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SUMMARY
In this paper, we propose a new method to learn a multi-
fingered hand grasping posture with little knowledge about
the task and few sensing capabilities. The developed model
is composed of two stages. The first is dedicated to the finger
inverse kinematics learning in order to provide the fingertip-
desired position. This function is fulfilled by modular neural
network architecture. Following the concept of reinforcement
learning, a second neural model dealing with noisy sensing
information is used to search the space of hand configuration.
Simulation results show a good learning of grasping postures
with five fingers and different noise levels.
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1. INTRODUCTION
For many years one of the main objectives of robotic research
is to reproduce human dexterity and flexibility in an unknown
environment. These skills are then transferred to the control
of artificial devices of different type, starting from a simple
jaw gripper to multi-fingered hands. In the large spectrum of
problems related to the use of artificial hands, the definition
of a grasping posture associated to an object has been the
most challenging, since it implies the consideration of a large
amount of constraints. The constraints are, indeed, related
not only to the structure of the hand and of the object but
also to the requirement of the task and to the state of the
environment. Moreover, sensing capability is a crucial point
in the characterization of the system state and any attempt to
solve the grasp-planning problem must take into account the
nature and the quality of sensory signals that may be of low
precision and subject to noise.

Several attempts have been lead to classify human
prehension in order to better understand the behavioral
mechanisms and the different parameters involved in
the definition of the hand grasping posture.1−6 These
classifications have been widely used to bring solutions in
the robotics field with knowledge-based systems,7,8 taking
advantage of the observation of the human behavior.9

Another approach, called analytic, consist in the optimization
of predefined criteria characterizing grasp (form-force
closure and stability).10−14

One of the main interests of the neural network approaches
in grasp planning is to perform the learning of the underlying

rules adopted during the grasp. Thus, Kurperstein and
Rubinstein,15 developed a neural network-based scheme
called INFANT in order to perform grasping tasks with a
5 dofs. gripper. Uno et al.16 proposed a two step neural-
based computational scheme able to integrate an internal
representation of the objects as well as the corresponding
hand shape. Taha et al.17 developed a model that produces
the preshaping of a planar hand model for circular and
rectangular objects.

Most of these studies emphasize the correspondence
between an object and a hand shape. One can argue that
the same grasping posture can be adopted to grasp objects of
various shapes, and one important factor that affects grasping
of an object may be to recognize its graspable feature
instead of considering its general shape. If a neural model is
able to acquire a representation of the graspable features
or affordances,18 this would enable enhanced flexibility
for grasp planning. Moreover, one can expect to integrate
task requirements through an appropriate choice of the
graspable features. Moussa and Kamel19 followed such an
approach and proposed a computational architecture able
to learn grasping rules called “generic grasping functions”.
This representation treats grasping knowledge as a mapping
between two reference frames: the object body attached
coordinate frame, and the gripper body attached frame.

Since this paradigm seems to be attractive, how can it be
applied to a multifingered hand where the mapping between
the hand and the object frames may not be sufficient? One
of the aims of this paper is to try to give an answer to this
last question by taking into account local information linked
to a grasp in a neural network-based approach. This new
formalism allows us to build the posture of a multifingered
hand model just from the knowledge of the desired fingertip
position. Moreover, an interesting feature of this model is
that it takes into account noisy information coming from
sensing devices and uncertainty inherent in any real-world
application. Instead of directly considering the graspable
features, we use the notion of contact configuration (with
a variable number of involved fingers) on the object. In
order to make the process tractable (i.e. not considering all
the hand degrees freedom in one step), we have separated
the resolution in two phases: (i) A neural scheme treats the
inverse kinematics mapping of all the fingers; (ii) An
optimization of the hand reference frame location and
orientation relative to a global reference frame is then carried
out.
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This paper is organized as follows: In part 2, we first
describe the model architecture and the chosen hypotheses.
Details about the retained scheme developed to learn the
inverse kinematics of the fingers are given in part 3.
Then, section 4 describe the procedure used to define and
optimize the hand configuration. Finally in section 5, we
propose simulation results to demonstrate the efficiency of
the proposed tools.

2. MODEL PRESENTATION

2.1. Problem statement
The two main important difficulties encountered in the
process of grasping posture learning are the hand high degree
of redundancy and the high dimension of the search space.
In order to make this problem tractable, we have reduced a
large problem to several smaller ones that can be solved more
easily.

