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AVERAGE DERIVATIVES FOR
HAZARD FUNCTIONS

TUuE GORGENS
Australian National University

This paper develops semiparametric kernel-based estimators of risk-specific haz-
ard functions for competing risks datoth discrete and continuous failure times
are consideredThe maintained assumption is that the hazard function depends
on explanatory variables only through an indexcontrast to existing semipara-
metric estimatorsproportional hazards is not assumédthe new estimators are
asymptotically normally distributed he estimator of index coefficients is root-
consistentThe estimator of hazard functions achieves the one-dimensional rate
of convergenceThus the index assumption eliminates the “curse of dimensional-
ity.” The estimators perform well in Monte Carlo experiments

1. INTRODUCTION

This paper is about modeling failure time data when there is more than one
kind of failure Failure time data are also known in the literature as survival
datg duration dataand transition dateand the possibility of several kinds of
failure is known as the competing risks proble@ompeting risks data are char-
acterized by the presence of two dependent varialtheslength of time until
failure, Y, and an indicator of the type of failur&. In addition there may be a
g-vector of explanatory variableX. An example of competing risks is the study
by Fallick (1993 of workers’ transition from unemployment to employment
where jobs are classified according to industigre “failure” refers to the event
of finding a joly and the dependent variables are the duration of the unemploy-
ment spell andan indicator oj the industry where employment was taken up
Competing risks models have long been one of the principal tools in applied
econometrics and other fields such as demographics and medical staDties
recent studies in economics inclyder example Carling Edin, Harkman and
Holmlund (1996 on the duration of unemployment spells in Swedahere
spells end with transition into employmetabor market program®r nonpar-
ticipation; Henley (1998 on the duration of residence in own home with tran-
sition to other owner occupatiomo public-sector rentalprivate-sector rental
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in the United Kingdom and Salzberger and Fer{t999 on the duration of
service of judges at the English Court of Appeal ending with retirement or pro-
motion to the House of Lord¥albfleisch and Prentic€1980, Cox and Oakes
(1984, and Lancastef1990 give in-depth accounts of the traditional likelihood-
based methods of analyzing failure time dathereas Fleming and Harrington
(1991 and AndersonBorgan Gill, and Keiding(1993 provide comprehen-
sive treatments of the modern approach based on counting processes

The concept of a hazard function is central in the analysis of failure time
data In a competing risks setting hazard rate is a risk-specific and time-
specific failure rateThe hazard ratehg(y|x), indicates the rate at which sub-
jects with characteristics experience failure of typeat timey given that they
have not failed before timg Time here refers to duratigthat is the length of
time the subject is at risk of failingrhis may be different from calendar time
In the unemployment exampléme at risk begins when individuals become
unemployedand the hazard rate at five days refers to the rate at which work-
ers who have been unemployed four days find jobs on the fifth ¢Rigk-
specific hazard functions are called cause-specific hazard functions by
Kalbfleisch and Prenticel98Q and transition intensities by Lancast&99Q)

In many applications interest naturally centers on the relationship between
the mean of a dependent variable and a number of explanatory varigbtas
failure time datahowever it is often more informative to study hazard rates
instead of meandHazard rates will generally vary as time progres@edibit
duration dependengeand this variation provides important information about
the underlying procesg-or example although it is useful for economists to
know the mean duration of unemployment spetlss also important for under-
standing the nature of unemployment to know whether workers become more
or less likely to find jobs the longer they have been unemploy&dcourse
hazard rates may also depend on explanatory variatilesswell documented
for instance that the hazard rate out of unemployment depends on the workers’
age and education leveds already indicated in the notatipthe hazard func-
tions considered in this paper are all conditional on the vector explanatory
variables

This paper develops semiparametric estimation methods for risk-specific haz-
ard functions assuming that the explanatory variables enter the hazard func-
tion through a risk-specific linear combination but otherwise imposing no
essential restrictiongechnically the maintained assumption is that there exist
a vectorBs and a functiorh, such thathg(y|x) = h(y|x'Bs) for risk s. This is
sometimes called an index restrictiorhe focus of the paper is on estimating
the index coefficientsBs, using an average derivative idgance s has been
estimatedthe hazard function functioms, and the integrated hazard functjon
H,, can be estimated using standard nonparametric kernel estimation tech-
niques andx’'Bs, as a proxy forx’Bs, where Bs, denotes an estimator ¢s.

This paper considers only continuous explanatory varialles case of dis-
crete explanatory variables is treated in a companion paper
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Index restrictions are common in many parametric and semiparametric fail-
ure time modelgsome recent examples are Stancan&®99 on unemploy-
ment duration in the United Kingdom and Santarétd0Q on the duration of
firms in the Italian financial sectdrindex restrictions are favored by applied
researchersecause they are simple and because they facilitate the interpreta-
tion of estimation resultsBecause index coefficients are proportional to the
marginal effect of explanatory variables on the hazard functioair relative
signs and magnitudes have substantive mearihg main advantage of the
new estimator is that it allows estimation of index coefficients under very weak
assumptionsCurrently no existing estimator of index coefficients is applicable
to competing risks data without assuming additional structwtech is often
rejected when tested

The new estimator can be motivated in a number of way® balance of
this section describes the relationship between the new estimator and the vast
literature on the analysis of failure time data and semiparametric estimation

Two popular classes of models for failure time data are the accelerated fail-
ure time(AFT) models and the proportional hazard@H) models(also known
as Cox models The AFT models assume that the risk-specific hazard func-
tions have the formhg(y|X) = As(yirs(X))is(X), where Ag is known as the
baseline hazard angl is the scale term for theth kind of failure The PH
models assume that the risk-specific hazard functions have thehgytx) =
As(Y)s(X), where agaimg is known as the baseline hazard afds the scale
term Both the AFT and the PH models are often combined with index restric-
tions In particular the most common specifications assume thdk) = e*#s
for some vectoBs. AFT and PH index models have been successful in numer-
ous applicationsand it is an important property of the new estimators that they
are consisten(f not efficient) for these modelsThe advantage of the new esti-
mator is that the need to choose between alternative classes of index models is
avoided It assumes that the explanatory variables influence the hazard func-
tions through an index but does not otherwise restrict the shape of the hazard
functions It is thus applicable in both AFT and PH settings and also in more
general situations

Currently semiparametric estimators of index coefficients in competing risks
models exist only for PH model®art of the popularity of the PH model is due
to the fact that CoX1972 1975 has developed a partial likelihood estimator
that allows estimation of index coefficients without restricting the shape of the
baseline hazard to a particular parametric folims, howevey still necessary
to specify a functional form of the scale teriiNielsen Linton, and Bicke)

1998 describe a method for estimating the index coefficients without specify-
ing a functional form of the scale term but instead assuming a particular para-
metric form for the baseline hazaydAlthough the discovery of the partial
likelihood estimator greatly simplified modeling is not uncommon to test
and reject proportionalityHorowitz and Neumani(1992, for example find
evidence of nonproportional hazards in employment duration. daegall
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(1994 analyzes the duration of nonemployment spells and finds strong evi-
dence of nonproportionalitysrambsch and Therne&li994 find that the treat-
ment effect in survival data for lung cancer patients is not proportjdnal
diminishes as time passed.drhe new estimator extends semiparametric esti-
mation beyond the PH model and further eliminates the need to specify a func-
tional form of the scale term

