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A two-dimensional model for the analysis of sloshing phenomena in shallow-
water conditions has been defined using Boussinesq-type depth-averaged equations.
Thanks to a modal decomposition of the spatial field, the present model allows a
straightforward and simple treatment of the exciting forces and can describe a generic
motion. Comparisons with the experimental data available in the literature and with
a smoothed particle hydrodynamics (SPH) scheme proved the proposed shallow-water
model to be accurate, fast and robust.
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1. Introduction
In the last ten years there has been increasing interest in the study of sloshing

phenomena in finite and shallow depth conditions (Faltinsen & Timokha 2002; Hill
2003; Faltinsen 2005; Lugni, Brocchini & Faltinsen 2006, 2010a; Lugni et al. 2010b).
Because of the major role played by nonlinearities, the evolution of waves in tanks
characterized by a small filling height represents a very demanding problem for both
numerical schemes and theoretical models.

Generally, analytical and numerical works concerning sloshing phenomena without
breaking are developed in the framework of the potential theory and in deep and
intermediate water conditions (see, for example Faltinsen et al. 2000; Faltinsen &
Timokha 2001, 2002). In shallow-water conditions Ockendon, Ockendon & Johnson
(1986) used a proper perturbation expansion to solve the Laplace equation and
obtained an integro-differential equation. Their work mainly focused on the occurrence
of multiple solutions, giving an explanation for bifurcation phenomena in sloshing
problems. In any case, in the shallow-water regime depth-averaged models are widely
used and well-established. In this context, one of the first attempts to model shallow-
water sloshing is due to Lepelletier & Raichlen (1988) who numerically solved a set
of Boussinesq-type equations with a linear dispersive term. These equations proved
capable of describing the main features of the evolution, providing a good agreement
with the experimental measurements. More recently, Hill (2003) developed a two-
dimensional modal system using a similar set of Boussinesq-type equations. This
system was based on a Taylor-like expansion in the neighbourhood of the first natural
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resonant frequency and was thought to describe the sway motion in a rectangular tank.
In this case, comparisons with the experiments by Lepelletier & Raichlen (1988) were
satisfactory. Incidentally, we underline that for three-dimensional sloshing problems
the use of depth-averaged equations is becoming wider and wider (see, for example
Pantazopoulos 1987; Ardakani & Bridges 2011b) due to the reduced computational
costs compared to the fully three-dimensional solvers.

Following a procedure similar to Hill (2003), we have developed a modal system
that is capable of describing sloshing phenomena generated by a general two-
dimensional force (i.e. a motion given by the superposition of sway, roll and heave).
Differently from the work of Hill (2003), the proposed model is not restricted to
cases characterized by exciting forces with small deviations from the natural resonant
frequency (that is, ω/ωr � 1). This feature of the model is obtained by using a
spatial decomposition of the flow field and corresponds to a spatial Fourier analysis of
the sloshing phenomenon. Conversely, no specific assumptions are made on the time
evolution of the system modes that, consequently, are free to evolve in accordance
with the exciting force acting on the tank.

The inclusion of the exciting forces in the modal system is a further point of
innovation of the present work. Generally, the horizontal component of that force is
added to the lowest mode as a source term (see for example Hill 2003). However,
this is not consistent with the spatial decomposition of the flow variables and with the
adopted governing equations. In the present work we use a spatial modulating term to
spread the action of the horizontal forcing throughout the mode sequence. The modal
system derived from this approach is well-posed and consistent with the conservation
properties of the initial set of Boussinesq-type equations.

Comparisons with the experimental measurements by Lepelletier & Raichlen (1988)
proved that the proposed model accurately predicts the free-surface amplitude response
operators. Concerning the local evolution, further comparisons have been made with
the δ-SPH scheme described in Antuono et al. (2010). This is a meshless Lagrangian
numerical solver suitable for modelling gravity wave propagation and free-surface
flows in general (see, for example Antuono et al. 2011). The good agreement with the
δ-SPH scheme further confirms the ability of the proposed model to describe sloshing
phenomena. Moreover, its much lower computational cost makes it suitable for an
initial estimate of the shallow-water sloshing features.

The paper is organized as follows: § 2 introduces the analytical modal system and
provides insight into the spatial modulating term and viscous dissipation; § 3 deals
with applications and validations of the model against both numerical solutions and
experimental measurements.

2. The shallow-water modal system

Let us consider a rectangular tank partially filled by water with length, breadth
and still water level of respectively L∗, D∗ and h∗ (the starred variables indicate
dimensional quantities). Assuming D∗ � L∗, we can approximate the tank as two-
dimensional and, then, choose a frame of reference xOy like the one shown in figure 1
in which the axis origin is on the left wall of tank and at the still water depth level.
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FIGURE 1. Sketch of the tank and of the frame of reference.

