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Building on a recent work, we consider a two-dimensional viscous fluid in the exterior
of a thin obstacle shrinking to a curve, proving convergence to a solution of the
Navier–Stokes equations in the exterior of a curve. The uniqueness of the limit
solution is also shown.

1. Introduction

We study the influence of a thin material obstacle on the behaviour of two-dimen-
sional incompressible viscous flow. The study of flow past a slender body is a classi-
cal problem in fluid mechanics and it presents a rich literature on experiments and
simulations, particularly around a flat plane (see, for example, [1, 3, 4, 14, 16, 17]).
The goal of this work is to establish existence and uniqueness outside a curve. The
mathematical study of the problem of small obstacles in incompressible flows was
initiated by Iftimie et al . [5–7,12] and continued in [9].

Let Ωε be a small connected and simply connected bounded open set in R
2. In

all the above-mentioned papers, the initial data consist in the initial vorticity ω0
and the circulation γ of the initial velocity around the boundary of the obstacle.
Both ω0 (supposed to be smooth and compactly supported) and γ are assumed
to be independent of ε. Given the geometry of the obstacle Ωε, the two previous
quantities uniquely determine the initial velocity field uε

0 (divergence-free, tangent
to the boundary and vanishing at infinity). With these initial data, the problem we
consider here is determining the limit of the solutions of the Navier–Stokes equations
in the exterior of Ωε when the obstacle Ωε shrinks to a curve as ε → 0. The vanishing
obstacle problem for incompressible, ideal, two-dimensional flow when the obstacle
homothetically shrinks to a point was studied in [5]. It was proved therein that
the limit velocity satisfies a modified Euler equation containing an additional term,
which is a fixed Dirac mass of strength γ at the point to which the obstacle shrinks.

In [9], the author treated the same problem in the case when the obstacle shrinks
to a curve Γ instead of a point. In this case, the additional term is of the form gωδΓ ,
where δΓ is the Dirac mass of the curve. The density gω is explicitly computed in [9]
and depends on the vorticity and the circulation γ. It can be seen as the jump across
Γ of the velocity field that is divergence free, tangent to Γ , vanishing at infinity
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and with curlω in R
2 \ Γ . The case of several obstacles, one of them shrinking to

a point, was treated in [12]. The two-dimensional viscous case where the obstacle
shrinks homothetically to a point was studied in [6], where it is proved that in the
case of small circulation the limit equations are always the Navier–Stokes equations,
and where the additional Dirac mass appears only in the initial data. This is due to
the fact that the circulation of the initial velocity on the boundary of the obstacle
vanishes for t > 0 when we consider the no-slip boundary condition.

Here we assume that the obstacle shrinks to a curve and we pass to the limit in
the Navier–Stokes equations in the exterior of this obstacle. We prove that the limit
equations are the Navier–Stokes equations in the exterior of the curve and they have
a unique solution in a suitable sense. As we shall see in § 2.2, the initial datum for the
limit velocity is not square-integrable since it behaves as x⊥/2π|x|2 at infinity. For
such an initial datum we define a solution of the Navier–Stokes equations as a vector
field verifying the equation in the sense of distributions and such that the difference
between the solution and a fixed smooth vector field behaving like x⊥/2π|x|2 at
infinity has the regularity expected from a Leray solution (see definition 4.4 for the
precise definition).

More precisely, let Ωε be a simply connected smooth bounded domain such that
Ωε shrinks to a curve Γ as ε → 0 in the sense of § 2.2. The aim of this paper is to
prove the following theorem.

Theorem 1.1. Let ω0 and γ be independent of ε as defined above. Let uε be the
solution of the Navier–Stokes equations on Πε ≡ R

2 \ Ω̄ε with initial velocity uε
0

(see (2.5)) and denote by Euε the extension of uε to R
2 with values 0 on Ωε.

Then {Euε} converges in L2
loc([0,∞)× (R2 \Γ )) to a solution of the Navier–Stokes

equations in R
2 \ Γ (in the sense of definition 4.4).

The initial vorticity of this limit solution is ω0 + gωδΓ and the initial velocity is
given by the relation

u0 = K[ω0] + αH,

with K and H defined in (2.9) and (2.10) depending only on the Γ shape, and with
α = γ +

∫
ω0. Then, this initial velocity is explicitly given in terms of ω0 and γ and

can be viewed as the divergence-free vector field which is tangent to Γ , vanishing
at infinity, with curl in R

2 \ Γ equal to ω and with circulation around the curve Γ
equal to γ. This velocity blows up at the end points of the curve Γ as the inverse
of the square root of the distance and has a jump across Γ . In fact, one can also
characterize gω as the jump of the tangential velocity across Γ .

Moreover, for such initial data, we also show that a solution of the Navier–Stokes
equations in R

2 \ Γ (in the sense of definition 4.4, which means that the difference
between the solution and a fixed smooth vector field behaving like x⊥/2π|x|2 at
infinity has the regularity expected from a Leray solution) is unique (see proposi-
tion 5.1 for the precise statement).

The existence of solutions in the Navier–Stokes equations has been studied in
general domains in [2] for dimensions 2 or 3 for square-integrable data, and in [13] for
the dimension-3 and H1/2 initial data. Kozono and Yamazaki [8] treated the case of
L2,∞ data, but for exterior domains which are smooth. A by-product of theorem 1.1
is the existence and uniqueness of solutions of the Navier–Stokes equations on R

2\Γ
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in a case which is not covered in previous work. Indeed, the result of [2] does not
apply, because the initial datum of our limit velocity is not square-integrable at
infinity. Our extension from square-integrable velocities to velocities that decay
like 1/|x| is physically meaningful: it allows non-vanishing initial circulation around
the obstacle, something which can happen in impulsively started motion. On the
other hand, our initial datum u0 satisfies the smallness condition of Kozono and
Yamazaki [8] (see (2.6)), but the domain R

2 \ Γ is not smooth, as required in [8].
The remainder of this work is organized as follows. In § 2 we introduce a family

of conformal mappings between the exterior of Ωε and the exterior of the unit
disc, allowing the use of explicit formulae for basic harmonic fields and the Biot–
Savart law. Moreover, we formulate the flow problem in the exterior of a vanishing
obstacle and we study the asymptotic behaviour of the initial data. In § 3 we find a
priori estimates which will be used in § 4 to prove compactness in space-time and
perform the passage to the limit stated in theorem 1.1. In § 5 the uniqueness of the
Navier–Stokes equations on the exterior of a curve is established.