Hastie and Tibshiran{1990 extend semiparametric estimation of the PH
model in a different directioiWhereas this paper abandons proportionality but
maintains the index forpHastie and Tibshirani generalize the index form but
maintain the assumption of proportionalilyhey replace the standard linearly
additive index by a nonlinear additive forrilastie and Tibshirani provide an
example of a data set where the index restriction failsereas the generalized
form fits well. Although the estimator proposed in the present paper is not suited
for such data sefsmposing index restrictions leads to efficiency gains when
the restrictions are valicdAs mentioned earlieindex restrictions also have the
advantage of facilitating the interpretation of estimation resbksause index
coefficients are proportional to marginal effectdius neither estimator domi-
nates the other

There is now a substantial literature on estimating index coefficients in situ-
ations where the conditional mean ¥fgiven X = x satisfies an index restric-
tion, including methods such as average derivatives for mean fundtitérslle
and Stoker1989 Powell Stock and Stoker1989, semiparametric least squares
(Ichimurg 1993, maximum rank correlatioHan 1987 Sherman1993, and
semiparametric maximum likelihoddi, 1997). Generally these estimators are
not suited for competing risks datexcept under very special circumstances
This is because the conditional mean function need not satisfy any index restric-
tion, even when each risk-specific hazard function de@esimple example is
given in Section 5EXxisting estimators of index coefficients can be used in
applications with uncensored single-risk dapplications with right-censored
single-risk data when the censoring mechanism is independedt ahd
applications where all risk-specific hazard functions depend on the same index
However the literature currently contains no semiparametric estimators for
multiple-risk data nor for single-risk data when the censoring mechanism
depends orX. The new estimator can be seen as an extension of the average
derivative estimator of Powell et.al1989 to multiple-risk data

It is possible to estimate hazard functions without imposing any assumptions
other than smoothnesReferences to purely nonparametric estimators are given
in Section 4 These estimators can be extremely useful in applications with only
one or two explanatory variablebut their rates of convergence decrease
dramatically as the number of explanatory variables increaselsthey are noto-
riously unreliable with four or more explanatory variabl@his is the now-
familiar “curse of dimensionality Index restrictions are one way of providing
sufficient structure to reduce the dimension of the explanatory variables
new estimator of index coefficients proposed in this paper is nominsistent

https://doi.org/10.1017/50266466604203012 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604203012

AVERAGE DERIVATIVES FOR HAZARD FUNCTIONS 441

and the rate of convergence of the hazard function estimator is independent of
the number of explanatory variableEhe new estimator can therefore be seen
as an effective means of overcoming the curse of dimensionality in nonpara-
metric estimation

Finally, right-censored single-risk datahere the censoring mechanism may
depend orX, are a special case of multiple-risk dag@en that right-censoring
formally is equivalent to a separate riskherefore the new estimator gf has
wider applications in the literature on right-censored dita exampleit can
be used in the first stage of the Ggrgens and Horo(li#®9 semiparametric
estimator of the censored transformati@AFT) model and the Horowitz1999
semiparametric estimator of the mixed PH model

The paper is organized as followSection 2 considers estimation of index
coefficients Estimation of the variance matrix is described in Sectios&c-
tion 4 discusses estimation of hazard functioki®nte Carlo results are pre-
sented in Section 5 and conclusions in Sectiofflée Appendix contains the
proof of the main theorem

2. INDEX COEFFICIENT ESTIMATION

To estimate the hazard function for a given ritke distinction between other
risks is not necessaryhe subscrips is therefore suppressed until the Monte
Carlo section of the paper

Recall thatY represents the length of time until failyr®is an indicator of
the type of failure and X is a g-vector of explanatory variable®efine the
distribution functions

Fi(y|x) = Pr(Y=y,S=s|X=Xx), (1)
Fo(y[x) = Pr(Y = y|X = x). (2)

Using the Stieltjes integrathe integrated hazard function is by definitfon

[ Rl
iy = [ AR, ®

The key assumption of this paper is Assumptignhich follows Assump-
tion 1 states that the integrated hazard function satisfies an index restrittion
is easy to show that if the hazard functibnis of index form then so is its
integralH and vice versalt is convenient to work with the integrated hazard
function because this avoids the issue of continuous and discrete failure times
The arguments presented here are valid for both continuous and discrete failure
times

_Assumption 1 There are a functiom and a vectoi such thatH(y|x) =
H(y|x’B) for all y andx.
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The new estimator g8 is similar to the weighted average derivative estima-
tor by Powell et al (1989. The idea is simplelf the hazard function is of
index form ther? a,H(dy|x) = 9,H(dy|x’'8)B. Let W be a weight function
Thenp is proportional to8* defined by

g = [[ wiyaHayix ax @

provided] [ W(y, X)d,H (dy| x’B) dxis finite and nonzercAn estimator is defined
subsequently by replacingH in (4) with a nonparametric estimator
Let ¢ denote the density of. Define

Ay, x) = Pr(Y =y,S=s|X=x)§(x), (5)
Ax(y, X) = Pr(Y = y|X=x)£(X). (6)
Note that by equatiol3)

Y Ag(dy, x)
iy = | SA0e @

This paper considers the case wherey, x) = w(y, X) Ax(y, x)2 andw is another
weight function This choice is convenient because it avoids random denomi-
nators in the estimation formula fégH(dy|x). Because

IxAL(dy, X) 9 Aq(y, X) Ag(dy, X)

(Yl = = AyE ®)
it follows that
B* = f f W(y, X) Ax(Y, X)dx Ag(dy, X) dx

- f f W(Y, X)dy Az (Y, X) Aq(dy, X) dX, 9)
providedC is finite and nonzerowhere
C= ffw(y, X) Az( Y, X)29, H (dy|x’B) dx. (10)

Choosing the weight functiow is not complicatedIn fact in many appli-
cationsw can be omittedThe main purpose of the weight function is to pro-
vide a way of ensuring tha& is finite and nonzerdn all experiments presented
in Section 5the Monte Carlo sectigrhis is satisfied withw(y, x) = 1 for all y
andx.

The estimator proposed here consists of replacing unknown functiai®s in
by sample analogs based on kernel estimatibime sample available for
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analysis is assumed to consistroindependent observationy;, S, X{), i =
1,2,...,n. Letb be a bandwidth parameter and ket RY — R be a kernel func-
tion. Define K,(x) = b~9K (b~x). Then define the estimators

1 n

Ay, x) = N 2:1 Ko(X =X)L, =y)L(§ =), (11)
l n

Agn(y, X) = H% Kp(x = X)) 1(Y, = y). (12)

The estimator o3* is

B =[] w0 Aanty 0 Ay 0 0 [ [ Wy, 00, A0 Ay ) i
1 n n
= S [ kel XKy X WO 010Y = Y)1(S = 5
i=1j=1

Z 21 be(X— X)dy Kp(x = X)W(Y;, X)1(Y, = V) 1(§ = s) dx.