Further, we assume h∗� L∗, which implies that the shallow-water approximation can
be adopted. Under these hypotheses, the (dimensionless) Boussinesq equations with a
linearized dispersive term can be used:

ηt + ux + (ηu)x = 0,

ut + uux + ηx − µ
2

3
uxxt = 0,

 (2.1)

where η is the free-surface elevation, u the depth-averaged fluid velocity and
µ = h∗/L∗ is the dispersion coefficient. The shallow-water theory holds for µ < 0.1
while for 0.1 6 µ 6 0.24 the motion is in the intermediate water depth regime (see
for example Faltinsen & Timokha 2002). In the scientific literature a broad family of
Boussinesq-type models exists (see for example Nwogu 1993; Gobbi, Kirby & Wei
2000; Veeramony & Svendsen 2000; Madsen, Bingham & Liu 2002). However, at the
leading order all Boussinesq models prescribe the same linear dispersive term, that is,
µ2uxxt/3. As pointed out in Whitham (1974), the higher-order terms neglected in the
momentum equation are O(εµ2, µ4) where ε = 2a∗/h∗ is the nonlinearity parameter
(a∗ is the wave amplitude). Conversely, the continuity equation is exact at every order
of ε and µ. Although the use of a linearized dispersive term may appear as a rough
approximation, it allows the principal features of the sloshing motion to be retained,
as shown, for example, in the works of Lepelletier & Raichlen (1988) and Hill (2003).
The scaling used to make system (2.1) dimensionless is

x∗ = L∗x, t∗ = L∗√
g∗h∗

t, η∗ = h∗η, u∗ =√g∗h∗u, (2.2)

where g∗ is the acceleration due to gravity. At the right and left walls of the tank, the
impermeability condition is imposed, that is

u(0, t)= u(1, t)= 0 ∀t > 0, (2.3)

and, because of the mass conservation, the following condition must hold:∫ 1

0
η(x, t) dx= 0 ∀t. (2.4)
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Assuming that the tank is subjected to a generic two-dimensional time-dependent force,
the system above becomes

ηt + ux + (ηu)x = 0,

ut + uux − F2(t)ηx − µ
2

3
uxxt = F1(t)

µ
,

 (2.5)

where F1 and F2 are the horizontal and the vertical components of the global force on
the tank. Explicit expressions for F1 and F2 are given in appendix A. As pointed out
in Ardakani & Bridges (2011a), the dependence of the forcing term on µ−1 implies
some restrictions on the order of magnitude of both the rotation and the horizontal
component of the acceleration. Details are provided in appendix A.

Under the hypothesis that waves are non-breaking, conditions (2.3) and (2.4) are
satisfied by using the following decomposition:

η(x, t)=
+∞∑
n=1

Hn(t) cos(nπx), u(x, t)=
+∞∑
n=1

Un(t) sin(nπx), (2.6)

where H0 = U0 = 0. The series in (2.6) can be rewritten as follows:

η(x, t)=
∑
n∈Z

Hn(t)

2
exp(inπx), u(x, t)=

∑
n∈Z

Un(t)

2i
exp(inπx), (2.7)

with the conditions Hn = H−n and Un = −U−n. The use of the series in (2.7)
corresponds to an expansion in Fourier modes and allows rewriting system (2.1) as
a system of ordinary differential equations. Note that the present approach is totally
general and partially differs from that provided by Hill (2003). In that case, a small
detuning from the first natural resonant frequency of the tank was assumed and a
Taylor-like expansion was performed to simplify the system of ordinary differential
equations.

As shown in detail in appendix B, the decomposition in (2.7) does not allow
a straightforward inclusion of the forcing term F1 in the momentum equation. To
circumvent this issue, we introduce a spatial modulation M(x) as follows:

ηt + ux + (ηu)x = 0,

ut + uux − F2(t)ηx − µ
2

3
uxxt =M(x)

F1(t)

µ
.

 (2.8)

The modulating term has to be constructed according to the decompositions in (2.7).
As proved in appendix B, this implies

M(x)=
+∞∑
n=1

Mn sin(nπx) ⇔ M(x)=
∑
n∈Z

Mn

2i
exp(inπx), (2.9)

with Mn = M−n and M0 = 0. Two conditions are required for the modulating term:
one is that M(x) ' 1, the other is that the sequence {Mn} does not modify the
global amount of energy and momentum of system equation (2.5). As proved in
appendix B.1, these conditions lead to

Mn =−2
[
(−1)n−1

nπ

]
for n ∈ Z \ {0}, M0 = 0. (2.10)
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Specifically, the sequence {Mn} corresponds to:

M(x)=
0 if x= 0,
1 if 0< x< 1,
0 if x= 1.

 (2.11)

When the expressions in (2.7) and (2.9) are substituted into the Boussinesq equations,
we get the following system:

Ḣn + nπUn + nπ

2

∑
p∈Z

HpUn−p = 0,

U̇n

(
1+ π

2µ2n2

3

)
+ nπF2Hn + nπ

4

∑
p∈Z

UpUn−p =Mn
F1

µ
.

 (2.12)

For numerical reasons, it is better to make the nonlinear contributions symmetric with
respect to their summations. After this has been done, the system is

Ḣn + nπUn + nπ

4

∑
p∈Z

[
HpUn−p + Hn−pUp

]= 0,

U̇n

(
1+ π

2µ2n2

3

)
+ nπF2Hn + nπ

4

∑
p∈Z

UpUn−p =Mn
F1

µ
.

 (2.13)

2.1. Viscous effects
Sloshing problems in small fluid depths are characterized by a large content of higher
frequencies that correspond to higher modes. Since these modes are believed to be
largely damped by energy dissipation, it is a common practice to add a damping term
to the momentum equation. Similarly to the works of Faltinsen & Timokha (2001),
Faltinsen, Rognebakke & Timokha (2006) (deep and intermediate water conditions)
and Hill (2003) (shallow-water conditions), we use a linear viscous term, i.e. a term
that is proportional to the fluid velocity. The coefficient of the viscous term (that is,
the damping coefficient) is defined following the work of Lamb (1945) and Keulegan
(1959). It gives the mean dissipation rate during a period of the evolution and takes
into account both the dissipation in the fluid bulk and the dissipation due to the
boundary layers at the tank walls.

