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This paper develops semiparametric kernel-based estimators of risk-specific haz-
ard functions for competing risks data+ Both discrete and continuous failure times
are considered+ The maintained assumption is that the hazard function depends
on explanatory variables only through an index+ In contrast to existing semipara-
metric estimators, proportional hazards is not assumed+ The new estimators are
asymptotically normally distributed+ The estimator of index coefficients is root-n
consistent+ The estimator of hazard functions achieves the one-dimensional rate
of convergence+ Thus the index assumption eliminates the “curse of dimensional-
ity+” The estimators perform well in Monte Carlo experiments+

1. INTRODUCTION

This paper is about modeling failure time data when there is more than one
kind of failure+ Failure time data are also known in the literature as survival
data, duration data, and transition data, and the possibility of several kinds of
failure is known as the competing risks problem+ Competing risks data are char-
acterized by the presence of two dependent variables: the length of time until
failure, Y, and an indicator of the type of failure, S+ In addition there may be a
q-vector of explanatory variables, X+ An example of competing risks is the study
by Fallick ~1993! of workers’ transition from unemployment to employment,
where jobs are classified according to industry+ Here “failure” refers to the event
of finding a job, and the dependent variables are the duration of the unemploy-
ment spell and~an indicator of! the industry where employment was taken up+

Competing risks models have long been one of the principal tools in applied
econometrics and other fields such as demographics and medical statistics+ Other
recent studies in economics include, for example, Carling, Edin, Harkman, and
Holmlund ~1996! on the duration of unemployment spells in Sweden, where
spells end with transition into employment, labor market programs, or nonpar-
ticipation; Henley~1998! on the duration of residence in own home with tran-
sition to other owner occupation, to public-sector rental, private-sector rental
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in the United Kingdom; and Salzberger and Fenn~1999! on the duration of
service of judges at the English Court of Appeal ending with retirement or pro-
motion to the House of Lords+ Kalbfleisch and Prentice~1980!, Cox and Oakes
~1984!, and Lancaster~1990! give in-depth accounts of the traditional likelihood-
based methods of analyzing failure time data, whereas Fleming and Harrington
~1991! and Anderson, Borgan, Gill , and Keiding~1993! provide comprehen-
sive treatments of the modern approach based on counting processes+

The concept of a hazard function is central in the analysis of failure time
data+ In a competing risks setting, a hazard rate is a risk-specific and time-
specific failure rate+ The hazard rate, hs~ y6x!, indicates the rate at which sub-
jects with characteristicsx experience failure of types at timey given that they
have not failed before timey+ Time here refers to duration, that is, the length of
time the subject is at risk of failing+ This may be different from calendar time+
In the unemployment example, time at risk begins when individuals become
unemployed, and the hazard rate at five days refers to the rate at which work-
ers who have been unemployed four days find jobs on the fifth day+ ~Risk-
specific hazard functions are called cause-specific hazard functions by
Kalbfleisch and Prentice, 1980, and transition intensities by Lancaster, 1990+!

In many applications interest naturally centers on the relationship between
the mean of a dependent variable and a number of explanatory variables+ With
failure time data, however, it is often more informative to study hazard rates
instead of means+ Hazard rates will generally vary as time progresses~exhibit
duration dependence!, and this variation provides important information about
the underlying process+ For example, although it is useful for economists to
know the mean duration of unemployment spells, it is also important for under-
standing the nature of unemployment to know whether workers become more
or less likely to find jobs the longer they have been unemployed+ Of course
hazard rates may also depend on explanatory variables+ It is well documented
for instance that the hazard rate out of unemployment depends on the workers’
age and education level+ As already indicated in the notation, the hazard func-
tions considered in this paper are all conditional on the vector explanatory
variables+

This paper develops semiparametric estimation methods for risk-specific haz-
ard functions, assuming that the explanatory variables enter the hazard func-
tion through a risk-specific linear combination but otherwise imposing no
essential restrictions+ Technically, the maintained assumption is that there exist
a vectorbs and a function Zhs such thaths~ y6x! 5 Zhs~ y6x 'bs! for risk s+ This is
sometimes called an index restriction+ The focus of the paper is on estimating
the index coefficients, bs, using an average derivative idea+ Oncebs has been
estimated, the hazard function function, Zhs, and the integrated hazard function,
ZHs, can be estimated using standard nonparametric kernel estimation tech-

niques andx 'bsn as a proxy forx 'bs, wherebsn denotes an estimator ofbs+
This paper considers only continuous explanatory variables; the case of dis-
crete explanatory variables is treated in a companion paper+
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Index restrictions are common in many parametric and semiparametric fail-
ure time models~some recent examples are Stancanelli, 1999, on unemploy-
ment duration in the United Kingdom and Santarelli, 2000, on the duration of
firms in the Italian financial sector!+ Index restrictions are favored by applied
researchers, because they are simple and because they facilitate the interpreta-
tion of estimation results+ Because index coefficients are proportional to the
marginal effect of explanatory variables on the hazard function, their relative
signs and magnitudes have substantive meaning+ The main advantage of the
new estimator is that it allows estimation of index coefficients under very weak
assumptions+ Currently no existing estimator of index coefficients is applicable
to competing risks data without assuming additional structure, which is often
rejected when tested+

The new estimator can be motivated in a number of ways+ The balance of
this section describes the relationship between the new estimator and the vast
literature on the analysis of failure time data and semiparametric estimation+

Two popular classes of models for failure time data are the accelerated fail-
ure time~AFT! models and the proportional hazards~PH! models~also known
as Cox models!+ The AFT models assume that the risk-specific hazard func-
tions have the formhs~ y6x! 5 ls~ ycs~x!!cs~x!, where ls is known as the
baseline hazard andcs is the scale term for thesth kind of failure+ The PH
models assume that the risk-specific hazard functions have the formhs~ y6x! 5
ls~ y!cs~x!, where againls is known as the baseline hazard andcs is the scale
term+ Both the AFT and the PH models are often combined with index restric-
tions+ In particular, the most common specifications assume thatcs~x! 5 ex 'bs

for some vectorbs+ AFT and PH index models have been successful in numer-
ous applications, and it is an important property of the new estimators that they
are consistent~if not efficient! for these models+ The advantage of the new esti-
mator is that the need to choose between alternative classes of index models is
avoided+ It assumes that the explanatory variables influence the hazard func-
tions through an index but does not otherwise restrict the shape of the hazard
functions+ It is thus applicable in both AFT and PH settings and also in more
general situations+

Currently semiparametric estimators of index coefficients in competing risks
models exist only for PH models+ Part of the popularity of the PH model is due
to the fact that Cox~1972, 1975! has developed a partial likelihood estimator
that allows estimation of index coefficients without restricting the shape of the
baseline hazard to a particular parametric form+ It is, however, still necessary
to specify a functional form of the scale term+ ~Nielsen, Linton, and Bickel,
1998, describe a method for estimating the index coefficients without specify-
ing a functional form of the scale term but instead assuming a particular para-
metric form for the baseline hazard+! Although the discovery of the partial
likelihood estimator greatly simplified modeling, it is not uncommon to test
and reject proportionality+ Horowitz and Neumann~1992!, for example, find
evidence of nonproportional hazards in employment duration data+ McCall

AVERAGE DERIVATIVES FOR HAZARD FUNCTIONS 439

https://doi.org/10.1017/S0266466604203012 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604203012


~1994! analyzes the duration of nonemployment spells and finds strong evi-
dence of nonproportionality+ Grambsch and Therneau~1994! find that the treat-
ment effect in survival data for lung cancer patients is not proportional, but
diminishes as time passed on+ The new estimator extends semiparametric esti-
mation beyond the PH model and further eliminates the need to specify a func-
tional form of the scale term+

Hastie and Tibshirani~1990! extend semiparametric estimation of the PH
model in a different direction+Whereas this paper abandons proportionality but
maintains the index form, Hastie and Tibshirani generalize the index form but
maintain the assumption of proportionality+ They replace the standard linearly
additive index by a nonlinear additive form+ Hastie and Tibshirani provide an
example of a data set where the index restriction fails, whereas the generalized
form fits well+Although the estimator proposed in the present paper is not suited
for such data sets, imposing index restrictions leads to efficiency gains when
the restrictions are valid+ As mentioned earlier, index restrictions also have the
advantage of facilitating the interpretation of estimation results, because index
coefficients are proportional to marginal effects+ Thus, neither estimator domi-
nates the other+

