that this error term is O(ε).

To bound the second error term in (2.14), we start with some preparations. We write

(Gε − G) (y)T =
(

1

Rε(y)3
− 1

|y|3
)

yT

[
0 −1

1 − ν 0

]
+ 3ε2yT

2Rε(y)5

[
0 0

1 − ν 0

]

and claim that (Gε − G)(y) is small when y remains a fixed distance ρ > 0 away from 0. Indeed,
for such y,

1

Rε(y)
= 1

|y|
1√

1 + ε2/|y|2 = 1

|y|
(
1 + O(ε2)

)
,

where the term O(ε2) is uniform in y on Bρ(0)c but may depend on ρ. Hence, there exists C> 0
such that ∣∣(Gε − G)(y)

∣∣≤ Cε2/|y|2 for all |y| ≥ ρ.

To use this result, we expand∮
�ε∪Cε∪γε

(Gε − G) · τ =
(∫

�ρ∪γρ
+

∫
Cρ

+
∮
∂ωε,ρ

)
(Gε − G) · τ , (2.16)

where ωε,ρ is defined in (2.2). We claim that the first two integrals are O(ε2). Indeed, since
�ρ ∪ γρ is of finite length, this follows immediately for the first integral. For the second integral,
we need to be more precise, because |Cρ | = O(r0) is not bounded uniformly in κ0 (it blows up as
κ0 ↓ 0). We use the parametrisation of Cρ defined in (2.7) (see (2.8) for its properties) to find∣∣∣∣

∫
Cρ

(Gε − G) · τ
∣∣∣∣≤

∫ 2π−ρ/r0

ρ/r0

∣∣(Gε − G)(ϕ(θ ))
∣∣|ϕ′(θ )| dθ

≤ Cε2
∫ 2π−ρ/r0

ρ/r0

|ϕ′(θ )|
|ϕ(θ ))|2 dθ ≤ C

ε2

4r0

∫ π

ρ/r0

dθ

sin2(θ/2)
≤ C′ ε

2

r0

∫ π

ρ/r0

dθ

θ2
≤ C′′ε2,

which is uniform in κ0.
Finally, we bound the third integral in (2.16). To apply a similar estimate as for the expansion

of Fε, we choose ρ > 0 small enough with respect to max� |κ| such that ωε,ρ can be described as
in (2.5). Then, in preparation for applying Stokes’ Theorem, we note that the curl of the integrand
is of the form (recalling (2.3) and (2.15))

curl (Gε − G) (y) = (
C1y2

1 + C2y2
2

) ( 1

R5
ε(y)

− 1

|y|5
)

+ ε2
(
C3y2

1 + C4y2
2 + C5ε

2
)

R7
ε(y)

,

where Ci ∈R are constants which depend only on ν. Writing r := |y| and using Rε(y) ≥ r, we
estimate

r3
∣∣curl(Gε − G)(y)

∣∣≤ C

(
1 − r6

R6
ε(r)

)
+ C′ ε2

R2
ε(r)

= C
3(r/ε)4 + 3(r/ε)2 + 1

(1 + (r/ε)2)3
+ C′

1 + (r/ε)2
=:ψ(r/ε).
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Note that ψ is integrable on (0, ∞). Then, applying Stokes’ Theorem on the third integral in
(2.16) and recalling (2.6), we obtain

∣∣∣∣
∮
∂ωε,ρ

(Gε − G) · τ
∣∣∣∣=

∣∣∣∣
∫ ∫

ωε,ρ

curl(Gε − G)

∣∣∣∣
≤ C

∫ ρ

ε

r3
∣∣curl(Gε − G)(r)

∣∣ dr ≤ Cε

∫ ρ/ε

1
ψ(t) dt = O(ε).

This completes the expansion of the right-hand side of (2.14). Collecting all computations above,
we obtain

F1
ε =	 + O(ε).