Firstly, we propose a reasonably simplified hand model
composed of 5 articulated rigid chains representing the
fingers which are connected to a common body representing
the palm (Figure 1). Each finger has 4 degrees of freedom.
Using the results from studies on hand anthropometry20,21,
we determine the hand geometrical parameters from the
knowledge of its global length and breadth.

The problem statement is: Given an object and a
contact configuration, we want to define all the kinematics
parameters of a hand model in such a way that all fingertips
can reach a defined contact position on the object surface.
To define the hand posture, we have made some assumptions
presented in Figure 2 related to the input and output data of
the model.

2.2. Retained approach
In order to define the hand configuration, we have considered
two kinds of data: the first is related to the posture of
the fingers characterized by joint angles and the second
to the location and orientation of the hand model attached
coordinate frame. In this way, each finger can be treated
separately and we can define two separated processes for
fingers and hand postures definition.

The first step is to solve finger inverse kinematics. For
each of them, this learning is performed off-line. It is based
on a supervised learning method that takes into account the
discontinuity of the finger inverse kinematic function with
its joint limits (details in section 3).

Then, it is necessary to define the hand configuration in
such a way that the fingertips reach their desired location on
the object with the minimum error. This task is made difficult
because several fingers are involved and a good solution for
one finger may not be valid for the others. The second point
is that several solutions may exist. In this case, a supervised
learning method cannot be used because we do not have a
teacher that can provide pre-specified target action or error
gradient vectors to specify how the controller has to modify
its action so as to improve the performance.21 Reinforcement
learning seems to be well suited to solve this problem because
it has the interesting feature of finding the right outputs
for a given input through an experimental strategy and also

to memorize those outputs. In the reinforcement learning
technique, we do not instruct explicitly the controller what
action to perform but rather if it is going in the right or in
the wrong direction (in the sense of an evaluative criterion)
and how to modify its parameters to converge toward a
valid solution. Another aspect concerns the choice of the
process to infer the appropriate actions from evaluations.
Gullapalli22,23 presented the two major categories, indirect
and direct methods. Indirect methods involve constructing
a model of the transformation from the controller’s action
to the evaluation. This model enables to obtain a gradient
information used for training the controller.22 On the other
hand, direct methods perform such a task by directly
perturbing the process and, from the produced effects on the
performance evaluation called a critic (which has a similar
function as the teacher in supervised learning), find the right
action to apply. The perturbation is usually a random noise
with known properties and, as suggested by Gullapalli,23

a stochastic search for the best action is performed. The
direct methods seem to be very attractive, since no model
construction is required. In fact, building a process model
that can provide gradient information about its performance
relative to the learning parameters is even more difficult
if we intend to take into account the presence of noise
and uncertainty. Moreover, with direct methods, it is the
process itself that provides the necessary training data. These
are the reasons why we have chosen such a formalism
to determine the hand configuration by means of a neural
network composed of backpropagation and SRV (Stochastic
Real Valued) units (detailed in section 4). The main interest of
Stochastic Real Valued units is that they permit the learning
of functions with continuous outputs using a connectionist
network.23

2.3. Model structure and principle
The global structure of the model is composed of two
neural modules: The main module (Figure 3), called
“Hand Configuration Neural Network” (HCNN), is devoted
to the determination of the hand global attached frame
configuration (location and orientation) relative to a global
frame. It is a multilayer feed forward neural network that
implements a reinforcement strategy through the use of SRV
neurons in the HCNN output layer. Its detailed structure is
presented in section 4. The secondary module, called “Finger
Configuration Neural Network” (FCNN), is devoted to finger
configuration definition. Its output data are used to evaluate
the appropriateness of the hand configuration through an
evaluative function and the corresponding reinforcement
signal is sent back to the HCNN. In section 3, the FCCN
modular neural network architecture is presented in details.
The principle of the developed method is now described:

(i) We input to the model the current hand configuration
and the rate of change of the hand configuration and,
as output, we obtain a new hand configuration within
predefined search space bounds,

