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Introduction

It is relatively easy to produce examples of variations of polarized Hodge structures on
the complement A1 � C of a finite set C in the complex affine line A1. The simplest
ones consist of variations of type (0, 0), that is, flat holomorphic bundles on A1 � C

with a flat Hermitian metric, together with a flat real (respectively rational, respectively
integral) structure, depending on whether the Hodge structures are real (respectively
rational, respectively integral). Equivalently, such variations are in one-to-one corre-
spondence with R- (respectively Q-, respectively Z-) local systems on A1 � C whose
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monodromy representation takes values in the unitary group (up to conjugation). Other
classical variations arise whenever one is given a projective morphism f : X → A1 on a
smooth complex quasi-projective variety X and C is the set of critical values of f , as
Gauss–Manin systems of f .

Recently, a generalization of the notion of variation of polarized Hodge structures has
been considered under the names of variation of integrable polarized twistor structure
(generalizing complex variations of polarized Hodge structures (see [25,28])), variations
of pure polarized TERP structures (generalizing real variations of polarized Hodge struc-
tures (see [9,11,13])), and variations of non-commutative Hodge structures (generalizing
rational variations of polarized Hodge structures (see [20])); the case with a Z-structure
has also been considered in [15].

The interest of such generalizations comes from the following observations.

(1) While variations of polarized Hodge structures degenerate with regular singulari-
ties, the previous generalizations may degenerate with irregular singularities, and
thus can extend the scope of the theory. In particular, Fourier–Laplace transfor-
mation can be extended to such objects (see [31,32]) and they form part of the
larger family of wild twistor D-modules (see [26] and also [30]).

(2) Mirror symmetry produces such structures in quantum cohomology (see [2–4,16]).

(3) Such structures are expected to occur in non-commutative geometry (see [20] and
[17]), and this explains the name chosen by the authors of [20].

(4) These structures are convenient to adapt the techniques of classical Hodge theory
(in particular period mappings) to the local analytic settings attached to isolated
singularities of complex hypersurfaces (classifying spaces of Brieskorn lattices (see
[8–14])).

An integrable twistor structure consists of a germ of holomorphic bundle on a disc
with coordinate z (say), equipped with

• a meromorphic connection having a pole of order at most two at the origin and no
other pole,

• a non-degenerate bilinear pairing between the underlying local system on {z �= 0}
and the pull back by ι : z �→ −z of its conjugate local system which satisfies a
skew-Hermitian property (we call such a pairing a ι-skew-Hermitian pairing on the
local system).

These data allow one to construct in a natural way (twistor gluing) a holomorphic vector
bundle on P1. When this bundle is trivial, we say (see [33]) that the twistor structure is
pure of weight 0. The construction then equips the space of global sections of this bundle
with a non-degenerate Hermitian pairing. If this pairing is positive definite, we say that
the pure twistor structure is polarized. In the following, ‘pure and polarized’ will usually
mean ‘pure of weight 0’ and polarized.

The Riemann–Hilbert correspondence for meromorphic connections with slope one (as
only positive slope) and no ramification (that we will call below of exponential type,

https://doi.org/10.1017/S147474801100003X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801100003X


Examples of non-commutative Hodge structures 637

like in [20] (see, for example, [32, Lemma 1.5] for the relation with regularity after
Laplace transformation)), enriched with such a pairing, allows one to encode the data
of the meromorphic bundle and the pairing in a block-lower triangular matrix Σ (the
unipotent Stokes matrix multiplied by the ‘square root’ of the formal monodromy) with
invertible diagonal blocks and a set of exponential factors. It remains to choose, within the
meromorphic bundle, a holomorphic bundle on which the connection has a pole of order
at most two. If the connection is of exponential type, a canonical holomorphic bundle is
provided by the Deligne–Malgrange lattice (with the choice (0, 1] for the real part of the
eigenvalues of the residues (see § 1.d)). Therefore, such a matrix Σ also determines the
Deligne–Malgrange lattice.

Our main result (Theorem 5.9) answers Conjecture 10.2 in [11]: if an arbitrary set of
exponential factors is given and if Σ as above is such that Σ + tΣ is positive semi-definite
and satisfies a property called minimality (see Definition 2.10), then the integrable twistor
structure which they determine (with the Deligne–Malgrange lattice) is pure of weight 0
and polarized. In fact, the statement that we give slightly relaxes this minimality prop-
erty. Note that if Σ is real (respectively rational), the corresponding integrable twistor
structure is then a pure polarized TERP structure in the sense of [9] (respectively a
non-commutative Hodge structure in the sense of [20]).

The question of how to compute as explicitly as possible the ‘new supersymmetric
index’ of Cecotti and Vafa [4] for such a polarized pure twistor structure remains open
(see [9,25,28,32] for the definition and some properties in the present setting).

The proof of Theorem 5.9 consists in showing that the integrable twistor structure
determined by Σ is nothing but the twistor structure associated to the Laplace trans-
form of a regular holonomic module with a flat Hermitian form on its smooth part. We
essentially identify the restriction of this Hermitian form to the fibre at some general
point with the form defined by Σ + tΣ. If it is positive definite, then the flat bundle has
a Hermitian metric, and it follows from [31] that the twistor structure corresponding to
the Fourier–Laplace transform is pure of weight 0 and polarized.

We use the algebraic/analytic version of the Laplace transformation, as it is simpler to
prove the Fourier inversion formula in this setting. A topological version of the Laplace
transformation (homological with Lefschetz thimbles or cohomological like in [20] and
including the Stokes structure) also exists, but we did not find a complete reference for
the corresponding Fourier inversion formula in this purely topological setting.

1. Polarized pure twistor structure attached to a flat unitary bundle

In this section, we will recall some of the results of [31] in the particular case of a variation
of polarized pure Hodge structure of type (0, 0) (flat unitary bundle). The consequence
of these results, given by Corollary 1.5, will be our main tool for proving Theorem 5.9.

1.a. Sesquilinear pairings on C[t]〈∂t〉-modules

Let A1
t be the complex affine line with coordinate t and let C = {c1, . . . , cr} ⊂ A1

t be
a finite set of points. We denote by C[t]〈∂t〉 the Weyl algebra of the variable t, by DP1
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the sheaf of holomorphic differential operators on P1, and by DP1(∗∞) its localization
at infinity, so that C[t]〈∂t〉 = Γ (P1,DP1(∗∞)). Recall that the classical Riemann–Hilbert
correspondence gives an equivalence between the following categories (1)–(3), and an
extension of it to D-modules together with a GAGA argument gives the equivalence
with (4) and (5).