Next, we expand the second term F2
ε of Fε in (2.13). Inserting (1.6), F2

ε reads as

F2
ε =

∮
C

y

R3
ε(|y|)

·
[

0 −1

1 − ν 0

]
τ (y) + 3ε2y

2R5
ε(|y|)

[
0 0

1 − ν 0

]
τ (y) dy.

Using the parametrisation of C defined in (2.7) and applying the same steps as in the derivation
leading to (2.10), we obtain

F2
ε = κ0

(
2ν

(
1 − 2c2

φ

)
I4
3 + (

3νc2
φ − ν − 1

)
I2
3 + 3 (1 − ν)

(
2c2
φ − 1

)
I4
5

+3

2
(1 − ν)

(
1 − 3c2

φ

)
I2
5

)
,

where

I i
j :=

∫ 2π

0

2r3
0ε

j−3 sini θ
2√

4r2
0 sin2 θ

2 + ε2
j dθ for i = 2, 4 and j = 3, 5.

To expand the integrals I i
j , we change variables θ/2 → θ , use the symmetry of sin to cut the

integration domain in half and introduce

� := ε

2r0

to simplify it to

I i
j = �j−3

∫ π
2

0

sini θ√
sin2 θ + �2

j dθ .
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By expanding in the integrands the numerator as a polynomial of sin2 θ + �2, we obtain

I4
3 =

∫ π
2

0

√
sin2 θ + �2 dθ − 2�2

∫ π
2

0

1√
sin2 θ + �2

dθ + �4
∫ π

2

0

1√
sin2 θ + �2

3
dθ

I4
5 = �2

∫ π
2

0

1√
sin2 θ + �2

dθ − 2�4
∫ π

2

0

1√
sin2 θ + �2

3
dθ + �6

∫ π
2

0

1√
sin2 θ + �2

5 dθ

I2
3 =

∫ π
2

0

1√
sin2 θ + �2

dθ − �2
∫ π

2

0

1√
sin2 θ + �2

3
dθ

I2
5 = �2

∫ π
2

0

1√
sin2 θ + �2

3
dθ − �4

∫ π
2

0

1√
sin2 θ + �2

5 dθ .

The integrals appearing are complete elliptic integrals of a certain order. To see this, set

k2 := 1

1 + �2
= 4r2

0

4r2
0 + ε2

ε→0−−→ 1

and note that

sin2 θ + �2 = 1 − cos2 θ + �2 = 1

k2

(
1 − k2 cos2 θ

)
.

Hence, ∫ π
2

0

1√
sin2 θ + �2

m dθ = km
∫ π

2

0

1√
1 − k2 cos2 θ

m dθ

for m ∈Z, which are complete elliptic integrals when m is a positive, odd integer. For such m,
the number m is the order of the complete elliptic integral.

Next, we expand the appearing complete elliptic integrals around k = 1. For m = 1, we obtain
from [GR07, (8.113.3)] that∫ π

2

0

dθ√
1 − k2 cos2 θ

= log
4√

1 − k2
+ O

(
(1 − k2) log

1

1 − k2

)
= log

1

�
+ log 2 + O

(
�2| log �|) ,

and for m = −1, [GR07, (8.114.3)] states∫ π
2

0

√
1 − k2 cos2 θ dθ = 1 + O

(
(1 − k2) log

1

1 − k2

)
= 1 + O

(
�2| log �|) .

For m = 3 and m = 5, we did not find an explicit expansion in the literature. To obtain such
expansions, one can either rewrite the integrals in terms of more standard integrals (see e.g.
[AS64, Chap.17]), or replace the cosine by its Taylor polynomial, show that the error made is
O(1), and use [GR07, (2.271.4–6)] to expand the obtained integrals. This yields∫ π

2

0

1√
1 − k2 cos2 θ

3
dθ = 1

1 − k2
+ O

(
log

1

1 − k2

)
= 1

�2
+ O(| log �|)

