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Abstract
For an edge-coloured graph G, the minimum colour degree of Gmeans the minimum number of colours
on edges which are incident to each vertex of G. We prove that if G is an edge-coloured graph with min-
imum colour degree at least 5, then V(G) can be partitioned into two parts such that each part induces a
subgraph with minimum colour degree at least 2. We show this theorem by proving a much stronger form.
Moreover, we point out an important relationship between our theorem and Bermond and Thomassen’s
conjecture in digraphs.

2010 MSC Codes: 05C15 and 05C20.

1. Introduction
When we try to solve a problem in dense graphs, decomposing a graph into two dense parts some-
times plays an important role in proof arguments. This is because one can apply an induction
hypothesis to one of the parts so as to obtain a partial configuration, and then use the other part
to obtain a desired configuration. Motivated by this natural strategy, a great deal of work has
been done in this direction, and a variety of results about such partitions have been obtained.
For example, Stiebitz [11] proved that every graph with minimum degree at least a+ b+ 1 can
be decomposed into two parts A and B such that A has minimum degree at least a and B has
minimum degree at least b. We can see that the bound a+ b+ 1 is best possible by consider-
ing the complete graph of order a+ b+ 1. Thomassen [15, 16] conjectured that, similarly, every
(a+ b+ 1)-connected graph can be decomposed into two parts A and B in such a way that A is
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a-connected and B is b-connected. Thomassen himself [13] confirmed the conjecture for the case
that b� 2. However, rather surprisingly, even for the case b= 3 this conjecture is still wide open.

The digraph version of this problem was proposed in the Prague Midsummer Combinatorial
Workshop in 1995. For integers s and t, does there exist a smallest value f (s, t) such that each
digraph D with minimum out degree δ+(D)� f (s, t) admits a vertex partition (D1,D2) satisfying
δ+(D1)� s and δ+(D2)� t? Alon [1, 2] posed the following question: Is there a constant c such
that f (1, 2)� c? We only know that f (1, 1)= 3 by a result of Thomassen [14]. Very little progress
has been made on this problem, with the exception of results on specific classes of digraphs, such
as tournaments and multipartite tournaments [3, 17]. Recently, this problem was reiterated by
Stiebitz [12] in the context of the colouring number of graphs. As observed from the above known
results, it seems that these partition problems are very difficult even if we consider some very
specific cases.

In this paper, we would like to consider a similar problem in edge-coloured graphs. To state
our results, we introduce some notation and definitions.

Given a finite and simple edge-coloured graph G, and a vertex v ∈V(G), let dcG(v) be the colour
degree of v in G, that is, the number of distinct colours assigned on edges which are incident to v.
The minimum colour degree of G is denoted by δc(G)(:=min{dcG(v):v ∈V(G)}). Let a and b be
integers with a� b� 1. A pair (A, B) is called (a, b)-feasible if A and B are disjoint, non-empty
subsets of V(G) such that δc(G[A])� a and δc(G[B])� b; in particular, if G contains an (a, b)-
feasible pair (A, B) with V(G)=A∪ B, then we say that G has an (a, b)-feasible partition. A graph
is called a properly coloured graph (for short, PC graph) if no two adjacent edges have the same
colour.

Our main motivation for the theorems stated below is the following conjecture.

Conjecture 1.1. Let a, b be integers with a� b� 2, and let G be an edge-coloured graph with
δc(G)� a+ b+ 1. Then G has an (a, b)-feasible partition.

Observe that this conjecture, if true, would be sharp for a PC Ka+b+1. In this paper we will
prove this conjecture in various particular cases. First, we will prove it for general graphs in the
case a= b= 2.

Theorem 1.2. Conjecture 1.1 is true for a= b= 2.

In fact Theorem 1.2 will be given by proving a much stronger result. To state our result, we
first recall the following theorem, which is on the existence of vertex-disjoint directed cycles in
digraphs.

Theorem 1.3. (Thomassen [14]). For each natural number k there exists a (smallest) number f (k)
such that every digraph D with δ+(D)� f (k) contains k vertex-disjoint directed cycles.

Bermond and Thomassen [4] conjectured that f (k)= 2k− 1, Alon [1] showed that f (k)� 64k
and recently Bucić [5] improved this bound to 24k.

As above, for k� 1 let f (k) be a function such that every directed graph D satisfying δ+(D)�
f (k) contains k disjoint directed cycles. Define a function g(k) as follows:

g(k)=
{
2 k= 1,
max{ f (k)+ 1, g(k− 1)+ 3} k� 2.

We generalize the concept of (a, b)-feasible partitions as follows. For k� 2, if V(G) can be
partitioned into k parts A1,A2, . . . ,Ak such that δc(G[Ai])� ai holds for each 1� i� k, then we
say that G has an (a1, a2, . . . , ak)-feasible partition. In this paper, we will mainly focus on the case
where (a1, a2, . . . , ak)= (2, 2, . . . , 2). For simplicity, we shall use the term 2k-feasible partition in

https://doi.org/10.1017/S0963548319000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000014


Combinatorics, Probability and Computing 757

this special case (thus (2, 2)-feasible partitions are equivalent to 22-feasible partitions). Our main
result is as follows.