(13)

ComputingB;; involves evaluating aj-dimensional integrallt is possible to
simplify this toq one-dimensional integrals with closed-form solutions by using
a polynomial product kernel and weight functj@s in the Monte Carlo exper-
iments in Section 5

Uniform consistency and asymptotic normality Bf; are established in
Theorem 1which follows Assumption 2 defines the sample

Assumption 2 The sequencgY;, S, X/)'}L, is a random sample

The derivation of the limiting distribution depends on applications of the mean
value theorem and Taylor series expansidisnce the underlying functions
must be smoothSufficient conditions are listed as Assumptiofi 3

Assumption 3 Fork € N, given subsequentlyhe following conditions are
satisfied

(1) Theg-vectorX is absolutely continuous and has dengityith respect to Lebesgue
measure

(2) ¢ is bounded

(3) [|aiA(dy,-)| exist and are bounded and continuousjferl,...,1 + k.

(4) aJA, exist and are bounded and continuousjfer1,...,1 + k.

A researcher who wishes to use the estimators must choose a weight func-
tion, a bandwidth and a kernel functionTo establish consistency and asymp-
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totic normality it is necessary to restrict the choic&ufficient conditions are
given in Assumptions 4 and 5 and in the theorem itself

Assumption 4 The weight functionw: R*™9 — R satisfies the following
conditions

1. C defined in(10) is finite and nonzero
2. wis bounded
3. dxw andaZw exist and are bounded

Assumption 5 Fork € N, given subsequentlyhe kernel functiorkK : RY - R
satisfies the following conditions

1. K is a bounded kernel with suppdrt 1,1]% and the order oK is at leastk. That
is, [K(x)dx=1 and[xIK(x)dx=0forj=1,2,...,k— 1.
2. 0yK exists and is bounded and continuousRsh

These are standard assumptions in the literature on semiparametric estima-
tion. To state the theorenuefine

D(y,sx) =2 f W(v,X)1(y = v)d, Ay (dv,x) — 2W(y,X)d, As(y,X) 1(s=S)

+ faxw(v,x)l(y = v)A(dv,x) — d,W(Y,X)As(Y,X)1(s=9)

— 2B" (14)

It is straightforward to verify thaE® (Y, S X) = 0. Define the variance matrix
3 =ED(Y,SX)P(Y,S X)".

THEOREM 1 Suppose Assumptions 1-5 hold. Then

i. If nb29*2 — oo, then |B; — EB; — N1 2L 0(Y, S, X)| = 0p,(n"Y?) and
nY2(B: — EBY) -9 N(0,3) as n— oo.
ii. Ifnb? — 0, then V2(EB; — B*) - 0as n— co.
iii. If Nb29*2 — o0 and nt?* — 0, then |g; — B* — N1, (Y,,§,X)| =
op(n~2) and n2(B;; — B*) 59 N(0,3) as n— oo.

Given the first approximation result in part i of the theoreasymptotic nor-
mality in part i follows from the Lindeberg—Lévy central limit theorem and the
Cramér—Wold theorenPart iii follows immediately from parts i and. i

The most important conclusions of Theorem 1 are Bjatonverges at the
root-n rate which is the familiar rate from parametric estimatiamd thaig,; is
asymptotically normally distributed hese nice properties are not unexpegcted
because they are shared with the index coefficient estimators listed in the
introduction

It is worth pointing out that the conditionb?d*2 — o in the theorem is
determined by the “diagonal” terms wheire= j in (13). Examination of the
proof of the theorem shows that if these diagonal terms were omttiecton-
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dition nb29"2 — o could be weakened 10972 — oo, which is the same as the
requirement in Powell et a(1989.

3. VARIANCE ESTIMATION

In empirical research it is important to have a measure of the uncertainty asso-
ciated with an estimaterhis section describes how to estimate the variance
matrix 3, of . For conveniencedefineT = (Y, S X')" andt = (y,s,x’)’. Then
define

po(ti,ty) = fax Kp(X = X ) Kp(X = Xj)w(y;, X) 1(y; = y;) (s, = s) dx

- be(X — X )0 Ky (X = x))W(y;, X) L(y; = y;) U(s = s)dx  (15)
and
1 n
F(t) = — > (po(t, T)) + po(Tj, 1)). (16)
j=1
It is easy to verifyusing equation{13), that

1 n o0
I

> 2' . (17)

>

Examination of the proof of Theorem 1 suggests estimatiray
1 n
= i > (ra(T) = 2B3) (ra(T) — 285)" (18)
i=1

The estimatol, is easily computed alongsigs and does not require addi-
tional choice of bandwidth§ he properties ok, are investigated through sim-
ulation in Section 5where it performs well

4. HAZARD FUNCTION ESTIMATION

Once the index coefficients have been estimathd next question is how to
estimate the integrated hazard functiéh and the hazard function itselh.
This section describes how to estimaieby combining the index restriction
with an existing nonparametric estimatorteéf Estimation ofh is not explicitly
discussedbut it is straightforward to adapt existing nonparametric estimators
in a similar way

A purely nonparametric estimator éf was first proposed by Bera1981),
who built on the well-known Nelson—Aalen estimator of the unconditional inte-
grated hazard functioWeak convergence and uniform consistency of Beran’s
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estimator are established by Dabrowsi@87 1989. McKeague and Utikal
(1990 extend Beran’s estimator to the case of time-dependent explanatory vari-
ables and propose an estimatorhdbased on smoothing of the estimatorthf
Nielsen and Linton(1995 propose alternative estimators ldfand h that are
analogues to the Nadaraya—Watson estimator for nonparametric regréssion
and Doss(1995 and Nielsen(1998 consider local linear estimatqré the
framework of local polynomial estimatioithe earlier estimators are all local
constant estimatofs

Any of the aforementioned estimators may be combined with an index restric-
tion. To keep things as simple as possible this paper focuses on Beran’s estima-
tor. To estimateH, Beran simply replaced,; and A, in (7) by the estimators
Ai, andA,, given in(11) and(12). Specifically

Y Ay, (do, X
HnNP(yIX)=J —Aln( v X
o Asn(v,Xx)

As mentioned in the introductiomenerallyH\* has good properties in appli-
cations with just a few explanatory variabldsut like other nonparametric
estimatordH NP suffers from the curse of dimensionality and is useless in appli-
cations with four or more explanatory variahl@$e index restriction can be
used to eliminate the curse of dimensionality

Define Z = X'B. The key to utilizing the index restriction is the fact that
under Assumption ,1H(y|x’B) is not only the conditional integrated hazard
function of Y given X = x but also the conditional integrated hazard function
givenZ = x’B. This may not be immediately obviou$o prove it define the
distribution functions

Fi(y|z2) = Pr(Y=vY,S=s|Z=2), (20)
F.(y|z) = Pr(Y=y|Z = 2). (21)

(19)

Note that in generdf;(y|x) # If,-(ylx’,B) for j = 1, 2, with uncensored single-
risk data as a notable exceptidret P, denote the conditional distribution of
givenZ =z thenlf,-(y|z) = [F(y[x) Pz(dz(). By definition H (dy| x) = Fy(dy|x)/
F,(y|x), and by assumptiohl (dy|x) = H(dy|x'B). It follows thatF,(dy|x) =
H(dy|x’B)F»(y|x), whence