(ii) Then, using the new hand configuration, we are able to
express the contact location in each finger root frame (on
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Fig. 1. 3D model of the hand with a representation of the different degrees of freedom associated with each joint. (P.I.P.: proximal
interphalangeal, D.I.P.: distal interphalangeal, M.C.P.: metacarpophalangeal, I.P.: interphalangeal, C.M.C.: carpal-metacarpal).

the surface of the object, a particular contact is meant to
each finger),

(iii) Using the inverse kinematics scheme, we compute each
finger posture. We test them by an evaluative function
and compute a reinforcement signal that is used to
update the hand configuration neural network. Before

performing this last step and, in order to introduce noise
and uncertainty, the actual reinforcement is perturbed
with a zero mean and predefined variance noise,

(iv) We perform this procedure (i.e. we go back to step
(i) until a satisfactory solution is found or until the
maximum number of iteration is reached.
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Fig. 2. Assumptions, input and output data of the model.

The evaluative function is based on the computation of
the distance between the fingertip position and its desired
location on the object. This is an easy task because, in the
previous step, we have computed the location of the contact
in the finger frame. Once a finger configuration is obtained
by inverse kinematics, we compute the fingertip position by
forward kinematics.

Let PXD
i = (

xD
i , yD

i , zD
i

)T
(1)

be the vector of the desired fingertip position expressed
relative to the root coordinate frame of finger i at step k

and

PXM
i = (

xM
i , yM

i , zM
i

)T
(2)

be the vector of the actual fingertip position expressed relative
to the root coordinate frame of finger i. If n fingers are
involved, the total error obtained at step k is:

Ek =
n∑

i=1

∥∥PXD
i − PXM

i

∥∥ (3)

with ‖ · ‖ defining the Euclidean L2 norm.
In order to model the effect of low quality sensing

information, this evaluative function is perturbed with a noise

Fig. 3. Architecture of the hand posture definition model.
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Fig. 4. Structure of the Hand Configuration Neural Network.

of known properties. The chosen procedure is detailed in
section 4.

3. FINGER INVERSE KINEMATICS NEURAL
SCHEME
From a contact configuration in the object reference frame
and a hand configuration (position and orientation) the
problem is to compute the finger configuration in the joint
coordinate space.24 We have used a slightly modified version
of the modular neural networks architecture defined by
Oyama and Tachi.25,26 The main advantage of this method
is that it takes into account the discontinuity of the inverse
kinematic system of multi-joints mechanisms with its joint
limits. This represents a difficult function to be approximated
by a single multi-layers network. The principle of the
formalism defined by Oyama and Tachi25,26 is to learn a
discontinuous inverse kinematic function by an appropriate
switch of multiple neural networks representative of a sub-set
of the whole chain workspace. Therefore, the architecture is
composed of several units (called experts) that can learn the
inverse kinematics solution over the whole chain workspace.
It works as follows:

(i) The desired endpoint position is chosen with a random
number generator. Each expert produces an output,
which is tested. For each of them, the current chain
endpoint position is computed using a forward model.
The output error is the Euclidean distance between
the current and the desired endpoint position. Then
a reaching motion represented by a straight line is
constructed in Cartesian and joint spaces from the
current to the desired fingertip position. The number
of points that defines this motion is a function of the
produced error. If the error is large, several points are
stored. If the error is below a predefined threshold a
single point is considered. Finally, the points of the
reaching motion are stored in the training set of the
expert that has produced the minimal error among all
the experts and learned by the corresponding expert,

(ii) If no satisfactory solution is obtained for the best expert
due to joint limits or if the chain reaches a singular

position, another expert is selected in an increasing order
of the predicted error, and the same procedure as in step
(i) is applied until a satisfactory solution is found or all
the experts are tested,

(iii) If no satisfactory solution is obtained from steps 1
and 2, an expert is randomly chosen and a reaching
motion is performed from the expert representative
posture to the desired endpoint position. This procedure
is repeated until a solution is found or all the experts are
tested,

(iv) If no solution is obtained from steps 1, 2 and 3, a
posture is randomly computed and a reaching motion is
performed between the chain endpoint and the desired
position. This procedure is repeated until a satisfactory
motion is generated (i.e. no singular position and joints
within their limits). If so, the generated posture is
considered as the representative posture of a new expert
and is added to the set of experts.