(1) Locally constant sheaves V of finite-dimensional C-vector spaces on A1
t � C (that

we call local systems for short).

(2) Holomorphic flat bundles with connection (V, ∇) on A1
t � C.

(3) Locally free OP1(∗C ∪ {∞})-modules M̃ with regular singular connection.

(4) Regular holonomic DP1-modules M with singularities at C ∪ {∞}, which are min-
imal extensions at C (i.e. have neither sub nor quotient module supported on C)
and maximal extensions at ∞ (i.e. are DP1(∗∞)-modules).

(5) Regular holonomic C[t]〈∂t〉-modules M with singularities at C and which have
neither sub nor quotient modules supported on C.

This correspondence extends to a correspondence with sesquilinear pairing as follows.
Let S ′(A1

t ) be the Schwartz space of tempered distributions on A1
t . This is the space of

global sections of the sheaf Db
mod ∞t

P1
t

on P1
t of distributions on A1

t which have moderate
growth at infinity (on any open set U of P1

t , its space of sections is the dual of the
space of C∞ functions with compact support on U having rapid decay at infinity; it
can be regarded as the quotient of the sheaf of distributions on P1

t modulo distributions
supported at and is also equal to the localized sheaf OP1(∗∞) ⊗O

P1
DbP1

t
, according to the

division property of distributions by holomorphic functions). We will also consider the
sheaf Db

mod C∪∞t

P1
t

on P1
t of distributions on A1

t �C having moderate growth at C ∪ {∞t}.
Then, any sesquilinear pairing hB : V ′ ⊗C V ′′ → CA1

t �C between the local systems V ′

and V ′′ (where V ′′ denotes the conjugate local system and ‘sesquilinear’ means that hB

is a C-linear morphism) induces in a unique way a sesquilinear pairing h on the minimal
extensions taking values in the Schwartz space of tempered distributions on A1

t and which
is linear with respect to the natural C[t]〈∂t〉 ⊗C C[t]〈∂t〉-action on both the source and
the target. Indeed, it is easy to extend hB as a ∇-flat sesquilinear pairing h : V ′ ⊗C V ′′ →
C ∞

A1
t �C

, i.e. which satisfies

h(∇v′, v′′) = ∂h(v′, v′′) and h(v′,∇v′′) = ∂h(v′, v′′)

for all local sections v′, v′′ of V ′, V ′′. Since any local meromorphic basis of M̃ can be
expressed with coefficients having moderate growth in any basis of local horizontal sec-
tions (according to the regularity of the connection), the pairing extends as a sesquilinear
pairing between M̃ ′ and the conjugate of M̃ ′′ taking values in the sheaf of distributions
on P1

t having moderate growth at C∪{∞t} (sesquilinearity means DP1
t
(∗∞t)⊗DP1

t
(∗∞t)-

linearity). The latter induces such a pairing between the minimal extensions M ′, M
′′

with values in Db
mod C∪∞t

P1
t

. A local inspection of the values of this pairing near the points
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of C shows that it can be canonically lifted as a pairing with values in the sheaf on P1
t of

distributions on A1
t with moderate growth at infinity. Taking global sections on P1

t gives
a sesquilinear pairing h : M ′ ⊗M ′′ → S ′(A1

t ). Going in the other direction from M to V

is easier via the de Rham functor, and we denote by hDR the corresponding form.
Let h : M ′ ⊗C M ′′ → S ′(A1

t ) be a sesquilinear pairing between holonomic C[t]〈∂t〉-
modules. We can view h as a C[t]〈∂t〉-linear morphism M ′ → Hom

C[t]〈∂t〉(M
′′,S ′(A1

t )),
where the latter module is equipped with the C[t]〈∂t〉-module structure coming from
that on S ′(A1

t ). It is known (but not used now) that Hom
C[t]〈∂t〉(M

′′,S ′(A1
t )) is also

a holonomic C[t]〈∂t〉-module (see [27, Corollary II.3.4.2]). We will say that h is non-
degenerate if it induces an isomorphism M ′ ∼−→ Hom

C[t]〈∂t〉(M
′′
,S ′(A1

t )). If M ′ = M ′′,
the definition of ‘Hermitian’ is the obvious one.

Similarly, one can define the notion of ‘non-degenerate’ and ‘Hermitian’ at all steps
of the Riemann–Hilbert correspondence above. It is easy to see that if h : M ′ ⊗C M ′′ →
S ′(A1

t ) is non-degenerate, then so is hDR : V ′ ⊗ V ′′ → CA1
t �C (by sheafifying the mor-

phism M ′ → Hom
C[t]〈∂t〉(M

′′,S ′(A1
t )) and restricting to A1

t � C). The converse also
holds, but we will not need it in this article (in a special case the result follows from
Lemma 5.6 below).

Let us also notice that, if a C[t]〈∂t〉-module M has regular singularities at C ∪ {∞} and
is equipped with a non-degenerate sesquilinear pairing h, then M is a minimal extension
at its singularity set C if and only if M has no submodule supported by C (a quotient
module supported by C would produce a submodule of Hom

C[t]〈∂t〉(M, S ′(A1
t )) � M

supported by C).
Lastly, we remark that if h is Hermitian and non-degenerate on M , it is so on V (and

the connection on V is the holomorphic part of the Chern connection of h), and then
it is positive definite at one fibre of V if and only if it is so at any fibre of V (because
A1

t � C is connected). In such a case, V is a holomorphic vector bundle on A1
t � C with

a flat Hermitian metric h. By the Riemann–Hilbert correspondence (taking horizontal
sections), it corresponds to a locally constant sheaf V of complex vector spaces on A1

t �C

whose monodromy is unitary, that is, whose associated monodromy representation takes
values, up to conjugation, in the unitary group. In particular the representation is semi-
simple and, going back through the Riemann–Hilbert correspondence, the corresponding
C[t]〈∂t〉-module M is semi-simple.

1.b. Laplace transformation and sesquilinear pairings

Let M be a holonomic C[t]〈∂t〉-module and let N = FM be its Laplace transform with
kernel e−tτ : by definition, FM coincides with M as a C-vector space and the C[τ ]〈∂τ 〉
action is defined by τ · m = ∂tm, ∂τm = −tm. It is known (see, for example, [22, Chap-
ter V]) that Laplace transformation (also called Fourier transformation in the literature)
gives a one-to-one correspondence between regular holonomic C[t]〈∂t〉-modules and holo-
nomic C[τ ]〈∂τ 〉-modules with a regular singularity at τ = 0 and an irregular one of
exponential type at infinity, in the following sense. Let us set G = C[τ, τ−1] ⊗C[τ ]

FM

and z = τ−1. This is a free C[τ, τ−1]-module of finite rank equipped with a connection.
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Then Ĝ := C[[z]] ⊗C[z] G is a free C((z))-vector space with connection, isomorphic to⊕
c∈C

(E −c/z ⊗ R̂c)

(called the Levelt–Turrittin decomposition), where Rc has a regular connection and
E −c/z := (C[[z]], d − c d(1/z)).