Theorem 1.4. Let G be an edge-coloured graph with δc(G)� g(k). Then G has a 2k-feasible
partition.

Thomassen [14] proved that f (2)= 3. Thus g(2)=max{ f (2)+ 1, g(1)+ 3} = 5. So
Theorem 1.2 can be obtained as a corollary of Theorem 1.4. We then focus on the case
b= 2 in Conjecture 1.1. We obtained the following partial result.

Theorem 1.5. Let a be an integer with a� 2, and let Kn be an edge-coloured complete graph of order
n with δc(Kn)� a+ 3. Then Kn has an (a, 2)-feasible partition.

Also, in [7], it is shown that any edge-coloured complete bipartite graphKm,n with δc(Km,n)� 3
contains a PC cycle of length 4. This immediately yields the following (because when we remove a
cycle of length 4 from Km,n, the colour degree of each vertex in the remaining graph decreases by
at most 2).

Theorem 1.6. Let a be an integer with a� 1. If an edge-coloured complete bipartite graph Km,n
satisfies δc(Km,n)� a+ 2, then Km,n admits an (a, 2)-feasible partition.

Regarding Conjecture 1.1 in the general case, by using the probabilistic method, we get the
following result.

Theorem 1.7. Let a, b be integers with a� b� 1. If G is an edge-coloured graph with |V(G)| = n
and δc(G)� 2 ln n+ 4(a− 1), then G has an (a, b)-feasible partition.

Although our results might look a bit modest, proving Conjecture 1.1 even for the case b= 2
seems quite hard. This is because we could give a big improvement on the bound of f (k) if it is
true.

Theorem 1.8. If Conjecture 1.1 is true for b= 2, then f (k)� 3k− 1.

Solving Conjecture 1.1 completely seems a very difficult problem.
This paper is organized as follows. In Section 2 we define and characterize the structure of

‘minimally 2-coloured graphs’. In Sections 3 and 4 we give the proofs of Theorems 1.4 and 1.7,
respectively. In Section 5 we prove Theorems 1.5 and 1.8. In particular, Theorem 1.8 is obtained
by a much stronger result (see Proposition 5.3 in Section 5).

Before delivering the proofs, we shall need more notation. For a subgraph H of G with
E(H) �= ∅, let colG(H) be the set of colours assigned to E(H). Also, for a pair of vertex-disjoint
subgraphs M,N in G, let colG(M,N) be the set of colours on edges between M and N in G. For
a vertex v of G, let Nc

G(v)= colG(v,NG(v)). By definition, note that dcG(v)= |Nc
G(v)|. When there

is no ambiguity, we often write col(e) for colG(e), col(H) for colG(H), col (M,N) for colG(M,N)
and dc(v) for dcG(v). For a colour i ∈ col(G), let Gi denote the subgraph of G induced by the edges
of colour i. We say a colour i appears k times at a vertex v if dGi(v)= k.

2. Minimally 2-coloured graphs
To consider our problem, utilizing the structure of minimal subgraphs H with δc(H)� 2 will be
very important. An edge-coloured graph G is 2-coloured if δc(G)� 2. Specifically, we say a graph
G isminimally 2-coloured if δc(G)� 2 holds but any proper subgraphH ofG has minimum colour
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degree less than 2 in H. By definition, note that every PC cycle is a minimally 2-coloured graph.
An edge-coloured graph obtained from two disjoint cycles by joining a path is a generalized bowtie
(more briefly, call it g-bowtie). We allow the case where the path joining two cycles is empty. In
that case, the g-bowtie becomes a graph obtained from two disjoint cycles by identifying one
vertex in each cycle. Note also that K1 + 2K2 (i.e. a graph obtained from two disjoint triangles by
identifying one vertex of each triangle) is a g-bowtie with minimum order.

We have the following characterization of minimally 2-coloured graphs, which will be used to
prove our main result.

Theorem 2.1. If an edge-coloured graph G is minimally 2-coloured, then G is either a PC cycle or a
2-coloured g-bowtie containing no PC cycles.

In order to prove this theorem, we shall need the following structural theorem characterizing
edge-coloured graphs containing no PC cycles.

Theorem 2.2. (Grossman andHäggkvist [9], Yeo [18]). Let G be an edge-coloured graph contain-
ing no PC cycles. Then there is a vertex z ∈V(G) such that no component of G− z is joined to z with
edges of more than one colour.