There is now a substantial literature on estimating index coefficients in situ-
ations where the conditional mean ofY given X 5 x satisfies an index restric-
tion, including methods such as average derivatives for mean functions~Härdle
and Stoker, 1989; Powell, Stock, and Stoker, 1989!, semiparametric least squares
~Ichimura, 1993!, maximum rank correlation~Han, 1987; Sherman, 1993!, and
semiparametric maximum likelihood~Ai , 1997!+ Generally these estimators are
not suited for competing risks data, except under very special circumstances+
This is because the conditional mean function need not satisfy any index restric-
tion, even when each risk-specific hazard function does+ A simple example is
given in Section 5+ Existing estimators of index coefficients can be used in
applications with uncensored single-risk data, applications with right-censored
single-risk data when the censoring mechanism is independent ofX, and
applications where all risk-specific hazard functions depend on the same index+
However, the literature currently contains no semiparametric estimators for
multiple-risk data, nor for single-risk data when the censoring mechanism
depends onX+ The new estimator can be seen as an extension of the average
derivative estimator of Powell et al+ ~1989! to multiple-risk data+

It is possible to estimate hazard functions without imposing any assumptions
other than smoothness+ References to purely nonparametric estimators are given
in Section 4+ These estimators can be extremely useful in applications with only
one or two explanatory variables, but their rates of convergence decrease
dramatically as the number of explanatory variables increases, and they are noto-
riously unreliable with four or more explanatory variables+ This is the now-
familiar “curse of dimensionality+” Index restrictions are one way of providing
sufficient structure to reduce the dimension of the explanatory variables+ The
new estimator of index coefficients proposed in this paper is root-n consistent,
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and the rate of convergence of the hazard function estimator is independent of
the number of explanatory variables+ The new estimator can therefore be seen
as an effective means of overcoming the curse of dimensionality in nonpara-
metric estimation+

Finally, right-censored single-risk data, where the censoring mechanism may
depend onX, are a special case of multiple-risk data, given that right-censoring
formally is equivalent to a separate risk+ Therefore the new estimator ofbs has
wider applications in the literature on right-censored data+ For example, it can
be used in the first stage of the Gørgens and Horowitz~1999! semiparametric
estimator of the censored transformation~GAFT! model and the Horowitz~1999!
semiparametric estimator of the mixed PH model+

The paper is organized as follows+ Section 2 considers estimation of index
coefficients+ Estimation of the variance matrix is described in Section 3+ Sec-
tion 4 discusses estimation of hazard functions+ Monte Carlo results are pre-
sented in Section 5 and conclusions in Section 6+ The Appendix contains the
proof of the main theorem+

2. INDEX COEFFICIENT ESTIMATION

To estimate the hazard function for a given risk, the distinction between other
risks is not necessary+ The subscripts is therefore suppressed until the Monte
Carlo section of the paper+

Recall thatY represents the length of time until failure, S is an indicator of
the type of failure, and X is a q-vector of explanatory variables+ Define the
distribution functions

F1~ y6x! 5 Pr~Y# y,S5 s6X 5 x!, (1)

F2~ y6x! 5 Pr~Y$ y6X 5 x!+ (2)

Using the Stieltjes integral, the integrated hazard function is by definition1

H~ y6x! 5E
0

y F1~dv6x!

F2~v6x!
+ (3)

The key assumption of this paper is Assumption 1, which follows+ Assump-
tion 1 states that the integrated hazard function satisfies an index restriction+ It
is easy to show that if the hazard functionh is of index form then so is its
integralH and vice versa+ It is convenient to work with the integrated hazard
function, because this avoids the issue of continuous and discrete failure times+
The arguments presented here are valid for both continuous and discrete failure
times+

Assumption 1+ There are a function ZH and a vectorb such thatH~ y6x! 5
ZH~ y6x 'b! for all y andx+
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The new estimator ofb is similar to the weighted average derivative estima-
tor by Powell et al+ ~1989!+ The idea is simple+ If the hazard function is of
index form, then2 ]xH~dy6x! 5 ]2 ZH~dy6x 'b!b+ Let W be a weight function+
Thenb is proportional tob* defined by3

b* 5EEW~ y, x!]x H~dy6x! dx, (4)

provided** W~y, x!]2 ZH~dy6x 'b! dx is finite and nonzero+An estimator is defined
subsequently by replacing]xH in ~4! with a nonparametric estimator+

Let j denote the density ofX+ Define

A1~ y, x! 5 Pr~Y# y,S5 s6X 5 x!j~x!, (5)

A2~ y, x! 5 Pr~Y$ y6X 5 x!j~x!+ (6)

Note that by equation~3!

H~ y6x! 5E
0

y A1~dv, x!

A2~v, x!
+ (7)

This paper considers the case whereW~y, x! 5 w~y, x!A2~y, x!2 andw is another
weight function+ This choice is convenient because it avoids random denomi-
nators in the estimation formula for]xH~dy6x!+ Because

]x H~dy6x! 5
]x A1~dy, x!

A2~ y, x!
2

]x A2~ y, x!A1~dy, x!

A2~ y, x!2 , (8)

it follows that

b* 5EEw~ y, x!A2~ y, x!]x A1~dy, x! dx

2EEw~ y, x!]x A2~ y, x!A1~dy, x! dx, (9)

providedC is finite and nonzero, where

C 5EEw~ y, x!A2~ y, x!2]2 ZH~dy6x 'b! dx+ (10)

Choosing the weight functionw is not complicated+ In fact, in many appli-
cationsw can be omitted+ The main purpose of the weight function is to pro-
vide a way of ensuring thatC is finite and nonzero+ In all experiments presented
in Section 5, the Monte Carlo section, this is satisfied withw~ y, x! 5 1 for all y
andx+

The estimator proposed here consists of replacing unknown functions in~9!
by sample analogs based on kernel estimation+ The sample available for
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analysis is assumed to consist ofn independent observations~Yi ,Si ,Xi
'!', i 5

1,2, + + + , n+ Let b be a bandwidth parameter and letK :Rq r R be a kernel func-
tion+ Define Kb~x! 5 b2qK~b21x!+ Then define the estimators

A1n~ y, x! 5
1

n (
i51

n

Kb~x 2 Xi !1~Yi # y!1~Si 5 s!, (11)

A2n~ y, x! 5
1

n (
i51

n

Kb~x 2 Xi !1~Yi $ y!+ (12)

The estimator ofb* is

bn
* 5EEw~ y, x!A2n~ y, x!]x A1n~dy, x! dx2EEw~ y, x!]x A2n~ y, x!A1n~dy, x! dx

5
1

n2 (
i51

n

(
j51

n E]x Kb~x 2 Xi !Kb~x 2 Xj !w~Yi , x!1~Yj $ Yi !1~Si 5 s! dx

2
1

n2 (
i51

n

(
j51

n EKb~x 2 Xi !]x Kb~x 2 Xj !w~Yi , x!1~Yj $ Yi !1~Si 5 s! dx+

(13)

Computingbn
* involves evaluating aq-dimensional integral+ It is possible to

simplify this toq one-dimensional integrals with closed-form solutions by using
a polynomial product kernel and weight function, as in the Monte Carlo exper-
iments in Section 5+

Uniform consistency and asymptotic normality ofbn
* are established in

Theorem 1, which follows+ Assumption 2 defines the sample+

Assumption 2+ The sequence$~Yi ,Si ,Xi
'!' % i51

n is a random sample+

The derivation of the limiting distribution depends on applications of the mean
value theorem and Taylor series expansions+ Hence, the underlying functions
must be smooth+ Sufficient conditions are listed as Assumption 3+4

Assumption 3+ For k [ N1 given subsequently, the following conditions are
satisfied+

~1! Theq-vectorX is absolutely continuous and has densityj with respect to Lebesgue
measure+

~2! j is bounded+
~3! *6]x

j A1~dy,{!6 exist and are bounded and continuous forj 5 1, + + + ,1 1 k+
~4! ]x

j A2 exist and are bounded and continuous forj 5 1, + + + ,1 1 k+

A researcher who wishes to use the estimators must choose a weight func-
tion, a bandwidth, and a kernel function+ To establish consistency and asymp-
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totic normality, it is necessary to restrict the choices+ Sufficient conditions are
given in Assumptions 4 and 5 and in the theorem itself+

Assumption 4+ The weight functionw :R11q r R satisfies the following
conditions+

1+ C defined in~10! is finite and nonzero+
2+ w is bounded+
3+ ]xw and]x

2w exist and are bounded+

Assumption 5+ Fork [ N1 given subsequently, the kernel functionK :Rq r R
satisfies the following conditions+

1+ K is a bounded kernel with support@21,1# q and the order ofK is at leastk+ That
is, * K~x! dx 5 1 and* x jK~x! dx 5 0 for j 5 1,2, + + + , k 2 1+

2+ ]xK exists and is bounded and continuous onRq+

These are standard assumptions in the literature on semiparametric estima-
tion+ To state the theorem, define5

F~y,s,x! 5 2Ew~v,x!1~y $ v!]x A1~dv,x! 2 2w~y,x!]x A2~y,x!1~s5 s!