We will denote by A1
t (respectively A1

τ ) the affine line with coordinate t (respectively τ)
and by

Ft : S ′(A1
t ) → S ′(A1

τ )

the Fourier transformation of tempered distributions with kernel etτ−tτ (i/2π) dt ∧ dt.
Recall that, given a function χ(τ) in the Schwartz space S (A1

τ ) (i.e. χ(τ) C∞, rapidly
decaying as well as all its derivatives when τ → ∞), we set ψ = χ(τ) dτ ∧ dτ and, for
T ∈ S ′(A1

t ),

〈FtT, ψ(τ)〉 :=
〈

T, (Fτψ)
i

2π
dt ∧ dt

〉
with (Fτψ)(t) =

∫
A1

τ

etτ−tτψ(τ) ∈ S (A1
t ).

The Fourier transform Ft is an isomorphism between S ′(A1
t ) and S ′(A1

τ ). Moreover,
defining similarly Fτ : S ′(A1

τ ) → S ′(A1
t ) with the kernel etτ−tτ (i/2π) dτ ∧ dτ , we have

F−1
t = F τ

(where F τ has kernel etτ−tτ (i/2π) dτ ∧dτ). Indeed, it is enough to check the dual relation
for the Fourier transform of functions in the Schwartz classes S (A1

t ) and S (A1
τ ). Let us

set t = (x + iy)/
√

2 and τ = (ξ + iη)/
√

2. Let ϕ = χ(x, y) dx ∧ dy with χ in the Schwartz
class on A1

t . If we set s = (u + iv)/
√

2, the assertion amounts to[ ∫
A1

τ

etτ−tτ

( ∫
A1

t

esτ−sτϕ(u, v)
)

i
2π

dτ ∧ dτ

]
i

2π
dt ∧ dt = ϕ(x, y),

or equivalently

1
4π2

∫
A1

τ

e−i(xη+yξ)
( ∫

A1
t

ei(uη+vξ)χ(u, v) du ∧ dv

)
dξ ∧ dη = χ(x, y).

Here, A1 is oriented with its complex structure, so that if we denote by du · dv the
Lebesgue measure and |A1| = R2 without orientation, we have∫

A1
t

• du ∧ dv =
∫

|A1
t |

• du · dv,

so our assertion reduces to the standard Fourier inversion formula for functions in the
Schwartz class of R2.

It is well known that Ft and F τ are linear with respect to the C[t]〈∂t〉 ⊗C C[t]〈∂t〉-
action on S ′(A1

t ) and the C[τ ]〈∂τ 〉⊗C C[τ ]〈∂τ 〉-action on S ′(A1
τ ) via the correspondence

∂t ↔ τ , t ↔ −∂τ defined above.
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If h : M ′ ⊗C M ′′ → S ′(A1
t ) is a sesquilinear pairing, we define the Fourier transform Fh

as the composition Ft ◦ h. In order to interpret Fh as a C[τ ]〈∂τ 〉 ⊗C C[τ ]〈∂τ 〉-linear
morphism, and thus to keep sesquilinearity, we have to use the kernels e−tτ on M ′ and
etτ on M

′′
, that is, to regard Fh as a pairing from the Laplace transform N ′ of M ′

and the conjugate of the inverse Laplace transform of M ′′, which is nothing but ι+N
′′
,

if we denote by ι the involution τ �→ −τ . We therefore view Fh as sesquilinear pairing
N ′ ⊗C ι+N

′′ → S ′(A1
τ ). Note that we recover h as F τFth. We will also set h := (i/2π)Fh.

It is important to notice that h (or Fh) is non-degenerate if and only if h is so. This follows
from the fact that Ft is an isomorphism.

We also remark that, if M ′ = M ′′ = M , h is Hermitian if and only if Fh is ι-Hermitian.
Indeed, ι induces an involution ι∗ : S ′(A1

τ ) ∼−→ S ′(A1
τ ) and we have Ft(T ) = ι∗FtT for

T ∈ S ′(A1
t ). This is also equivalent to h = (i/2π)Fh being ι-skew-Hermitian (the choice of

the sign +i is irrelevant here, it will be justified by the comparison lemma (Lemma 5.8)).

1.c. A criterion on FM ensuring that M is a minimal extension

Let M be a regular holonomic C[t]〈∂t〉-module with singularities at C. Let N = FM

be its Laplace transform and set G = C[τ, τ−1] ⊗C[τ ] N as above.

Lemma 1.1. Let us assume that

• M is equipped with a non-degenerate sesquilinear pairing h,

• N = FM is a minimal extension at τ = 0 (its regular singularity).

Then M is a minimal extension if and only if G has no rank-one C[τ, τ−1]-submodule
stable by ∇ on which the monodromy is the identity.

Proof. Because of the existence of h, M is a minimal extension if and only if it has
no submodule isomorphic to C[t]〈∂t〉/C[t]〈∂t〉(t − c), with c ∈ C. This is equivalent to
asking that N has no submodule isomorphic to (C[τ ], d − c dτ). On the other hand, any
C[τ, τ−1]-submodule of G stable by ∇ has a regular singularity at the origin and has
exponential type at infinity. If such a module has rank one and if the monodromy is the
identity, it must be equal to (C[τ, τ−1], d − c dτ) for some c ∈ C (in fact some c ∈ C).

Assume that M is a minimal extension. If we had a submodule (C[τ, τ−1], d − c dτ)
in G, then (C[τ ], d − c dτ) would be a C[τ ]〈∂τ 〉-submodule of G. Since N is a minimal
extension at τ = 0, it is included in G. Since the intersection in G of (C[τ ], d − c dτ)
and N is non-zero (because it is non-zero after localization), and since (C[τ ], d − c dτ) is
a simple C[τ ]〈∂τ 〉-module, (C[τ ], d − c dτ) would be contained in N . By inverse Laplace
transform, M would have a submodule supported on C, a contradiction.