For the sake of clarity, the main notation is listed in an appendix.

2. Flow in an exterior domain

2.1. Conformal mapping

Let D = B(0, 1) and S = ∂D. In what follows, we identify R
2 with the complex

plane C.
We begin this section by recalling some basic definitions on the curve.

Definition 2.1. We call a Jordan arc a curve C given by a parametric represen-
tation C : ϕ(s), 0 � s � 1, with ϕ an injective (one-to-one) function, continuous
on [0, 1]. An open Jordan arc has a parametrization C : ϕ(s), 0 < s < 1, with ϕ
continuous and injective on (0, 1).

The Jordan arc is of class Cn (n ∈ N
∗) if its parametrization ϕ is n-times con-

tinuously differentiable, satisfying ϕ′(s) �= 0 for all s.
Let Γ : Γ (s), 0 � s � 1, be a Jordan arc. Then the subset R

2 \ Γ is connected
and we will denote it by Π. The purpose of the following proposition is to give
some properties of a biholomorphism T : Π → intDc. After applying a homothetic
transformation, a rotation and a translation, we can suppose that the end points
of the curve are −1 = Γ (0) and 1 = Γ (1).

Proposition 2.2. If Γ is a C2 Jordan arc, such that the intersection with the
segment [−1, 1] is a finite union of segments and points, then there exists a biholo-
morphism T : Π → intDc which verifies the following properties:

(i) T−1 and DT−1 extend continuously up to the boundary, and T−1 maps S
to Γ ;

(ii) DT−1 is bounded;

(iii) T and DT extend continuously to Γ with different values on each side of Γ ,
except at the end points of the curve, where DT behaves like the inverse of
the square root of the distance;
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(iv) DT is bounded in the exterior of any disc B(0, R), with Γ ⊂ B(0, R);

(v) DT is Lp(Π ∩ B(0, R)) for all p < 4 and R > 0.

The proof of this proposition can be found in [9]. Reading it, one understands
why we need the condition that the curve is supposed to be more than C1 (in fact,
C1,α can be sufficient). Indeed, we need to find some continuity properties of the
first derivative of T , which is possible by the Kellogg–Warschawski theorem only if
Γ is sufficiently regular. We also recall the following remark from [9].

Remark 2.3. If we have a biholomorphism H between the exterior of a bounded
set A and Dc, such that H(∞) = ∞, then there exist a non-zero real number β
and a bounded holomorphic function h : Π → C such that

H(z) = βz + h(z),

with

h′(z) = O

(
1

|z|2

)
as |z| → ∞.

This property can be applied for the T above, observing that T sends the exterior
of a bounded set B to intB(0, 2)c; hence 1

2T = βz + h(z).

2.2. The evanescent obstacle

In this subsection we formulate a precise statement of the thin obstacle problem.
Many of the key issues regarding the small obstacle limit and incompressible flow
have been discussed in detail in [9], so we briefly recall some properties.

As in [9], we fix ω0 ∈ C∞
c (R2 \ Γ ). Next, we introduce a family of problems,

parametrized by the size of the obstacle. We consider a family of smooth domains
Ωε, connected, simply connected and containing Γ , with sufficiently small ε, such
that the support of ω0 does not intersect Ωε. Let Tε be a biholomorphism between
Πε ≡ R

2 \ Ω̄ε and Dc, satisfying the following assumption.

Assumption 2.4. The biholomorphism family {Tε} verifies that

(i) ‖(Tε − T )/|T |‖L∞(Πε) → 0 as ε → 0,

(ii) det(DT−1
ε ) is bounded on Dc independently of ε,

(iii) for any R > 0, ‖DTε − DT‖L3(B(0,R)∩Πε) → 0 as ε → 0,

(iv) for R > 0 large enough, there exists CR > 0 such that |DTε(x)| � CR on
B(0, R)c,

(v) for R > 0 large enough, there exists CR > 0 such that |D2Tε(x)| � CR/|x| on
B(0, R)c.

Remark 2.5. We can observe that property (iii) implies that, for any R, DTε is
bounded in Lp(B(0, R)∩Πε) independently of ε, for p � 3. Moreover, condition (i)
means that Tε → T uniformly on B(0, R) ∩ Πε for any R > 0.
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Assumption 2.4 corresponds to [9, assumption 3.1], adding part (v) and strength-
ening property (i) therein. Before continuing, we give an example of an obstacle
family.

Example 2.6. We consider Ωε ≡ T−1(B(0, 1+ε)\D). In this case, Tε = T/(1+ε),
which verifies the previous assumption. In fact, taking proposition 2.2 into account,
‖DTε − DT‖Lp(B(0,R)∩Πε) → 0 for all p < 4, and, using remark 2.5, |D2Tε(x)| �
CR/|x|3 on B(0, R)c, but we will not need such strong estimates. If Γ is a segment,
then Ωε is the interior of an ellipse around the segment.

We define Γε ≡ ∂Ωε. Moreover, we define by Gε = Gε(x, y) Green’s function of
the Laplacian in Πε, by Kε(x, y) = ∇⊥

x Gε(x, y) the kernel of the Biot–Savart law
on Πε and we denote the associated integral operator by

f 
→ Kε[f ] =
∫

Πε

Kε(x, y)f(y) dy.