The expert networks have four layers, the activation
function of the input and output layers is linear and tangent
sigmoid for the other layers. The input layer is composed
of three units that correspond to the X, Y and Z position
of the fingertip. The output layer has 4 units corresponding
to the 4 joints of each finger. The two hidden layers have
35 units each. The error backpropagation algorithm is used
to update the neurons’ weights. During the simulation, four
to six experts were generated for each finger to perform the
mapping of their corresponding workspace.

4. HAND CONFIGURATION NEURAL NETWORK
The neural network used to optimize the hand configuration
has 2 hidden backpropagation layers and one output layer
composed of SRV units (Figure 4). The input layer has
12 units (6 for the location and orientation of the hand
attached coordinate frame and 6 for the linear and angular
velocities). The 2 hidden layers have 20 units each. The
association of SRV and backpropagation units enables are
to take advantage of both supervised and reinforcement
learning. The whole network still has the benefits of
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Fig. 5. Input-output relation for a Stochastic Real Valued (SRV) unit, adapted from Gullapalli (1995).

reinforcement learning due to its stochastic search behavior.
Also, the BP units in the hidden layer allow us to develop the
right internal distributed representation as it is in the case in
supervised learning.

The next step is the description of the stochastic real
valued (SRV) units, its input-output relation and its stochastic
behavior. The SRV units compute their output according to
the following procedure. An input vector ik from X ⊆R

n,

Fig. 6. Defined contact configuration for the five fingered rectangular block grasp.
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Fig. 7. a/ Reinforcement signal and b/ corresponding error evolution during each trial with four different noise variances.

where R is the set of real numbers, is presented to a SRV
unit at time step k. The unit produces a random output ok

selected from some internal probability distribution over the
interval O ⊆R. The SRV unit uses its input ik to compute
the parameters µk and σk of the internal normal probability
distribution (µk the mean and σk the standard deviation).
These parameters computed internally are obtained as the
weighted sum of the input ik with a particular set of weights
for each parameter. We summarize the input-output relation
for a SRV unit in Figure 5.

In order to obtain a hand configuration within the desired
bounds, the network output vector ok is scaled according to
the following equation:

Xi+1 = Xmin + (Xmax − Xmin) ⊗ ok (4)

Xi+1 denotes the new hand configuration, Xmin the lower
bounds of the search space, Xmax the upper bounds of the
search space (Table I), ok the network output vector and ⊗
the outer vector product.

The environment evaluates the new arm configuration Xi+1

according to the evaluation function (1–3) and the context

Table I. Search space bounds for the rectangular block five
fingered grasp.

X (m) Y (m) Z (m) 6X (◦) 6Y (◦) 6Z (◦)

min. value –0.1 –0.1 0.15 –45 –45 –135
max. value 0.1 0.1 0.25 45 45 –45

of ik and returns a reinforcement signal rk ∈ R = [0, 1],
with rk = 1 denoting the maximum possible reinforcement.
Therefore, the reinforcement signal value is obtained as
follows:

rk = 1 − h(Ek) (5)

where Ek (3) corresponds to the error at time step k obtained
through the evaluation. h is a monotonic increasing function
of the error Ek taking values over the interval [0, 1]. If Ek is
large, h tends towards 1 and the network receives a maximum
punishment with a reinforcement toward 0. On the contrary,
if the error Ek is low, h tends toward 0 and, consequently,
the system receives a higher reinforcement through equation
(5). In the present case, we have chosen the tangent sigmoid
function for h.
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Fig. 8. Obtained hand configuration for a five fingered rectangular block grasp.

In order to model low sensing quality and noise effect, the
actual reinforcement is perturbed with a random noise with
zero mean and known variance. This noise reflects the quality
of hand position sensors providing information relative to the
hand global position and orientation as well as to the finger
joint position.

To update the two parameters θ(k) and ϕ(k) used to
compute the mean µk and standard deviation σk , the
following learning rules are used:

θ(k+1)

=
{

θ(k)+α
(

(r(ok, ik)− r̂k)
(

ak −µk

σk

))
(ik) if σk >0

θ(k) if σk =0
(6)

ϕ(k + 1) = ϕ(k) + ρ(r(ok, ik) − r̂k)ik (7)

where

µk = θT
k ik is the mean of the internal probability distribution,

σk = s(r̂k) is the standard deviation of the internal probability
distribution,

r̂k =ϕT
k ik is the expected reward,

ak ∼N(µk, σk) is the unit activation drawn from the normal
probability distribution,

and r(ok, ik) = rk is the reward or reinforcement obtained
from equation (5).