Conversely, assume that G is as in the lemma. Then N does not have any C[τ ]〈∂τ 〉-
submodule isomorphic to (C[τ ], d − c dτ) (otherwise, by localization, it would produce a
(C[τ, τ−1], d−c dτ) in G). By inverse Laplace transform, M has no sub-module supported
on C. �

Remark 1.2. In particular, if we assume that 1 is not an eigenvalue of the monodromy
on (G, ∇), then the condition of the lemma is fulfilled and M is a minimal extension.
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1.d. The Brieskorn lattice of a Deligne lattice

Let M be a regular holonomic C[t]〈∂t〉-module with singularities at C. Assume that M

is a minimal extension at C. Assume also that the eigenvalues of the local monodromies
of the corresponding local system V have absolute value equal to one (this property holds
if V is unitary). Let us denote by V >−1M the free C[t]-submodule of M satisfying the
following two properties:

(1) the connection ∇ on M induces a logarithmic connection on V >−1M ,

(2) the eigenvalues of the residues at C (which are real by the assumption on the local
monodromies) belong to (−1, 0].

Because M is assumed to be a minimal extension, it is generated, as a C[t]〈∂t〉-module,
by V >−1M .

The Brieskorn lattice G0 attached to V >−1M is, by definition, the C[τ−1]-submodule
of G generated by the image of V >−1M in G via the localization morphism

M = FM → G.

Each R̂c in the Levelt–Turrittin decomposition of Ĝ has a formal Deligne lattice
V >0R̂c which is the unique logarithmic lattice for which the eigenvalues of the residue of
the connection belong to (0, 1], and therefore (according, for example, to [24, Propo-
sition 2.1]) G has a unique C[z]-lattice DM>0 G whose associated formal lattice is⊕

c∈C(E −c/z ⊗ V >0R̂c). We call DM>0 G the Deligne–Malgrange lattice of G at ∞.

Lemma 1.3. We have G0 = DM>0 G.

Proof. It is known that C[[z]]⊗C[z]G0 decomposes as
⊕

c∈C(E −c/z ⊗ (V >−1M)µ
c ), where

(V >−1M)µ
c is the formal microlocalization of V >−1M at c (see [29, Proposition 2.3]).

The identification of (V >−1M)µ
c with V >0R̂c is then standard. �

1.e. Twistor gluing

Let (H ,∇) be a free C{z}-module of finite rank with a meromorphic connection having
a pole of order less than or equal to 2 at z = 0. We will assume that the connection ∇ on
the associated meromorphic bundle H (∗0) = C({z}) ⊗C{z} H is of exponential type. Let
H ∇ denote the local system of horizontal sections of ∇ on a small punctured disc ∆∗

centred at z = 0. Assume moreover that we are given a non-degenerate ι-skew-Hermitian
pairing hB : H ∇ ⊗C ι−1H ∇ → C∆∗ , where ι is the involution z �→ −z (the index B is
for ‘Betti’, as such a pairing is often defined in a topological way). We associate to hB

the ι-Hermitian pairing −2πihB.
Using the flat connection ∇, it is possible to extend in a unique way the previous objects

as analogous objects on the complex line A1,an
z . On the circle |z| = 1, the involution ι

coincides with the anti-linear involution σ : z �→ −1/z, and −2πihB|S1 can be used to
glue H ∨ (dual of H ) with σ∗H , to get a holomorphic bundle H̃ on P1, that is (as
this is compatible with the connection) an integrable twistor structure. We say that this
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twistor structure is obtained by twistor gluing of (H ,∇, hB) (see [9, Lemma 2.14] and
[31, Definition 1.29]). Notice that the degree of H̃ is zero, since it is computed as
− Tr(tRes ∇) + Tr(Res ∇), which is purely imaginary and has to be an integer.

An example where the resulting twistor structure is pure of weight 0 (i.e. H̃ is trivial)
and polarized is obtained as follows (see [31]). Let M be a regular holonomic C[t]〈∂t〉-
module, which is a minimal extension at its singular set C, and which is endowed with a
Hermitian pairing h with values in S ′(A1

t ). Then its Laplace transform FM is a holonomic
C[τ ]〈∂τ 〉-module, with a regular singularity at τ = 0 and an irregular one of exponential
type at τ = ∞. The Fourier transformed pairing Fh induces an ι-skew-Hermitian pairing
hB = (i/2π)Fh on the corresponding local system FV . On the other hand, we denote
by DM>0 G the Deligne–Malgrange lattice of G = C[τ, τ−1] ⊗ FM at τ = ∞ (which is
also the Brieskorn lattice G0 of the Deligne lattice V >−1M , according to Lemma 1.3).
Setting z = τ−1, we can thus apply the twistor gluing procedure to these data. As a direct
consequence of [31, Corollary 3.15] (using that a flat Hermitian bundle is a variation of
complex Hodge structures of type (0, 0)), we get the following proposition.

Proposition 1.4. If the pairing h is Hermitian positive definite on (V, ∇), then the
integrable twistor structure attached to (DM>0 G, ∇, Fh = −2πihB) is pure of weight 0
and polarized.

As a consequence of the previous results we obtain the following corollary.

Corollary 1.5. Let N be a holonomic C[τ ]〈∂τ 〉-module of exponential type at infinity
having a single singularity at 0 in A1

τ , which is regular. Set G = C[τ, τ−1]⊗C[τ ]N . Assume
that

(1) G has no rank-one C[τ, τ−1]-submodule stable by ∇ on which the monodromy is
the identity,

(2) N is a minimal extension at τ = 0,

(3) N is equipped with a non-degenerate ι-skew-Hermitian pairing h such that ĥ :=
−2πiF τh is positive definite at one fibre c �∈ C (set of exponential factors of N at
infinity).

Then the triple (DM>0 G, ∇,−2πih) defines, by twistor gluing, an integrable twistor
structure which is pure of weight 0 and polarized.

Proof. The assumption that N has 0 as its single singularity, which is regular, at finite
distance and has an irregular singularity of exponential type at infinity means that
N = FM for some regular holonomic M (see [22, Chapter V] or [32, Lemma 1.5]). Since h
is non-degenerate on N by Corollary 1.5 (3), so is ĥ on M and, according to Lemma 1.1,
Corollary 1.5 (1) and Corollary 1.5(2), M is a minimal extension at its singularity set C.
Moreover, ĥ restricts as a non-degenerate Hermitian form on (V, ∇). Being positive defi-
nite at some c /∈ C by Corollary 1.5 (3), it is positive definite all over A1

t � C, and thus
the assumption of Proposition 1.4 is satisfied by M . Lastly, we have F̂h = −2πih. �
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2. Stokes filtration and Stokes data

In this section we recall the notion of Stokes filtration as defined in [5] (see also [1,21,22])
in the particular case of Stokes filtrations which are of exponential type. We make explicit
the correspondence to the more classical approach via Stokes data, and we mainly focus
on the behaviour with respect to a sesquilinear pairing (hence also to duality).