When the viscosity term is added into the momentum equation of system (2.13), we
get

Ḣn + nπUn + nπ

4

∑
p∈Z

[
HpUn−p + Hn−pUp

]= 0,

U̇n

(
1+ π

2µ2n2

3

)
+ nπF2Hn + βnUn + nπ

4

∑
p∈Z

UpUn−p =Mn
F1

µ
,

 (2.14)

where

βn =
√

nπ

2Re

(
1+ 2h∗

D∗

)
L∗

h∗
+ 4n2π2

Re
, (2.15)

and Re = (L∗√g∗h∗)/ν∗ is the Reynolds number. The first term in the right-hand side
of (2.15) takes into account the dissipation due to the boundary layers while the
second one describes the dissipation inside the fluid bulk.
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Incidentally, we highlight that slightly different formulae for the damping coefficient
have been derived in Faltinsen & Timokha (2002) and reviewed in Faltinsen &
Timokha (2009).

3. Validation and applications
The model proposed in this work has been validated against experimental

measurements and numerical simulations. In the latter case, we compared the
theoretical model with a smoothed particle hydrodynamics (SPH) scheme. This scheme
has been satisfactorily applied to sloshing problems in Souto-Iglesias et al. (2006),
Bouscasse et al. (2007), Bulian et al. (2010) and Colagrossi et al. (2010). Here, we
use it as a cross-check when experimental measurements are available (such as for the
sway motion) and as a full comparison in those test cases (such as the roll motion)
where experimental data on non-breaking sloshing phenomena are not available. The
main features of the SPH scheme are reported in § 3.1. Incidentally, we highlight
that all the SPH simulations shown in the following sections have reached converged
solutions.

System (2.14) has been integrated in time by using a fourth-order Runge–Kutta
scheme. Note that a typical SPH run employs ∼104 particles and a simulation of 300 s
of physical evolution on a single processor Xeon 2.3 GHz has a CPU time cost of
∼10 days. Conversely, the same case simulated through the modal system (2.14) with
30 modes and for a duration of 1000 s of physical evolution has a CPU time cost
of ∼45 s. Such a large difference suggests that the present model can be also useful
for an initial estimate of the main features of sloshing phenomena and for real-time
simulations.

3.1. The SPH model
The SPH scheme is a meshless Lagrangian method in which the fluid domain is
discretized in a finite number of particles representing elementary fluid volumes V∗,
each one with its own local mass m∗ and other physical properties. In this context
a generic field f ∗ at the position r∗i of the ith particle is approximated through the
convolution sum

〈f ∗〉(r∗i )=
∑

j

f ∗j W∗(r∗i − r∗j , ε
∗)V∗j , (3.1)

where f ∗j is the value of f ∗ associated with the generic particle j, V∗j is its volume
and, finally, W∗(r∗i − r∗j , ε

∗) is a weight function that, in the SPH literature, is generally
called the kernel function. The kernel function has a compact support with radius
proportional to ε∗ (also known as the smoothing length) and tends to a delta Dirac
‘function’ when ε∗ goes to zero. The integration of the kernel function on its support is
imposed to be equal to one. For ease of notation, hereinafter we denote W∗(r∗i − r∗j , ε

∗)
simply as W∗ij and use a Gaussian kernel, as done in Landrini et al. (2007).

In the present work we adopt the δ-SPH scheme proposed by Antuono et al. (2010)
and further examined in Antuono et al. (2011) for gravity wave propagation. In this
framework, the fluid is assumed to be barotropic and weakly compressible and the
reference equations for the flow evolution are the Euler equations along with a linear
state equation. An appropriate artificial diffusive term is used into the continuity
equation in order to remove the spurious numerical high-frequency oscillations in the
pressure field and, similarly to most weakly compressible SPH schemes, an artificial
viscous term is added to the momentum equation for stability reasons (see for example
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Monaghan 2005). As proved in Antuono et al. (2010), the δ-SPH scheme satisfies the
conservation of linear and angular momenta. The dimensionless δ-SPH scheme is

Dρi

Dt
=−ρi

∑
j

(uj − ui) ·∇iWijVj + δ εM
∑

j

ψ ij ·∇iWijVj,

ρi
Dui

Dt
=−

∑
j

(pj + pi)∇iWijVj + ρi fi + α εM
∑

j

πij∇iWijVj

pi = (ρi − 1),
Dri

Dt
= ui,


(3.2)

where ρi, pi and ui are the density, the pressure and the velocity of the ith particle
while M =√g∗h∗/c∗0 is the Mach number (c∗0 is the sound velocity). Symbol fi denotes
the dimensionless body force acting on the ith particle in the frame of reference of the
tank. The scaling factors are

ρ∗ = ρ∗0ρ, p∗ = c∗20 ρ
∗
0 p, ε∗ = L∗ε, f ∗ = g∗

(
h∗

L∗

)
f , (3.3)

V∗ = V∗0 V =
(

m∗

ρ∗0

)
V, W∗ij =

Wij

V∗0
, (3.4)

where ρ∗0 is the reference density (that is, the density along the free surface). The
arguments of the diffusive and viscous terms are

ψ ij = 2
(
ρj − ρi

) (rj − ri)

|rj − ri|2 −
[〈∇ρ〉Li + 〈∇ρ〉Lj ] , πij = (uj − ui) · (rj − ri)

|rj − ri|2 . (3.5)

The symbol 〈∇ρ〉Li indicates the renormalized gradient defined in Randles & Libersky
(1996).

