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Abstract

In 1945–1946, C. L. Siegel proved that an n-dimensional lattice Λ of determinant det(Λ) has at most mn2

different sublattices of determinant m · det(Λ). In 1997, the exact number of the different sublattices of
index m was determined by Baake. We present a systematic treatment for counting the sublattices and
derive a formula for the number of the sublattice classes under unimodular equivalence.
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1. Introduction

Let Z denote the set of all integers and let En denote the n-dimensional Euclidean
space. If a1, a2, . . ., an are n independent vectors in En, then the discrete set

Λ =

{∑
ziai : zi ∈ Z

}
is called an n-dimensional lattice generated by the basis {a1, a2, . . . , an}. If the
basis vectors are expressed as ai = (ai1, ai2, . . . , ain), then the absolute value of the
determinant of

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann


is called the determinant of Λ. Usually, it is written as det(Λ). In fact,

det(Λ) = vol(P),

where P is the parallelepiped defined by

P =

{∑
λiai : 0 ≤ λi ≤ 1

}
.
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[2] Sublattices of a lattice 51

A subset Λ∗ of Λ is called a sublattice if it is also an n-dimensional lattice. If
{b1,b2, . . . , bn} is a basis of Λ∗, where bi = (bi1, bi2, . . . , bin), then

bi = di1a1 + di2a2 + · · · + dinan, di j ∈ Z.

Let B denote the n × n matrix with elements bi j and let D denote the n × n matrix with
elements di j. Then

B = DA

and therefore
det(Λ∗) = m · det(Λ),

where m is the absolute value of the determinant of D. Usually m is defined as [Λ : Λ∗]
and is called the index of Λ∗ in Λ.

The structures and representations of sublattices have been studied by many authors
including Minkowski, Siegel, Cassels, Hlawka, Rogers, Schmidt and Gruber. Many
results and their applications can be found in classic references such as [6, 11, 12, 17,
22]. Particular sublattices have been studied in [3–5, 7, 8, 19, 20].

Let Λ be an n-dimensional lattice and m a positive integer. Let fn(m) denote the
number of different sublattices of Λ with index m and let gn(m) denote the number of
different sublattice classes of Λ with index m under unimodular equivalence.

Clearly, an n-dimensional lattice is both a free abelian group and a free module over
Z. Counting the subgroups of a group is a classic topic in algebra (see the classic books
[15, 21] and papers such as [9, 13]). However, the particular lattice case was neglected
and explicit formulae for fn(m) were achieved only in 1997.

In 1945–1946, Siegel gave a series of lectures on geometry of numbers at New York
University. His lecture notes [22] contained the first upper bound for fn(m), namely

fn(m) ≤ mn2
. (1.1)

Since the lecture notes were published only in 1989, this result and many others were
neglected. In 1959, Cassels [6] presented some basic results about the structures of the
bases of the sublattices. In 1997, Baake [2] deduced the following formula based on a
recursion,

fn(m) =
∑

d1d2...dn=m

d0
1d1

2 . . . d
n−1
n . (1.2)

Remark 1.1. The formula (1.2) may be much older since its generating function is a
product of zeta functions. Let Λ be an n-dimensional lattice and define

ζΛ(s) =

∞∑
m=1

fn(m)
ms .

Lubotzky and Segal [15] presented six proofs for

ζΛ(s) = ζ(s)ζ(s − 1) · · · ζ(s − n + 1).

Nevertheless, the formula for fn(m) was not given there and no earlier reference has
been located.
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Clearly, both Cassels and Baake were unaware of Siegel’s work. Assume that

m = pα1
1 . . . pα`

`
,

where the pi are prime numbers. Baake’s formula was simplified by Gruber [10] as

fn(m) =
∏̀
i=1

α∏̀
j=1

p j+n−1
i − 1

p j
i − 1

=
∏̀
i=1

n−1∏
j=1

p j+αi
i − 1

p j
i − 1

.

In particular, when p is a prime, it is interesting to notice that

fn(p) = 1 + p + · · · + pn−1

and
f2(p`) = 1 + p + · · · + p`.

Let k be a positive integer and let pn(k) denote the number of partitions of k into n
parts. In other words, pn(k) is the number of the integer solutions of{

x1 + x2 + · · · + xn = k,
x1 ≥ x2 ≥ · · · ≥ xn ≥ 0.