1 E]x w~v,x!1~y $ v!A1~dv,x! 2 ]x w~y,x!A2~y,x!1~s5 s!

2 2b*+ (14)

It is straightforward to verify thatEF~Y,S,X ! 5 0+ Define the variance matrix
S 5 EF~Y,S,X !F~Y,S,X !' +

THEOREM 1+ Suppose Assumptions 1–5 hold. Then

i. If nb2q12 r `, then 6bn
* 2 Ebn

* 2 n21 (i51
n F~Yi ,Si ,Xi !6 5 op~n2102! and

n102~bn
* 2 Ebn

*! rd N~0,S! as nr `.
ii. If nb 2k r 0, then n102~Ebn

* 2 b*! r 0 as nr `.
iii. If nb 2q12 r ` and nb2k r 0, then 6bn

* 2 b* 2 n21 (i51
n F~Yi ,Si ,Xi !6 5

op~n2102! and n102~bn
* 2 b*! rd N~0,S! as nr `.

Given the first approximation result in part i of the theorem, asymptotic nor-
mality in part i follows from the Lindeberg–Lévy central limit theorem and the
Cramér–Wold theorem+ Part iii follows immediately from parts i and ii+

The most important conclusions of Theorem 1 are thatbn
* converges at the

root-n rate, which is the familiar rate from parametric estimation, and thatbn
* is

asymptotically normally distributed+ These nice properties are not unexpected,
because they are shared with the index coefficient estimators listed in the
introduction+

It is worth pointing out that the conditionnb2q12 r ` in the theorem is
determined by the “diagonal” terms wherei 5 j in ~13!+ Examination of the
proof of the theorem shows that if these diagonal terms were omitted, the con-
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dition nb2q12 r ` could be weakened tonbq12 r `, which is the same as the
requirement in Powell et al+ ~1989!+

3. VARIANCE ESTIMATION

In empirical research it is important to have a measure of the uncertainty asso-
ciated with an estimate+ This section describes how to estimate the variance
matrix S of bn

*+ For convenience, defineT 5 ~Y,S,X '!' andt 5 ~y,s,x'!' + Then
define

r0~t i , t j ! 5E]x Kb~x 2 x i !Kb~x 2 x j !w~yi , x!1~yj $ yi !1~si 5 s! dx

2 EKb~x 2 x i !]x Kb~x 2 x j !w~yi , x!1~yj $ yi !1~si 5 s! dx (15)

and

rn~t! 5
1

n (
j51

n

~r0~t,Tj ! 1 r0~Tj , t!!+ (16)

It is easy to verify, using equation~13!, that

bn
* 5

1

n2 (
i51

n

(
j51

n

r0~Ti ,Tj ! 5
1

n (
i51

n rn~Ti !

2
+ (17)

Examination of the proof of Theorem 1 suggests estimatingS by

Sn 5
1

n (
i51

n

~rn~Ti ! 2 2bn
*!~rn~Ti ! 2 2bn

*!'+ (18)

The estimatorSn is easily computed alongsidebn
* and does not require addi-

tional choice of bandwidths+ The properties ofSn are investigated through sim-
ulation in Section 5, where it performs well+

4. HAZARD FUNCTION ESTIMATION

Once the index coefficients have been estimated, the next question is how to
estimate the integrated hazard function, H, and the hazard function itself, h+
This section describes how to estimateH by combining the index restriction
with an existing nonparametric estimator ofH+ Estimation ofh is not explicitly
discussed, but it is straightforward to adapt existing nonparametric estimators
in a similar way+

A purely nonparametric estimator ofH was first proposed by Beran~1981!,
who built on the well-known Nelson–Aalen estimator of the unconditional inte-
grated hazard function+ Weak convergence and uniform consistency of Beran’s
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estimator are established by Dabrowska~1987, 1989!+ McKeague and Utikal
~1990! extend Beran’s estimator to the case of time-dependent explanatory vari-
ables and propose an estimator ofh based on smoothing of the estimator ofH+
Nielsen and Linton~1995! propose alternative estimators ofH and h that are
analogues to the Nadaraya–Watson estimator for nonparametric regression+ Li
and Doss~1995! and Nielsen~1998! consider local linear estimators; in the
framework of local polynomial estimation, the earlier estimators are all local
constant estimators+6

Any of the aforementioned estimators may be combined with an index restric-
tion+ To keep things as simple as possible this paper focuses on Beran’s estima-
tor+ To estimateH, Beran simply replacesA1 and A2 in ~7! by the estimators
A1n andA2n given in ~11! and~12!+ Specifically,

Hn
NP~ y6x! 5E

0

y A1n~dv, x!

A2n~v, x!
+ (19)

As mentioned in the introduction, generallyHn
NP has good properties in appli-

cations with just a few explanatory variables, but like other nonparametric
estimatorsHn

NP suffers from the curse of dimensionality and is useless in appli-
cations with four or more explanatory variables+ The index restriction can be
used to eliminate the curse of dimensionality+

Define Z 5 X 'b+ The key to utilizing the index restriction is the fact that,
under Assumption 1, ZH~ y6x 'b! is not only the conditional integrated hazard
function of Y given X 5 x but also the conditional integrated hazard function
given Z 5 x 'b+ This may not be immediately obvious+ To prove it, define the
distribution functions

ZF1~ y6z! 5 Pr~Y# y,S5 s6Z 5 z!, (20)

ZF2~ y6z! 5 Pr~Y$ y6Z 5 z!+ (21)

Note that in generalFj ~ y6x! Þ ZFj ~ y6x 'b! for j 5 1, 2, with uncensored single-
risk data as a notable exception+ Let Pz denote the conditional distribution ofX
givenZ 5 z; then ZFj ~ y6z! 5 *Fj ~ y6x! Pz~dx!+ By definitionH~dy6x! 5 F1~dy6x!0
F2~ y6x!, and by assumptionH~dy6x! 5 ZH~dy6x 'b!+ It follows that F1~dy6x! 5
ZH~dy6x 'b!F2~ y6x!, whence

ZF1~dy6z! 5EF1~dy6x! Pz~dx!

5E ZH~dy6x 'b!F2~ y6x! Pz~dx!

5 ZH~dy6z!EF2~ y6x! Pz~dx!

5 ZH~dy6z! ZF2~ y6z!+ (22)
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It follows that

ZH~ y6z! 5E
0

y ZF1~dv6z!

ZF2~v6z!
, (23)

whence ZH must be the conditional integrated hazard function givenZ 5 x 'b+
The result~23! is important because it implies that estimators ofZH and Zh can
be based on probabilities conditional onZ instead ofX+ This simplifies estima-
tion considerably and allows the use of existing nonparametric estimators+

As an example, consider estimatingH by combining the index restriction
with Beran’s nonparametric estimator+ Let z denote the density ofZ and define
the functions

ZA1~ y, z! 5 Pr~Y# y,S5 s6Z 5 z!z~z!, (24)

ZA2~ y, z! 5 Pr~Y$ y6Z 5 z!z~z!+ (25)

Then by Assumption 1 and equation~23!

H~ y6x! 5E
0

y ZA1~dv6x 'b!