Proof of Theorem 2.1. LetG be a minimally 2-coloured graph. IfG contains a subgraphH which
is a PC cycle or a 2-coloured g-bowtie containing no PC cycles, thenG=H (otherwise, by deleting
vertices in V(G) \V(H) or edges in E(G) \ E(H), we obtain a smaller 2-coloured graph). Hence,
it is sufficient to prove that if G contains no PC cycle, then G contains a 2-coloured g-bowtie.
Apply Theorem 2.2 to G. Since G is minimally 2-coloured, we may assume that G is connected
and there is a vertex z ∈V(G) such that G− z contains two components H1 and H2, with all the
edges between z and Hi having colour i for i= 1, 2.

Let zx1x2 · · · xp and zy1y2 · · · yq, respectively, be longest PC paths in G\H2 and G\H1 starting
from z. Set x0 = z and y0 = z. Since dcG\H2

(x)� 2 and dcG\H1
(y)� 2 for arbitrary vertices x ∈V(H1)

and y ∈V(H2), we have p, q� 2, and there exist vertices xi and yj for some i, j with 0� i� p− 2
and 0� j� q− 2 such that col (xpxi) �= col (xp−1xp) and col (yqyj) �= col (yq−1yq). Since G con-
tains no PC cycle, we have col (xpxi)= col (xixi+1) and col (yqyj)= col (yjyj+1). Together, the path
xixi−1 · · · x1zy1y2 · · · yj and cycles xixi+1 · · · xpxi and yjyj+1 · · · yqyj form a 2-coloured g-bowtie.

The proof is complete.

3. Proof of Theorem 1.4
First we prove the following proposition.

Proposition 3.1. Let G be an edge-coloured graph with δc(G)� a+ b− 1. If G contains an (a, b)-
feasible pair, then there exists an (a, b)-feasible partition of G.

Proof. Let (A, B) be an (a, b)-feasible pair such that A∪ B is maximal. If (A, B) is not an (a, b)-
feasible partition, then A∪ B=V(G)\S with S �= ∅. Since (A, B) is maximal, (A, B∪ S) is not a
feasible pair. Hence there exists a vertex x in S such that dcG[B∪S](x)� b− 1. Recall that dcG(x)�
a+ b− 1. So dcG[A∪x](x)� a. Thus (A∪ x, B) is a feasible pair, which is a contradiction to the
maximality of (A, B). This proves that (A, B) is an (a, b)-feasible partition of G.

It is easy to check that the following proposition is also true.
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Proposition 3.2. Let G be an edge-coloured graph with δc(G)�
∑k

i=1 (ai − 1)+ 1. If G contains
k disjoint subgraphs H1,H2, . . . ,Hk such that δc(Hi)� ai for i= 1, 2, . . . , k, then G admits an
(a1, a2, . . . , ak)-feasible partition.

In what follows, we will keep the above propositions in mind and use these facts as a matter of
course.

Proof of Theorem 1.4. We prove the theorem by contradiction. We say (G, k) is a counter-
example if δc(G)� g(k), but G does not admit a 2k-feasible partition. Let (G, k) be a counter-
example such that (G, k) is chosen according to the following order of preferences.

(i) k is minimum,
(ii) |G| is minimum,
(iii) |E(G)| is minimum,
(iv) | col (G)| is maximum.

By the choice of (G, k), we know that δc(G)= g(k) and k� 2. Let
Sv = {u:dcG−v(u)= dcG(u)− 1}.

Now we prove the following claims.

Claim 1. G contains no rainbow triangles.

Proof. Suppose that G contains a rainbow triangle xyzx. Then let G′ be the edge-coloured graph
obtained by deleting vertices x, y, z from G. Thus δc(G′)� g(k)− 3� g(k− 1). By the assumption
of (G, k), we know that (G′, k− 1) is not a counterexample. So G′ admits a 2k−1-feasible partition.
Together with the triangle xyzx, we get a 2k-feasible partition of G, a contradiction.

Claim 2. Sv �= ∅ for all v ∈V(G).

Proof. Suppose that Sv = ∅ for some vertex v ∈V(G). Then δc(G− v)� δc(G)= g(k). By the
assumption of (G, k), we know that (G− v, k) is not a counterexample. So G− v admits a
2k-feasible partition. By Proposition 3.2, G also has a 2k-feasible partition, a contradiction.

Claim 3. For each edge uv ∈ E(G), either u ∈ Sv or v ∈ Su.

Proof. Suppose that there exists an edge uv ∈ E(G) such that u �∈ Sv and v �∈ Su. Then let G′ be
the edge-coloured graph obtained by deleting the edge uv from G. Thus δc(G′)= δc(G)= g(k). By
the assumption of (G, k), we know that (G′, k) is not a counterexample. So G′ admits a 2k-feasible
partition, which is also a 2k-feasible partition of G, a contradiction.

Claim 4. For each colour i ∈ col (G), the coloured graph Gi is a star.

Proof. Claim 3 implies that G contains no monochromatic triangle or monochromatic P4 (P4
denotes a path on four vertices). Thus for every colour i ∈ col (G), each component of Gi is a star.
If Gi contains more than one component, then colour one of the components with a colour not
in col (G). Thus, we get a counterexample with more colours than G, which contradicts the choice
of G.