In all simulations, δ = 0.1 while α changes according to the kinematic viscosity
used in the SPH scheme. As shown in Español & Revenga (2003), the numerical
viscous term added to the momentum equation approximates the Laplacian of the
velocity for incompressible fluids. Specifically, the SPH Reynolds number for two-
dimensional problems is Resph = 8M/(εα) (see Monaghan 2005 for more details).

To reduce the computational effort, it is a common practice in the weakly
compressible SPH solvers to use a sound velocity much smaller than the physical
one, generally one order of magnitude larger than the maximum expected velocity of
the fluid. However, for gravity waves the flow velocity is generally small while the
most important quantity associated with the wave propagation is the wave celerity,
that is, c∗2 = g∗/k∗ tanh(k∗h∗) where k∗ is the wavenumber (see for example Madsen
& Shäffer 2006). For h∗ going to zero, the shallow-water regime is approached and
the relation above becomes c∗2 = √g∗h∗. Since this expression is an upper bound for
the wave celerity (that is, g∗/k∗ tanh(k∗h∗) 6

√
g∗h∗), we choose c∗0 = 10

√
g∗h∗ which

corresponds to M = 0.1.
The detection of the free surface has been obtained through the algorithm proposed

by Marrone et al. (2010) while the solid boundaries have been modelled through fixed
ghost particles as described in Marrone et al. (2011). Specifically, a free-slip condition
has been implemented along solid boundaries and the Neumann condition has been
imposed, that is ∂p/∂n = ρf · n where n is the normal unit vector to the solid profile
pointing out of the fluid region.
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FIGURE 2. Sway motion, first configuration (h∗/L∗ = 0.051, A∗/h∗ = 0.065): (a)
ω/ωr = 1.02, (b) ω/ωr = 1.08. Convergence tests for the free-surface evolution at x∗/L∗ = 1.

As verified in Antuono et al. (2011), the damping coefficient of the SPH scheme is
given by βsph = 4π2/Resph. This term has been derived from the works of Lamb (1945)
and Lighthill (2001) under the assumption that the dissipation due to the boundary
layer is negligible. Such a hypothesis is consistent with the fact that in all the SPH
simulations free-slip conditions have been used along the tank walls. Unfortunately, it
also implies that the structure of the SPH damping coefficient is different from that
of the damping coefficient adopted for the modal system. In any case, to make the
SPH scheme and the modal system (2.14) have approximately the same dissipation
rate, we require that the order of magnitude of βsph is similar to that of β1 (see
(2.15)). Generally, a good choice is βsph ' 0.2β1. This approximate expression allows
the definition of the SPH Reynolds number, Resph.

3.2. Sway motion
Sway motion consists of a horizontal forcing while the vertical displacement and
rotation are null. Specifically, we consider the experimental campaign of Lepelletier
& Raichlen (1988) where two different configurations were considered. In the first
case, the tank dimensions are L∗ = 117.5 cm, D∗ = 12 cm and the still water
level is h∗ = 6 cm The first resonant frequency predicted through the linear theory
is ω∗r = 2.04 s−1, the horizontal forcing law is sinusoidal and its amplitude is
A∗1 = 0.39 cm. The kinematic viscosity is ν∗ = 0.0094 cm2 s−1.

For this case, system (2.14) reaches a converged solution using 30 modes (the
analysis has been repeated using 8, 15 and 60 modes). All simulations have been run
up to t∗/T∗ = 200 to go past the transient regime and ensure the attainment of periodic
conditions (here, T∗ = 2π/ω∗ is the period of the forcing excitation). Hereinafter,
following Faltinsen & Timokha (2002) we refer to these conditions as ‘steady-state
conditions’. Figure 2 displays some convergence tests at the steady state for different
ratios ω/ωr. Here, simulations with 60 modes have not been shown since they are
practically identical to the cases with 30 modes.

Figure 3(a) displays a comparison between the experiments by Lepelletier &
Raichlen (1988) (triangles and thin solid line) and the present model (thick solid
line) for the steady-state maximum wave elevation at the right-hand wall of the tank
(x∗/L∗ = 1). The overall agreement is very good and the bifurcation predicted by
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FIGURE 3. Sway motion, response amplitude operator at x∗/L∗ = 1 for the first configuration
(h∗/L∗ = 0.051, A∗/h∗ = 0.065).

the present model is very close to that shown by the experiments. In figure 3(b),
system (2.14) has been compared with the results obtained through the δ-SPH scheme
(Resph = 2900, h/dx = 50 where dx is the mean particle distance). Although the SPH
scheme tends to slightly delay the bifurcation, the agreement between the two models
is excellent.

The small sawtooth peaks that appear along the left-hand branch of the response
amplitude operator (see figure 3) correspond to the boundaries of different regimes
of the sloshing evolution. Each regime is characterized by a specific number of
waves and this number decreases as the peaks approach the bifurcation point (see
for example Olsen & Johnsen 1975). The last regime before the bifurcation is
characterized by a single-bump wave that moves back and forth in the basin. After
the bifurcation, only one wave is observed. Figure 4 displays the time evolution of the
free-surface elevation at x∗/L∗ = 1 for some of these regimes. These results have been
compared with the δ-SPH solver described in § 3.1 showing an excellent match with
the numerical solutions.