ZA2~v6x 'b!
+ (26)

To estimateH, defineZin 5 Xi
'bn, wherebn is an estimator ofb ~e+g+, the esti-

mator discussed in the previous section!+ Let bz be a bandwidth parameter
and letKz:R r R be a kernel function+ Define Kzn~z! 5 bz

21Kz~bz
21z! and the

estimators

ZA1n~ y, z! 5
1

n (
i51

n

Kzn~z2 Zin !1~Yi # y!1~Si 5 s!, (27)

ZA2n~ y, z! 5
1

n (
i51

n

Kzn~z2 Zin !1~Yi $ y!+ (28)

ThenH~ y6x! can be estimated by

Hn~ y6x! 5E
0

y ZA1n~dv, x 'bn!

ZA2n~v, x 'bn!
5

1

n (
i51

n Kzn~x 'bn 2 Zin !1~Yi # y!1~Si 5 s!

ZA2n~Yi , x 'bn!
+ (29)

It is not hard to prove thatHn is uniformly consistent over a compact set, is
asymptotically normally distributed, and achieves the rate of convergence for a
one-dimensional explanatory variable+ Moreover, the asymptotic variance ofHn

can be estimated using standard estimators, because root-n consistency ofbn

implies that the randomness inHn that stems from usingbn instead ofb dis-
appears asymptotically+
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5. MONTE CARLO EXPERIMENTS

This section reports the results of Monte Carlo experiments undertaken to inves-
tigate the properties of the new estimators in samples of moderate size+ The
new estimator~New! is compared to two alternative estimators: the standard
implementation of the Cox~1972! partial likelihood-based estimator~Cox!,
where the scale term is the exponential function~see the introduction!, and the
average mean derivative estimator of Powell et al+ ~1989! ~PSS!+ The PSS esti-
mator is implemented using lnY instead ofY as the dependent variable to reduce
the effect of heteroskedasticity+ ~The new estimator and the Cox’s estimator are
invariant to monotone transformations ofY+!

The first set of experiments compares the three estimators in a competing
risks setting with two risks and proportional hazards+ The second risks can be
thought of as censoring, and the focus is on the effect of the degree of censor-
ing+ Because the structure imposed by the Cox estimator is valid in these exper-
iments, the Cox estimator is expected to perform best+ In contrast, the PSS
estimator is inconsistent with censored data+ The purpose of these experiments
is to get an idea of the efficiency loss associated with the new estimator when
the data are known to satisfy PH restrictions+

The Monte Carlo designs are as follows+ There are two explanatory vari-
ables+ The first is standard normally distributed, and the second is distributed
chi-square with three degrees of freedom+ The explanatory variables are in-
dependent+ There are two risks with hazard functionshs~ y6x! 5 egs1x 'bs and
coefficients b1 5 ~1YM2,1YM2!' and b2 5 ~1,0!' + Varying gs changes the
expected proportion of failures of the first and second kind+ Results are pre-
sented for experiments withg1 5 0 andg2 5 2`,21,0,1+ The corresponding
proportion of failures of the second kind~the expected degree of censoring! is
approximately 0%, 25%, 50%, and 75%+

To compute the new estimator it is necessary to choose a weight function, a
kernel function, and a bandwidth+ In all experiments, the weight function is
simply w~ y, x! 5 1+ The kernel function is the product kernelK~~x1, x2!'! 5
Ku~x1!Ku~x2!, whereKu is the univariate fourth-order~k 5 4! kernel

Ku~u! 5
105

64
~12 5u2 1 7u4 2 3u6!1~6u6# 1!+ (30)

The bandwidth is chosen separately for each experiment to approximately min-
imize the statistic D, a measure of error described subsequently, on a 12-point
grid ranging from 0+5 to 4+0+ Note that the optimal bandwidth is specific to the
error measure and that the bandwidth that minimizes D is typically different
from the bandwidth that minimizes, say, the root mean square error of the ratio
of the coefficient estimates+7 Developing an optimal data-driven bandwidth selec-
tion procedure for the new estimator is left for future research+8

Deciding on an appropriate loss function for evaluating and comparing dif-
ferent estimators is complicated by the fact thatbs is identified only up to scale+9
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Tables 1 and 2 report bias, root mean square error, and mean absolute error
for estimates ofb12

* 0b11
* , b11

* 07b1
*7, and b12

* 07b1
*7 and also the mean D of

7~b1n
* 07b1n

* 7! 2 ~b1
*07b1

*7!7, whereb1j
* denotes thej th component ofb1

* and
7{7 denotes the euclidean norm+

The sample size is 200+ There are 5,000 Monte Carlo replications in each
experiment+ The computations are carried out using GAUSS and GAUSS'

pseudo-random number generators+ As indicated in the tables, the Cox estima-
tor did not converge in all samples+ The results for the Cox estimator exclude
these samples+

The first set of simulation results is presented in Table 1+ There are three
main conclusions+ First, the Cox estimator has the lowest bias, root mean square
error, and mean absolute error in all experiments+ Thus, if the data are known
to come from a PH model, the Cox estimator should be used+ Second, the per-
formance of all estimators deteriorates with higher levels of censoring+ This
effect is due to the fact that with, say, 50% censoring only 50% the observa-
tions contain information aboutb1+ It is the number of observations with fail-
ure of type 1 that determines the precision of the estimator, not the total number
of observations+ Third, whereas the PSS estimator performs slightly better than

Table 1. Monte Carlo comparison of estimators, proportional hazards models

b120b11 b1107b17 b1207b17

Est+ B R M B R M B R M D

I: 0% censoring
New 20+13 0+24 0+20 0+05 0+09 0+07 20+06 0+11 0+08 0+11
Cox 0+01 0+12 0+09 0+00 0+04 0+03 0+00 0+04 0+03 0+05
PSS 20+02 0+23 0+18 0+01 0+08 0+06 20+02 0+08 0+07 0+09

II : 24% censoring
New 20+09 0+22 0+18 0+04 0+08 0+06 20+05 0+09 0+07 0+09
Cox 0+01 0+14 0+11 0+00 0+05 0+04 0+00 0+05 0+04 0+05
PSS 20.27 0.32 0.29 0.10 0.12 0.1120.13 0.16 0.13 0.17

III : 50% censoring
New 0+08 0+31 0+22 20+02 0+09 0+07 0+01 0+09 0+07 0+10
Cox 0+02 0+19 0+14 0+00 0+06 0+05 0+00 0+06 0+05 0+07
PSS 20.50 0.52 0.50 0.19 0.19 0.1920.27 0.29 0.27 0.33

IV: 75% censoring
New 0+30 0+79 0+44 20+07 0+15 0+12 0+04 0+13 0+10 0+16
Cox 0+05 0+31 0+22 20+01 0+09 0+07 0+00 0+09 0+07 0+10
PSS 20.73 0.74 0.73 0.25 0.26 0.2520.45 0.46 0.45 0.52

Note: B, R, and M denote bias, root mean square error, and mean absolute error, respectively, whereas D is the
mean of7~b1n

* 07b1n
* 7! 2 ~b1

*07b1
*7!7+ Italics indicate experiments where the PSS estimator is inconsistent+ The

results for the Cox estimator in experiment IV exclude 21 samples where the estimator did not converge+
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Table 2. Monte Carlo comparison of estimators, nonproportional hazards
models

b120b11 b1107b17 b1207b17

Est+ B R M B R M B R M D

V: m1~z! 5 @2ln~1 1 exp~2z!! 2 0+806#00+477
New 20+13 0+24 0+19 0+05 0+09 0+07 20+06 0+11 0+08 0+11
Cox 20.33 0.37 0.34 0.12 0.14 0.1320.16 0.19 0.16 0.21
PSS 20+13 0+25 0+21 0+05 0+09 0+08 20+07 0+11 0+09 0+12

VI : m1~z! 5 @ ln~1 1 exp~z00+15!! 2 2+69#04+26
New 20+01 0+27 0+20 0+01 0+09 0+07 20+02 0+09 0+07 0+10
Cox 0.29 0.37 0.30 20.09 0.11 0.09 0.08 0.09 0.08 0.12
PSS 0+01 0+28 0+21 0+00 0+09 0+07 20+02 0+10 0+07 0+10

VII : m1~z! 5 @10~1 1 exp~2z00+50!! 2 0+484#00+308
New 20+09 0+21 0+17 0+03 0+08 0+06 20+04 0+09 0+07 0+09
Cox 20.17 0.25 0.21 0.06 0.09 0.0820.08 0.12 0.09 0.12
PSS 20+08 0+22 0+17 0+03 0+08 0+06 20+04 0+09 0+07 0+09

VIII : fe~u! 5 ~1YM2p!exp~2~ 1
2
_!u2!