The update rules are designed to produce the following
behavior. If the normalized perturbation added to the mean
output of the unit (6) leads to a reward that is greater than the
expected reward, then, it is likely that the unit produces an
output that is closer to the actual output. In other words, the

mean should be changed in the direction of the perturbation
that has produced a better reward and the unit should update
its weights accordingly. In the opposite case, i.e. the reward
is less than the expected reward, then the mean should be
moved in the opposite direction. In both cases, there is a
tendency to increase the reward, by moving the mean in
such a direction so as to produce a better reward, thus going
away from regions leading to poorer results. The second
important point in the learning rule (7) is that the standard
deviation depends on the expected reward. In this way, an
SRV unit can control the extent of search through the standard
deviation value. In fact, as the expected reinforcement
increases, the standard deviation decreases (5) and, therefore,
the search space is narrowed in the neighborhood of the mean
output.

Since SRV output units are used, the error gradient signal is
not available because there is no desired output. Moreover, as
Gullapalli22 stated, randomly perturbing the mean output and
observing the consequent change in the evaluation enables
the unit to estimate the gradient of the evaluation with respect
to the output. Therefore to train the backpropagation layers,
the actual error is replaced with an estimated error gradient
of the following form:

∂SRV
n = (r(ok, ik) − r̂k)(ak − µk)

σk

(8)

where r(ok, ik) is the reward, r̂k the expected reward, ak the
activation and µk the mean output. To propagate the error
gradient of the SRV units back to the BP units, we have used
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the following equation:

∂BP
n = �T · ∂SRV

n (9)

where �[i, j ] is the weight θ used to compute the mean
parameter of the ith SRV unit from the j th BP unit’s output
(considered as input j of the SRV unit). With this properly
propagated error gradient (9), we can train the BP layers.

5. HAND CONFIGURATION SIMULATION
In this section, we present simulation results. The test case
is to construct the hand posture to grasp a rectangular block
with five fingers. This is the most difficult case because the
algorithm has to find a suitable hand position and orientation
taking into accounts all the fingers. The contact configuration
is displayed in Figure 6.

In order to identify the influence of uncertainty and noise
reflecting low quality sensors, we have considered four levels
of random noise with zero mean and standard deviation σn of
0.2, 0.1, 0.05 and 0 (which corresponds to a deterministic
reinforcement, rk ∈ [0, 1]). Each trial has a duration of
2000 steps and the bounds of the workspace are defined
in Table I. In order to have a satisfying convergence, we
use low learning rates (0.01 for BP layers, 0.01 for SRV
units mean and standard deviation). In practice, these values
have to be low to allow the learning under uncertainty. In
Figure 7a, we display the obtained reinforcement with the
four noise standard deviation levels and, in Figure 7b, the
corresponding error (deterministic). We can clearly see that
the algorithm succeeds to find a solution even if the curves
are more irregular for large standard deviation (which is
understandable). We can also notice that the convergence is of
the same order than the trial with deterministic reinforcement
attesting the model robustness to noise. Finally, a satisfactory
solution is obtained after a relatively low number of time
steps.

In Figure 8, we display an obtained hand configuration
with σn = 0.1.

CONCLUSION
In this paper, we have proposed a new model that enables
the definition of all the kinematics parameters related to a
hand configuration. This task is performed in the presence of
uncertainty and noise inherent in any real-world application.
In the first part, we have proposed a modular scheme based
on neural network for the definition of the finger posture. The
second stage of the model takes advantage of a reinforcement
scheme to perform a search on the hand attached coordinate
frame (of dimension six) in order to allow each fingertip
to reach its desired location on the object surface. Several
simulation results demonstrate the capability of this scheme
to construct hand postures with varying noise levels. The fact
that no candidate solution is required to start the hand posture
construction and that the number of iterations is quite low,
are interesting properties of this method. In the near future,
instead of considering a hand configuration problem, we plan
to work directly at the arm level. Also, further development
will be held to define more sophisticated evaluative functions
in order to incorporate task and environment constraints.
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