Fayl2) = [ Futayo P
= [ AayixBFay0 P
~ A2 [ Falylo P

= H(dy|2)F,(y|2). (22)

https://doi.org/10.1017/50266466604203012 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604203012

AVERAGE DERIVATIVES FOR HAZARD FUNCTIONS 447

It follows that

. (Y Fu(dv]2)
Ayia - [0, @)

whenceH must be the conditional integrated hazard function giZen x’'g.
The result(23) is important because it implies that estimatordbandh can
be based on probabilities conditional drinstead ofX. This simplifies estima-
tion considerably and allows the use of existing nonparametric estimators

As an examplgconsider estimatingd by combining the index restriction
with Beran’s nonparametric estimatbet ¢ denote the density & and define
the functions

A(y,2) = Pr(Y=Y,S=5s|Z=2){(2), (24)
Ay, 2) = Pr(Y=y|Z=2){(2). (25)

Then by Assumption 1 and equatié®3)
Y Ay (dv|x'B)
H(y|x) = f —_—. 26
Y= ) Awixs) (26)

To estimateH, defineZ;,, = X/ B8,,, whereg, is an estimator of (e.g., the esti-
mator discussed in the previous secjiobet b, be a bandwidth parameter
and letK,: R — R be a kernel functionDefine K,(z) = b, 1K,(b,1z) and the

estimators

R 12

Ay, 2) = " Z Kin(z— Zin) LY, = y)U(S =), (27)
N 170

Aan(¥:2) = — 3 Kanl(2= Zi) 1Y, = ). (28)

ThenH(y|x) can be estimated by

Ha(ylx) = Jy A, X ) _ 1
A o Aon(v,X'Bn) n

. Kzn(X’Bn - Zin)l(Yi = Y)l(S =9)
i=1 A2n(YiaX/Bn)

. (29)

It is not hard to prove thalt, is uniformly consistent over a compact ,sit
asymptotically normally distribute@dnd achieves the rate of convergence for a
one-dimensional explanatory variabMoreover the asymptotic variance éf,

can be estimated using standard estimatbezause rooit consistency of3,
implies that the randomness kh, that stems from using, instead ofg dis-
appears asymptotically
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5. MONTE CARLO EXPERIMENTS

This section reports the results of Monte Carlo experiments undertaken to inves-
tigate the properties of the new estimators in samples of moderateTsiee

new estimato(New) is compared to two alternative estimatotise standard
implementation of the Cox1972 partial likelihood-based estimatdCox),
where the scale term is the exponential functisee the introductionand the
average mean derivative estimator of Powell e 889 (PSS. The PSS esti-
mator is implemented usingYinstead ofY as the dependent variable to reduce
the effect of heteroskedasticityThe new estimator and the Cox’s estimator are
invariant to monotone transformations

The first set of experiments compares the three estimators in a competing
risks setting with two risks and proportional hazar@ike second risks can be
thought of as censorin@nd the focus is on the effect of the degree of censor-
ing. Because the structure imposed by the Cox estimator is valid in these exper-
iments the Cox estimator is expected to perform bdstcontrast the PSS
estimator is inconsistent with censored dathe purpose of these experiments
is to get an idea of the efficiency loss associated with the new estimator when
the data are known to satisfy PH restrictions

The Monte Carlo designs are as follawkhere are two explanatory vari-
ables The first is standard normally distributednd the second is distributed
chi-square with three degrees of freedohine explanatory variables are in-
dependentThere are two risks with hazard functiohg(y|x) = e*s"™*#s and
coefficients 8, = (1/\/5,1/\/5)’ and B8, = (1,0)'. Varying vs changes the
expected proportion of failures of the first and second kiRdsults are pre-
sented for experiments with, = 0 andy, = —o0,—1,0,1. The corresponding
proportion of failures of the second kirithe expected degree of censorjng
approximately 0%25% 50% and 75%

To compute the new estimator it is necessary to choose a weight fupation
kernel function and a bandwidthin all experimentsthe weight function is
simply w(y, X) = 1. The kernel function is the product kerni€k(x4, X,)") =
Ku(x1)Ky(X2), whereK, is the univariate fourth-ordglk = 4) kernel

105 2 4 6
Ky(u) = a(l—Su +7u* —3u®)1(jul =1). (30)

The bandwidth is chosen separately for each experiment to approximately min-
imize the statistic Da measure of error described subsequeptiya 12-point
grid ranging from (b to 4.0. Note that the optimal bandwidth is specific to the
error measure and that the bandwidth that minimizes D is typically different
from the bandwidth that minimizesay the root mean square error of the ratio
of the coefficient estimatesDeveloping an optimal data-driven bandwidth selec-
tion procedure for the new estimator is left for future rese&rch

Deciding on an appropriate loss function for evaluating and comparing dif-
ferent estimators is complicated by the fact thais identified only up to scalg
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Tables 1 and 2 report biasoot mean square ergoand mean absolute error
for estimates ofB;,/B11, Bii/IBil, and Bi,/|B;ill and also the mean D of
I(BI/1B1 ) — (Bi/lBiIDI, whereps; denotes thgth component of3; and
|| denotes the euclidean norm

The sample size is 200 here are MO0 Monte Carlo replications in each
experiment The computations are carried out using GAUSS and GAUSS
pseudo-random number generatdks indicated in the tableshe Cox estima-
tor did not converge in all sampleEhe results for the Cox estimator exclude
these samples

The first set of simulation results is presented in Tahl&@lere are three
main conclusionsFirst, the Cox estimator has the lowest hiesot mean square
error, and mean absolute error in all experimeritbus if the data are known
to come from a PH modgthe Cox estimator should be usetkecondthe per-
formance of all estimators deteriorates with higher levels of censofihip
effect is due to the fact that wittsay 50% censoring only 50% the observa-
tions contain information abog;. It is the number of observations with fail-
ure of type 1 that determines the precision of the estimaturthe total number
of observationsThird, whereas the PSS estimator performs slightly better than

TaBLE 1. Monte Carlo comparison of estimatopoportional hazards models

B12/B11 B11/1 Bl B2/ Bl

Est B R M B R M B R M D

I: 0% censoring
New —-0.13 024 020 005 009 007 -—-0.06 011 008 011
Cox 001 012 009 000 004 003 000 004 003 005
PSS -002 023 018 001 008 006 -—-0.02 008 007 009

II: 24% censoring
New -—-0.09 022 018 004 008 006 -—0.05 009 007 009
Cox 001 014 o011 000 005 004 000 005 004 005
PSS -0.27 0.32 0.29 0.10 0.12 0.11-0.13 0.16 0.13 0.17

11I': 50% censoring
New 008 031 022 -0.02 009 o007 001 009 007 Qal0
Cox 002 019 014 000 006 005 000 006 005 007
PSS -0.50 0.52 0.50 0.19 0.19 0.19-0.27 0.29 0.27 0.33

IV: 75% censoring
New 030 079 044 -0.07 Q15 012 004 013 010 Q16
Cox 005 031 022 -0.01 009 Q07 Q00 009 o007 010
PSS -0.73 0.74 0.73 0.25 0.26 0.25-0.45 046 045 0.52