New 20+12 0+27 0+22 0+05 0+10 0+08 20+06 0+12 0+09 0+12
Cox 0.08 0.22 0.16 20.02 0.07 0.06 0.02 0.06 0.05 0.08
PSS 20+02 0+23 0+18 0+01 0+08 0+06 20+02 0+09 0+07 0+09

IX : fe~u! 5 ~1 1 exp~u!00+2!20+221 exp~u!
New 20+10 0+24 0+19 0+04 0+08 0+07 20+05 0+10 0+08 0+10
Cox 0.14 0.36 0.27 20.04 0.11 0.08 0.02 0.10 0.08 0.12
PSS 20+02 0+23 0+18 0+01 0+08 0+06 20+02 0+08 0+07 0+09

X: fe~u! 5 0+5YM2p exp~2 1
2
_ ln~u 1 Mu2 1 1!20+52!YMu2 1 1

New 20+06 0+10 0+08 0+02 0+04 0+03 20+02 0+04 0+03 0+04
Cox 0.06 0.27 0.18 20.01 0.08 0.06 0.01 0.09 0.06 0.09
PSS 20+02 0+54 0+18 0+01 0+08 0+06 20+02 0+08 0+06 0+09

XI : s~z! 5 0+71 exp~z02!
New 20+09 0+21 0+17 0+04 0+08 0+06 20+04 0+09 0+07 0+09
Cox 20.32 0.45 0.36 0.11 0.15 0.1220.18 0.27 0.19 0.23
PSS 20+10 0+20 0+16 0+04 0+07 0+06 20+05 0+09 0+07 0+09

XII : s~z! 5 0+38~1 1 z2!
New 20+07 0+16 0+13 0+03 0+06 0+05 20+03 0+07 0+05 0+07
Cox 20.38 0.64 0.42 0.13 0.17 0.1420.22 0.31 0.23 0.27
PSS 20+11 0+18 0+15 0+04 0+07 0+05 20+05 0+08 0+06 0+08

XIII : s~z! 5 2+220~1 1 exp~1 2 z00+5!!
New 20+08 0+17 0+14 0+03 0+06 0+05 20+04 0+07 0+05 0+07
Cox 20.19 0.34 0.29 0.07 0.12 0.1020.10 0.17 0.13 0.17
PSS 20+07 0+19 0+15 0+03 0+07 0+05 20+04 0+08 0+06 0+08

Note: See Table 1+ Italics indicate that the Cox estimator is inconsistent in all experiments+ The results for the
Cox estimator exclude 1, 0, 11, 0, 1, 6, 2, 12, and 1 samples, respectively, where the estimator did not converge+
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the new estimator on the uncensored~single-risk! data in experiment I, the incon-
sistency of the PSS estimator with censored~multirisk! data is obvious in exper-
iments II–IV+ In contrast, the new estimator performs well in all experiments+

To see why the PSS estimator is inconsistent in a competing risks frame-
work, it is instructive to present the standard PH model in regression form+
This also serves as an introduction to the design of the next set of experiments+
For data of the nature considered in this paper, it is well known that there exist
latent risk-specific failure timesY1

* and Y2
* such thatY 5 min~Y1

*,Y2
*!, the

hazard function forYs
* is hs, and Y1

* and Y2
* are conditionally independent

given X ~see, e+g+, Cox and Oakes, 1984, Sect+ 9+2!+ This representation is
sometimes known as the independent competing risks model+10 It is also well
known thatUs 5 Hs~Ys

* 6X ! has a unit exponential distribution~see, e+g+, Kalb-
fleisch and Prentice, 1980!+ The standard PH model assumes thatHs~Ys

* 6X ! 5
Ls~Ys

*!eX 'bs, whereLs is the integrated baseline hazard+ It follows that

ln Ls~Ys
*! 5 2X 'bs 1 Vs, (31)

whereVs 5 ln Us has a type 1 extreme value distribution, whence

Y 5 min@L1
21~exp~2X 'b1!V1!,L2

21~exp~2X 'b2!V2!# + (32)

Note that both indices, X 'b1 andX 'b2, appear on the right-hand side and that
the conditional mean function, E~Y6X !, therefore does not satisfy a~single-!
index restriction+ In this context, the PSS estimator estimates a weighted aver-
age ofb1 andb2+

The second set of experiments investigates the properties of the estimators
in a more general model11

ln Ls~Ys
*! 5 2ms~X 'bs! 1 ss~X 'bs!es+ (33)

This model is empirically relevant because several commonly used non-PH mod-
els are special cases of~33!, including the AFT model, the GAFT model of
Ridder ~1990!, and the mixed PH model+ The Cox estimator assumes the data
satisfy~31! and will, in general, be inconsistent if~31! is not satisfied+ In con-
trast, the new semiparametric estimator is consistent when the data satisfy~33!+

For simplicity, there is only one risk in these experiments, and the effective
sample size is thus equal to the total number of observations+ Because the Cox
estimator and the new semiparametric estimator are invariant to monotone trans-
formations ofY, it is assumed thatLs~ y! 5 y+ To facilitate comparisons, ms is
normalized such thatms~X 'bs! has mean zero and variance one, es is standard-
ized to have mean zero and variance one, and ss is normalized such that
ss~X 'bs!es has mean zero and variance one+

Results are presented in Table 2+ The benchmark is experiment I in Table 1,
that is, the standard Cox PH model wherem1~z! 5 z, s1~z! 5 1, ande1 has a
type 1 extreme value distribution+ Deviations from the benchmark model are
indicated in Table 2+ The functionm1, which is linear in the benchmark exper-
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iment, is concave and increasing, convex and increasing, and shaped like a typ-
ical distribution function in experiments V–VII, as illustrated in Figure 1+ ~When
reading the figure, note that the 1st and the 99th percentiles ofX 'b1 are22+0
and 2+8, respectively+! The distribution ofe1, which is type 1 extreme value in
the benchmark experiment, is normal in experiment VIII, log Burr with param-
eter 0+20 in experiment IX, and e1 5 sinh~2N! in experiment X, whereN is
standard normal+ The resulting distribution ofe1 in experiment X is highly lep-
tokurtic+ As mentioned before, the densities ofe1 are scaled such thate1 has
mean zero and variance one, as shown in Figure 2+ Finally, the functions1,
which is unity in the benchmark experiment, is convex and increasing, shaped
like a convex parabola, and shaped like a distribution function in experiments
XI–XIII , as illustrated in Figure 3+

Examining Table 2 reveals several interesting results+ First of all, the Cox
estimator has the poorest properties of all three estimators+ This is not surpris-
ing, because the Cox estimator is inconsistent in these experiments+ The only
experiment in which the Cox estimator does significantly better than the other
estimators is IX, wheree1 is normally distributed+ Reflecting the inconsistency,
the performance of the Cox estimator is much worse in experiment IX than in
the benchmark experiment I+ However, the difference between the normal den-
sity and the type 1 extreme value density is sufficiently small that the Cox esti-

Figure 1. Monte Carlom functions+
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Figure 2. Monte Carlo densities ofe+

Figure 3. Monte Carlos functions+
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mator outperforms the new estimator+ Clearly this “anomaly” is a result of the
relatively small sample size considered here+ In sufficiently large samples the
new estimator will have better properties than the Cox estimator+

Another interesting result is the striking similarity between the properties of
the new estimator and the PSS estimator+ In most of experiments, the bias, root
mean square error, and mean absolute error differ by no more than 0+02+ In
experiments IX and XII the bias of the estimator ofb120b11 is slightly larger,
but the remaining losses are similar+ Only in experiments VIII and X are there
significant differences, and the PSS is preferred in VIII, whereas the new esti-
mator is preferred in X+ Interestingly, experiments VIII and X correspond to
the simple linear regression model with symmetrically distributed errors; in VIII
the errors are normally distributed, whereas in X they are leptokurtic+ As the
latter can be interpreted as data with a relatively high proportion of “outliers,”
the conclusion is that the new hazard-based estimator is less sensitive to out-
liers than the mean-based PSS estimator+ This is similar to the well-known result
from robust estimation theory that the sample mean is a less efficient~and the
sample median a more efficient! estimator of location the more leptokurtic the
data+