Let Hε(x) be the unique harmonic vector field on Πε which verifies the condition∮
Γε

Hε · ds = 1,

where the contour integral is taken in the counterclockwise sense. Both Kε and Hε

depend on T ε, and we recall the following explicit formulae found [9, § 3.2]:

Kε =
1
2π

DT t
ε(x)

(
(Tε(x) − Tε(y))⊥

|Tε(x) − Tε(y)|2 − (Tε(x) − Tε(y)∗)⊥

|Tε(x) − Tε(y)∗|2

)
(2.1)

and

Hε =
1
2π

DT t
ε(x)

(
(Tε(x))⊥

|Tε(x)|2

)
, (2.2)

where Tε(y)∗ = Tε(y)/|Tε(y)|2.
We recall from [5] that, given ω0 ∈ C∞

c (R2 \Γ ) and γ ∈ R, for ε > 0, there exists
a unique uε

0 such that

div uε
0 = 0, curluε

0 = ω0,

∮
Γε

uε
0 · ds = γ,

uε
0 is tangent to Γε and vanishes at infinity. Moreover, there exists a unique α such

that
uε

0 = Kε[ωε
0] + αHε. (2.3)

By Stokes’s theorem, we have that

α = γ + m with m ≡
∫

R2
ω0 dx

(see the proof [5, lemma 3.1]).
Now, we require information on far-field behaviour. We know from [9, § 2.2] that

|uε
0(x)| � |DTε(x)|

2π

∫
supp ω0

|Tε(y) − Tε(y)∗|
|Tε(x) − Tε(y)||Tε(x) − Tε(y)∗| |ω0(y)| dy +

|DTε(x)|
2π|Tε(x)| .
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By assumption 2.4(i) and (iv), and the form of T (x) at infinity (see remark 2.3),
there exist R > 0 and C > 0 independent of ε such that

|Kε[ω0](x)| � C/|x|2 and |Hε(x)| � C/|x| for all |x| � R, (2.4)

since ω0 ∈ C∞
c (Πε).

Let uε = uε(x, t) = (uε
1(x1, x2, t), uε

2(x1, x2, t)) be the velocity of an incompress-
ible, viscous flow in Πε. We assume that uε verifies the no-slip condition at any
positive time and uε → 0 when |x| → ∞. The evolution of such a flow is governed
by the Navier–Stokes equations:

∂tu
ε − ν∆uε + uε · ∇uε = −∇pε in Πε × (0,∞),

div uε = 0 in Πε × [0,∞),
uε = 0 in Γε × (0,∞),

lim
|x|→∞

|uε| = 0 for t ∈ [0,∞),

uε(x, 0) = uε
0(x) in Πε.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.5)

As uε
0 is smooth, and therefore locally bounded, the behaviour at infinity given

in (2.4) allows us to observe that uε
0 ∈ L2,∞(Πε)∩Lp(Πε) with p > 2. Global-in-time

well-posedness for problem (2.5) was established by Kozono and Yamazaki [8]. The
existence part of their result requires that the initial velocity uε

0 satisfies a smallness
condition of the form

lim sup
R→∞

R|{x ∈ Πε | |uε
0(x)| > R}|1/2 � 1. (2.6)

Since uε
0 is bounded, the supremum limit is always zero, for any ε > 0. Uniqueness

holds without any additional conditions.
We conclude this subsection with the definition of a cut-off function family. Let

Φ ∈ C∞(R) be a non-decreasing function such that 0 � Φ � 1, Φ(s) = 1 if s � 2
and Φ(s) = 0 if s � 1. Then, for λ � 2, we introduce

Φε,λ = Φε,λ(x) ≡ Φ

(
|Tε(x)| − 1

λ

)
. (2.7)

Due to the uniform convergence of Tε to T on bounded sets (see assumption 2.4(i)),
we note that the cut-off function Φε,λ vanishes in a ball of radius C1λ and it is
identically equal to 1 outside a larger ball of radius C2λ, with C1 and C2 independent
of ε. Furthermore, the radii of the annulus where Φε,λ is not constant can be made
independent of ε.

2.3. Asymptotic initial data

The aim of this section is to study the convergence, as ε → 0, of the initial
velocity fields uε

0. First, we introduce some notation. For each function f defined
on Πε, we denote by Ef the extension of f to R

2, by setting Ef ≡ 0 in Πε. If
f is sufficiently regular and vanishes on ∂Ωε, one has that ∇Ef = E∇f in R

2.
If v is a sufficiently regular vector field defined on Πε and tangent to ∂Ωε, then
div Ev = E div v in R

2. In particular, we have div Euε
0 = 0 in R

2.
The following lemmas are consequences of the case of an ideal fluid treated in [9].
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Lemma 2.7. For 2 < p � 3, there exists Cp > 0, which depends only on the shape
of Γ and ω0, such that ‖Euε

0‖Lp(R2) � Cp.

Proof. By [9, theorem 4.4], we can state that ‖Euε
0‖Lp(S) � C‖EDTε‖Lp(S) for any

S ⊂ R
2. Then we can use remark 2.5 to observe that, for any R > 0, we can find

a constant Cp such that ‖Euε
0‖Lp(B(0,R)) � Cp for p � 3. Recalling (2.3) and (2.4),

the desired conclusion follows, since the function x 
→ 1/|x| is Lp at infinity for
p > 2.

Lemma 2.8. We have that Euε
0 → K[ω0]+αH strongly in L2

loc(R
2) as ε → 0, where

K and H are defined as Kε and Hε, respectively (see (2.1) and (2.2)) by replacing
Tε by T .

Proof. This result is a consequence of [9, § 5.1], where it is shown that, in the case of
an ideal flow, Φεuε → u ≡ K[ω] + αH strongly in L2

loc([0, T ] × R
2) with Φε ≡ Φε,ε.