In the second experiments, Lepelletier & Raichlen (1988) used a tank with
L∗ = 60.95 cm, D∗ = 23 cm and h∗ = 6 cm. The horizontal forcing amplitude was
A∗1 = 0.196 cm and the first resonant frequency predicted through the linear theory was
ω∗r = 3.893 s−1. Again, system (2.14) reaches a converged solution using 30 modes
and all simulations have been run up to t∗/T∗ = 200 to ensure the attainment of
steady-state conditions.

This second configuration is particularly demanding for it is characterized by
µ= h∗/L∗ = 0.098 and, therefore, the sloshing motion is very close to the intermediate
water depth regime. Lepelletier & Raichlen observed the occurrence of wave breaking
during the transient evolution of those cases characterized by frequencies just to the
left of the bifurcation point (that is, ω/ωr = 1.06). However, no breaking was observed
at the steady state. This is an important point since implies that the comparison
with the proposed modal system is still possible. Indeed, wave breaking induces
further energy dissipation with respect to the boundary layer. Since the modal system
cannot model breaking waves, it is characterized by an excess of energy compared
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FIGURE 4. Sway motion, first configuration. Evolution of the free surface at x∗/L∗ = 1: (a)
ω/ωr = 0.98, (b) ω/ωr = 1.02, (c) ω/ωr = 1.08, (d) ω/ωr = 1.10.

to the experiments during the transitory stage. In any case, such an excess is slowly
dissipated during the evolution and just leads to a delay in the attainment of the
steady-state conditions (where the comparison with the experiments is possible since
waves are non-breaking).

Figure 5(a) displays a comparison between the amplitude response operator at
x∗/L∗ = 1 as given by the experimental measures (triangles and thin solid line) and by
the present model (thick solid line). The match is very good and the bifurcation point
is predicted accurately. In figure 5(b), the modal system is compared with the δ-SPH
scheme (h/dx= 60, Resph = 7000). The SPH tends to overestimate the analytical model
close to the bifurcation that, similarly to the previous case, is slightly delayed with
respect to the experiments.

In this case only two regimes are observed before the bifurcation point: a two-wave
regime and a single-bump-wave regime. These have been compared with the δ-SPH
scheme in figure 6. Between these regimes a special region of motion was detected
during the experimental campaign. In that region no steady state was attained and
a nonlinear subharmonic modulation of 18 periods was observed (see Lepelletier
& Raichlen 1988). Remarkably, system (2.14) predicts the same modulation in a
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FIGURE 5. Sway motion, response amplitude operator at x∗/L∗ = 1 for the second
configuration (h∗/L∗ = 0.098, A∗/h∗ = 0.033).
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FIGURE 6. Sway motion, second configuration. Evolution of the free surface at x∗/L∗ = 1:
(a) ω/ωr = 0.97, (b) ω/ωr = 1.04.

region very close to that shown by the experiments (see figure 5). Details on the
nonlinear beating phenomenon are provided in figure 7 and are compared with the
δ-SPH scheme. In this case, very long simulations have been performed to ensure
the attainment of a periodic asymptotic solution. Again, the agreement between the
numerical and theoretical model is very good.

3.3. Roll motion
In this section we provide an example of roll motion using the modal system (2.14).
Owing to the difficulty in finding experiments where no breaking events occur,
we just provide comparisons with the δ-SPH model. To this purpose and because
of the no-slip conditions implemented by this model, we neglect the component
of the damping coefficient βn which comes from the boundary layer dissipation
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FIGURE 7. Sway motion, second configuration. Evolution of the free surface at x∗/L∗ = 1
and ω/ωr = 0.99, during the 18-period modulation. (b) An expanded view of the mid-section
of (a).

and obtain βn = 4n2π2/Re. Since the global damping rate of the SPH model is
βsph = 4π2/Resph, a simple and reliable choice is to put Re = Resph (that is, β1 = βsph).
Specifically, we choose the SPH viscosity of the first sway case (that is, Resph = 2900)
and adopt the same tank configuration (see § 3.2). The axis of rotation is displaced at
r0 = (1/2, 0) while the maximum angle of rotation is θ0 = π/720 rad. Since the roll
motion generally induces stronger dynamics, a larger number of modes (60 modes) is
needed to reach a converged solution. Similarly to the sway cases, all simulations have
been run up to t∗/T∗ = 200 to ensure the attainment of steady-state conditions.

Figure 8(a) displays a comparison between the amplitude response operator at
x∗/L∗ = 1 as given by the δ-SPH model (diamonds and thin solid line, h/dx = 50)
and by the present model (thick solid line). In this case, the SPH scheme highly
overestimates the present model. This is due to the fact that the modal system always
predicts ηx = 0 at the tank ends while in real sloshing phenomena the free-surface
profile along walls is characterized by a sharp and thin edge of fluid. The SPH
model, because of its Lagrangian structure, is capable of describing this behaviour
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FIGURE 8. Roll motion, response amplitude operator at (a) x∗/L∗ = 1 and (b) x∗/L∗ = 0.99.

even though it generally tends to overpredict the run-up at the walls. This phenomenon
has already been observed for the second configuration of the sway motion: figure 5
clearly shows that the SPH outputs (b) overestimates the experimental data (a). In
addition to these considerations, we highlight that the data at tank ends have only
a minor influence on the global motion since the fluid edge is very localized in
space and time. This is proved in figure 8(b) where the amplitude response operator
at x∗/L∗ = 0.99 is displayed. In this case the agreement between the models greatly
improves even though the SPH still overestimates the modal system. Note that the
response predicted by the modal system is almost unchanged while that given by the
SPH strongly reduces due to the absence of the thin fluid edge at the tank ends.