The third and last set of experiments shows the properties of various test
statistics based on the estimator of the covariance matrix described in Sec-
tion 3+ The main concern is the magnitude of the size distortion that is expected
to occur in small samples+ Because the scale ofb1 is not identified, the only
interesting statistical hypotheses concern the statistical significance of each of
the explanatory variables and the ratio of the explanatory variables+ Accord-
ingly, simulation results are presented fort-tests of the hypothesesH0 : b11 5 0
and H0 : b12 5 0 and for anF-test of the hypothesisH0 : b11 5 b12+ To focus
on size distortions, the true parameters areb1 5 ~0,1!', b1 5 ~1,0!' , and
b1 5 ~1YM2,1YM2!', respectively+ The experimental designs are otherwise as
described earlier+ The test statistics are based on the unnormalized estimates,
because normalization~division by a random variable! often leads to~addi-
tional! bias, variance, skewness, and generally ill-behaved moments+

Tables 3–5 show the proportion of samples where the test statistic is smaller
than the theoretical asymptotic quantiles from theN~0,1! distribution and the
x2~1! distribution, respectively+ Thus, the first entry in the body of Table 3,
+04, indicates that the~t-! test statistic was smaller than21+645 in 4% of the
5,000 samples+ Asymptotically this number should approach+05, as indicated
in the column heading+ Similarly, the last entry in the first row, +99, indicates
that in 99% of the samples the~F-! test statistic was smaller than 6+635, the
99th percentile of thex2~1! distribution+

It can be seen from Table 3 that the simulated probabilities are very close to
the asymptotic probabilities for the new estimator+ Only in a few cases is the
difference larger than 3–4 percentage points+ This suggests that asymptotic crit-
ical values can be used when testing hypotheses about the index coefficients, at
least in samples of 200 observations or more+
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Table 4 shows similar numbers for the Cox estimator using the usual vari-
ance estimator based on the inverse information matrix+ As expected the simu-
lated probabilities are virtually identical to the asymptotic probabilities in
experiments I–IV where the Cox estimator is correctly specified and consis-
tent+ Perhaps more surprisingly, the probabilities are not far off for thet-tests in
experiments V–VIII+ However, the simulated probabilities are very different from
the asymptotic in all other cases where the Cox estimator is inconsistent+ Note
that the number of samples where the Cox estimator failed to converge is
extremely large in some experiments+

Table 5 contains results for the PSS estimator using the variance estimator
suggested by Powell et al+ ~1989!+ The simulated probabilities here are remark-
ably close to asymptotic probabilities in all experiments where the PSS estima-
tor is consistent and indeed are slightly better than simulated probabilities for
the new estimator+ Note that the PSS estimator is also consistent in the cen-
sored experiments II–IV whenb1 5 ~1,0!' , because the index coefficients are
the same for both risks+ For the experiments where the PSS estimator is in-
consistent, the simulated probabilities are very different from the asymptotic,
as expected+

The conclusion of these Monte Carlo simulations is straightforward+ If the
risk-specific hazard rates are known to be proportional, use Cox’s partial like-
lihood estimator+ If such information is not available, but the data are either

Table 3. Monte Carlo probabilities using asymptotic quantiles, new estimator

H0 : b11 5 0 H0 : b12 5 0 H0 : b11 5 b12

0+05 0+10 0+90 0+95 0+05 0+10 0+90 0+95 0+90 0+95 0+99

I 0+04 0+09 0+91 0+96 0+05 0+10 0+91 0+96 0+86 0+93 0+99
II 0+06 0+11 0+91 0+96 0+06 0+11 0+91 0+95 0+84 0+91 0+98
III 0 +06 0+11 0+91 0+95 0+06 0+11 0+90 0+95 0+89 0+94 0+99
IV 0+06 0+11 0+90 0+95 0+06 0+12 0+90 0+95 0+87 0+93 0+99
V 0+03 0+08 0+93 0+97 0+05 0+10 0+91 0+96 0+87 0+94 0+99
VI 0+05 0+10 0+90 0+95 0+04 0+09 0+91 0+95 0+89 0+95 0+99
VII 0 +04 0+09 0+91 0+96 0+05 0+10 0+91 0+95 0+89 0+95 0+99
VIII 0 +06 0+11 0+91 0+96 0+06 0+10 0+90 0+95 0+87 0+94 0+99
IX 0+04 0+09 0+92 0+96 0+04 0+09 0+91 0+95 0+90 0+95 0+99
X 0+02 0+06 0+95 0+98 0+03 0+08 0+92 0+96 0+92 0+97 1+00
XI 0+03 0+07 0+93 0+97 0+04 0+10 0+91 0+96 0+92 0+96 1+00
XII 0 +03 0+07 0+93 0+97 0+05 0+10 0+91 0+95 0+92 0+97 1+00
XIII 0 +03 0+06 0+94 0+98 0+05 0+09 0+91 0+95 0+93 0+97 1+00

Note: In the first four columns of results, labeledH0 : b11 5 0, the true parameter isb1 5 ~0,1!' + In the next four
columns of results, labeledH0 : b12 5 0, the true parameter isb1 5 ~1,0!' + In the last three columns, labeled
H0 : b11 5 b12, the true parameter isb1 5 ~1YM2,1YM2!'+ The Monte Carlo designs are identical to the previous
in all other respects+
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Table 4. Monte Carlo probabilities using asymptotic quantiles, Cox estimator

H0 : b11 5 0 H0 : b12 5 0 H0 : b11 5 b12

0+05 0+10 0+90 0+95 0+05 0+10 0+90 0+95 0+90 0+95 0+99

I 0+05 0+11 0+90 0+95 0+05 0+09 0+89 0+94 0+90 0+95 0+99
II 0+05 0+10 0+90 0+95 0+05 0+10 0+90 0+94 0+90 0+95 0+99
III 0 +06 0+11 0+90 0+95 0+05 0+10 0+89 0+94 0+90 0+95 0+99
IV 0+06 0+11 0+90 0+95 0+04 0+11 0+89 0+94 0+89 0+94 0+99
V 0.06 0.12 0.89 0.94 0.04 0.09 0.89 0.95 0.26 0.35 0.54
VI 0.06 0.12 0.88 0.94 0.05 0.10 0.87 0.93 0.51 0.62 0.82
VII 0.06 0.12 0.89 0.94 0.05 0.10 0.89 0.94 0.63 0.73 0.87
VIII 0.08 0.13 0.87 0.93 0.07 0.12 0.86 0.92 0.80 0.87 0.95
IX 0.12 0.18 0.83 0.89 0.10 0.14 0.83 0.89 0.67 0.75 0.87
X 0.22 0.28 0.72 0.78 0.19 0.23 0.69 0.76 0.46 0.53 0.67
XI 0.11 0.18 0.84 0.89 0.09 0.14 0.83 0.90 0.37 0.44 0.57
XII 0.13 0.20 0.81 0.87 0.11 0.15 0.83 0.89 0.31 0.37 0.49
XIII 0.13 0.19 0.81 0.87 0.11 0.16 0.80 0.88 0.50 0.58 0.72

Note:See Table 3+ Italics indicate experiments where the Cox estimator is inconsistent+ The results forH0 : b11 5
0 exclude 0, 0, 0, 20, 563, 0, 518, 0, 2, 88, 633, 1,211, and 3 samples, respectively, and the results forH0 : b11 5
b12 exclude 0, 0, 0, 21, 1, 0, 11, 0, 1, 6, 2, 12, and 1 sample because the estimator did not converge+