This was done in two steps: first proving that Φεuε → u strongly in L2
loc(R

2) for each
t � 0, and then, by the dominated convergence theorem, obtaining the convergence
in L2

loc([0, T ] × R
2). Here the first step is sufficient to complete the proof.

Henceforth, we set
u0 = K[ω0] + αH, (2.8)

with

K =
1
2π

DT t(x)
(

(T (x) − T (y))⊥

|T (x) − T (y)|2 − (T (x) − T (y)∗)⊥

|T (x) − T (y)∗|2

)
(2.9)

and

H =
1
2π

DT t(x)
(

(T (x))⊥

|T (x)|2

)
. (2.10)

By [9, proposition 5.7], we know that

(i) u0 is continuous on R
2 \ Γ ,

(ii) u0 is continuous up to Γ \ {−1; 1}, with different values on each side of Γ ,

(iii) u0 blows up at the end points of the curve like C/
√

|x − 1||x + 1|, which
belongs to Lp

loc for p < 4,

(iv) u0 is tangent to the curve.

Moreover, the [9, § 5.2] states also that u0 is a divergence-free vector field, vanishing
at infinity, with curlu0 = ω0 + gω0(s)δΓ in R

2, where δΓ is the Dirac function
of the curve Γ , and the gω0 depends on ω0 and the circulation γ. One can also
characterize gω0 as the jump of the tangential velocity across Γ . Then we know
that u0 is bounded, except at the end points, where it is equivalent to the inverse
of the square root of the distance, and so u0 verifies the smallness condition (2.6).

3. Velocity estimates

We start by introducing some functional spaces which embed the divergence-free
and no-slip conditions.
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Definition 3.1. Let Ω be an open set in R
2. We denote by V (Ω) the space of

divergence-free vector fields, the components of which belong to C∞
c (Ω). The closure

of V (Ω) in H1(Ω) is denoted by V(Ω), and its dual space by V ′(Ω). Finally, we
denote by H(Ω) the closure of V (Ω) in L2(Ω). To simplify the notation, we also
set VΓ ≡ V(R2 \ Γ ) and HΓ ≡ H(R2 \ Γ ).

Since the initial datum uε
0 does not belong to L2 (uε

0 = O(1/|x|) at infinity),
we will remove the harmonic part at infinity. To this end, we define W ε(t, x) =
uε(t, x) − vε(x), where vε = αHεΦε,λ, with fixed λ, chosen to be sufficiently large
so that the radii of the balls where Φε,λ vanishes, for each ε > 0, are large enough
to satisfy (iv) and (v) of assumption 2.4. This choice of λ is possible because the
radii of these balls are O(λ). Without any loss of generality, we may assume in
addition that these balls contain Ω̄ε. Due to assumption 2.4 and (2.4), we can give
the following estimates on vε.

Lemma 3.2. For λ fixed (sufficiently large, independent of ε),

(a) vε are bounded in L4(R2) independently of ε,

(b) ∇vε are bounded in L2(R2) independently of ε,

(c) ∆vε are bounded in L∞(R2) independently of ε and supported in a compact
set independent of ε.

Proof. We recall the following explicit formula for vε:

vε(x) =
α

2π
Φε,λ(x)DT t

ε(x)
(

(Tε(x))⊥

|Tε(x)|2

)
,

with Φε,λ given in (2.7).
As Φε,λ vanishes in a ball of radius O(λ), conditions (i) and (iv) of assumption 2.4

guarantee that vε is uniformly bounded by CΦε,λ(x)/|T (x)| for sufficiently large λ.
Since the function T behaves like βx at infinity, the first estimate of the lemma is
a consequence of the fact that 1/|x| is L4 at infinity.

Using that |Tε| � 1, we obtain that

|∇vε| � α

2πλ

∣∣∣∣Φ′
(

|Tε(x)| − 1
λ

)∣∣∣∣|DTε|2 +
3α

2π
Φε,λ(x)

(
|D2Tε|
|Tε(x)| +

|DTε|2
|Tε(x)|2

)
.

Taking into account the fact that the radii of the annulus where Φε,λ is not constant
can be made independent of ε, assumption 2.4(iv) implies that the first term in the
above inequality is uniformly bounded with respect to x and ε, and compactly
supported in a compact set independent of ε. Parts (i), (iv) and (v) of assump-
tion 2.4 allow us to state that, for sufficiently large λ, the second term is bounded
by CΦε,λ(x)/|x|2 (with a constant C independent of ε), which belongs to L2(R2).
This proves the second assertion of the lemma.

Finally, we note that ∆Hε = 0 outside the balls where the Φλ,ε vanish, because
Hε = ∇⊥ ln |Tε(x)| = ∇⊥ Re(ln Tε(x)), with lnTε a holomorphic function, so
∆ ln Tε = 0. Then, since |Tε(x)| � 1, for some constant C > 0 we have

|∆vε| � C

∣∣∣∣Φ′
(

|Tε(x)| − 1
λ

)∣∣∣∣(|DTε|3 + |DTε||D2Tε|) + C

∣∣∣∣Φ′′
(

|Tε(x)| − 1
λ

)∣∣∣∣|DTε|3,
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which is bounded in L∞(R2) uniformly with respect to ε and compactly supported
in a compact independent of ε.

Lemma 3.3. We have that W ε
0 ≡ W ε(·, 0) = Kε[ω0] + α(1 − Φε,λ)Hε is bounded in

Lp independently of ε for 1 < p � 3.

Proof. This lemma can be established similarly to lemma 2.7 by using the fact that
W ε

0 behaves like 1/|x|2 at infinity (see (2.4)), which belongs to Lp for p > 1.

In particular, W ε
0 is bounded in L2, which will be useful in obtaining a priori

estimates for W ε ≡ uε − vε.