∫ π
2

0

1√
1 − k2 cos2 θ

5 dθ = 2

3

1

(1 − k2)2
+ O

(
1

1 − k2

)
= 2

3

1

�4
+ O(�−2).
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Finally, tracing back our expansions up to F2
ε , we observe that

I4
3 = 1 + O(�2| log �|)

I4
5 = O(�2| log �|)

I2
3 = log

1

�
+ log 2 − 1 + O(�2| log �|)

I2
5 = 1

3
+ O(�2| log �|)

and obtain

F2
ε = −κ0

(
Aφ log

1

εκ0
+ Bφ + Cφ

)
+ O(ε),

where Aφ , Bφ and Cφ are the constants defined in (1.1). This completes the proof of Theorem
1.11 for the case κ0 > 0 and � ∩ C = {0}.

Next, we demonstrate how this result can be modified to the case of general curves �. The
only required modifications are in the definitions of ωε and ωε,ρ . By taking first ρ and then ε
smaller if necessary, we can describe these sets analogously to the description at the end of the
case κ0 > 0 of the proof for the expansion of Fε. Similar to that proof, we can then apply Stokes’
Theorem on ωε and ωε,ρ to justify the steps above. This completes the proof of Theorem 1.1 for
the case κ0 > 0.

The case κ0 = 0. As for the expansion of Fε, we can treat the case κ0 = 0 similarly to the case
κ0 > 0 with minor modifications. In fact, two out of three modifications are the same:

1. the replacement of C by the tangent line to � at 0, and

2. the observation that F2
ε = 0 (because Gε is odd).

The third modification is the treatment of the second integral (the one over Cρ) in (2.16). By the
symmetry of Cρ and the oddness of both Gε and G, we directly obtain∫

Cρ
(Gε − G) · τ = 0.

The case κ̃0 < 0. This case can be treated along the same lines as for the expansion of Fε; we
omit the details. This completes the proof of Theorem 1.1.

3 Proof of Theorem 1.2

We fix some i ∈ {1, . . . , N} and translate the points xj of �h by −xi. Then, we relabel the points
by setting

yj := xi+j − xi for all j ∈Z.

Note that y0 = 0. As in the proof of Theorem 1.1, we also translate � by −xi and set τ0, n0 and
κ0 as respectively the tangent vector, the normal vector and curvature of the translated copy of �
at 0. Furthermore, we remove x from the notation and note that (1.9) reads as:

Fε = κ0

(
Aφ log

1

ε|κ0| + Bφ

)
+	 + O(ε). (3.1)
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We give a constructive proof of (1.21), starting with the first of the two terms in the left-hand
side. This means that we are going to approximate Fε as a function of y without using any further
information of �. We refer to this process as a discretisation of Fε. As a result, the discretisation
in (1.15) will appear as the leading order term in this approximation.

We start by discretising the local part (i.e. the first term in (3.1)) of Fε. With this aim, it is
enough to discretise κ0. For later use, we also discretise τ0, n0 and the constants Aφ , Bφ and
Cφ . We use a simple and standard approximation. Since there are many different discretisations
available in the literature on parametric curves, we derive our approximation in detail.

For this discretisation, we only use the two points y1 and y−1 and denote them in consistency
with (1.18) by respectively y+ and y−. We start with some preliminaries. Let ϕ be the arc length
parametrisation of � around 0 with ϕ(0) = 0 and ϕ′(0) = τ0. Let t− < 0< t+ be such that ϕ(t±) =
y± and note that

|y±| ≤ t±. (3.2)

We take h small enough such that the part of � from 0 to y+ can be described as the graph of a
height function H with respect to the line segment γ1, that is, as the graph of

η �→ η
y+
|y+| + H(η)Q

y+
|y+| , where Q :=

[
0 1

−1 0

]

is the rotation matrix by 90 degrees in clockwise direction. Since H(0) = H(|y+|) = 0, it follows
from the Mean Value Theorem that H ′(η∗) = 0 for some η∗ ∈ (0, |y+|). Since H ∈ C3([0, |y+|]),
we then have that |H ′(η)| ≤ C|y+| ≤ C′h. Hence,

t+ =
∫ |y+|

0

√
1 + H ′(η)2dη≤ |y+| (1 + Ch2

)
. (3.3)