2.a. Stokes filtration

Let k be a field (e.g. Q or C). Let L be a local system of finite-dimensional k-vector
spaces on the circle S1 with coordinate eiθ. A Stokes filtration of L is a family of
subsheaves L�c ⊂ L , with c ∈ C, satisfying the following properties.

(1) For each θ ∈ R/2πZ, let �θ be the partial order on C which is compatible with
addition and satisfies

c �θ 0 ⇐⇒ c = 0 or arg c − θ ∈ (π/2, 3π/2) mod 2π.

We also set c <θ 0 if and only if c �= 0 and c �θ 0. One requires that, for each θ,
the germs L�c,θ form an exhaustive increasing filtration of Lθ with respect to �θ.

(2) Because the order �θ is open with respect to θ, the germs L<θc :=
∑

c′<θc L�c′,θ

glue as a subsheaf L<c of L . One requires that the graded sheaves grc L :=
L�c/L<c are locally constant sheaves on S1.

(3) Near any eiθ ∈ S1, one requires that there are local isomorphisms (L ,L•) �
(grL , (grL )•), where the Stokes filtration on grL :=

⊕
c∈C

grc L is the natural
one, that is, (grL )�c,θ =

⊕
c′�θc grc′ L . In particular, grc L = 0 except for c

in a finite set C ⊂ C, called the set of exponential factors of the Stokes filtration
(L ,L•).

Remarks 2.1.

(1) We simplify here the general definition of a Stokes filtration, as we only deal with
this kind of filtrations. It is called ‘of exponential type’ in [20]. The case where C =
{0} corresponds to a regular singularity in the setting of bundles with meromorphic
connections. One can notice that, as a consequence of the definition, the set C is
not empty except possibly if L = 0; in such a case, it will be convenient to assume
also C �= ∅, e.g. C = {0}.

(2) For each pair c �= c′ ∈ C, there are exactly two values of θ mod 2π, say θc,c′ and
θ′

c,c′ , such that c and c′ are not comparable at θ. We have θ′
c,c′ = θc,c′ + π. These

values are called the Stokes directions of the pair (c, c′). For any θ in one component
of R/2πZ � {θc,c′ , θ′

c,c′}, we have c <θ c′, and the reverse inequality for any θ in
the other component. We denote the images of these intervals in S1 via θ �→ eiθ by
S1

c�c′ and S1
c′�c respectively. If c = c′, we set S1

c�c := S1.
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(3) For each pair c, co ∈ C, the inclusion jc�co
: S1

c�co
↪→ S1 is open. We will denote

by βc�co the functor jc�co,!j
−1
c�co

, consisting in restricting a sheaf to this open set
and extending the restriction to S1 by 0. The filtration condition (1) above implies
that, for each pair c, co, there is a natural inclusion βc�co

L�c ↪→ L�co .

A morphism λ : (L ,L•) → (L ′,L ′
•) of Stokes-filtered local systems is a morphism of

local systems satisfying λ(L�c) ⊂ L ′
�c for each c ∈ C.

By a C-good open interval I ⊂ R/2πZ, we mean an open interval containing exactly
one Stokes direction for each pair c �= c′ in C. Below, we will only use C-good open
intervals which are the image in R/2πZ of an interval (θo − ε, θo +π + ε), where θo is not
a Stokes direction for any pair c �= c′ in C and ε > 0 is small enough.

Proposition 2.2.

(1) On any C-good open interval I ⊂ R/2πZ, there exists a unique splitting
L|I �

⊕
c grc L|I compatible with the Stokes filtrations.

(2) Let λ : (L ,L•) → (L ′,L ′
•) be a morphism of Stokes-filtered local systems with

exponential factors contained in C. Then, for any C-good open interval I ⊂ R/2πZ,
the morphism λ|I is graded with respect to the splittings in (1).

Proof. (1) This is a particular case of [21, § 5].

(2) By the first part of the proposition, choosing a splitting of the Stokes filtrations
of L and L ′ on I allows us to decompose λ|I into blocks λij : grci

L → grcj
L ′. Each

λij is a morphism of local systems. In particular, it vanishes identically if and only if
it vanishes at one point. By assumption, the interval I contains one (and exactly one)
Stokes direction for each pair (ci, cj) with i �= j, which is a θo such that ci and cj are
not comparable with respect to �θo

. Then, for θ on one side of θo, one has ci <θ cj and,
for θ on the other side, one has the reverse inequality. Since λ is compatible with the
Stokes filtration, this implies that λij (i �= j) vanishes on some non-empty subset of I,
and therefore all over I. �

Remark 2.3. One can regard this splitting result in various ways.

(1) For θ, θ′ = θ +π ∈ I, the filtrations L�•,θ and L�•,θ′ are opposite, if one identifies
the opposite fibres Lθ and Lθ′ by the flat structure along the interval I. The given
splitting is the unique common splitting of these opposite filtrations.

(2) The pieces of the unique splitting of L|I are the constant sheaves Γ (I,L�ci).
Proposition 2.2 (1) says that these spaces of sections on I fit together to a direct
sum which generates all sections of L on I.

Proposition 2.4. The category of Stokes-filtered local systems (L ,L•) is abelian.

Proof. Let λ : (L ′,L ′
•) → (L ,L•) be a morphism of Stokes structures. Firstly, Kerλ

and Cokerλ are local systems on S1. Moreover, on any C-good open interval I, λ is
graded, according to Proposition 2.2 (2). This easily implies that, on each such I, the
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kernel and the cokernel of λ : L ′
• → L• are Stokes filtrations of Kerλ and Cokerλ

respectively, so that Ker λ and Cokerλ exist as Stokes-filtered local systems, and the
morphism of the co-image to the image of λ is an isomorphism, so the category is abelian.

�

Let A1
τ be the affine line with coordinate τ . From [5] (see also [1,21,22]), we get the

following proposition.

Proposition 2.5. If k = C, there is an equivalence between the category of rational
connections on A1

τ with a regular singularity at τ = 0 and of exponential type at τ = ∞,
and the category of Stokes-filtered local systems (of exponential type) on the circle at
infinity S1

∞ of A1
τ .

Of course, this result gives back the abelianity result of Proposition 2.4 (proved directly
for any field of coefficients).

2.b. Stokes data

These are linear data which provide a description of a Stokes-filtered local system.
Let C be a non-empty finite subset of C. We say that θo ∈ R/2πZ is generic with respect
to C if it is not a Stokes direction (see Remark 2.1 (2)) for each pair c �= c′ ∈ C. Once θo

generic with respect to C is chosen, there is a unique numbering of the set C in such a
way that c1 <θo

c2 <θo
· · · <θo

cr. We will set θ′
o = θo +π. Note that the order is exactly

reversed at θ′
o, so that −C is numbered as {−c1, . . . ,−cn} by θ′

o.