Lemma 3.4. The vector fields W ε are bounded independently of ε in

L∞
loc([0,∞); L2(Πε)) ∩ L2

loc([0,∞); H1(Πε)).

Proof. We rewrite (2.5) for W ε as

∂tW
ε − ν∆W ε − ν∆vε + (W ε + vε) · ∇W ε

+ W ε · ∇vε + vε · ∇vε = −∇pε in Πε × (0,∞),

div W ε = 0 in Πε × [0,∞),
W ε(·, t) = 0 on Γε × (0,∞).

Indeed,

div W ε = − div vε

= αHε · ∇Φε,λ

= − α

2πλ

(
Tε

|Tε|2
DTε

)⊥
· Φ′

(
|Tε| − 1

λ

)(
Tε

|Tε|
DTε

)
= 0.

We multiply the equation above by W ε and integrate to obtain

E ≡ 1
2

d
dt

‖W ε‖2
L2 + ν‖∇W ε‖2

L2

= −
∫

Πε

[W ε · (W ε · ∇vε) + W ε · (vε · ∇vε)] dx + ν

∫
Πε

W ε · ∆vε dx

=
∫

Πε

[vε · (W ε · ∇W ε) + vε · (vε · ∇W ε)] dx + ν

∫
Πε

W ε · ∆vε dx

� ‖W ε‖L4‖∇W ε‖L2‖vε‖L4 + ‖∇W ε‖L2‖vε‖2
L4 + ν‖W ε‖L2‖∆vε‖L2 .

Next, we use the interpolation inequality:

‖W ε‖L4 � C‖W ε‖1/2
L2 ‖∇W ε‖1/2

L2 ,

with a constant C > 0 independent of ε. In the case of R
2, this inequality can

be found in [10, ch. 1]. To obtain the corresponding inequality in Πε, one simply
extends W ε to R

2 by setting it identically zero inside Ωε. As W ε vanishes on Γε,
the extension has an H1-norm in the plane which is identical to the H1 norm of
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W ε in Πε. Moreover, ∆vε is bounded in L2 and vε is uniformly bounded in L4

independently of ε due to lemma 3.2. Hence,

E � C‖W ε‖1/2
L2 ‖∇W ε‖3/2

L2 ‖vε‖L4 + ‖∇W ε‖L2‖vε‖2
L4 + ν‖W ε‖L2‖∆vε‖L2

� 1
2ν‖∇W ε‖2

L2 + C1‖W ε‖2
L2 + C2

for some constants C1 and C2 independent of ε, so

d
dt

‖W ε‖2
L2 + ν‖∇W ε‖2

L2 � 2C1‖W ε‖2
L2 + 2C2.

Gronwall’s inequality now gives, for any t > 0,

e−2C1t‖W ε‖2
L2 + ν

∫ t

0
e−2C1s‖∇W ε(s, ·)‖2

L2 ds � C2

C1
+ ‖W ε(0, ·)‖2

L2 . (3.1)

Using the fact that the W ε(0, ·) are bounded in L2 independently of ε (see
lemma 3.3), we can rewrite (3.1) as

‖W ε‖2
L2(Πε) + νe2C1t

∫ t

0
e−2C1s‖∇W ε(s, ·)‖2

L2(Πε) ds � e2C1tC, (3.2)

with a constant C. This completes the proof.

We now deduce the main result of this section.

Theorem 3.5. Let uε be the solution of (2.5). Then the following hold true.

(1) The family {Euε − vε} is bounded in

L∞
loc((0,∞); L2(R2)) ∩ L2

loc([0,∞); H1(R2)).

(2) The family {∇Euε} is bounded in L2
loc([0,∞); L2(R2)).

(3) The family {Euε} is bounded in

L∞
loc((0,∞); L2

loc(R
2)) ∩ L4

loc([0,∞); L4(R2)).

Proof. The proof is based on lemmas 3.2 and 3.4. Indeed, part 1 follows from
lemma 3.4, while part 2 is a consequence of the same lemma and of lemma 3.2(b).
To prove part 3, we use again the interpolation inequality

‖W ε‖L4(L4) � C‖W ε‖1/2
L∞(L2)‖∇W ε‖1/2

L2(L2),

which ensures that W ε is uniformly bounded in L4
loc([0,∞); L4(R2)). It suffices now

to use lemma 3.2(a), which gives the uniform boundedness in L4
loc([0,∞); L4(R2))

for uε (whereas Euε
0 is not uniformly bounded in L4

loc(R
2)).

For each ε > 0, we know that div EW ε = div Euε = 0 on R
2. Moreover, since

the supports of EW ε and Euε are contained in Πε, we can rewrite the previous
theorem with the functional spaces of definition 3.1.

Corollary 3.6. Let uε be the solution of (2.5). Then the following hold true.
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(1) The family {Euε − vε} is bounded in L∞
loc((0,∞); HΓ ) ∩ L2

loc([0,∞); VΓ ).

(2) The family {∇Euε} is bounded in L2
loc([0,∞); HΓ ).

We will later use the following proposition on regularization of functions in
L2

loc([0,∞); VΓ ).

Proposition 3.7. Let T ∈ [0, +∞) and f ∈ L2([0, T ];VΓ ). There exists a sequence
{fn} of divergence-free functions belonging to C∞

c ((0, T )×(R2\Γ )) such that fn → f
in L2([0, T ],VΓ ).