Note: B, R, and M denote biggoot mean square errcand mean absolute errgespectivelywhereas D is the
mean of[(B5./1B81.]) — (Bi/1B81])]. Italics indicate experiments where the PSS estimator is inconsidteat
results for the Cox estimator in experiment IV exclude 21 samples where the estimator did not converge

https://doi.org/10.1017/50266466604203012 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604203012

450 TUE GORGENS

TABLE 2. Monte Carlo comparison of estimatonsonproportional hazards
models

B12/B11 B/l Ball B/l B4l

Est B R M B R M B R M D

V: n1(z) = [~In(1 + exp(—2z)) — 0.806]/0.477
New —-0.13 024 Q19 Q05 009 007 -0.06 011 008 011
Cox —0.33 0.37 0.34 0.12 0.14 0.13-0.16 0.19 0.16 0.21
PSS -0.13 025 021 005 009 008 -007 011 Q009 0212

VI: w1(z) = [In(1 + exp(z/0.15)) — 2.69]/4.26
New —-0.01 027 020 001 009 007 -0.02 009 007 010
Cox 0.29 0.37 0.30 —-0.09 0.11 0.09 0.08 0.09 0.08 0.12
PSS 001 028 021 000 009 007 -0.02 Q10 007 Q10

VIl wa(2) = [1/(1 + exp(—2z/0.50)) — 0.484]/0.308

New —009 021 017 003 008 006 -004 009 007 009
Cox —0.17 025 021 006 0.09 0.08-0.08 012 0.09 0.12
PSS -008 022 017 003 008 006 —-0.04 009 007 009

VI f.(u) = (1/V2m)exp(—(3)u?)
New —0.12 027 022 005 010 008 -0.06 012 009 012
Cox 0.08 0.22 0.16 —-0.02 0.07 0.06 0.02 0.06 0.05 0.08
PSS -002 023 018 001 008 006 -—0.02 009 007 Q09
IX: f.(u) = (1 + exp(u)/0.2)~%2"Texp(u)
New —-0.10 024 019 004 008 007 -—-005 010 o008 010
Cox 0.14 0.36 0.27 —-0.04 0.11 o0.08 0.02 0.10 0.08 0.12
PSS -0.02 023 018 001 008 006 -—-002 008 007 Q09

X: f.(u) = 0.5/V27 exp(— % In(u + VuZ +1)20.52)/+Ju? + 1
New -006 010 008 002 004 003 -002 004 003 004
Cox 006 027 018 —-0.01 008 0.06 001 0.09 0.06 0.09
PSS —002 054 018 001 008 006 -0.02 008 006 009

Xl: o(z) = 0.71 exdz/2)
New —-0.09 021 Q17 004 008 Q06 -—-0.04 009 007 009
Cox —0.32 045 0.36 0.11 0.15 0.12-0.18 0.27 0.19 0.23
PSS -0.10 020 016 004 007 006 -0.05 009 Q007 009

Xll: o(z) = 0.38(1 + z2)
New -0.07 016 013 003 006 005 -—-003 007 005 o007
Cox —0.38 0.64 0.42 0.13 0.17 0.14-0.22 0.31 0.23 0.27
PSS -011 018 Q15 004 007 005 -0.05 008 006 008

Xl : o(z) = 2.22/(1 + exp(1 — z/0.5))
New —-0.08 017 014 003 006 005 -0.04 007 Q05 007
Cox —0.19 0.34 0.29 0.07 0.12 0.10-0.10 0.17 0.13 0.17
PSS -0.07 019 015 003 007 005 -0.04 008 006 008

Note: See Table 1ltalics indicate that the Cox estimator is inconsistent in all experimdrits results for the
Cox estimator exclude,D, 11, 0, 1, 6, 2, 12, and 1 samplegespectivelywhere the estimator did not converge
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the new estimator on the uncensofsihgle-risk data in experiment the incon-
sistency of the PSS estimator with censofedltirisk) data is obvious in exper-
iments I1I-1V. In contrast the new estimator performs well in all experiments

To see why the PSS estimator is inconsistent in a competing risks frame-
work, it is instructive to present the standard PH model in regression.form
This also serves as an introduction to the design of the next set of experiments
For data of the nature considered in this pafes well known that there exist
latent risk-specific failure time¥;* and Y, such thatY = min(Y;,Y;), the
hazard function forYg is hg, and Y;* and Y, are conditionally independent
given X (see e.g., Cox and Oakes1984 Sect 9.2). This representation is
sometimes known as the independent competing risks n8dteis also well
known thatUs = H (Y| X) has a unit exponential distributigseg e.g., Kalb-
fleisch and Prenticel980. The standard PH model assumes tHatY. | X) =
A(YS)eX'Ps, whereAq is the integrated baseline hazattfollows that

INA(YS) = —X'Bs+ Vs, (31)
whereV; = In Ug has a type 1 extreme value distributjavhence
Y = min[A7'(exp(—X'B1)Vy), Az (exp(—X'B,)V,)]. (32)

Note that both indicesX’B,; and X'B,, appear on the right-hand side and that
the conditional mean functigriE(Y|X), therefore does not satisfy (@ingle)
index restrictionIn this contextthe PSS estimator estimates a weighted aver-
age of, and ..

The second set of experiments investigates the properties of the estimators
in a more general mod#

In AS(YS*) = _/'LS(X,BS) + US(X,BS)ES' (33)

This model is empirically relevant because several commonly used non-PH mod-
els are special cases (#3), including the AFT modelthe GAFT model of
Ridder (1990, and the mixed PH modeThe Cox estimator assumes the data
satisfy(31) and will, in general be inconsistent if31) is not satisfiedIn con-
trast the new semiparametric estimator is consistent when the data 9@®fy

For simplicity there is only one risk in these experimerdad the effective
sample size is thus equal to the total number of observatBesause the Cox
estimator and the new semiparametric estimator are invariant to monotone trans-
formations ofY, it is assumed thaAg(y) = y. To facilitate comparisonsus is
normalized such thais(X'Bs) has mean zero and variance pagis standard-
ized to have mean zero and variance ,0ard o is normalized such that
os(X’Bs)es has mean zero and variance one

Results are presented in TableThe benchmark is experiment | in Table 1
that is the standard Cox PH model whetg(z) = z 04(z) = 1, ande; has a
type 1 extreme value distributio®eviations from the benchmark model are
indicated in Table 2The functionu,, which is linear in the benchmark exper-
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iment is concave and increasingonvex and increasingnd shaped like a typ-
ical distribution function in experiments V-\/las illustrated in Figure.XWhen
reading the figurenote that the 1st and the 99th percentiles<¢8, are —2.0
and 28, respectively The distribution ofe;, which is type 1 extreme value in
the benchmark experimens normal in experiment Vllllog Burr with param-
eter 020 in experiment IX ande; = sinh(2N) in experiment X whereN is
standard normalThe resulting distribution o, in experiment X is highly lep-
tokurtic. As mentioned beforethe densities ok; are scaled such that has
mean zero and variance gres shown in Figure .2Finally, the functiono,
which is unity in the benchmark experimerg convex and increasinghaped
like a convex paraboland shaped like a distribution function in experiments
XI-XIIl, as illustrated in Figure.3