Claim 4 implies that for each monochromatic star with centre v, every leaf of the star belongs
to Sv.
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(a) |T | = 1 (b) |T | = 2

Figure 1. Cases of |T|.

Claim 5. For u, v ∈V(G), if u ∈ Sv and v �∈ Su, then Su ∩NG(v) �= ∅.

Proof. Suppose to the contrary that there exist vertices u, v ∈V(G) satisfying u ∈ Sv, v �∈ Su and
Su ∩NG(v)= ∅. Then col (vu) appears only once at u and more than once at v. By Claim 4, the
colour col (vu) can only appear at {v} ∪ Sv, and in particular not at Su. Now we construct an
edge-coloured graph G′ by deleting the vertex u and adding edges {vx:x ∈ Su} to G with all of
them coloured by col (vu) (since Su ∩NG(v)= ∅, this is possible without resulting multi-edges).
For each vertex x ∈V(G′)\Su, we have dcG′(x)= dcG(x). For each vertex y ∈ Su, we have Nc

G′(y)=
(Nc

G(y)\ col (uy))∪ col (vu). Since the colour col (vu) does not appear at Su, we have dcG′(y)=
|Nc

G′(y)| = |Nc
G(y)| = dcG(y). This implies that δc(G′)� δc(G)= g(k). Note that |G′| = |G| − 1. By

the assumption of G, we know that G′ must admit a 2k-feasible partition. By Theorem 2.1, G′
contains k disjoint subgraphs H1,H2, . . . ,Hk such that Hi is either a PC cycle or a minimally
2-coloured g-bowtie containing no PC cycles for i= 1, 2, . . . , k. If

⋃k
i=1 E(Hi)⊆ E(G), then we

can find a 2k-partition of G as desired, a contradiction. If
⋃k

i=1 E(Hi) �⊆ E(G), then all the edges in
T = (

⋃k
i=1 E(Hi)) \ E(G) form a monochromatic star with the vertex v as a centre. Thus, without

loss of generality, assume that T ⊆ E(H1).
Since H1 is either a PC cycle or a minimally 2-coloured g-bowtie containing no PC cycles, for

each vertex a ∈H1 and each colour j ∈ col (H1), the colour j appears at most twice at a inH1. Thus
we have 1� |T|� 2.

If |T| = 1, then let xv be the unique edge in T. Replace xv in H1 with the path xuv (see
Figure 1(a)). We obtain an edge-coloured graph H′

1 in G with δc(H′
1)� 2 (since δc(H1)� 2,

x ∈ Su, u ∈ Sv and colG (uv)= colG′ (xv)). Thus H′
1,H2, . . . ,Hk imply a 2k-feasible partition of G,

a contradiction.
If |T| = 2, then let T = {vx, vy}. Since col (vx)= col (vy), we know that H1 is a minimally

2-coloured g-bowtie with v being an end-vertex of the connecting path in H1. Delete the edges
vx, vy and add vertex u and edges uv, ux, uy inH1 (see Figure 1(b)). We obtain a g-bowtieH′

1 in G
with δc(H′

1)� 2 (since δc(H1)� 2, x, y ∈ Su, u ∈ Sv and colG (uv)= colG′ (vx)= colG′ (vy)). Thus
H′
1,H2, . . . ,Hk imply a 2k-feasible partition of G, a contradiction.

Claim 6. There exists an edge xy ∈ E(G) such that x ∈ Sy and y ∈ Sx.

Proof. Suppose not. Then by Claim 3, we can construct an oriented graph D by orienting each
edge e= uv ∈ E(G) from u to v if and only if v ∈ Su. Then d+

D (v)� 2 for each vertex v ∈V(D). Let
Ti(v)= {u: col (uv)= i}.

Subclaim 6.1. For each vertex v ∈V(G) and colours i, j ∈ col (G) with i �= j, if |Ti(v)|� 2 and
|Tj(v)|� 2, then the following statements hold:

(a) Ti(v)∩ Tj(v)= ∅ and E(Ti(v), Tj(v))= ∅,
(b) G[Ti(v)] contains at least one edge.
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Proof. (a) By definition, we know that Ti(v)∩ Tj(v)= ∅. Since |Ti(v)|� 2 and |Tj(v)|� 2, we
know that Ti(v)∪ Tj(v)⊆ Sv. Let ui ∈ Ti(v) and uj ∈ Tj(v). Then colours i and j appear only once
at ui and uj, respectively. If uiuj ∈ E(G), then vuiujv is a rainbow triangle, a contradiction. So we
have E(Ti(v), Tj(v))= ∅.
(b) Suppose that G[Ti(v)] is empty for some colour i with |Ti(v)|� 2. Then choose u ∈ Ti(v). We
have u ∈ Sv and v �∈ Su. Applying Claim 5 to u and v, we obtain Su ∩NG(v) �= ∅. Let z ∈ Su ∩NG(v).
We have z ∈NG(v), and as G[Ti(v)] is empty, z does not belong to Ti(v). So col (zv) �= i. Recall
that col (vu)= i, u ∈ Sv and z ∈ Su. It is easy to check that C = zuvz is a rainbow triangle in G, a
contradiction.