Proof. In order to find this family, we start by regularizing in time, as in [15].
To this end, we multiply f by the characteristic function χ[1/n,T−1/n] and then
regularize by a function ρn(t) such that the size of the support of ρn is less than or
equal to 1/2n. Therefore, we obtain a family {ρn ∗ (χ[1/n,T−1/n]f)} which belongs
to C∞

c ((0, T ),VΓ ) and which tends to f in L2([0, T ],VΓ ). Now, we will approximate
functions belonging to C∞

c (VΓ ) by divergence-free functions C∞
c ((0, T ) × (R2 \ Γ )),

which will allow us to conclude due to a diagonal extraction of a subsequence.
As VΓ is a separable Hilbert space for the scalar product H1(R2), VΓ admits

an orthonormal base {en}. Let ϕn,m ∈ V (R2 \ Γ ) be a sequence tending to en in
H1(R2) as m → ∞. Clearly, the family {ϕn,m} is countable, and the vector space
generated by this family is dense in VΓ . Therefore, by the Gram–Schmidt process we
can conclude that there exists an orthonormal base {ẽn} of VΓ with ẽn ∈ V (R2 \ Γ ).
So, if f ∈ C∞

c ((0, T ); V), we can write f =
∑

αn(t)ẽn(x) with αn ∈ C∞
c ((0, T )),

and we can choose

fN =
N∑
0

αn(t)ẽn(x).

These functions belong to C∞
c ((0, T ) × (R2 \ Γ )). Moreover, gn(t) = ‖f(·, t) −

fn(·, t)‖2
H1 belongs to L1([0, T ]) (since ‖gn‖L1 � 4(‖f‖L2([0,T ],H1))2) and, for each

t ∈ [0, T ], {gn(t)} is a non-increasing sequence which tends to zero. Then, by the
Beppo Levi theorem, gn tends to zero in L1([0, T ]), which means that fn converges
to f in L2([0, T ], H1(R2)).

4. Passing to the limit

In this section, we prove that {Euε} converges to a solution of the Navier–Stokes
equations on R

2 \Γ in the sense of distributions. It suffices to find a strong conver-
gence for the sequence {Euε} in L2

loc([0,∞) × (R2 \ Γ )).

Proposition 4.1. Let T > 0 and let O be a smooth open set relatively compact in
R

2 \ Γ . Then the sequence {Euε} is precompact in L∞((0, T ); H−3(O)).

Proof. We show that {Euε} is bounded in L∞((0, T ); L2(O)) and equicontinuous
as a function of (0, T ) into H−2(O), which will allow us to apply the Arzelà–Ascoli
theorem. Fix Ψ , a smooth divergence-free vector field, compactly supported in O.
As the obstacle shrinks to the curve Γ , there exists εO > 0 such that Ωε ∩ Ō = ∅
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for all 0 < ε � εO. For each interval (t1, t2) ⊂ (0, T ), using (2.5) we see that

〈Euε(t2) − Euε(t1), Ψ〉 =
∫

R2
(Euε(t2) − Euε(t1))Ψ dx

=
∫

R2

( ∫ t2

t1

∂tEuε dt

)
Ψ dx

= −
∫ t2

t1

∫
R2

Euε · ∇uεΨ dxdt − ν

∫ t2

t1

∫
R2

∇uε∇Ψ dxdt

≡ I1 + I2.

We first estimate I1. Using theorem 3.5, we deduce that

|I1| � ‖Euε‖L∞((0,T );L2(O))‖∇Euε‖L2([0,T ];L2(O))‖Ψ‖L∞
√

|t2 − t1|

� C‖Ψ‖H2

√
|t2 − t1|,

due to the Sobolev embedding H2(R2) ↪→ L∞(R2). Next, we treat I2:

|I2| � ν‖∇uε‖L2([0,T ];L2(O))‖∇Ψ‖L2

√
|t2 − t1| � C‖Ψ‖H2

√
|t2 − t1|.

The above inequalities show that {Euε} is equicontinuous as a function of time into
H−2(O).

Since {Euε} is bounded in L∞((0, T ); L2(O)) by theorem 3.5, it follows from the
Arzelà–Ascoli theorem that there is a subsequence of Euε which converges strongly
in L∞((0, T ); H−3(O)).

We now improve the space-time compactness result, which is a direct consequence
of the previous proposition.

Lemma 4.2. There exists a sequence such that {Euε} converges strongly in

L2
loc([0,∞) × (R2 \ Γ )).

Proof. We know from theorem 3.5 that {Euε} is bounded in L2([0, T ];H1(O)), and
proposition 4.1 states that {Euε} is precompact in L∞((0, T ); H−3(O)). It follows
by interpolation that there exists a subsequence such that {Euε} converges strongly
in L2([0, T ]×O). By taking diagonal subsequences in the set of the compact subset
of R

2 \ Γ and in the time, we may assume that there is a subsequence which
converges strongly in L2

loc([0,∞) × (R2 \ Γ )).

We will prove that the limits of the sequence {Euε} are solutions of the Navier–
Stokes equations on the exterior of a curve in a suitable weak sense. The difficulty is
that Euε does not belong to L2(R2). So, as we did in corollary 3.6, we should keep
the harmonic part vε. Since we previously obtained a limit for Euε, now we look
for a limit for vε. We recall that vε = αHεΦ

ε,λ, with Hε and Φε,λ given by (2.2)
and (2.7). We also denote H and Φ0,λ as Hε and Φε,λ by replacing Tε by T .

Lemma 4.3. If we define v ≡ αHΦ0,λ, then vε → v in L2
loc(R

2).
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Proof. For any compact K of R
2, using the explicit formula of vε and v, we have

‖vε − v‖L2(K)

=
α

2π

∥∥∥∥Φε,λ

(
DT t

ε

T⊥
ε

|Tε|2
− DT t T⊥

|T |2

)
+ (Φε,λ − Φ0,λ)

(
DT t T⊥

|T |2

)∥∥∥∥
L2(K)

� α

2π

∥∥∥∥Φε,λ

(
DT t

ε

T⊥
ε

|Tε|2
− DT t T⊥

|T |2

)∥∥∥∥
L2(K)

+
α

2π
‖Φε,λ − Φ0,λ‖L∞‖DT t‖L2(K).