The partition function pn(k) has a long history (see Andrews and Eriksson [1]).
The purpose of this paper is to present a systematic treatment on counting and

classifying sublattices. First, we present a detailed proof of (1.2). Then we prove
the following classification theorem.

Theorem 1.2. If m = pα1
1 . . . pα`

`
, where the pi are prime numbers, then

gn(m) =
∏̀
i=1

pn(αi).

Corollary 1.3. When m = p1 p2 . . . p`, where p1, p2, . . . , p` are distinct primes,

gn(m) = 1.

For large m = 2k and fixed n,

gn(m) ∼
(log2 m)n−1

n!(n − 1)!
.

2. Siegel’s upper bound

Siegel’s upper bound (1.1) was obtained in 1945–1946 but only published in 1989
in his lecture notes written by Chandrasekharan [22]. So, this beautiful result has
been neglected. For this reason, we reproduce it here. First of all, let us introduce a
well-known basic lemma which can be found in every book on lattices.
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Lemma 2.1. Let {a1, a2, . . . , an} be a basis of an n-dimensional lattice Λ. Assume that
u1, u2, . . ., un are n linearly independent vectors in En with

ui = ui1a1 + ui2a2 + · · · + uinan, i = 1, 2, . . . , n.

Then {u1,u2, . . . ,un} is also a basis of Λ if and only if U = (ui j) is an n × n unimodular
matrix.

Theorem 2.2 (Siegel [22]). Assume that Λ is an n-dimensional lattice and m is a
positive integer. Then Λ has at most mn2

different sublattices of index m, that is,

fn(m) ≤ mn2
.

Proof. Assume that {a1, a2, . . . , an} is a basis of Λ. If Λ∗ is a sublattice of Λ of index
m with a basis {u1,u2, . . . ,un}, then

ui = ui1a1 + ui2a2 + · · · + uinan, i = 1, 2, . . . , n, (2.1)

where all the ui j are integers and det(ui j) = ±m. For convenience, we denote the
n × n matrix (ui j) by U. If Λ• is another sublattice of Λ of index m with a basis
{v1, v2, . . . , vn}, then

vi = vi1a1 + vi2a2 + · · · + vinan, i = 1, 2, . . . , n, (2.2)

where all the vi j are integers and det(vi j) = ±m. We denote the n × n matrix (vi j) by V .
From (2.1) and (2.2), the matrix that transforms {v1, v2, . . . , vn} into {u1, u2, . . . , un} is
UV−1. In other words, if W = UV−1 = (wi j), then

ui = wi1v1 + wi2v2 + · · · + winvn, i = 1, 2, . . . , n.

Now, we proceed to show that if

ui j ≡ vi j (mod m)

for all i, j = 1,2, . . . ,n, then Λ∗ is identical with Λ•. Clearly, mV−1 is an integer matrix.
Since U ≡ V (mod m),

mW = mUV−1 ≡ mVV−1 ≡ mE ≡ O (mod m),

where E is the n × n unit matrix and O is the n × n zero matrix. This means that all
elements of mW are divisible by m and therefore all elements of W are integers. On
the other hand,

det(W) = det(UV−1) = ±
m
m

= ±1.

Thus, W must be a unimodular matrix and, by Lemma 2.1, Λ∗ is identical with Λ•.
This shows that there are at most m possible values for any element of U such that

the corresponding sublattices of Λ are different. Since U has n2 elements, the total
number of possibilities for U is mn2

. In other words,

fn(m) ≤ mn2

and the theorem is proved. �
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3. Sublattices of given index

In 1907, Minkowski [17] studied the relation between the bases of a three-
dimensional lattice and its sublattices. His result was generalised to arbitrary
dimensions (see [6] and [11]) as follows. Assume that Λ∗ is a sublattice of an
n-dimensional lattice Λ. If {u1, u2, . . . , un} is a basis of Λ∗, then Λ has a basis
{a1, a2, . . . , an} such that

ui = ui1a1 + ui2a2 + · · · + uiiai, i = 1, 2, . . . , n,

where uii > 0 and 0 ≤ ui j < uii for all j < i.
It is rather unexpected that the following inverse of this result is also true (see [6]

and [11]).