Similarly to the first configuration of the sway motion (see § 3.2), several wave
regimes are observed. These spread from four-wave patterns for lower frequencies
up to a single-bump wave close to the bifurcation. An overview of this behaviour is
provided in figure 9 where the evolution of the free surface is shown at x∗/L∗ = 0.99.
Apart from the slight overestimation of the SPH model, the agreement between the
time histories of the free surface is good.

3.4. General two-dimensional motion
To prove that the present model is capable of describing a generic two-dimensional
motion, we consider a sloshing problem in which sway, roll and heave motion are
involved. Incidentally, we note that a similar two-dimensional motion has also been
studied in Ardakani & Bridges (2011a) by using a model based on the nonlinear
shallow-water equations.

The tank dimensions and filling height are the same as the first configuration used
by Lepelletier & Raichlen and the tank motion is given by

x∗(t∗)= A∗1 sin(ω∗1t∗ + φ1), y∗(t∗)= A∗2 sin(ω∗2t∗ + φ2),

θ(t∗)= θ0 sin(ω∗0t∗ + φ0),

}
(3.6)

where A∗1 = 0.006 m, ω∗1 = 2.2 s−1, φ1 = 0 (sway motion), A∗2 = 0.03 m, ω∗2 = 4.29 s−1,
φ2 = 0 (heave motion), and θ0 = π/720 rad, ω∗0 = 0.22 s−1, φ0 = 0 (roll motion).
Similarly to the roll case described in the previous section, the axis of rotation is
placed at r0 = (1/2, 0). To avoid an impulsive start and make the motion more general,
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FIGURE 9. Roll motion. Evolution of the free surface at x∗/L∗ = 0.99: (a) ω/ωr = 0.93, (b)
ω/ωr = 0.97, (c) ω/ωr = 1.02, (d) ω/ωr = 1.08.

we introduce a polynomial ramp during the early stages of the tank evolution. This is
given by

r(τ )= τ 3(6τ 2 − 15τ + 10), (3.7)

where τ = (t∗ − t∗(r)0 )/1t∗, t∗(r)0 is the instant when the ramp is firstly applied (t∗(r)0 has
been set equal to the initial time of the simulation) and 1t∗ is the ramp duration (here
1t∗ = 2π/ω∗0). The polynomial ramp satisfies

r(0)= ṙ(0)= r̈(0)= 0, r(1)= 1, ṙ(1)= r̈(1)= 0, (3.8)

so that the initial application of the ramp and its transition towards the imposed
motion is perfectly smooth. Similarly to the roll test case, 60 modes are needed to
reach a converged solution and the simulation have been run up to t∗/T∗ = 200 to
ensure the attainment of steady-state conditions (T∗ = 2π/ω∗0).

Figure 10 displays a comparison between the present model and the SPH outputs
(h/dx = 50,Re = Resph = 2900). Similarly to the roll test case, the free-surface signal
is recorded at x∗/L∗ = 0.99 to avoid the overestimation of the SPH due to the
thin edge of fluid at the tank wall. Figure 10(a,b,c) displays respectively the initial
transitory stage, the steady-state condition and a detail of the steady-state motion. In
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FIGURE 10. General two-dimensional motion. Evolution of the free surface at x∗/L∗ = 0.99.
(a) The early stages of the evolution. (b) The steady state. (c) A detail of the steady-state
evolution.

all the cases, the agreement between the modal system (2.14) and the δ-SPH scheme is
very good and further proves the accuracy of the present model.
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4. Conclusions
A modal system for the analysis of shallow-water sloshing phenomena has been

defined starting with a set of Boussinesq-type equations with a linearized dispersive
term. This system is based on a spatial Fourier decomposition and is capable of
representing a generic two-dimensional motion of the tank. The use of a spatial
modulating term allows the simple and straightforward inclusion of the exciting
forces inside the modal system and leads to a formulation that is consistent with the
conservation of momentum and energy of the flow. Similarly to Ardakani & Bridges
(2011a), the analysis in appendix A highlights that both sway and roll motions have
to be of O(µ) to be consistent with the shallow-water regime. These bounds, along
with the condition that no breaking occurs, fix the limit of applicability of the modal
analysis for small filling heights.

Comparisons with both experimental measurements and numerical simulations
proved the proposed model to be robust, accurate and capable of describing the
main features of the sloshing phenomenon. Further, this confirms that depth-averaged
equations (like the Boussinesq-type equations adopted in the present work) can provide
a good description of sloshing motions when the water depth is shallow and when
waves are non-breaking.

A remarkable advantage of the use of the modal system in comparison with the SPH
solver is the much lower computational cost required. This suggests that the modal
system may be preferable when there is no need to explicitly compute pressure loads
against structures and/or other local quantities.