Definition 2.6. Let C be a non-empty finite subset of C and let θo ∈ R/2πZ be generic
with respect to C. The category of Stokes data with exponential factors in C totally
ordered by θo (we also say of type (C, θo)) has objects consisting of two families of
k-vector spaces (Gc,1, Gc,2)c∈C and a diagram of morphisms

⊕
c∈C

Gc,1

S
��

S′
��

⊕
c∈C

Gc,2 (2.6)(∗)

such that, for the numbering C = {c1, . . . , cn} defined by θo,

(1) S = (Sij)i,j=1,...,n is block-upper triangular, i.e. Sij : Gci,1 → Gcj ,2 is zero unless
i � j, and Sii is invertible (so dimGci,1 = dimGci,2, and S itself is invertible),

(2) S′ = (S′
ij)i,j=1,...,n is block-lower triangular, i.e. S′

ij : Gci,1 → Gcj ,2 is zero unless
i � j, and S′

ii is invertible (so S′ itself is invertible).

A morphism of Stokes data of type (C, θo) consists of morphisms of k-vector spaces
λc,� : Gc,� → G′

c,�, c ∈ C, � = 1, 2, which are compatible with the corresponding diagrams
(2.7)(∗).
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Fixing bases in the spaces Gc,�, c ∈ C, � = 1, 2, allows one to present Stokes data by
matrices (Σ, Σ′) where Σ = (Σij)i,j=1,...,n (respectively Σ′ = (Σ′

ij)i,j=1,...,n) is block-
lower (respectively block-upper) triangular and each Σii (respectively Σ′

ii) is invertible.
The category of Stokes data of type (C, θo) is clearly abelian. We will now define a

functor (depending on θo) from the category of Stokes-filtered local systems with expo-
nential factors contained in C to the category of Stokes data of type (C, θo), and we will
show that it is an equivalence. In the next section, we will show that it is compatible
with natural operations on these objects (involution ι, duality, sesquilinear duality).

Let us also fix two opposite intervals I1 and I2 of length π + 2ε on R/2πZ so that
their intersection I1 ∩ I2 consists of two intervals (θo − ε, θo + ε) and (θ′

o − ε, θ′
o + ε), and

contains no Stokes direction of pairs c �= c′ ∈ C.
To a local system L on S1 we attach the following ‘monodromy data’ (they are quite

redundant):

(1) vector spaces L1 = Γ (I1,L ) and L2 = Γ (I2,L ),

(2) vector spaces Lθo
= Lθo and Lθ′

o
= Lθ′

o
,

(3) a diagram of isomorphisms, given by the natural restriction morphisms,

L1
a′
1

����
��

��
�� a1

���
��

��
��

�

Lθ′
o

Lθo

L2

a′
2

���������� a2

����������

This reduces to two possible descriptions:

(a) (L1, L2, Sθo
, Sθ′

o
), with isomorphisms Sθo

, Sθ′
o
: L1

∼−→ L2 and monodromy T1 :
L1

∼−→ L1, where

Sθo
= a−1

2 a1, Sθ′
o

= a′−1
2 a′

1, T1 = S−1
θo

Sθ′
o
.

(b) (Lθo
, Lθ′

o
, S1, S2) with isomorphisms S1, S2 : Lθo

∼−→ Lθ′
o

and monodromy Tθo
:

Lθo

∼−→ Lθo , where

S1 = a′
1a

−1
1 , S2 = a′

2a
−1
2 , Tθo = S−1

2 S1.

Assume now that (L ,L•) is a Stokes-filtered local system with associated graded
local system G = grL =

⊕r
i=1 Gci

. The filtration L�c,θo
induces a filtration on Lθo

and,
through a1, a filtration L1,�θo

• of L1. We have a similar filtration attached to θ′
o.

We have splittings (see Proposition 2.2 (1)):

(L ,L•)|I1 � (G ,G•)|I1 , (L ,L•)|I2 � (G ,G•)|I2 ,
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giving isomorphisms

L1 �
r⊕

i=1
Gci,1, L2 �

r⊕
i=1

Gci,2 (2.7)

compatible with Stokes filtrations (in other words, both filtrations L1,�θo
• and L1,�θ′

o
•

are opposite in L1 (see Remark 2.3 (1)), giving rise to a unique common splitting, and
similarly for L2), and such that Sθo

(respectively Sθ′
o
) is compatible with the filtration

at θo (respectively θ′
o) and the graded morphisms are isomorphisms. Taking into account

the assumption on the ordering of the cj , this is equivalent to saying that Sθo is block-
upper triangular, Sθ′

o
is block-lower triangular, and each diagonal block grci

Sθo
, grci

Sθ′
o

is an isomorphism. In such a way, we have defined the desired functor (to check the
compatibility with morphisms, use Proposition 2.2 (2)). The Stokes data attached to
(L ,L•) are given by the diagram:

r⊕
i=1

Gci,1

Sθo
��

Sθ′
o

��

r⊕
i=1

Gci,2 (2.8)

Note also that the monodromy Tci on grci
L is given by Tci,1 = (grci

Sθo)
−1 grci

Sθ′
o

(this
is of course not obtained from the blocks of T1 = S−1

θo
Sθ′

o
in general).

As a consequence of the previous discussion we can state the following classical result
(the bijection at the level of Hom follows from Proposition 2.2 (2)).

Proposition 2.9. The previous functor is an equivalence between the category of Stokes-
filtered local systems with exponential factors contained in C and the category of Stokes
data of type (C, θo).

Definition 2.10 (minimality property). We say that the Stokes data (2.10)(∗) satisfy
the minimality property if the vector space Kc := {v ∈ Gc,1 | S(v) = S′(v) ∈ Gc,2} is
equal to zero for any c ∈ C.

Remark 2.11. Notice that, if S − S′ is invertible, the minimality property is automati-
cally satisfied. Notice also that Kc is the subspace of Gc,1 consisting of eigenvectors of T1

(and thus of Tc,1) with eigenvalue 1.

Lemma 2.12. Under the equivalence of Proposition 2.9, the Stokes data attached to
(L ,L•) satisfy the minimality property of Definition 2.10 if and only if (L ,L•) has no
subobject (L ′,L ′

•) (in the category of Stokes-filtered local systems) such that L ′ = kS1 .