Lemma 3.1 (Cassels [6]). Assume that Λ is an n-dimensional lattice with a basis
{a1,a2, . . . ,an}. If Λ∗ is a sublattice of Λ of index m, then Λ∗ has a basis {u1,u2, . . . ,un}

satisfying
ui = ui1a1 + ui2a2 + · · · + uiiai, i = 1, 2, . . . , n

and
m = u11u22 . . . unn,

where uii > 0 and 0 ≤ ui j < u j j for all j < i.

Clearly, this lemma provides a means of counting the number of the different
sublattices of given index m. To do the explicit counting, we need another simple
result.

Lemma 3.2. Assume that Λ is an n-dimensional lattice with a basis {a1, a2, . . . , an} and
m is a positive integer. Let u1,u2, . . . ,un be n linearly independent vectors satisfying

ui = ui1a1 + ui2a2 + · · · + uiiai, i = 1, 2, . . . , n

and
m = u11u22 . . . unn,

where all the ui j are integers, uii > 0 and 0 ≤ ui j < u j j for all j < i. Let v1, v2, . . . , vn

be n linearly independent vectors satisfying

vi = vi1a1 + vi2a2 + · · · + viiai, i = 1, 2, . . . , n

and
m = v11v22 . . . vnn,

where all the vi j are integers, vii > 0 and 0 ≤ vi j < v j j for all j < i. Let Λ∗ be the
sublattice of Λ generated by {u1,u2, . . . ,un} and let Λ• be the sublattice of Λ generated
by {v1, v2, . . . , vn}. Then the two sublattices Λ∗ and Λ• are identical if and only if

ui j = vi j, 1 ≤ j ≤ i ≤ n.
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Proof. The if part is obvious. Now, let us prove the only if part.
Let U denote the n × n matrix with elements ui j, i, j = 1, 2, . . . , n, where ui j = 0

for all j > i. Let V denote the n × n matrix with elements vi j, i, j = 1, 2, . . . , n, where
vi j = 0 for all j > i. Define

W = UV−1 =
(
wi j

)
. (3.1)

It is easy to see that Λ∗ = Λ• if and only if W is a unimodular matrix.
By (3.1),

WV = U. (3.2)

By comparing both sides of (3.2) for u1n, u1,n−1, . . ., u11,
w11v1n + w12v2n + · · · + w1nvnn = 0,
w11v1,n−1 + w12v2,n−1 + · · · + w1nvn,n−1 = 0,
. . . ,

w11v11 + w12v21 + · · · + w1nvn1 = u11

and thus {
w1n = w1,n−1 = · · · = w12 = 0,
w11v11 = u11.

Repeating this process for u2i, u3i, . . . , uni successively,{
wi j = 0, i < j ≤ n,
wiivii = uii, i = 1, 2, . . . , n. (3.3)

If W is a unimodular matrix, all its elements are integers; it follows by (3.3) and the
assumption

m = u11u22 . . . unn = v11v22 . . . vnn

that
w11 = w22 = · · · = wnn = 1. (3.4)

Then, by comparing both sides of (3.2) for u21, u32, . . . , un,n−1,

wi+1,ivii + vi+1,i = ui+1,i, i = 1, 2, . . . , n − 1. (3.5)

If wi+1,i , 0, by (3.5),
wi+1,ivii = ui+1,i − vi+1,i,

which contradicts the assumptions that 0 ≤ ui+1,i < uii = vii and 0 ≤ vi+1,i < vii. Thus,{
wi+1,i = 0,
ui+1,i = vi+1,i

for all i = 1, 2, . . . , n − 1.
Inductively, assume that

wi+ j,i = 0

https://doi.org/10.1017/S0004972720000325 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000325


56 C. Zong [7]

holds for 1 ≤ j ≤ k − 1 < n − 1 and i = 1,2, . . . , n − j. By comparing both sides of (3.2)
for ui+k,i, i = 1, 2, . . . , n − k, in the same way as for (3.5),

wi+k,i = 0, i = 1, 2, . . . , n − k.

Consequently, if W is a unimodular matrix, it must be the n × n unit matrix. In other
words, if Λ∗ = Λ•, then U = V . �

By studying the algebraic structures of the submodules, it can be shown (see [18])
that

fn(m) =
∑
d|m

d · fn−1(d). (3.6)

In 1997, Baake [2] deduced from (3.6) that

fn(m) =
∑

d1d2···dn=m

d0
1d1

2 · · · d
n−1
n . (3.7)

In fact, Baake’s formula can be easily deduced from Lemmas 3.1 and 3.2. Gruber [10]
did realise this connection and simplified (3.7). However, he neglected the fact that
Lemma 3.2 needs a proof.