Further studies will be devoted to the extension of the proposed modal scheme to
three-dimensional problems.
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Appendix A. Dynamical forces
Let us consider a frame of reference moving with the tank and with the origin

centred at the point of application of the rotation. We denote this frame of reference
x′O′y′ while we use x′′O′′y′′ for the frame of reference fixed with respect to the Earth
(see figure 11). The relation between the acceleration of a point in the fixed frame of
reference (a∗′′) and of a point in the moving one (a∗′) is

a∗′′ = a∗′ + a∗0 + Ω̇∗ × r∗′ +Ω∗ × (Ω∗ × r∗′)+ 2Ω∗ × v∗′, (A 1)

where r∗′ and v∗′ are the position and the velocity vector of a point in the moving
frame of reference, Ω∗ is the instantaneous angular velocity of the moving frame
of reference with respect to the fixed one and a∗0 is the translational acceleration of
the moving frame of reference with respect to the fixed one. Assuming a∗′′ = g∗, we
immediately get

a∗′ = g∗ − a∗0 − Ω̇∗ × r∗′ −Ω∗ × (Ω∗ × r∗′)− 2Ω∗ × v∗′. (A 2)
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Let us consider the integral equation for the motion of an incompressible fluid in the
moving frame of reference:∫

V∗

Dv∗′

Dt∗
dV∗ =

∫
V∗

a∗′ dV∗ +
∫

S∗

τ ∗

ρ∗
dS∗, (A 3)

where V∗ is the volume of the fluid, S∗ is the surface of V∗ and τ ∗ represents the
surface forces. The first integral on the right-hand side takes into account the mass
forces on the fluid. It is easy to show that∫

V∗
a∗′ dV∗ = (g∗ − a∗0 − Ω̇∗ × r∗′C −Ω∗ × (Ω∗ × r∗′C )− 2Ω∗ × v∗′C

)
V∗, (A 4)

where r∗′C is the centre of mass of the fluid body and v∗′C is its velocity, that is

r∗′C ≡
1

V∗

∫
V∗

r∗′ dV∗, v∗′C ≡
1

V∗

∫
V∗

v∗′ dV∗. (A 5)

Such a formulation allows rewriting the whole contribution in the following way:∫
V∗

a∗′ dV∗ =
∫

V∗
(g∗ − a∗0 − Ω̇∗ × r∗′C −Ω∗ × (Ω∗ × r∗′C )− 2Ω∗ × v∗′C ) dV∗. (A 6)

Then, in the moving frame of reference (that is, x′O′y′), the global mass force is

F∗′ = g∗ − a∗0 − Ω̇∗ × r∗′C −Ω∗ × (Ω∗ × r∗′C )− 2Ω∗ × v∗′C . (A 7)

When expression (A 7) is written in the frame of reference of the tank (that is, xOy),
we, finally, obtain

F∗ = g∗ − a∗0 − Ω̇∗ × (r∗C − r∗0)−Ω∗ × (Ω∗ × (r∗C − r∗0))− 2Ω∗ × v∗C, (A 8)

where r∗C and v∗C are the position and the velocity of the mass centre in xOy while r∗0 is
the point where the rotation is applied. Consistently with the scaling in (2.2):

F∗ = g∗F, a∗0 = g∗a0, Ω∗ =
√

g∗h∗

L∗
Ω , r∗ = L∗r, v∗ =√g∗h∗v, (A 9)

and, consequently, the dimensionless form of (A 8) is

F= ĝ− a0 − µΩ̇ × (rC − r0)− µΩ × (Ω × (rC − r0))− 2µΩ × vC. (A 10)

Here, ĝ indicates the unit vector pointing in the same direction as g∗.
Now, we rewrite (A 10) in two dimensions. Because of the scaling in (2.2),

the vertical components of r and v are of O(µ). Then, rC = (xC, µyC, 0), vC =
(uC, µvC, 0). Further, we denote a0 = (a0,1, a0,2, 0) and Ω = (0, 0, θ̇ ) where θ is the
angle of the horizontal axis of x′O′y′ with respect to the horizontal axis of x′′O′′y′′ (see
figure 11). Then, (A 10) gives

F1(t)=− sin θ − a0,1 cos θ − a0,2 sin θ + µ2θ̈ (yC − y0)

+µθ̇ 2(xC − x0)+ 2µ2θ̇vC, (A 11)
F2(t)=− cos θ + a0,1 sin θ − a0,2 cos θ − µθ̈(xC − x0)

+µ2θ̇ 2(yC − y0)− 2µθ̇uC. (A 12)

The horizontal component, F1(t), has to be added as a forcing term to the momentum
equation of the Boussinesq model. Conversely, the vertical component, F2(t), becomes
a multiplicative factor for ηx.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.140


436 M. Antuono, B. Bouscasse, A. Colagrossi and C. Lugni

FIGURE 11. Sketch of the fixed frame of reference (x′′O′′y′′), of the moving one (x′O′y′) and
of the frame of reference of the tank (xOy).

Note that the forcing term of (2.5) is F1/µ. Then, to avoid singularity in the
shallow-water limit (that is, for µ going to zero), we must have

a0,1 = O(µ), θ = O(µ). (A 13)

These bounds imply some restrictions on sway and roll motions for sloshing
phenomena in shallow-water conditions (see for example Ardakani & Bridges 2011a).