Moreover, since

H(η) = H(0) + ηH ′(0) + O(η2) = η
(
H ′(η∗) + O(η∗)

)+ O(η2) = O(h2),

we obtain for the region ωh
1 enclosed by � and γ1 that

|ωh
1| =

∫ |y+|

0
|H(η)| dη≤ Ch3. (3.4)

Turning back to (3.3), one can derive a similar estimate for t−. Together with the lower bound in
(3.2), this yields

|y±| ≤ |t±| ≤ |y±|(1 + Ch2).

We use this to expand ϕ around 0. Since ϕ is an arc length parametrisation, we obtain (see e.g.
[dC16]) ϕ′(0) = τ0 and ϕ′′(0) = κ0n0. Then,

y± = ϕ(t±) = ϕ(0) + t±ϕ′(0) + 1

2
t2
±ϕ′′(0) + O

(
t3
±
)

= t±τ0 + 1

2
t2
±κ0n0 + O

(
h3
)

= ±|y±|τ0 + 1

2
|y±|2κ0n0 + O

(
h3
)

. (3.5)

This completes the preliminaries.
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We use (3.5) to construct approximations for τ0, n0 and κ0. For any linear combination, we
obtain

ay+ + by− = (a|y+| − b|y−|)τ0 + 1

2

(
a|y+|2 + b|y−|2) κ0n0 + O

(
(|a| + |b|)h3

)
. (3.6)

Solving for a and b such that the prefactors of τ0 and κ0n0 are respectively 1 and 0, we obtain

a = |y−|/|y+|
|y+| + |y−| = O

(
h−1

)
,

b = − |y+|/|y−|
|y+| + |y−| = O

(
h−1

)
,

τ̃ h
0 := ay+ + by− = τ0 + O

(
h2
)

.

In particular, |τ̃ h
0 | = 1 + O(h2). We use this to normalise our approximation of τ0:

τ h
0 := τ̃ h

0

|τ̃ h
0 | = τ0 + O(h2).

Then, we simply rotate to obtain

nh
0 := Qτ h

0 = n0 + O(h2).

Note that this definition of nh
0 is consistent with that in (1.19). Analogously to φ, we take φh ∈

[0, 2π ) such that

nh
0 =

[
cos φh

sin φh

]
.

Note that with the two components of nh
0, we can approximate the constants Aφ , Bφ and Cφ in

(1.11) by respectively Aφh , Bφh and Cφh with an error of size O(h2).
Similarly, solving for a,b such that the prefactors of τ0 and κ0n0 in (3.6) are respectively 0 and

1, we obtain

a = 2/|y+|
|y+| + |y−| = O

(
h−2

)
, b = 2/|y−|

|y+| + |y−| = O
(
h−2

)
, ay+ + by− = κ0n0 + O(h).

Multiplying both sides of the third equation by ñh
0 = Qτ̃ h

0 , we obtain

κh
0 := (ay+ + by−) · ñh

0 = κ0 + O(h). (3.7)

Rewriting this in terms of y±, we get

κh
0 = 2

(
1

|y+| + 1

|y−|
)

y− · Qy+
(|y+| + |y−|)2

,

which motivates the expression in (1.17).
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Finally, we substitute the expansions above in the local term of (3.1). While this needs no
further motivation for most of the terms, we wish to treat the expansion of ψ(κ0) := κ0 log |κ0|
carefully. From the derivation of (3.7), we obtain that

| κ0 − κh
0︸ ︷︷ ︸

Rh

| ≤ Mh

for a constant M > 0 which is independent of h and κ0. If |κ0| ≤ 2Mh, then we observe that
ψ(κ0) = O(h| log h|) and ψ(κh

0 ) = O(h| log h|). If |κ0| ≥ 2Mh, then Mh ≤ κh
0 ≤ C, and thus we

may apply Taylor’s Theorem on ψ at κh
0 . This yields an κ∗ ∈ B(κ0, Mh) such that

ψ(κ0) =ψ(κh
0 ) + Rhψ ′(κ∗) =ψ(κh

0 ) + Rh(log |κ∗| + 1) =ψ(κh
0 ) + O(h| log h|).