Theorem 3.3 (Baake [2], Gruber [10]). If m = pα1
1 pα2

2 . . . pα`
`

, where the pi are distinct
prime numbers and the αi are positive integers, then

fn(m) =
∑

d1d2···dn=m

d0
1d1

2 · · · d
n−1
n =

∏̀
i=1

αi∏
j=1

p j+n−1
i − 1

p j
i − 1

=
∏̀
i=1

n−1∏
j=1

p j+αi
i − 1

p j
i − 1

.

Remark 3.4. Noticing that(
p j+n−1

i − 1
)
/
(
p j

i − 1
)
≤ pn

i and
(
p j+αi

i − 1
)
/
(
p j

i − 1
)
≥ pαi

i ,

one can easily deduce that
mn−1 ≤ fn(m) ≤ mn.

Comparing with Theorem 2.2, it is interesting to see that Siegel’s upper bound is far
from the exact value of fn(m).

4. Classification of sublattices

Let Λ be an n-dimensional lattice in En and let Λ∗ and Λ• be two sublattices of Λ.
We say that Λ∗ and Λ• are equivalent if there is a linear transformation σ satisfying
both

σ(Λ) = Λ

and
σ(Λ∗) = Λ•.

Then, for convenience, we write Λ∗ ∼ Λ•. Clearly, a linear transformation σ satisfies
σ(Λ) = Λ if and only if σ corresponds to a unimodular matrix.

https://doi.org/10.1017/S0004972720000325 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000325


[8] Sublattices of a lattice 57

Example 4.1. Let Λ = Z2 with e1 = (1, 0) and e2 = (0, 1). Let Λ∗ be the sublattice
generated by u1 = e1 and u2 = 2e2 and let Λ• be the sublattice generated by u1 = 2e1

and u2 = e2. It is obvious that Λ∗ , Λ•. Let σ denote the linear transformation
determined by σ(e1) = e2 and σ(e2) = e1; it can be verified that σ(Λ) = Λ and
σ(Λ∗) = Λ•. Thus, Λ∗ ∼ Λ•.

It is shown in Gruber [11] that, if Λ∗ is a sublattice of Λ, then Λ has a basis
{a1, a2, . . . , an} and Λ∗ has a basis {u1,u2, . . . ,un} such that

ui = uiiai, i = 1, 2, . . . , n, (4.1)

where the uii are positive integers.
From Martinet [16, page 26]: ‘Let M be an R-module and let M′ be a submodule

of M, both having the same rank n. (When R = Z, this amounts to saying that
[M : M′] <∞.) There then exist a basis B = {e1, e2, . . . , en} for M and nonzero elements
a1, a2, . . ., an of R such that B′ = {a1e1, a2e2, . . . , anen} is a basis for M′, and ai divides
ai−1 for 2 ≤ i ≤ n.’. This implies that uii divides ui−1,i−1 in (4.1).

For completeness, we restate this result next and give a detailed proof.

Lemma 4.2. If Λ∗ is a sublattice of Λ, then Λ has a basis {a1, a2, . . . , an} and Λ∗ has a
basis {u1,u2, . . . ,un} such that

ui = uiiai, i = 1, 2, . . . , n,

where all the uii are positive integers satisfying uii | ui−1,i−1 for 2 ≤ i ≤ n.

Proof. Assume that {e1, e2, . . . , en} is a basis for Λ and {v1, v2, . . . , vn} is a basis for Λ∗.
Then

vi = vi1e1 + vi2e2 + · · · + vinen, i = 1, 2, . . . , n. (4.2)

For convenience, let X denote the n × 1 matrix with elements x1, x2, . . ., xn and let X
denote the n × n matrix with elements xi j. Then one can rewrite (4.2) as

V = VE. (4.3)

Suppose that {u1,u2, . . . ,un} is another basis for Λ∗ such that

V = U1U, (4.4)

where U1 is an n × n unimodular matrix and {a1, a2, . . . , an} is another basis for Λ such
that

E = U2A, (4.5)

where U2 is an n × n unimodular matrix. Then it follows by (4.3), (4.4) and (4.5) that

U = U−1
1 VU2A. (4.6)
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58 C. Zong [9]

For a given integer matrix V there are unimodular matrices U1 and U2 such that

U−1
1 VU2 =


u11 0 · · · 0
0 u22 · · · 0
...