A.1. Details of computation

To evaluate the forcing term in (A 8), we need to compute the position and velocity of
the mass centre. Using the first definition in (A 5), we get

x∗C =
1

V∗

∫ L∗

0
x∗ dx∗

∫ η∗

−h∗
dz∗, y∗C =

1
V∗

∫ L∗

0
dx∗
∫ η∗

−h∗
z∗ dz∗. (A 14)

Since the fluid is incompressible, the total volume of water is constant and equal to
h∗L∗. Then, using the first expression of (2.6), it is simple to show that:

x∗C = L∗
{

1
2
+
+∞∑
n=1

[−1+ (−1)n]
π2n2

H∗n(t
∗)

h∗

}
, (A 15)

y∗C = h∗
{
−1

2
+
+∞∑
n=1

[
H∗n(t

∗)
2h∗

]2
}
. (A 16)

The mass-centre velocity is simply given by the time derivative of the mass-centre
position:

u∗C = L∗
+∞∑
n=1

[−1+ (−1)n]
π2n2

Ḣ∗n(t
∗)

h∗
, (A 17)

v∗C =
+∞∑
n=1

H∗n(t
∗)

2h∗
Ḣ∗n(t

∗). (A 18)

Finally, the forcing term is completely known when Ω∗, r∗0 and a∗0 are assigned.
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Appendix B. The modulating term
In this appendix we prove that the modulating term, M(x), has to be expressed as

a series of sines (see (2.9)). This is a consequence of the use of the Fourier series
(2.6)–(2.7) and of the symmetries of system (2.5).

Let us consider system (2.5) and substitute expansion (2.7) in the momentum
equation. We find∑

n∈Z

[
U̇n

(
1+ π

2µ2n2

3

)
+ nπF2Hn + nπ

4

∑
p∈Z

UpUn−p

]
einπx = 2iF1. (B 1)

To include the forcing inside the summation, we assume F1 to be multiplied by a
modulating term M(x) that is expanded in a series as follows:

M(x)=
∑
n∈Z

Mn

2i
exp(inπx). (B 2)

Then, we obtain

U̇n

(
1+ π

2µ2n2

3

)
+ nπF2Hn + nπ

4

∑
p∈Z

UpUn−p =MnF1. (B 3)

The modulating amplitude Mn must satisfy some symmetry conditions. To find them,
we consider the modal equation for the mode −n, that is

U̇−n

(
1+ π

2µ2n2

3

)
− nπF2H−n − nπ

4

∑
p∈Z

UpU−n−p =M−nF1. (B 4)

Since Un =−U−n and Hn = H−n, this equation becomes

U̇n

(
1+ π

2µ2n2

3

)
+ nπF2Hn + nπ

4

∑
p∈Z

UpU−n−p =−M−nF1. (B 5)

Now, let us focus on the nonlinear term. It can be rewritten as follows:∑
p∈Z

UpU−n−p =
∑
p∈Z

U−pU−n+p =
∑
p∈Z

UpUn−p, (B 6)

and, therefore, (B 5) becomes

U̇n

(
1+ π

2µ2n2

3

)
+ nπF2Hn + nπ

4

∑
p∈Z

UpUn−p =−M−nF1. (B 7)

Comparing (B 7) and (B 3) we find

Mn =−M−n ⇒ M(x)=
+∞∑
n=1

Mn sin(nπx). (B 8)

This proves the validity of the expansion in (2.9).

B.1. Conservation properties
For consistency with the governing equations, the modulating term must approximate
unity, that is, M(x)' 1. This corresponds to

Mn =−2
[
(−1)n−1

nπ

]
for n ∈ Z \ {0}, M0 = 0. (B 9)
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Since M(x) must not modify the global action of F1 on the governing equations,
we have to check that the integral equations of the momentum and energy remain
unchanged. Since the Boussinesq equations are depth-averaged and D∗ � L∗, this is
equivalent to checking whether the following one-dimensional integral relations hold:∫ 1

0
F1(t)M(x) dx= F1(t)

∫ 1

0
M(x) dx= F1(t), (B 10)∫ 1

0
u(x, t)F1(t)M(x) dx= F1(t)

∫ 1

0
u(x, t)M(x) dx= F1(t)

∫ 1

0
u(x, t) dx, (B 11)

that is ∫ 1

0
M(x) dx= 1,

∫ 1

0
u(x, t)M(x) dx=

∫ 1

0
u(x, t) dx. (B 12)

The first relation comes from the integration of the momentum equation of system
(2.5) while the second has been derived by integrating the corresponding energy
equation, that is, the momentum equation of system (2.5) multiplied by u. Let us focus
on the first relation of (B 12). Using the first expression in (2.9), it follows that∫ 1

0
M(x) dx= 2

π2

+∞∑
n=1

[(−1)n−1]2
n2

= 4
π2

+∞∑
n=1

[1− (−1)n]
n2

. (B 13)

Since the summations on the right-hand side give
+∞∑
n=1

1
n2
= π

2

6
,

+∞∑
n=1

(−1)n

n2
=−π

2

12
, (B 14)

the first relation of (B 12) is satisfied. Now let focus on the second equation in (B 12).
Using (2.6) and (B 9), we obtain∫ 1

0
u(x, t) dx=− 1

π

∞∑
n=1

Un
[(−1)n−1]

n
, (B 15)

∫ 1

0
u(x, t)M(x) dx=− 2

π

∞∑
p,q=1

Up
[(−1)q−1]

q

∫ 1

0
sin(pπx) sin(qπx) dx. (B 16)

Since ∫ 1

0
sin(pπx) sin(qπx) dx= 1

2δpq, (B 17)

the second relation of (B 12) is satisfied.
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