Proof. A subobject (L ′,L ′
•) of (L ,L•) corresponds to a subdiagram of (2.8) compati-

ble with the splittings (2.7). If there exists v �= 0 in some Kc of Definition 2.10, we obtain
a subdiagram

k · v

Sθo

��

Sθ′
o

��
k · (Sθov) (2.12)(∗)
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of (2.8) with v ∈ Gc,1 and Sθo
v = Sθ′

o
v ∈ Gc,2, and v ∈ L1 satisfies T1v = v. Therefore, it

corresponds to (L ′,L ′
•) ⊂ (L ,L•) with L ′ = kS1 . The converse is proved similarly. �

Remark 2.13. Definition 2.10 and Lemma 2.12 fit with Lemma 1.1 and with the prop-
erty that M is a minimal extension via Propositions 2.5 and 2.9.

3. Natural operations on Stokes filtrations and Stokes data

3.a. Involution

Let ι be the involution z �→ −z, which is induced on R/2πZ by θ �→ θ′ := θ + π. Given a
Stokes-filtered local system (L ,L•), we define ι−1(L ,L•) in the following way:

• the corresponding local system is ι−1L , so that (ι−1L )θ = Lθ′ ,

• the filtration (ι−1L )• is defined by (ι−1L )�c = ι−1(L�−c), hence (ι−1L )�c,θ =
L�−c,θ′ .

Note that the filtration defined above is increasing, that is, c′ �θ c ⇐⇒ −c′ �θ′ −c.
The monodromy data ι−1(L1, L2, Sθo , Sθ′

o
) of ι−1L are given by (L2, L1, S

−1
θ′

o
, S−1

θo
). The

Stokes data of ι−1(L ,L•) are given by

r⊕
i=1

Gci,2

S−1
θ′

o
��

S−1
θo

��

r⊕
i=1

Gci,1. ι−1(2.8)

In other words, (ι−1(2.8)) defines a functor ι from the category of Stokes data of type
(C, θo) to that of type (−C, θ′

o), and the corresponding equivalences of Proposition 2.9
are compatible with ι on both categories.

Let us note that, although the local systems L and ι−1L are isomorphic (since ι is
homotopic to the identity), the Stokes-filtered local systems (L ,L•) and ι−1(L ,L•)
are in general not isomorphic. For example, they are isomorphic if both S and S′ are
block-diagonal, an isomorphism of the corresponding Stokes data being given by the pair
of morphisms (S′−1SS′−1, SS′−1S).

3.b. Duality

Let (L ,L•) be a Stokes-filtered local system. The dual local system L ∨ comes
equipped with a filtration (L ∨)• defined by

(L ∨)�c = (L<−c)⊥,

where the orthogonality is relative to duality that is, (L<−c)⊥ consists of local morphisms
L → kS1 sending L<−c to 0. Using, in a neighbourhood of eiθ ∈ S1, a local splitting of
L as

⊕
ci∈C grci

L compatible with the Stokes filtration, we get a corresponding local
splitting

L ∨ �
⊕

ci∈C

(grci
L )∨,
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and a germ at eiθ of a morphism ϕ has components ϕi. Then ϕ ∈ (L<−c)⊥
θ if and only if its

components ϕi vanish whenever βci<−c grci
L �= 0 somewhere near θ. So the only possible

non-zero components ϕi of ϕ occur when −ci �θ c. If we set gr−ci
L ∨ := (grci

L )∨,
this shows that (L ∨)�c locally splits near eiθ as

⊕
i β−ci�c gr−ci

L ∨, defining thus a
Stokes filtration satisfying grc(L ∨) = (gr−c L )∨ for any c ∈ C. The monodromy data
(L1, L2, Sθo

, Sθ′
o
)∨ are given by (L∨

1 , L∨
2 , tS−1

θo
, tS−1

θ′
o

), where tS denotes the adjoint by
duality of S. The Stokes data are given by

r⊕
i=1

(Gci,1)
∨

tS−1
θo 		

tS−1
θ′

o





r⊕
i=1

(Gci,2)
∨. (2.8)∨

The formula above defines the duality functor from the category of Stokes data of type
(C, θo) to that of type (−C, θo) (we use the reverse numbering of C to get that tS−1

θo
is

upper triangular). Then the equivalence of Proposition 2.9 is compatible with duality.
Let us now compare with Poincaré–Verdier duality of sheaves on S1. For a sheaf F

on S1, we denote by DF = R Homk(F ,kS1 [1]) its Poincaré–Verdier dual and by D′F =
R Homk(F ,kS1) the shifted complex. We clearly have D′L = L ∨.

Lemma 3.1. For each c ∈ C, the complexes D′(L�c) and D′(L /L�c) are sheaves and
D′(L /L�c) = (L�c)⊥ = (L ∨)<−c.

The first statement means that H kD′(L�c) = 0 if k �= 0, and thus D′(L�c) is quasi-
isomorphic to H 0D′(L�c) = Homk(L�c,kS1) and similarly for L /L�c.

Proof. The first assertion is local on S1, so we can assume that L is split with respect
to the Stokes filtration. Near θo ∈ R/2πZ, we therefore only need to consider two cases:

(1) L�c is a local system on (θo − ε, θo + ε),

(2) L�c = j!L , where L is a local system on (θo − ε, θo) and j : (θo − ε, θo) ↪→
(θo − ε, θo + ε) is the open inclusion.

The first case is clear. For the second one, note that D′j!L = j∗L ∨.
The argument for D′(L /L�c) is similar (but goes in the opposite direction in the

second case). We conclude that we have an exact sequence of sheaves

0 → D′(L /L�c) → D′L → D′(L�c) → 0,

hence the last assertion. �

3.c. ι-sesquilinear forms

We assume here that k = C (or that k has an involution, that we denote using an
overline). Let h : L ⊗ ι−1L → k be linear, where L denotes the conjugate of L with
respect to the involution (in what follows, one can assume that the involution is the
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identity and get similar results for ι-bilinear forms). We call h an ι-sesquilinear form
on L . Using the previous monodromy data, giving h amounts to giving two sesquilinear
forms

h12 : L1 ⊗ L2 → k, h21 : L2 ⊗ L1 → k

such that, considering them as morphisms L2 → L∨
1 and L1 → L∨

2 , the following diagrams
(by which hθo , hθ′

o
are defined) commute

L2
h12 ��

a′
2

��

L∨
1

ta−1
1

��
Lθ′

o

hθo �� L∨
θo

L1
h21 ��

a′
1



L∨
2

ta−1
2



L2
h12 ��

a2

��

L∨
1

ta′−1
1

��
Lθo

hθ′
o �� L∨

θ′
o

L1
h21 ��

a1



L∨
2

ta′−1
2


(3.2)

that is,
h21(•, •) = h12(S

−1
θo

•, Sθ′
o

•) = h12(S
−1
θ′

o
•, Sθo

•). (3.3)

In particular, h21 determines h12. We say that h is non-degenerate if it induces an iso-
morphism ι−1L

∼−→ L ∨, that is, if h21 (hence h12) is non-degenerate. We say that h is
ι-skew-Hermitian if ι−1h = −h (with an obvious meaning), that is, if

h21(x2, x1) = −h12(x1, x2). (3.4)

Remark 3.5 (various forms of h). It will be useful to read h in the spaces Lθo
, L′

θo

or only in L1. We will make explicit the formulae between the various forms. We denote
by x1, y1 general elements of L1, x, y of Lθo and x′, y′ of L′

θo
. Firstly, (3.2) gives

hθo(x, y′) = h12(a
−1
1 x, a′−1

2 y′) = h21(a
−1
2 x, a′−1

1 y′),

hθ′
o
(x′, y) = h12(a

′−1
1 x′, a−1

2 y) = h21(a
′−1
2 x′, a−1

1 y).