Using this, we obtain from (3.1) that

Fε = κh
0

(
Aφh log

1

ε|κh
0 | + Bφh

)
+	 + O (ε+ h| log ε| + h| log h|) . (3.8)

It is left to approximate the non-local term 	. We do this in detail for the case κ0 > 0; the case
κ0 ≤ 0 can then be treated along the same lines as in the proof of Theorem 1.1.

We start with some preliminaries. Let ϕ be again the arc length parametrisation of �, and let
tj be defined by

ϕ(tj) = yj for − �N/2� ≤ j ≤ �N/2� − 1.

Let �j be the part of � in between yj−1 and yj and set ωh
j as the region enclosed by �j and γj.

Analogously to (3.4), one can derive (for h small enough) that

|ωh
j | ≤ Ch3 for all j ∈Z. (3.9)

Interpreting d(s) := |ϕ(s)| as the distance from the origin, we note that

d′(s) = ϕ(s)

|ϕ(s)| · ϕ′(s) for all s ∈R \ |�|Z.

Since ϕ(s)/|ϕ(s)| → τ0 as s ↓ 0, d′(s) is uniformly continuous on (0, ρ] for any ρ < |�|.
Observing that d′(0±) = ±1, we may take ρ independent of h such that

inf
(0,ρ)

d′ ≥ 1

2
and sup

(−ρ,0)
d′ ≤ −1

2
, (3.10)

and such that � intersects ∂Bρ(0) in precisely two points. Let nρ be the largest integer for which

|ynρ | ≤ ρ and |y−nρ | ≤ ρ.

We observe from

|ynρ | = |ynρ − y0| ≤
nρ∑
j=1

|yj − yj−1| ≤ Cnρh

that nρ ≥ c/h for some c> 0 independent of h. Recalling mh from (1.16), we take h small enough
such that mh ≤ nρ .
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FIGURE 5. �εh and �h
εh related to � and �h as illustrated in Figure 2. The sketch is a special case in which

(54) is satisfied.

From this construction, we obtain

|yj| − |yj−1| = d(tj) − d(tj−1) =
∫ tj

tj−1

d′(s) ds

≥ 1

2
(tj − tj−1) ≥ 1

2
|γj| ≥ ch for j = 1, . . . , nρ . (3.11)

Since a similar estimate holds for the points y−j, we obtain

ch2/3 ≤ |y±mh | ≤ Ch2/3 (3.12)

for all h small enough. For convenience, we first assume that

εh := |y−mh | = |ymh | (3.13)

and comment on the general case afterwards. Note from (3.12) that

εh = O(h2/3).

This concludes the preliminaries for discretising 	 in (3.8).
From the characterisation of 	 in Remark 2.1, we obtain

	 =
∫
�
εh

G · τ +
∫
C
εh

G · τ + O(εh) (3.14)

for any h> 0 small enough with respect to �. We discretise the first term by the integral over

�h
εh := �h \ B(0, εh) =

N−mh⋃
j=mh+1

γj ⊂ �h. (3.15)

Figure 5 illustrates the setting.
Then, by Stokes’ Theorem2

∣∣∣∣
∫
�
εh

G · τ −
∫
�h
εh

G · τ
∣∣∣∣≤ N−mh∑

j=mh+1

∣∣∣∣
∮
γj∪�j

G · τ
∣∣∣∣≤ N−mh∑

j=mh+1

∫∫
ωh

j

|g|, (3.16)

2
In the case where γj and �j intersect, we apply a similar argument as that at the end of the case

κ0 > 0 in the proof of (1.9).
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where g = curlG (see (2.3)). To bound the sum in the right-hand side, we split it into three sub-
summations. For j = nρ + 1, . . . , N − nρ , by the construction of ρ, it holds that dist(0,�j) ≥ c.
Hence,

max
ωh

j

|g| ≤ C.