Subclaim 6.2. For each vertex v ∈V(G), there is exactly one colour i ∈ col (G) such that
|Ti(v)|� 2.

Proof. Given a vertex v, by Claim 2, we can find a vertex u ∈ Sv. By the assumption on G, we have
v �∈ Su. Let i= col (uv). Then |Ti(v)|� 2. This implies that for each vertex v ∈V(G), there is at least
one colour i ∈ col (G) such that |Ti(v)|� 2. Now, suppose to the contrary that there exists a vertex
v ∈V(G) and colours i, j ∈ col (G) with i �= j satisfying |Ti(v)|� 2 and |Tj(v)|� 2. By Subclaim 6.1,
we can choose edges uiwi from G[Ti(v)] and ujwj from G[Tj(v)]. Let F =G[v, ui,wi, uj,wj]. Then
δc(F)� 2. Now we will discuss on the minimum colour degree of G− F.

If δc(G− F)� g(k− 1), then by the assumption of (G, k), G− F has a 2k−1-feasible partition.
Together with F, we obtain a 2k-feasible partition of G, a contradiction. So we have δc(G− F)<
g(k− 1). Let x ∈V(G− F) be a vertex satisfying dcG−F(x)= δc(G− F). Since δc(G)� g(k)� g(k−
1)+ 3 and |F| = 5, we have

4� | col (x, F)|� 5.
For vertices a ∈ {ui,wi} and b ∈ {uj,wj}, if | col (x, {a, b, v})|� 3, then it is easy to check that

either xavx or xbvx is a rainbow triangle, a contradiction (note that col (xv) ∈ {i, j} is possi-
ble). So we have | col (x, {a, b, v})|� 2. Note that | col (x, F)|� 4. This ensures that vx �∈ E(G)
and | col (x, {ui,wi, uj,wj})| = 4. Thus C = xuivujx is a rainbow cycle of length 4. Suppose that
there exists a vertex y ∈V(G− C) such that dcG−C(y)< g(k− 1). Then | col (y, C)|� 4. Note that
ui, uj ∈ Sv. Thus either yuivy or yujvy is a rainbow triangle, a contradiction. Hence we have
δc(G− C)� g(k− 1). By the assumption of G, the graph G− C has a 2k−1-feasible partition.
Together with G[V(C)], we get a 2k-feasible partition of G, a contradiction.

Subclaim 6.2 implies that at least g(k)− 1 colours appear only once at v for each vertex
v ∈V(G). Thus, we have δ−(D)� g(k)− 1� f (k). So D contains k disjoint directed cycles, which
correspond to k disjoint PC cycles in G, a contradiction.

Claim 7. For each edge xy ∈ E(G) satisfying x ∈ Sy and y ∈ Sx, we have

(a) |Nc
G(x)∪Nc

G(y)− col (xy)|� g(k)− 1, and
(b) NG(x)− y=NG(y)− x= {vi : 1� i� g(k)− 1}, where col (xvi)= col (yvi) and col (xvi) �=

col (xvj) for i, j ∈ [1, g(k)− 1] with i �= j.

Proof. (a) Since G contains no rainbow triangles and col (xy) appears only once at x and y,
respectively, we have col (xu)= col (yu) for all u ∈NG(x)∩NG(y). Now let G′ =G/xy. Then G′
is well-defined and dcG′(v)= dcG(v) for all vertices in V(G)\{x, y}. Let z be the new vertex resulting
from contracting the edge xy.

Suppose that |Nc
G(x)∪Nc

G(y)− col (xy)|� g(k). Then dcG′(z)� g(k). Thus we have δc(G′)�
g(k). By the choice of G, we know that G′ must admit a 2k-feasible partition. By Theorem 2.1,
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Figure 2. dH1 (z)= 2.

Figure 3. dH1 (z)= 3.

G′ contains k disjoint subgraphs H1,H2, . . . ,Hk such that Hi (i= 1, 2, . . . , k) is either a PC cycle
or a minimally 2-coloured g-bowtie containing no PC cycles.

If z �∈ ⋃k
i=1 V(Hi), then H1,H2, . . . ,Hk are k-disjoint subgraphs of G. This implies a 2k-

feasible partition of G, a contradiction. So we can assume that z ∈V(H1). Evidently we have
2� dH1 (z)� 4.

If dH1 (z)= 2, then let NH1 (z)= {u, v} (see Figure 2). By the symmetry between x and y, and
that between u and v, it suffices to discuss the following two cases:

(i) u, v ∈NG(x),
(ii) u ∈NG(x) and v �∈NG(x).