Examining Table 2 reveals several interesting resiisst of all, the Cox
estimator has the poorest properties of all three estimatbiis is not surpris-
ing, because the Cox estimator is inconsistent in these experimérmsonly
experiment in which the Cox estimator does significantly better than the other
estimators is IXXwheree, is normally distributedReflecting the inconsistengy
the performance of the Cox estimator is much worse in experiment IX than in
the benchmark experimenttowever the difference between the normal den-
sity and the type 1 extreme value density is sufficiently small that the Cox esti-

73 | | | | | | | | |
-1.5 —-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

FiGURE 1. Monte Carlou functions
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mator outperforms the new estimat@iearly this “anomaly” is a result of the
relatively small sample size considered hdresufficiently large samples the
new estimator will have better properties than the Cox estimator

Another interesting result is the striking similarity between the properties of
the new estimator and the PSS estimatomost of experimenighe bias root
mean square erroand mean absolute error differ by no more tha@201In
experiments IX and Xll the bias of the estimator®f,/B1, is slightly larger
but the remaining losses are simil@nly in experiments VIl and X are there
significant differencesand the PSS is preferred in V]Nvhereas the new esti-
mator is preferred in Xinterestingly experiments VIII and X correspond to
the simple linear regression model with symmetrically distributed ernoigll|
the errors are normally distributed/hereas in X they are leptokurtiés the
latter can be interpreted as data with a relatively high proportion of “outliers
the conclusion is that the new hazard-based estimator is less sensitive to out-
liers than the mean-based PSS estimatbis is similar to the well-known result
from robust estimation theory that the sample mean is a less effi@edtthe
sample median a more efficiorgstimator of location the more leptokurtic the
data

The third and last set of experiments shows the properties of various test
statistics based on the estimator of the covariance matrix described in Sec-
tion 3. The main concern is the magnitude of the size distortion that is expected
to occur in small sample®Because the scale ¢f; is not identified the only
interesting statistical hypotheses concern the statistical significance of each of
the explanatory variables and the ratio of the explanatory variaBlxsord-
ingly, simulation results are presented fetests of the hypothesé$,: 8,, =0
andHg: 81, = 0 and for anF-test of the hypothesisly: 8,1 = B1,. To focus
on size distortionsthe true parameters a@, = (0,1), B8, = (1,0)’, and
B = (1/\/?,1/\/5)’, respectively The experimental designs are otherwise as
described earliefThe test statistics are based on the unnormalized estimates
because normalizatiofdivision by a random variabjeoften leads to(addi-
tional) bias variance skewnessand generally ill-behaved moments

Tables 3-5 show the proportion of samples where the test statistic is smaller
than the theoretical asymptotic quantiles from t@,1) distribution and the
x2(1) distribution respectively Thus the first entry in the body of Table,3
.04, indicates that thét-) test statistic was smaller than1.645 in 4% of the
5,000 samplesAsymptotically this number should approad)b, as indicated
in the column headingSimilarly, the last entry in the first row99, indicates
that in 99% of the samples thHé&-) test statistic was smaller than685 the
99th percentile of the/?(1) distribution

It can be seen from Table 3 that the simulated probabilities are very close to
the asymptotic probabilities for the new estimatOnly in a few cases is the
difference larger than 3—4 percentage paifitss suggests that asymptotic crit-
ical values can be used when testing hypotheses about the index coeffiatents
least in samples of 200 observations or more
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TaBLE 3. Monte Carlo probabilities using asymptotic quantilesw estimator

Ho:B11=10 Ho:B12=10 Ho:B11 = B12

0.05 010 090 09 005 010 090 09 09 095 099

| 0.04 009 091 09 005 010 091 096 086 093 099
Il 0.06 011 091 09 006 011 091 09 084 091 098
1 0.06 011 091 09 006 Q11 Q9 095 089 094 099
\% 0.06 011 09 095 006 012 09 09 087 093 099
V 0.03 008 093 097 005 010 091 096 087 094 099
VI 0.05 Q10 09 095 004 009 091 095 089 095 099
Vil 004 009 091 09 005 010 091 095 089 095 099
Vil 0.06 011 091 096 006 010 090 095 087 094 099
IX 004 009 092 09 004 009 091 095 09 095 099
X 0.02 006 095 098 003 008 092 09 092 097 100
Xl 0.03 007 093 097 004 010 091 096 092 096 100
Xl 0.03 007 093 097 005 010 091 09 092 097 100
Xl 0.03 006 094 098 005 009 091 09 093 097 100

Note: In the first four columns of resultdabeledH,: 81, = 0, the true parameter |8, = (0,1)’. In the next four
columns of resultslabeledH,: 81, = 0, the true parameter i8; = (1,0)". In the last three columndabeled
Ho: B11 = Bia, the true parameter |8, = (1/\/5, 1/\/5)’. The Monte Carlo designs are identical to the previous
in all other respects

Table 4 shows similar numbers for the Cox estimator using the usual vari-
ance estimator based on the inverse information maisxexpected the simu-
lated probabilities are virtually identical to the asymptotic probabilities in
experiments |-V where the Cox estimator is correctly specified and consis-
tent Perhaps more surprisinglhe probabilities are not far off for thtetests in
experiments V-VIII However the simulated probabilities are very different from
the asymptotic in all other cases where the Cox estimator is inconsibleta
that the number of samples where the Cox estimator failed to converge is
extremely large in some experiments

Table 5 contains results for the PSS estimator using the variance estimator
suggested by Powell et.dl1989. The simulated probabilities here are remark-
ably close to asymptotic probabilities in all experiments where the PSS estima-
tor is consistent and indeed are slightly better than simulated probabilities for
the new estimatomMote that the PSS estimator is also consistent in the cen-
sored experiments |-V wheg; = (1,0)', because the index coefficients are
the same for both riskd=or the experiments where the PSS estimator is in-
consistentthe simulated probabilities are very different from the asymptotic
as expected

The conclusion of these Monte Carlo simulations is straightforwHirthe
risk-specific hazard rates are known to be proportipnaé Cox’s partial like-
lihood estimatarlf such information is not availabjebut the data are either
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TaBLE 4. Monte Carlo probabilities using asymptotic quantjl€ex estimator

Ho:B11=10 Ho:B12=10 Ho:B11 = B12

0.05 010 090 09 005 010 090 09 09 095 099

| 0.05 011 09 095 005 009 089 094 09 09 099
Il 0.05 010 09 09 005 010 09 094 09 095 099
I 0.06 011 09 09 005 010 089 094 09 09 099
\% 0.06 011 09 095 004 011 089 094 089 094 099
V 0.06 0.12 089 094 004 009 089 095 026 035 0.54
VI 0.06 0.12 088 094 005 0.10 0.87 093 051 0.62 0.82
Vil 0.06 0.12 089 094 0.05 0.10 0.89 094 063 0.73 0.87
vill  0.08 0.13 0.87 093 0.07 0.12 0.86 092 0.80 0.87 0.95
IX 0.12 0.18 083 089 0.10 0.14 0.83 0.89 0.67 0.75 0.87
X 0.22 028 0.72 078 019 023 069 076 046 053 0.67
XI 0.11 0.18 084 089 0.09 0.14 0.83 090 0.37 044 0.57
XIl 0.13 020 0.81 087 0.11 015 0.83 0.89 031 0.37 0.49
Xiu 013 019 081 087 0.11 016 080 0.88 050 058 0.72