Recalling that Φε,λ = 0 on a ball of radius C1λ, we can conclude from assump-
tion 2.4(iii) and remark 2.5 that the first term tends to zero. For the second term,
we note that the cut-off function Φ is Lipschitz, and by the explicit formula of Φε,λ

given in (2.7) we conclude that

|Φε,λ(x) − Φ0,λ(x)| � (sup |Φ′|)
∣∣∣∣ |Tε(x)| − |T (x)|

λ

∣∣∣∣.
Then, on the annulus (chosen independently of ε) where Φε,λ −Φ0,λ is not zero, the
previous term tends to zero due to remark 2.5.

Therefore, we can formulate precisely the notion of weak solution to be used.

Definition 4.4. Let u0 be such that u0−v ∈ HΓ . We say that u is a weak solution
of the incompressible Navier–Stokes equations on R

+ ×(R2 \Γ ) with initial velocity
u0 if and only if u − v belongs to the space

C([0,∞); HΓ ) ∩ L2
loc([0,∞); VΓ )

and for any divergence-free test vector field ψ ∈ C∞
c ((0,∞) × (R2 \ Γ )), the vector

field u satisfies the following condition:
∫ ∞

0

∫
R2\Γ

(u · ψt + [(u · ∇)ψ] · u + νu · ∆ψ) dxdt = 0. (4.1)

Furthermore, div u = 0 in the sense of distributions, and u(·, t) ⇀ u0 in the sense
of distributions as t → 0+.

Remark 4.5. In fact, if we prove that the vector field u verifies (4.1) for all
divergence-free test vector fields ψ ∈ C∞

c ((0,∞) × (R2 \ Γ )), with u − v belonging
to L2

loc([0,∞); VΓ ) ∩ L∞
loc((0,∞); HΓ ), then

∂tu ∈ L2
loc([0,∞),V ′

Γ ). (4.2)

Indeed, with lemma 3.2 and the interpolation inequality

‖u − v‖L4(L4) � C‖u − v‖1/2
L∞(L2)‖∇(u − v)‖1/2

L2(L2),

we note that u belongs to

L4
loc([0,∞); L4(R2 \ Γ ))
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and ∇u belongs to L2
loc([0,∞); L2(R2 \ Γ )). For each T > 0, using (4.1) and theo-

rem 3.5 for each divergence-free function ψ ∈ C∞
c ((0, T ) × (R2 \ Γ )), we have

〈∂tu, ψ〉 � (‖u‖2
L4((0,T );L4) + ν‖∇u‖L2((0,T );L2))‖∇ψ‖L2((0,T );L2)

� C‖ψ‖L2((0,T );VΓ )

with a constant C > 0. As the set of divergence-free functions belonging to

C∞
c ((0, T ) × (R2 \ Γ ))

is dense on L2([0, T ],VΓ ) (by proposition 3.7), the linear form

ψ 
→
∫∫

∂tu · ψ

is bounded on L2([0, T ],VΓ ), so (4.2) follows.

Theorem 4.6. There exists one strong limit u of {Euε} in L2
loc([0,∞) × (R2 \ Γ ))

which is a weak solution of the Navier–Stokes equations in R
2 \ Γ in the sense of

definition 4.4, with initial velocity given by u0 = K[ω0] + αH.

Proof. By lemmas 2.8 and 4.3, we know that Euε
0 − vε → u0 − v in L2

loc(R
2).

According to theorem 3.5, u0−v belongs to L2(R2). Moreover, Euε
0−vε is supported

in a smooth domain (Πε); thus, we can approximate it by functions belonging to
VΓ . Then, by a diagonal extraction, we obtain that u0 − v ∈ HΓ .

Let ψ ∈ C∞
c ((0,∞)×(R2 \Γ )) such that div ψ = 0. If we consider ε small enough

such that the support of ψ does not intersect Ωε, we can rewrite the integrals on
Πε as full-planar integrals, using the extension operator and multiplying (2.5) by
ψ. We obtain the following relation:∫ ∞

0

∫
R2\Γ

(Euε · ψt + [(Euε · ∇)ψ] · Euε + νEuε · ∆ψ) dxdt = 0.

Due to the convergence of Euε to a vector field u in L2
loc([0,∞) × R

2 \ Γ ) (see
lemma 4.2), we can pass to the limit ε → 0 and obtain that u satisfies (4.1).

Moreover, vε tends to v (see lemma 4.3) so, passing to a subsequence if necessary,
corollary 3.6 implies that u − v belongs in L2

loc([0,∞); VΓ ) ∩ L∞
loc((0,∞); HΓ ). The

incompressible condition is a consequence of the strong convergence of divergence-
free vector fields (lemma 4.2).

Now, we prove that u − v belongs to C([0,∞); HΓ ). We know from corollary 3.6
that u−v belongs to L2([0, T ];VΓ ) and from remark 4.5 that its derivative ∂t(u−v)
belongs to L2([0, T ];V ′

Γ ). As

VΓ ↪→ HΓ ≡ H′
Γ ↪→ V ′

Γ ,

lemma 1.2 of [15, ch. III] (see also the Lions–Magenes theorem of interpolation [11])
allows us to state that u − v is almost everywhere equal to a function continuous
from (0, T ) into HΓ and we have the following equality, which holds in the scalar
distribution sense on (0, T ):

d
dt

|u − v|2 = 2〈∂t(u − v), u − v〉. (4.3)

Therefore, u − v ∈ C([0,∞); HΓ ).
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Furthermore, since Euε converges to u uniformly in time with values in H−3
loc (R2\

Γ ) (by proposition 4.1), one has that Euε
0 converges to ut=0 in H−3

loc . On the other
hand, lemma 2.8 states that Euε

0 converges to K[ω0] + αH in L2
loc(R

2). By unique-
ness of the limit in H−3

loc , we conclude that u0 = K[ω0] + αH, which completes the
proof.

5. Uniqueness for the limit problem

We now state the uniqueness result that completes theorem 4.6.