If u, v ∈NG(x), then replace z with x. If u ∈NG(x) and v �∈NG(x), then replace the path uzv with
uxyv. In all cases, we can transform H1 into a graph H′

1 ⊆G such that δc(H′
1)� 2 and V(H′

1)∩
V(Hi)= ∅ for i= 2, 3 . . . , k. Thus H′

1,H2, . . . ,Hk imply the existence of a 2k-feasible partition of
G, a contradiction.

If dH1 (z)= 3, then H1 must be a minimally 2-coloured g-bowtie with z being an end-vertex of
the connecting path. Let NH1 (z)= {u, v,w} with u, v on a same cycle in H1 (see Figure 3). By the
symmetry between x and y, and that between u and v, it suffices to discuss the following three
cases:

(i) {u, v,w} ⊆NG(x),
(ii) {u, v} ⊆NG(x) and w �∈NG(x),
(iii) {u,w} ⊆NG(x) and v �∈NG(x).
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Figure 4. dH1 (z)= 4.

If {u, v,w} ⊆NG(x), then replace z with x. If {u, v} ⊆NG(x) and w �∈NG(x), then replace zw with
xyw. If {u,w} ⊆NG(x) and v �∈NG(x), then replace zv with xyv. Finally, in all cases, we can trans-
formH1 into a graphH′

1 ⊆G such that δc(H′
1)� 2 andV(H′

1)∩V(Hi)= ∅ for i= 2, 3 . . . , k. Thus
H′
1,H2, . . . ,Hk imply a 2k-feasible partition of G, a contradiction.
If dH1 (z)= 4, then H1 is a minimally 2-coloured g-bowtie with two cycles overlapped on the

vertex z. LetNH1 (z)= {u, v, u′, v′}with u, v on one cycle and u′, v′ on the other cycle (see Figure 4).
By the symmetry between x and y and between u and v and that between u′ and v′, it suffices to
discuss the following four cases:

(i) {u, v, u′, v′} ⊆NG(x),
(ii) {u, v, u′} ⊆NG(x) and v′ �∈NG(x),
(iii) {u, v} ⊆NG(x) and {u′, v′} ∩NG(x)= ∅,
(iv) {u, u′} ⊆NG(x) and {v, v′} ∩NG(x)= ∅.

If {u, v, u′, v′} ⊆NG(x), then replace z with x. If {u, v, u′} ⊆NG(x) and v′ �∈NG(x), then replace the
path zv′ with xyv′. If {u, v} ⊆NG(x) and {u′, v′} ∩NG(x)= ∅, then split z into the edge xy such
that the resulting graph is still a g-bowtie. If {u, u′} ⊆NG(x) and {v, v′} ∩NG(x)= ∅, then split
z into the edge xy in an orthogonal direction such that the resulting graph is a cycle with one
chord xy. Finally, in all cases, we can transform H1 into a graph H′

1 ⊆G such that δc(H′
1)� 2 and

V(H′
1)∩V(Hi)= ∅ for i= 2, 3 . . . , k. Thus H′

1,H2, . . . ,Hk imply a 2k-feasible partition of G, a
contradiction.

(b) By Claim 7(a) and the fact that dcG(x), d
c
G(y)� g(k), we have Nc

G(x)=Nc
G(y) and dcG(x)=

dcG(y)= g(k). For each colour j ∈Nc
G(x) and j �= col (xy), since G j is a star and the colour j appears

at x and y, we know that x, y must be leaf vertices of Gj. Let vj be the centre of Gj. The proof is
complete.

Now let xy ∈ E(G) with x ∈ Sy, y ∈ Sx and {vi:1� i� g(k)− 1} be the set of vertices described
in Claim 7. Without loss of generality, let col (xvi)= i for i ∈ [1, g(k)− 1]. Let H be the subgraph
of G induced by {x, y} ∪ {vi : 1� i� g(k)− 1} and R=G−H.

Claim 8. For 1� i� g(k)− 1, col (vi, Svi)= {i}.

Proof. Suppose to the contrary that there exists a vertex u ∈ Svi such that col (uvi) �= i. If u= vj for
some j with 1� j� g(k)− 1 and j �= i, then col (uvi)= j (since xvivjx is not a rainbow triangle).
Since the colour j appears at least twice at vj(= u), we know that u �∈ Svi , a contradiction. Now
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the vertex u must belong to V(R). Since each Gj (1� j� g(k)− 1) is a star and col (uvi) �= i, we
have col (uvi) �∈ [1, g(k)− 1]. If vi ∈ Su, then by applying Claim 7 to the edge uvi, we haveNG(u)−
vi =NG(vi)− u. Since x ∈NG(vi), we have x ∈NG(u), namely, u ∈NG(x), a contradiction. So we
have vi �∈ Su. Applying Claim 5 to uvi, we obtain a vertex v ∈ Su ∩NG(vi). Note that col (uvi) �∈
[1, g(k)− 1] and G contains no rainbow triangle, we have v ∈ R− u and col (vvi)= col (uvi). Let
F =G[x, y, vi, u, v]. It is easy to check that δc(F)� 2.