Table 5. Monte Carlo probabilities using asymptotic quantiles, PSS estimator

H0 : b11 5 0 H0 : b12 5 0 H0 : b11 5 b12

0+05 0+10 0+90 0+95 0+05 0+10 0+90 0+95 0+90 0+95 0+99

I 0+06 0+10 0+90 0+95 0+05 0+10 0+91 0+96 0+89 0+94 0+98
II 0.00 0.00 0.02 0.04 0+05 0+11 0+90 0+95 0.57 0.68 0.85
III 0.00 0.00 0.00 0.00 0+05 0+10 0+90 0+95 0.12 0.19 0.38
IV 0.00 0.00 0.00 0.00 0+05 0+10 0+90 0+95 0.00 0.01 0.03
V 0+04 0+09 0+92 0+97 0+05 0+10 0+91 0+96 0+86 0+93 0+99
VI 0+05 0+10 0+90 0+95 0+04 0+10 0+91 0+96 0+90 0+95 0+99
VII 0 +04 0+09 0+91 0+96 0+05 0+10 0+91 0+96 0+89 0+95 0+99
VIII 0 +05 0+11 0+90 0+95 0+05 0+10 0+90 0+95 0+88 0+93 0+98
IX 0+05 0+11 0+90 0+95 0+05 0+10 0+90 0+95 0+88 0+94 0+99
X 0+05 0+11 0+90 0+95 0+05 0+11 0+90 0+95 0+88 0+93 0+98
XI 0+04 0+09 0+92 0+96 0+05 0+10 0+91 0+96 0+88 0+94 0+99
XII 0 +04 0+09 0+91 0+97 0+05 0+10 0+91 0+96 0+85 0+93 0+99
XIII 0 +03 0+08 0+93 0+97 0+05 0+11 0+91 0+96 0+93 0+97 1+00

Note: See Table 3+ Italics indicate experiments where the PSS estimator is inconsistent+
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single-risk or the censoring mechanism is known to be independent of the explan-
atory variables and the data are relatively free of outliers, there are two reasons
to favor the PSS estimator over the new estimator: the PSS estimator is much
faster to compute, and its variance estimator appears to have slightly better prop-
erties+ In other cases, such as nontrivial competing risks data or data with out-
liers, the new estimator is preferable+

6. CONCLUSION

This paper proposed a new semiparametric estimator of index coefficients for a
risk-specific hazard function+ It is assumed that the hazard function satisfies an
index restriction, but no other essential assumptions are imposed+ In particular,
the assumption of proportional hazards is avoided+ The new estimator is appli-
cable to competing risks data+ Currently no other semiparametric estimator is
applicable to competing risks data without the assumption of proportional haz-
ards+ The estimator described in this paper requires that the explanatory vari-
ables be continuous; however, an estimator for discrete explanatory variables is
developed in a companion paper+

The index coefficient estimator was shown to be root-n consistent and asymp-
totically normally distributed, similarly to index coefficient estimators devel-
oped for other settings+ A consistent estimator of the variance matrix was
proposed+ The paper also described how the index restriction can be used to
eliminate the curse of dimensionality in nonparametric estimation+

The Monte Carlo simulations suggested that the new estimator performs well
in samples of 200 observations+ The new estimator was compared with Cox’s
partial likelihood estimator and the weighted average derivative estimator of
Powell et al+ ~1989!+ Based on the Monte Carlo simulations it was possible to
formulate guidelines for when to use which estimator+

One large problem, the question of optimal bandwidth selection, was left for
future research+ The approach taken by Härdle and Tsybakov~1993! and Pow-
ell and Stoker~1996! for the weighted average derivative estimator of Powell
et al+ ~1989! seems promising, and it may be to worthwhile to investigate whether
it can be successfully adapted to the present index coefficient estimator+

NOTES

1+ This expression captures the case whereY is discrete in addition to the continuous case+ If
Y is discrete, ~3! becomesH~ y6x! 5 (j 1~gj # y!~F1~gj 6x! 2 F1~gj216x!!0F2~gj 6x!, where g1,
g2, + + + are the support points ofY and F1~g06x! 5 0+ The corresponding hazard function is
h~ y6x! 5 (j 1~gj 5 y!~F1~gj 6x! 2 F1~gj216x!!0F2~gj 6x!+ If Y is continuous, ~3! becomesH~ y6x! 5
*0

y ]1F1~v6x!0F2~v6x! dv, where]1F1 is the density corresponding toF1+ The corresponding hazard
function ish~ y6x! 5 ]1F1~ y6x!0F2~ y6x!+

2+ If f is a function, let ]i
j f denote thej th-order partial derivative off with respect to itsi th

argument+ A vertical bar~as inF1~ y6x!! is equivalent to a comma~as inA1~ y, x!! when counting
arguments, and]i

j fg means~]i
j f !g, not ]i

j ~ fg!+ With a bit of notational abuse, let ]x
j f denote the
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q-vector ofj th-order partial derivatives with respect to whichever argument represents theq-vector
of explanatory variables+ Let ]x '

j f denote the transpose of]x
j f+

3+ Throughout the paper, the range is not indicated whenever integration is over an entire euclid-
ean space+

4+ For simplicity of exposition, derivatives are assumed to exist everywhere on the domain of
the original functions+ The result of Theorem 1 continues to hold even if a function is not differ-
entiable everywhere, providedw is chosen to avoid “edge effects” in the kernel smoothing+ That is,
if the kernel estimates involve smoothing overXi nearx thenA1~ y,{! andA2~ y,{! must be smooth
on @x 2 b, x 1 b# for all b small+

5+ Throughout the paper boldface lowercase letters are used as placeholders and integration
dummies for the corresponding uppercase random variables+

6+ The theory of estimation of the unconditional hazard function has also progressed in recent
years+ See, e+g+, Nielsen and Tanggaard~2001!+

7+ The same kernel and bandwidth selection procedure is used to compute the PSS estimator+
8+ Optimal bandwidth selection procedures were developed for the original weighted average

derivative estimator of Powell et al+ ~1989! by Härdle and Tsybakov~1993! and Powell and Stoker
~1996!+ Their ideas can be extended to the present setting+

9+ The scale ofbs is not nonparametrically identified+ This is true even in a proportional hazard
framework, whereh~ y6x! 5 ls~ y!cs~x 'bs!, because the scale ofbs can be subsumed intocs+ The
scale is identified only when a specific parametric form ofcs is assumed, as in the standard imple-
mentation of the Cox estimator, wherecs~z! 5 ez+

10+ Although substantial progress has been made on developing models with dependent risks,
the independent competing risks models continue to play an important role in economic and econo-
metric analysis+ For example, the studies mentioned at the beginning of the introduction all assume
independent risks+

11+ In a study of nonemployment data, Koop and Ruhm~1993! find some support for using a
cumulative distribution function instead of the exponential function in the standard PH model+
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TECHNICAL APPENDIX
Proof of Theorem 1. Recall the definitionsT 5 ~Y,S,X '!' and t 5 ~y,s,x'!' + Let P

denote the distribution ofT and letPn denote the empirical measure formed from then
independent observations onP; that is, Pn puts probability 10n on each of the observa-
tions+ Linear functional notation is used throughout the Appendix+ The expected value
of a random variableV is denotedEV, Pf ~t ! 5 Ef ~T, t !, andPn f ~t ! 5 n21 (i51

n f ~Ti , t !+
Product measures are denoted using the symbolJ+ For example, P J Pf 5 Ef ~T1,T2!
whereT1 andT2 are independent random variables distributed asT+

Recall that

bn
* 5

1

n2 (
i51

n

(
j51

n

r0~Ti ,Tj !,

wherer0 is defined in~15!+ Define also

r1~t i , t j ! 5
r0~t i , t j ! 1 r0~t j , t i !