Proposition 5.1. There exists at most one global solution in the sense of defini-
tion 4.4, verifying that the initial velocity is u0 = K[ω0] + αH.

Proof. Let u1 and u2 be two global solutions of the Navier–Stokes equations around
the curve Γ with the same initial velocity u0 = K[ω0]+αH. By remark 4.5 we have
that the ∂tui belong to L2

loc([0,∞),V ′
Γ ), for i = 1, 2.

If we define ũ = u1 − u2, then, by proposition 3.7, for a fixed T > 0 there
exists a divergence-free family {ψn} in C∞

c ((0, T ) × R
2 \ Γ ) such that ψn → ũ in

L2([0, T ];VΓ ).
Subtracting the equations satisfied by u1 and u2, and multiplying by the test

function ψn, we see that

∫ T

0

∫
R2\Γ

∂tũ · ψn dxdt − ν

∫ T

0

∫
R2\Γ

ũ · ∆ψn dxdt

=
∫ T

0

∫
R2\Γ

([(ũ · ∇)ψn] · u1 + [(u2 · ∇)ψn] · ũ) dxdt. (5.1)

Using the interpolation inequality

‖uε‖L4(L4) � C‖uε‖1/2
L∞(L2)‖∇uε‖1/2

L2(L2),

the right-hand side term can be bounded by
∫ T

0
‖ũ‖L4(‖u1‖L4 + ‖u2‖L4)‖∇ψn‖L2

� C

∫ T

0
‖∇ψn‖L2‖∇ũ‖1/2

L2 ‖ũ‖1/2
L2 (‖u1‖L4 + ‖u2‖L4)

� ν

2

∫ T

0
‖∇ψn‖2

L2 +
ν

2

∫ T

0
‖∇ũ‖2

L2 + C1

∫ T

0
‖ũ‖2

L2(‖u1‖4
L4 + ‖u2‖4

L4),

with constants C and C1 independent of T . For the left hand-side term, by (4.3)
and because ũ(·, 0) = 0, we can write
∫ T

0

∫
R2\Γ

∂tũ · ψn dxdt =
∫ T

0

∫
R2\Γ

∂tũ · ũ dxdt +
∫ T

0

∫
R2\Γ

∂tũ · (ψn − ũ) dxdt

= 1
2‖ũ(·, T )‖L2(R2) +

∫ T

0

∫
R2\Γ

∂tũ · (ψn − ũ) dxdt.
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The last double integral tends to 0 as n → ∞ because ∂tũ belongs to L2
loc([0,∞); V ′

Γ )
and ψn converges to ũ in L2([0, T ];VΓ ).

In the same way, we have

− lim
n→∞

∫ T

0

∫
R2\Γ

ũ · ∆ψn dxdt

= lim
n→∞

∫ T

0

∫
R2\Γ

∇ũ · ∇ψn dxdt

=
∫ T

0

∫
R2\Γ

∇ũ · ∇ũ dxdt + lim
n→∞

∫ T

0

∫
R2\Γ

∇ũ · (∇ψn − ∇ũ) dxdt

= ‖∇ũ‖2
L2([0,T ],L2(R2)),

because ∇ũ belongs to L2([0, T ];HΓ ) and ∇ψn converges to ∇ũ in L2([0, T ];HΓ ).
This convergence also implies that

lim
n→∞

‖∇ψn‖2
L2([0,T ]×R2) = ‖∇ũ‖2

L2([0,T ]×R2).

Therefore, passing to the limit n → ∞ in (5.1) yields

‖ũ(·, T )‖2
L2 � 2C1

∫ T

0
‖ũ‖2

L2(‖u1‖4
L4 + ‖u2‖4

L4).

The latter equality holds for all T > 0, with the constant C1 independent of T .
Noting that the functions t 
→ ‖ũ(·, t)‖2

L2 , t 
→ (‖u1(·, t)‖4
L4 + ‖u2(·, t)‖4

L4) and
t 
→ ‖ũ(·, t)‖2

L2(‖u1(·, t)‖4
L4 + ‖u2(·, t)‖4

L4) are L1
loc, we can apply Gronwall’s lemma

to obtain
‖ũ(·, T )‖2

L2 � 0,

which concludes the proof of uniqueness.

Once the uniqueness of the limit velocity is established, and given that by theo-
rem 4.6 we know that from every sequence of solutions uε we can extract a subse-
quence converging in L2

loc([0,∞) × (R2 \ Γ )), we deduce with a standard argument
that strong convergence in L2

loc([0,∞)×(R2 \Γ )) holds without the need to extract
a subsequence. Theorem 1.1 is therefore completely proved.
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Appendix A. Notation

A.1. Domains

The following domains are used in this paper:

• D ≡ B(0, 1) is the unit disc;

• S ≡ ∂D;
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• Γ is a Jordan arc (see proposition 2.2);

• Π ≡ R
2 \ Γ ;

• Ωε is a bounded, open, connected, simply connected subset of the plane, such
as Ωε → Γ as ε → 0;

• Γε ≡ ∂Ωε is a C∞ Jordan curve;

• Πε ≡ R
2 \ Ω̄ε.

A.2. Functions

The following functions are used in this paper:

ω0 the initial vorticity (C∞
c (Π));

γ the circulation of uε
0 on Γε (see § 1);

uε the solution of the Navier–Stokes equations on Πε;
T a biholomorphism between Π and intDc (see proposition 2.2);
Tε a biholomorphism between Πε and intDc (see assumption 2.4);
Kε and Hε as given in (2.1) and (2.2); Kε[ω0](x) ≡

∫
Πε

Kε(x, y)ω0(y) dy;
Φε,λ a cut-off function (see (2.7)).

V (Ω), V(Ω), V ′(Ω), H(Ω), VΓ and HΓ are some vector spaces defined in defini-
tion 3.1.
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