Using this together with (3.9), we obtain∫∫
ωh

j

|g| ≤ |ωh
j | max

ωh
j

|g| ≤ Ch3.

Noting from (1.14) that N ≤ C/h, we then have that

N−nρ∑
j=nρ+1

∫∫
ωh

j

|g| ≤ CNh3 ≤ C′h2.

The remaining two sub-summations in the right-hand side of (3.16) can be treated similarly
to one another; we focus on the one over j = mh + 1, . . . , nρ . From the preliminaries (see (3.10)
and (3.11)), we obtain

max
ωh

j

|g| ≤ max
y∈ωh

j

C

|y|3 = C

|yj−1|3 ≤ C′

(hj)3
.

Then,

nρ∑
j=mh+1

∣∣∣∣
∫ ∫

ωh
j

g

∣∣∣∣≤ nρ∑
j=mh+1

|ωh
j | max

ωh
j

|g| ≤
nρ∑

j=mh+1

C

j3
≤

∫ ∞

mh

C

α3
dα = 2C/(mh)2 ≤ C′h2/3.

In conclusion, recalling (3.16) and (3.15),

∫
�
εh

G · τ =
N−mh∑

j=mh+1

∫
γi

G · τ + O
(
h2/3

)
. (3.17)

Next, we estimate the second term in (3.14) by the integral over a circle Ch which we will
construct from nh

0 and κh
0 . For Ch to be close to C, we require in (3.7) that the error term O(h) is

sufficiently smaller than κ0. This motivates us to first consider the case κ0 ≥ εh and treat the case
for small κ0 afterwards.

Assuming that κ0 ≥ εh, we set

Ch := ∂Brh
0
(rh

0nh
0) and Ch

εh := Ch \ Bεh (0),

where

rh
0 = 1

κh
0

= 1

κ0 + O(h)
= 1 + O(h/κ0)

κ0
= r0(1 + O(r0h))

https://doi.org/10.1017/S0956792521000322 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000322


Expansions for the linear-elastic contribution to the self-interaction force 1057

FIGURE 6. Sketch of the closed loop Ch
εh ∪ Cεh ∪ γεh .

can be computed from the two points y+ and y−. Let γεh be the two small arcs on ∂Bεh (0)
which connect the endpoints of Ch

εh and Cεh , and let ωh be the region enclosed by the closed loop
Ch
εh ∪ Cεh ∪ γεh ; see Figure 6 for a sketch. Then, by Stokes’ Theorem:∣∣∣∣

∫
C
εh

G · τ −
∫
Ch
εh

G · τ
∣∣∣∣≤

∣∣∣∣
∫
γ
εh

G · τ
∣∣∣∣+

∫∫
ωh

|g|. (3.18)

Next, we show that both integrals in the right-hand side of (3.18) are small. We start with the
first one. We parametrise γεh by

ϕ(θ ) := εh

[
cos θ

sin θ

]
for θ ∈�, (3.19)

where � is (similar to (2.5)) the union of two intervals. Let θ1 and θ2 be the endpoints of one of
these intervals. In particular, ϕ(θ1) ∈ C and ϕ(θ2) ∈ Ch, that is,

|ϕ(θ1) − r0n0| = r0 and |ϕ(θ2) − rh
0nh

0| = rh
0.

To solve for θ1, we first compute

r2
0 = |ϕ(θ1) − r0n0|2 = (

εh cos θ1 − r0 cos φ
)2 + (

εh sin θ1 − r0 sin φ
)2

= (εh)2 + r2
0 − 2εhr0 cos(θ1 − φ).