2
,

Vn 5
1

n2 (
i51

n

r0~Ti ,Ti !,

Un 5
1

n2 (
i51

n

(
j51
jÞi

n

r1~Ti ,Tj !,

and

ZUn 5
2

n (
i51

n

Pr1~Ti ,{! 2 P J Pr0 5 Pn J Pr0 1 P J Pn r0 2 P J Pr0+

To prove part i of the theorem, convergence is established for each term in the
decomposition

bn
*2 Ebn

* 5 Vn 1 ~Un 2 ZUn! 1 ~ ZUn 2 E ZUn! 1 ~E ZUn 2 Ebn
*!+

Note thatEbn
* 5 P J Pr0 1 ~10n!~Er0~T,T ! 2 P J Pr0! 5 P J Pr0 1 O~n21!,

EUn 5 ~n~n 2 1!0n2!P J Pr0 5 P J Pr0 1 O~n21!, andE ZUn 5 P J Pr0+ It follows
immediately thatE ZUn 2 Ebn

* 5 o~n2102!+
A change of variables implies thatr0~t i , t j ! 5 Q0

1~t i , t j ! 1 Q0
0~t i , t j !, where

Q0
d~t i , t j ! 5

~21!d11

bq11 E]x
dK~x!]x

12dKS x i 2 x j 1 bx

b
D

3 w~yi ,x i 1 bx!1~yj $ yi !1~si 5 s! dx+

Because]x
12dK and w are bounded and]x

dK is integrable, Vn 5 O~n21b2q21! 5
o~n2102! almost surely providedn2102b2q21 r 0, or nb2q12 r `, asn r `+
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By Lemma 3+1 of Powell et al+ ~1989!, Un 2 ZUn 5 op~n2102! providedE~7r1~Ti ,Tj !72! 5
op~n! for i Þ j+ ~7{7 denotes the euclidean norm7u72 5 (i ui

2 5 u'u+! To verify this
condition, note that

E~7r1~Ti ,Tj !72! 5
1

2
E~r0~Ti ,Tj !

'r0~Ti ,Tj !! 1
1

2
E~r0~Ti ,Tj !

'r0~Tj ,Ti !!+

Expandingr0~t i , t j !
'r0~t i , t j ! 5 ~Q0

1~t i , t j ! 1 Q0
0~t i , t j !!

'~Q0
1~t i , t j ! 1 Q0

0~t i , t j !! yields
four terms that after a change of variables have the form

Q1~t i , t j ! 5 Q0
d1~t i , t j !

'Q0
d2~t i , t j !

5
~21!d11d2

b2q12 EE]x '
d1K~x1!]x '

12d1KS x i 2 x j 1 bx1

b
D

3 ]x
d2K~x2!]x

12d2KS x i 2 x j 1 bx2

b
Dw~yi ,x i 1 bx1!

3 w~yi ,x i 1 bx2!1~yj $ yi !1~si 5 s! dx1 dx2+

By further change of variables,

E~Q1~Ti ,Tj !! 5
~21!d11d2

b2q12 EEEEE]x '
d1K~x1!]x '

12d1KS x i 2 x j 1 bx1

b
D

3 ]x
d2K~x2!]x

12d2KS x i 2 x j 1 bx2

b
D

3 w~v,x i 1 bx1!w~v,x i 1 bx2!

3 A2~v,x j !A1~dv,x i ! dx1 dx2 dx i dx j

5
~21!d11d2

bq12 EEEEE]x '
d1K~x1!]x '

12d1K~x j !]x
d2K~x2!]x

12d2K~x j 2 x1 1 x2!

3 w~v,x i 1 bx1!w~v,x i 1 bx2!

3 A2~v,x i 1 bx1 2 bx j !A1~dv,x i ! dx1 dx2 dx i dx j +

Similarly, the terms making upr0~t i , t j !
'r0~t j , t i ! have the form

Q2~t i , t j ! 5
~21!d11d2

b2q12 EE]x '
d1K~x1!]x '

12d1KS x i 2 x j 1 bx1

b
D]x

d2K~x2!

3 ]x
12d2KS x j 2 x i 1 bx2

b
Dw~yi ,x i 1 bx1!w~yj ,x j 1 bx2!

3 1~yi 5 yj !1~si 5 s!1~sj 5 s! dx1 dx2
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and

E~Q2~Ti ,Tj !! 5
~21!d11d2

b2q12 EEEEEE]x '
d1K~x1!]x '

12d1KS x i 2 x j 1 bx1

b
D

3 ]x
d2K~x2!]x

12d2KS x j 2 x i 1 bx2

b
Dw~yi ,x i 1 bx1!w~yj ,x j 1 bx2!

3 1~yi 5 yj !A1~dyi ,x i !A1~dyj ,x j ! dx1 dx2 dx i dx j

5
~21!d11d2

bq12 EEEEEE]x '
d1K~x1!]x '

12d1K~x j !]x
d2K~x2!]x

12d2K~x1 1 x2 2 x j !

3 w~yi ,x i 1 bx1!w~yj ,x i 1 bx1 2 bx j 1 bx2!

3 1~yi 5 yj !A1~dyi ,x i !A1~dyj ,x i 1 bx1 2 bx j ! dx1 dx2 dx i dx j +

Because]x
12dj K, j, and w are bounded and]x

dj K is integrable, these results imply
E~7r1~Ti ,Tj !72! 5 Op~b2q22! 5 op~n! provided thatnbq12 r ` asn r `+ Note that
this is exactly the same as the condition derived by Powell et al+ ~1989!+ It follows that
the limiting distribution ofMn~bn

* 2 Ebn
*! is the same as the limiting distribution of

Mn~ ZUn 2 E ZUn!+
By change of variables and integration by parts

Pr0~t,{! 5 2EEK~x!K~x j !~]x w~y,x 1 bx!A2~y,x 1 bx2 bx j !

1 w~y,x 1 bx!]x A2~y,x 1 bx2 bx j !!1~s5 s! dx dx j

2 EEK~x!K~x j !w~y,x 1 bx!]x A2~y,x 1 bx2 bx j !1~s5 s! dx dx j

5 2]x w~y,x!A2~y,x!1~s5 s! 2 2w~y,x!]x A2~y,x!1~s5 s! 1 r1~t!,

where sup6r16 5 O~b! because]xw, ]x
2w, ]xA2, and]x

2A2 exist and are bounded andK
is integrable+ Similarly,

Pr0~{, t! 5EEEK~x i !K~x!w~yi ,x 1 bx!1~y $ yi !

3 ]x A1~dyi ,x 1 bx2 bx i ! dx dx i

1 EEEK~x i !K~x!~]x w~yi ,x 1 bx!1~y $ yi !

3 A1~dyi ,x 1 bx2 bx i ! 1 w~yi ,x 1 bx!1~y $ yi !

3 ]x A1~dyi ,x 1 bx2 bx i !! dx dx i

5 2Ew~yi ,x!1~y $ yi !]x A1~dyi ,x!

1 E]x w~yi ,x!1~y $ yi !A1~dyi ,x! 1 r2~t!,
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where sup6r26 5 O~b! because]x
j w and*6]x

j A1~dy,{,{!6 exist and are bounded forj 5
1,2 andK is integrable+ It follows that

Pr0~t,{! 1 Pr0~{, t! 5 F~y,s,x! 1 2b* 1 O~b!

and

ZUn 2 E ZUn 5 ~Pn 2 P!F 1 ~Pn 2 P!r1 1 ~Pn 2 P!r2+

The second moment ofn102~Pn 2 P!rj , j 5 1,2, is P~rj
2! 2 ~Prj !

2, which is bounded
by P~rj

2! 5 O~b2! using sup6rj 6 5 O~b!+ It follows by Chebyshev’s inequality that
~Pn 2 P!rj 5 op~n2102!, whence the limiting distribution ofMn~bn

*2 Ebn
*! is the same

as the limiting distribution ofMn~PnF 2 PF! 5 MnPnF+ Part i of the theorem now
follows from the multivariate Lindeberg–Lévy central limit theorem+

Turn now to the bias term+ By previous arguments

Ebn
*2 b* 5 EVn 1 EUn 5 o~n2102! 1 ~n~n 2 1!0n2!P J Pr0 2 b*+

By integration by parts and change of variables

P J Pr0 5EEEK~x i !K~x j !w~yi , x!A2~yi , x 2 bx j !]x A1~dyi , x 2 bx i ! dx dx i dx j

2 EEEK~x i !K~x j !w~yi , x!]x A2~yi , x 2 bx j !A1~dyi , x 2 bx i ! dx dx i dx j +

Using the assumptions that*6]x
j A1~dy,{!6 and]x

j A2 exist and are bounded and continu-
ous for j 5 1, + + + , k and thatK is of orderk, a Taylor series expansion implies

P J Pr0 5Ew~y, x!~A2~y, x!]x A1~dy, x! 2 ]x A2~y, x!A1~dy, x!! dx1 O~b2k!

5 b* 1 O~b2k!+

Part ii of the theorem follows+ n
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