We will show that for each vertex z ∈G− F, | col (z, F)|� 3. For z ∈ R \V(F), the assertion
holds since z has no neighbour to x or y. Thus we may assume that z = vj for some j with 1� j�
g(k)− 1 and j �= i. If zvi /∈ E(G) or col (zvi)= j, then we have the desired conclusion. So we may
assume that z is adjacent to vi and col (zvi)= i (otherwise, zxviz is a rainbow triangle). Since there
is no rainbow triangle and Gi is a star, we can easily check that zu �∈ E(G). So z satisfies the desired
property.

Now, δc(G− F)� g(k)− 3� g(k− 1). So G− F admits a 2k−1-feasible partition. Together
with G[V(F)], we obtain a 2k-feasible partition of G, a contradiction.

Claim 9. There exists a vertex vi with 1� i� g(k)− 1 such that Svi = {x, y}.

Proof. Suppose not. Then there exists a vertex ui ∈ Svi\{x, y} for all i with 1� i� g(k)− 1. By
Claim 8, col (uivi)= i for 1� i� g(k)− 1. Let G′ =G− {x, y}. Then δc(G′)� δc(G)� g(k). By the
choice of G, the graph G′ must admit a 2k-feasible partition, which implies that G has a 2k-feasible
partition, a contradiction.

We are now in a position to prove the theorem. Let vi be the vertex in Claim 9. Since dcH(vi)�
g(k)− 1 and dcG(vi)� g(k), there is a vertex u ∈ R∩NG(vi). Note that u �∈ Svi . By Claim 3, we have
vi ∈ Su. Now apply Claim 5 to the edge uvi, we have Svi ∩NG(u) �= ∅. This implies that either
x ∈NG(u) or y ∈NG(u), a contradiction.

This completes the proof of Theorem 1.4.

4. Proof of Theorem 1.7
Proof of Theorem 1.7. Assume V(G)= {u1, u2, . . . , un}. We divide V(G) into two disjoint parts
A, B randomly with Pr (u ∈A)= Pr (u ∈ B)= 1/2 for each vertex u ∈V(G). For each u ∈V(G),
the bad event Au means that u ∈A and {dcG[A](u)� a− 1}. Let Bu be the bad event that u ∈ B and
{dcG[B](u)� b− 1}. We have

Pr (Au)�
1
2

a−1∑
j=0

(
dcG(u)

j

)(
1
2

)dcG(u)
and Pr (Bu)�

1
2

b−1∑
j=0

(
dcG(u)

j

)(
1
2

)dcG(u)
.

Thus

Pr (Au ∪ Bu)= Pr (Au)+ Pr (Bu)�
a−1∑
j=0

(
dcG(u)

j

)(
1
2

)dcG(u)

=
dcG(u)∑

j=dcG(u)−a+1

(
dcG(u)

j

)(
1
2

)dcG(u) = Pr (X� dcG(u)− a+ 1),

where X ∼ B(dcG(u), 1/2).
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Recall that Chernoff ’s bound: Pr [X − E(X)� nε]< e−2nε2 , where X ∼ B(n, 1/2). We get

Pr (Au ∪ Bu)� Pr (X� dcG(u)− a+ 1)

= Pr
(
X − dcG(u)

2
� dcG(u)

2
− a+ 1

)
< exp (−2((dcG(u))/2− a+ 1)2/dcG(u)).

Since dcG(u)� 2 ln n+ 4(a− 1), we have exp (−2((dcG(u))/2− a+ 1)2/dcG(u))� 1/n. Thus

Pr
[ ⋃
u∈V(G)

(Au ∪ Bu)
]
�

∑
u∈V(G)

Pr (Au ∪ Bu)< 1.

Hence there exists a partition such that neither event Au nor Bv happens. So we have an (a, b)-
feasible partition.

5. From (a,2)-feasible partitions to Bermond and Thomassen’s conjecture
First, we give the proof of Theorem 1.5. In order to prove the theorem, we use the following fact.

Lemma 5.1. [8]. In any rainbow triangle-free colouring of a complete graph, there exists a vertex
partition (V1,V2 . . . ,Vt) of V(Kn)with t� 2 such that between the parts there are a total of at most
two colours, and between every pair of parts Vi,Vj with i �= j there is only one colour on the edges.

Proof of Theorem 1.5. If Kn contains a rainbow triangle C, then let A= C and B=Kn − C. It
follows that δc(A)� 2 and δc(B)� a. So (A, B) is an (a, 2)-feasible partition. Now we assume
that Kn contains no rainbow triangle. Utilizing Lemma 5.1, we can easily see that (V1,∪t

i=2Vi)
is an (a+ 1, a+ 1)-feasible partition, which is also an (a, 2)-feasible partition. Thus Theorem 1.5
holds.