Then, we obtain two solutions given by:

θ1 = φ ± arccos
εh

2r0
.

Analogously, we obtain

θ2 = φh ± arccos
εh

2rh
0

.

Taking the plus sign in both equations above, we obtain the endpoints of one of the two intervals
of �. Then, substituting the expansions for φh and κh

0 = 1/rh
0, we obtain

∣∣θ2 − θ1

∣∣≤ Ch2 +
∣∣∣ arccos

εh

2r0
− arccos

(
εh

2r0
+ O(εhh)

) ∣∣∣≤ C′εhh. (3.20)
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Hence, |�| ≤ Cεhh. We use this to estimate the first integral in (3.18) by:∣∣∣∣
∫
γ
εh

G · τ
∣∣∣∣=

∣∣∣∣
∫
�

G(ϕ(θ )) · ϕ′(θ ) dθ

∣∣∣∣≤ |�| C

εh
≤ C′h.

To estimate the second integral in (3.18), we split ωh into two pieces; the part inside Br0 (0)
and the part outside Br0 (0). For the inside part, we write similar to (2.2)

ωh ∩ Br0 (0) = {(s, θ ) : εh < s< r0, θ ∈�(s)}, (3.21)

where �(s) is the extension of � in (3.19) for s = εh to s ∈ (εh, r0). In particular, the same
argument yields |�(s)| ≤ Csh. Then,∫∫

ωh∩Br0 (0)
|g| =

∫ r0

εh

∫
�(s)

∣∣g(s, θ )
∣∣s dθds

≤ C

∫ r0

εh
|�(s)| 1

s2
ds ≤ C′h

∫ r0

εh

1

s
ds = O(h| log h|). (3.22)

For the part of ωh outside Br0 (0), note that ωh remains inside the tubular neighbourhood of
C = ∂B(r0n0, r0) of size O(r2

0h). Indeed, for any point y ∈ Ch = ∂B(rh
0nh

0, rh
0), we obtain from the

triangle inequality that

|y − r0n0| ≤ |y − rh
0nh

0| + |rh
0nh

0 − r0n0| = r0 + O(r2
0h),

|y − r0n0| ≥ |y − rh
0nh

0| − |rh
0nh

0 − r0n0| = r0 + O(r2
0h).

Hence, |ωh| ≤ Cr3
0h, and thus ∫∫

ωh\Br0 (0)
|g| ≤ |ωh| max

Br0 (0)c
|g| ≤ Ch. (3.23)

Inserting our findings above in (3.18), we obtain∫
C
εh

G · τ =
∫
Ch
εh

G · τ + O(h| log h|). (3.24)

To expand the integral in the right-hand side, we parametrise Ch
εh as in (2.7) by:

ϕh(θ ) := rh
0

[
cos φh − cos(θ + φh)

sin φh − sin(θ + φh)

]
with αh < θ < 2π − αh,

where αh ∈ (0, π ) is such that |ϕh(αh)| = εh. An analogous derivation as the one for F2
e leading

to (2.11) yields ∫
Ch
εh

G · τ = −κh
0

(
Aφh log

1

εhκh
0

+ Bφh

)
+ O

(
(εh)2

)
. (3.25)

Then, (3.24) yields ∫
C
εh

G · τ = −κh
0

(
Aφh log

1

εhκh
0

+ Bφh

)
+ O(h| log h|). (3.26)
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We recall that (3.26) relies on the assumption κ0 ≥ εh. The remaining case 0< κ0 < ε
h can be

treated with minor modifications to the derivation of (3.26). We list these modifications first for
the additional assumption κh

0 > 0, for which no change to the definition of Ch is required. The
main modification is that we use B(0, 1/εh) instead of Br0 (0) when splitting ωh into two pieces.
It is easy to see that also ∂B(0, 1/εh) intersects with Ch in two points, and that the estimate
|�(s)| ≤ Csh remains valid. Using this estimate, as in (3.22), we obtain∫∫

ωh∩B(0,1/εh)
|g| = O(h| log h|).