Note: See Table 3ltalics indicate experiments where the Cox estimator is inconsist@etresults foHy: 811 =
0 exclude 00, 0, 20, 563 0, 518 0, 2, 88, 633 1,211, and 3 samplegespectivelyand the results foHy: 811 =
Bi2 exclude 00, 0, 21, 1, 0, 11, O, 1, 6, 2, 12, and 1 sample because the estimator did not converge

TABLE 5. Monte Carlo probabilities using asymptotic quantileSS estimator

Ho:B11=0 Ho:B12=10 Ho:B11 = B12

005 010 09 095 005 010 09 095 09 095 099

| 0.06 010 09 095 005 010 091 09 089 09 098
Il 0.00 0.00 0.02 0.04 005 011 09 095 057 0.68 0.8
1 0.00 0.00 0.00 0.00 005 010 09 095 0.12 0.19 0.38
\% 0.00 0.00 0.00 0.00 005 010 09 095 0.00 0.01 o0.03
\Y 0.04 009 092 097 005 010 091 09 086 093 099
VI 0.05 010 09 095 004 010 091 09 09 095 099
Vil 0.04 009 091 09 005 010 091 09 089 09 099
Vil 0.05 011 09 095 005 010 09 095 088 093 098
IX 0.05 Q11 09 095 005 010 09 095 088 094 099
X 0.05 011 09 09 005 011 090 09 088 093 098
Xl 0.04 009 092 09 005 010 091 096 088 094 099
Xl 0.04 009 091 097 005 010 091 09% 08 093 099
Xl 0.03 008 093 097 Q05 Q11 091 09 093 097 100

Note: See Table 3ltalics indicate experiments where the PSS estimator is inconsistent
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single-risk or the censoring mechanism is known to be independent of the explan-
atory variables and the data are relatively free of outlidrsre are two reasons

to favor the PSS estimator over the new estimatioe PSS estimator is much
faster to computeand its variance estimator appears to have slightly better prop-
erties In other casgssuch as nontrivial competing risks data or data with out-
liers, the new estimator is preferable

6. CONCLUSION

This paper proposed a hew semiparametric estimator of index coefficients for a
risk-specific hazard functiarit is assumed that the hazard function satisfies an
index restrictionbut no other essential assumptions are impokegarticular
the assumption of proportional hazards is avoidgte new estimator is appli-
cable to competing risks dat&urrently no other semiparametric estimator is
applicable to competing risks data without the assumption of proportional haz-
ards The estimator described in this paper requires that the explanatory vari-
ables be continuoysiowevey an estimator for discrete explanatory variables is
developed in a companion paper

The index coefficient estimator was shown to be roabnsistent and asymp-
totically normally distributedsimilarly to index coefficient estimators devel-
oped for other settingsA consistent estimator of the variance matrix was
proposed The paper also described how the index restriction can be used to
eliminate the curse of dimensionality in nonparametric estimation

The Monte Carlo simulations suggested that the new estimator performs well
in samples of 200 observatianBhe new estimator was compared with Cox’s
partial likelihood estimator and the weighted average derivative estimator of
Powell et al (1989. Based on the Monte Carlo simulations it was possible to
formulate guidelines for when to use which estimator

One large problenthe question of optimal bandwidth selectjavas left for
future researchThe approach taken by Hardle and Tsybak®993 and Pow-
ell and Stoker(1996 for the weighted average derivative estimator of Powell
et al (1989 seems promisingand it may be to worthwhile to investigate whether
it can be successfully adapted to the present index coefficient estimator

NOTES

1. This expression captures the case whéiis discrete in addition to the continuous cale
Y is discrete (3) becomesH(y|x) = X 1(y; = y)(Fi(yj[%) — Fa(yj-1]x)/Fa(y;[x), whereyy,
v2,... are the support points of and Fi(yo|x) = 0. The corresponding hazard function is
h(y[x) = 2 1(y; = Y)(Fa(y1X) — Fa(yj-1]%)/Fa(j [ x). If Yis continuous(3) becomedH (y|x) =
I 91F1(v]%)/F2(v] ) dv, whered, Fy is the density corresponding Ea. The corresponding hazard
function ish(y|x) = d:F1(y|X)/Fa(y|X).

2. If fis a function let aijf denote thg th-order partial derivative of with respect to itsth
argumentA vertical bar(as inF,(y|x)) is equivalent to a comméas inAi(y, x)) when counting
argumentsand d; fg means(d; f)g, not 9/ ( fg). With a bit of notational abusdet 9, f denote the
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g-vector ofjth-order partial derivatives with respect to whichever argument represerds/geor
of explanatory variabled et 3., f denote the transpose aff.

3. Throughout the papgthe range is not indicated whenever integration is over an entire euclid-
ean space

4. For simplicity of expositionderivatives are assumed to exist everywhere on the domain of
the original functionsThe result of Theorem 1 continues to hold even if a function is not differ-
entiable everywhergrovidedw is chosen to avoid “edge effects” in the kernel smoothiftuat is
if the kernel estimates involve smoothing ovgrnearx thenA;(y,-) andA(y,-) must be smooth
on[x — b, x + b] for all b small

5. Throughout the paper boldface lowercase letters are used as placeholders and integration
dummies for the corresponding uppercase random variables

6. The theory of estimation of the unconditional hazard function has also progressed in recent
years See e.g., Nielsen and Tanggaar@0021).

7. The same kernel and bandwidth selection procedure is used to compute the PSS estimator

8. Optimal bandwidth selection procedures were developed for the original weighted average
derivative estimator of Powell et.al1989 by Hardle and Tsybako{1993 and Powell and Stoker
(1996. Their ideas can be extended to the present setting

9. The scale of3s is not nonparametrically identified his is true even in a proportional hazard
framework whereh(y|x) = As(y)s(X'Bs), because the scale Bt can be subsumed intf. The
scale is identified only when a specific parametric formpefs assumedas in the standard imple-
mentation of the Cox estimatowvhereys(z) = e%

10. Although substantial progress has been made on developing models with dependent risks
the independent competing risks models continue to play an important role in economic and econo-
metric analysisFor examplethe studies mentioned at the beginning of the introduction all assume
independent risks

11 In a study of nonemployment datiioop and Ruhn{1993 find some support for using a
cumulative distribution function instead of the exponential function in the standard PH model
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TECHNICAL APPENDIX

Proof of Theorem 1. Recall the definitionsI = (Y, S X’)’ andt = (y,s,x’)". Let P
denote the distribution of and letP, denote the empirical measure formed from the
independent observations & that is B, puts probability In on each of the observa-
tions Linear functional notation is used throughout the Appendixe expected value
of a random variabl®/ is denotedeV, Pf(t) = Ef(T,t), andP,f(t) = n"* >, f(T;,1).
Product measures are denoted using the sy@adFor exampleP & Pf = Ef(Ty, T,)
whereT, and T, are independent random variables distributed.as

Recall that

n

1
_2

2 pO( i J

MM:

wherepg is defined in(15). Define also

po(ti,t)) + po(t;,ti)

pl(thtj): 2 s
l n
Vn:_22 O(Ti:Ti)a
n<i=a
1 n n
n:_zgg 1(T|,
e
and
2 n
;]2 Ppi(Ti,-) =P ® Ppo =P, ® Ppo + P ® Py po — P ® Ppo.