...
. . .

...
0 0 · · · unn

 ,
where uii | ui−1,i−1 for 2 ≤ i ≤ n (see, for example, [14, Ch. 14]). Then, by (4.6),

ui = uiiai, i = 1, 2, . . . , n.

The lemma is proved. �

Lemma 4.3. Assume that Λ∗ and Λ• are two sublattices of an n-dimensional lattice Λ.
If {u1,u2, . . . , un} is a basis of Λ∗ and {a1, a2, . . . , an} is a basis of Λ such that

ui = uiiai, i = 1, 2, . . . , n,

where the uii are positive integers satisfying uii | ui−1,i−1 for 2 ≤ i ≤ n, and
{v1, v2, . . . , vn} is a basis of Λ• and {b1,b2, . . . ,bn} is a basis of Λ such that

vi = viibi, i = 1, 2, . . . , n,

where the vii are positive integers satisfying vii | vi−1,i−1 for 2 ≤ i ≤ n, then Λ∗ ∼ Λ• if
and only if

uii = vii, i = 1, 2, . . . , n.

Proof. Suppose that uii = vii for i = 1, 2, . . . , n. Let σ be the linear transformation
defined by

σ(ai) = bi, i = 1, 2, . . . , n.

Then
σ(ui) = σ(uiiai) = uiibi = vi

for i = 1, 2, . . . , n and thus
σ(Λ∗) = Λ•.

On the other hand, if Λ∗ ∼ Λ• with a suitable σ, then

U = UA, (4.7)

V = VB, (4.8)

σ
(
U
)

= WV, (4.9)

σ
(
A
)

= TB, (4.10)

where ui j = 0 for i , j, vi j = 0 for i , j and both W and T are unimodular matrices.
It follows from σ(Λ∗) = Λ•, (4.7), (4.8), (4.9) and (4.10) that

σ
(
U
)

= Uσ
(
A
)
,

WV = UT B,
V = W−1UTB = VB
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and thus
V = W−1UT. (4.11)

But (4.11) implies that V = U (see [14, Ch. 14]) and Lemma 4.3 is proved. �

Proof of Theorem 1.2. Recall that

m = pα1
1 pα2

2 . . . pα`
`
,

where the pi are distinct prime numbers. It follows from Lemmas 4.2 and 4.3 that
gn(m) is the number of the factorisations

m = d1d2 · · · dn (4.12)

satisfying d j | d j−1 for 2 ≤ j ≤ n. If

d j = pβ1 j

1 pβ2 j

2 . . . pβ` j

`
,

then 
n∑

j=1

βi j = αi,

βi1 ≥ βi2 ≥ · · · ≥ βin ≥ 0
(4.13)

for i = 1, 2, . . . , `. Clearly, (4.13) has pn(αi) solutions and (4.12) has exactly
∏

pn(αi)
factorisations. Thus,

gn(m) =
∏̀
i=1

pn(αi).

Theorem 1.2 is proved. �

Proof of Corollary 1.3. It is well known (see [1]) that

pn(k) ∼
kn−1

n!(n − 1)!
.

Corollary 1.3 follows immediately from Theorem 1.2. �

Remark 4.4. Assume that Λ is an n-dimensional lattice with a basis {a1, a2, . . . , an}.
When m = p1 p2 · · · p`, where p1, p2, . . ., p` are distinct primes,

fn(m) =
∏̀
i=1

n−1∑
j=0

p j
i

and
gn(m) = 1.

That is, all the fn(m) sublattices of index m are equivalent to each other under
unimodular transformations. In particular, all of them are equivalent to the sublattice
with a basis {ma1, a2, . . . , an}.
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60 C. Zong [11]

Remark 4.5. It is interesting to compare the values of fn(m) and gn(m) for small n and
m.

m 2 3 4 5 6 7 8 9 10 11 12 13
f2(m) 3 4 7 6 12 8 15 13 18 12 28 14
f3(m) 7 13 35 31 91 57 155 130 217 133 455 183
g2(m) 1 1 2 1 1 1 2 2 1 1 2 1
g3(m) 1 1 2 1 1 1 3 2 1 1 2 1
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