As an alternative to (3.23), we use the rougher estimate:∫∫
ωh\B(0,1/εh)

|g| ≤
∫∫

B(0,1/εh)c
|g| ≤ C

∫ ∞

1/εh

1

s2
ds = Cεh.

Then, the same steps leading to (3.26) yield∫
C
εh

G · τ = −κh
0

(
Aφh log

1

εhκh
0

+ Bφh

)
+ O(εh). (3.27)

Next, we treat the case 0< κ0 < ε
h with κh

0 < 0. Note from (3.7) that this setting implies κ0 <

Ch and κh
0 ≥ −C′h. We set rh

0 := −1/κh
0 > 0, Ch := ∂B(−rh

0nh
0, rh

0) and

ωh = (
B(r0n0, r0) ∪ B(−rh

0nh
0, rh

0)
)c ∪ (

B(r0n0, r0) ∩ B(−rh
0nh

0, rh
0)
)

.

In addition to the modification in the case κh
0 > 0, the derivation of |�| ≤ Cεhh requires a modifi-

cation too. Indeed, while the endpoint θ1 can be found analogously, the condition for θ2 becomes

|ϕ(θ2) + rh
0nh

0| = rh
0.

Solving for θ2 yields

θ2 = φh ± arccos
−εh

2rh
0

.

Then, using the expansion

−1

rh
0

= κh
0 = κ0 + O(h),

we get

θ2 = φh ± arccos

(
εh

2r0
+ O(εhh)

)
.

Then, |�| ≤ Cεhh follows from (3.20) as before.
Finally, we treat the case 0< κ0 < ε

h with κh
0 = 0. Setting Ch = {tτ h : t ∈R}, this case can be

treated similarly as either the case κh
0 > 0 or the case κh

0 < 0; we omit the details. This completes
the proof of (3.27) for all κ0 > 0 without any additional assumptions on the sign or size of κh

0 .
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In conclusion, starting from (3.8) and substituting consecutively (3.14), (3.17) and (3.27), we
obtain

Fε = κh
0 Aφh log

εh

ε
+

N−mh∑
j=mh+1

∫
γi

G · τ + O
(
ε+ h| log ε| + h2/3

)
. (3.28)

This prove (1.21) for the first term in the left-hand side of (1.21) under the additional assumption
|y−mh | = |ymh |.

The proof above easily extends to the generic case:

εh := |ymh | �= |y−mh | =: ε−h.

Indeed, the main modification is that Bεh (0) is replaced by the union of two half-balls cut
along n0:

D := {
x ∈ Bεh (0) : x · τ0 ≥ 0

}∪ {
x ∈ Bε−h (0) : x · τ0 ≤ 0

}
.

Indeed, in the proof above, the narrow wedges (see, e.g. (3.21)) between any of the four curves
�, �h, C and Ch can be treated independently and are always included in one of the two half-balls.
A ramification of this modification is that (3.25) changes to∫

Ch\D
G · τ = −κh

0

(
1

2
Aφh log

1

εhε−h(κh
0 )2

+ Bφh

)
+ O

(
h4/3

)

= −κh
0

(
1

2
Aφh log

1

|ymh ||y−mh |(κh
0 )2

+ Bφh

)
+ O

(
h4/3

)
;

this can be seen from obvious modifications to the argument leading to (2.11).
To complete the proof of Theorem 1.2, we note that (1.21) follows almost directly from (3.28).

Indeed, by the triangle inequality and the definitions of Fε and Fh
ε,i, we get∣∣Fh

ε,i(x) −Fε(xi)
∣∣≤ ∣∣Fh

ε,i(x) − Fε(xi)
∣∣+ ∣∣κh

0 Cφh − κ0Cφ
∣∣.

Recalling from the proof that κh
0 = κ0 + O(h) and Cφh = Cφ + O(h2), we obtain (1.21).
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