In this section, we will point out a relationship between (a, 2)-feasible partitions in edge-
coloured graphs and Bermond and Thomassen’s conjecture in digraphs. In fact, Bermond and
Thomassen’s conjecture has not even been confirmed in multipartite tournaments. Recently, Li,
Broersma and Zhang [10] revealed a relationship between PC cycles in edge-coloured complete
graphs and Bermond and Thomassen’s conjecture on multipartite tournaments.

We prove the following proposition.

Proposition 5.2. For k� 1 let d1, . . . , dk be positive integers, and let

f (d1, d2, . . . , dk), g(d1, d2, . . . , dk) and h(d1, d2, . . . , dk)

be the minimum values which make the following three statements true.

(i) Every oriented graph D with δ+(D)� f (d1, d2, . . . , dk) has a vertex-partition
(V1,V2, . . . ,Vk) with δ+(D[Vi])� di for i= 1, 2, . . . , k.

(ii) Every edge-coloured graph G with δc(G)� g(d1, d2, . . . , dk) has a (d1, d2, . . . , dk)-feasible
partition.

(iii) Every edge-coloured complete graph K with δc(K)� h(d1, d2, . . . , dk) has a (d1, d2, . . . , dk)-
feasible partition.

Then we have

f (d1 − 1, d2 − 1, . . . , dk − 1)� g(d1, d2, . . . , dk)� h(d1 + 1, d2 + 1, . . . , dk + 1).
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Proof. Given an oriented graph D, we construct an edge-coloured graph G with V(G)=V(D),
E(G)= {uv : uv ∈A(D) or vu ∈A(D)} and colG(uv)= v if and only if uv ∈A(D). If δ+(D)�
g(d1, d2, . . . , dk), then by the construction, we know that δc(G)� g(d1, d2, . . . , dk). Thus, G
admits a partition V1,V2, . . . ,Vk such that δc(G[Vi])� di for i= 1, 2, . . . , k. In turn, by the
construction, we have δ+(D[Vi])� di − 1 for i= 1, 2, . . . , k. So we obtain

f (d1 − 1, d2 − 1, . . . , dk − 1)� g(d1, d2, . . . , dk).

Given an edge-coloured graph G, we construct an edge-coloured complete graph K with
V(K)=V(G), colK(e)= colG(e) for all e ∈ E(G), colK(e)= c0 for all e ∈ E(K) \ E(G) and c0 �∈
col(G). If δc(G)� h(d1 + 1, d2 + 1, . . . , dk + 1), then δc(K)� h(d1 + 1, d2 + 1, . . . , dk + 1). By
the definition of h, we know that there exists a partitionV1,V2, . . . ,Vk of K such that δc(K[Vi])�
di + 1 for i= 1, 2, . . . , k. By the construction ofK, we have δc(G[Vi])� di for i= 1, 2, . . . , k. Recall
the definition of g. We know that

g(d1, d2, . . . , dk)� h(d1 + 1, d2 + 1, . . . , dk + 1).

Remark. The existence of f (d1, d2, . . . , dk) for di � 2 (i= 1, 2, . . . , k) and k� 2 is still unknown
according to [1]. Proposition 5.2 implies that we could show the existence of f (d1, d2, . . . , dk) by
proving the existence of g(d1 + 1, d2 + 1, . . . , dk + 1) or h(d1 + 2, d2 + 2, . . . , dk + 2).

When d1 = d2 = · · · = dk = d, for simplicity we write f (d, d, . . . , d)k instead of
f (d1, d2, . . . , dk). This also applies to functions g and h.

The following result provides us the direct consequence of Theorem 1.8.

Proposition 5.3. If g(a, 2)� a+ t for an integer t and all a ∈N, then

f (1, 1, . . . , 1)k � g(2, 2, . . . , 2)k � tk− t + 2.

Proof. According to Proposition 5.2, we only need to prove that g(2, 2, . . . , 2)k � tk− t + 2. For
this we use induction on k. Since g(a, 2)� a+ t for all a ∈N. We have g(2, 2)� t + 2. Assume that
g(2, 2, . . . , 2)k−1 � (k− 2)t + 2. and let x= g(2, 2, . . . , 2)k−1. Then

g(2, 2, . . . , 2)k � g(x, 2)� x+ t� (k− 1)t + 2= tk− t + 2.

So g(2, 2, . . . , 2)k � tk− t + 2 for all k� 2.
The proof is complete.

Remark. Bermond and Thomassen [4] conjectured that f (1, 1, . . . , 1)k = 2k− 1 (the conjecture
is proposed for simple directed graphs and it is sufficient to prove it in oriented graphs). In 1997,
Alon [1] showed that f (1, 1, . . . , 1)k � 64k. Recently, this bound has been improved to 24k by
Bucić [5]. In view of Proposition 5.3, we believe that considering (a, 2)-feasible partitions in edge-
coloured graphs could be a reasonable approach for improving Bucić’s result concerning Bermond
and Thomassen’s conjecture in digraphs.
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