To prove part i of the theoremconvergence is established for each term in the
decomposition

Bi — EB: = Vo + (U, — Uy) + (U, — EU,) + (EU, — EB;).
Note thatEg; = P ® Ppo + (1/n)(Epo(T.T) = P ® Ppo) = P @ Ppo + O(nY),
EU, = (n(n — 1)/n*)P ® Ppo = P ® Ppo + O(n™%), andEU, = P ® Ppo. It follows

immediately thaEU, — EB = o(n~Y2).
A change of variables implies thab(t;,t;) = Qg(t;,t;) + QS(t;, t;), where

—1)d+1 X; + bx
Q4 t) = o [agko0nz ”'K<T>

X w(y;,X; + bx)1(y; = y;)1(s = s) dx.

Becaused; 9K and w are bounded and¢K is integrable V, = O(n~tb 9°1) =
o(n~Y2) almost surely provided ¥2b~9"1 — 0, or nb?9*2 — o, asn — co.
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By Lemma 31 of Powell et al (1989, U, — U, = 0,(n~¥2) providedE(| p1(T;, T;)[?) =

op(n) for i # j. (|- denotes the euclidean norjn||? = X; u? = u'u.) To verify this
condition note that

1
E(lpa(T;, J)” ) = _E(Po( i j)Po( i ]))+ E(po(T;, J)Po( ,Ti).

Expandingpo(ti, tj)' po(ti, tj) = (Qa(ti,t;) + Qa(t;, 1)) (Qa(t;,t;) + QJ(t;,t;)) yields
four terms that after a change of variables have the form

Ql(ti’tj) = le(thtj)’ng(ti’tj)

_ (e 1)ditde \ ) -+ bx1
= ﬂ BK (%91 %K —

X; — X + bx,
X K (x)af K | = |w(y,.x; + bxy)

X W(Yi, X + bx) L(y; = ;) 1(s; = ) dx; dxs.

By further change of variables

SRS iy ]/ P R

X — X + bx2>

X agzK(xz)a;}de( "

X W(v,X; + bx)w(v,X; + bx,)

X Ay (v, X;) Ar(do, X;) dXq dX, dX; dX;

- - & ;c)uijdz jffff K (X)L dlK(X )352K (X)dx %K (X — X + Xp)

X w(v,X; + bx,)w(v,X; + bx,)
X Ay(v,X; + bxg — bx;) A (do, ;) dx; dx, dx; dXx;.

Similarly, the terms making upo(t;, tj)'po(t;, ti) have the form

)d1+d2 b
Q(ti,ty) = bzw ﬂ K () ”1K( . )ade(x2>

g Xj — X + bx,
X 0y~ 2K T w(yi, X + bx)w(y;,X; + bx,)

X 1y = Y;) (s = 9)1(s = 5) dxy dx,
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and

E(Qu(T,T) = . blz):fz ﬂﬂﬂ PR dlK( - +le>

—X; + bx,
b
X 1(y; = y;) Ag(dy;, x; ) Ag(dy;, X;) dxg dx, dx; dX;

S ;Zi:d ffﬂﬂ K (X)L K (X)L K (X)L~ %K (% + X, — X;)

X W(y;, X; + bx)w(y;, x; + bx; — bx; + bx,)
X 1(y; = y;)) Ag(dy;, ;) Ag(dy;, X; + bxg — bx;) dxg dx, dx; dx;.

X 082K (Xp)01~ d2K< )W(yi,xi + bxy)w(yj, X; + bx,)

Becausedl 9K, & and w are bounded andZK is integrable these results imply
E(l pa(Ti, T;)[?) = Op(b~972) = 0,(n) provided thatnb¥*? — oo asn — co. Note that
this is exactly the same as the condition derived by Powell.€t.8B9. It follows that
the limiting distribution of\/n(8; — EB;;) is the same as the limiting distribution of
\/ﬁ(on - Eljn)

By change of variables and integration by parts
Ppo(t,-) = —ffK(x)K(xj)(axw(y,x + bx) Ax(y,x + bx— bx;)
+ w(y, X + bx)d, Ay (y, X + bx— bx;)) L(s = s) dx cx;
— ij(x)K(xj)w(y,x + bx)ay Ay (y, x + bx — bx;)1(s = s) dx k;

= =3, W(Y,X)Ax(Y,X) L(s = 8) — 2W(Y, X)d, Ax(Y,X) 1(S = 8) + r4(t),

where sufr,| = O(b) because,w, 92w, dyA,, anddZA, exist and are bounded ahd
is integrable Similarly,

oo 1) = [[[ KoK Gowty, x + b0ty =y,)

X dy Aq(dy;, X + bx — bx;) dx d;

+ fffK(Xi)K(X)(axW(Yi’X + 01y =yi)

X A;(dy;,x + bx—bx;) + w(y;,x + bx)1(y = y;)
X 0y Aq(dy;, X + bx— bx;)) dx d;

=2 [ iy 01y =y Ay 0

+ faxw(yi X)Ly = i) Ag(dy;, X) + rp(t),
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where sufr,| = O(b) because)jw and [|a]A,(dy,-,-)| exist and are bounded f¢r=
1,2 andK is integrable It follows that

Ppo(t,-) + Ppo(-,1) = ®(y,s,x) + 28 + O(b)

and

U,— EU, = (P,— P)® + (P, — P)r, + (P, — P)r,.

The second moment of/2(R, — P)ry, j = 1,2, is P(r?) — (Pr;)% which is bounded

by P(r?) = O(b?) using supr;| = O(h). It follows by Chebyshev’s inequality that
(P — P)rj = 0,(n~%2), whence the limiting distribution of/n(8; — EB;;) is the same

as the limiting distribution ofVn(P,® — P®) = v/nP,®. Part i of the theorem now

follows from the multivariate Lindeberg—Lévy central limit theorem
Turn now to the bias ternBy previous arguments

EB; — B* = EV, + EU,=0o(n""?) + (n(n—1)/n®>)P & Pp, — B*.

By integration by parts and change of variables

P® Ppo = fffK(Xi)K(Xj)W(yi XA (Y5, X — bX;)ay, Ag(dy;, X — bx;) dx d; dx;

— jjjK(xi)K(xj)w(yi,x)aXAz(yi,x — bx;) Ay (dy;, x — bx;) dx dx; dx;.

Using the assumptions th#td) A, (dy,-)| andd]} A, exist and are bounded and continu-
ous forj =1,...,k and thatK is of orderk, a Taylor series expansion implies

P& Ppo = fW(y, X) (Az(Y, X)ax Ay (dy, X) — 05 Az(y, X) A (dy, X)) dx + O(b)

= B* + O(b%).

Part ii of the theorem follows |
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