}
(3.5 a)

Let us define hθo

11, h
θ′

o

11 : L1 ⊗ L1 → k by

hθo

11(x1, y1) = h12(x1, Sθoy1), hθ′
o

11(x1, y1) = h12(x1, Sθ′
o
y1). (3.5 b)

Then
hθ′

o

11(x1, y1) = hθo

11(x1, T1y1), (3.5 c)

and (3.3) is equivalent to

hθo

11(T1x1, T1y1) = hθo

11(x1, y1) and to hθ′
o

11(T1x1, T1y1) = hθ′
o

11(x1, y1). (3.5 d)

We also get

hθ′
o

11(x1, y1) = hθo(a1x1, a′
1y1) and hθo

11(x1, y1) = hθ′
o
(a′

1x1, a1y1). (3.5 e)

Moreover, h is ι-skew-Hermitian if and only if

hθo

11(y1, x1) = −hθ′
o

11(x1, y1). (3.5 f)
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Remark 3.6 (the form induced on Im can1). Let us set can1 := Id−T1 : L1 → L1.
We have the following relations:

hθo

11(x1, can1 y1) = hθo

11(x1, y1) − hθo

11(x1, T1y1)

= hθo

11(x1, y1) − hθ′
o

11(x1, y1) after (3.5 c), (3.6 a)

and similarly

hθ′
o

11(can1 x1, y1) = hθ′
o

11(x1, y1) − hθo

11(x1, y1) = −hθo

11(x1, can1 y1). (3.6 b)

Let us set F1 = Im can1. Then hθo

11 defines a sesquilinear pairing hθo

11 on F1 by setting,
for u1, v1 ∈ F1 and u1 = can1 x1, v1 = can1 y1 for some x1, y1 ∈ L1:

hθo

11(u1, v1) := hθo

11(x1, v1).

This is independent of the choice of x1: if canx1 = 0, we deduce from (3.6 b)

hθo

11(x1, v1) = hθo

11(x1, can1 y1) = −hθ′
o

11(can1 x1, y1) = 0.

We also set
h

θ′
o

11(u1, v1) := hθ′
o

11(u1, y1).

Then
h

θ′
o

11(u1, v1) = −hθo

11(u1, v1).

If h is non-degenerate, then so is hθo

11 on F1: assume that hθo

11(u1, v1) = 0 for all v1 ∈ F1.
Then

hθo

11(x1, can1 y1) = 0 for all y1 ∈ L1,

and as above this implies that u1 = can1 x1 = 0 since hθ′
o

11 is non-degenerate on L1.
Lastly, if h is ι-skew-Hermitian, then hθo

11 is Hermitian on F1: we have

hθo

11(v1, u1) = hθo

11(y1, can1 x1)

= hθo

11(y1, x1) − hθ′
o

11(y1, x1)

= −hθ′
o

11(x1, y1) + hθo

11(x1, y1) after (3.5 f)

= hθo

11(u1, v1).

3.d. ι-sesquilinear forms on Stokes-filtered local systems and Stokes data

If (L ,L•) is a Stokes-filtered local system, we say that h is compatible with Stokes
filtrations if the induced morphism ι−1L → L ∨ is so. By Proposition 2.2 (2), h12 and
h21 are block-diagonal. Similarly, given Stokes data ((Gc,1, Gc,2)c∈C , S, S′) of type (C, θo),
an ι-sesquilinear form on it consists of sesquilinear pairings h(i)

12 : Gci,1 ⊗ Gci,2 → k (and
similarly for h21) which are compatible with the diagram (3.6)(∗) in a natural way. In
other words, the equivalence of Proposition 2.9 is compatible with ι-sesquilinear forms.
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Let us fix c ∈ C such that

(a) grc L = 0 (that is, L<c = L�c).

According to (a), the morphism h : ι−1L → L ∨ induces

hc : ι−1(L �c) = (ι−1L )�−c → (L ∨)�−c = (L�c)⊥ = (L /L�c)∨,

that we consider as a pairing

hc : (L /L�c) ⊗ ι−1(L �c) → kS1 . (3.7)

Moreover, if h is non-degenerate, then hc is non-degenerate in the sense that hc induces
an isomorphism

ι−1(L �c)
∼−→ D′(L /L�c) = Homk(L /L�c,kS1) = (L /L�c)∨. (3.9)

Remark 3.10 (the form induced on Kc). For c ∈ C, let Kc ⊂ Gc,1 be the vector space
introduced in Definition 2.10. Together with S or S′, the sesquilinear form h12 produces
a sesquilinear form hKc

: Kc ⊗ Kc → k by the formula hKc
(x1, y1) = h12(x1, S(y1)).

Since S = S′ on Kc, the form hKc is skew-Hermitian, according to (3.3) and (3.4). We
claim that, for co ∈ C, the form hKco

is non-degenerate if and only if the Stokes data
(Kco

, S(Kco
), S, S) enriched with the induced h12 are a direct summand of the Stokes data

((Gc,1)c∈C , (Gc,2)c∈C , S, S′) enriched with h12.
Indeed, since h12 is block-diagonal, hKco

is non-degenerate if and only if

Kco
∩ S(Kco

)⊥ = {0},

where the orthogonal is taken with respect to h12. Notice that

S(Kco
)⊥ = (S(Kco

)⊥ ∩ Gco,1) ⊕
⊕

c�=co∈C

Gc,1.

A similar statement holds for S(Kco
) and K⊥

co
in

⊕
c∈C Gc,2. Then, if hKco

is non-degen-
erate, we have ⊕

c∈C

Gc,1 = Kco ⊕ S(Kco)
⊥,

⊕
c∈C

Gc,2 = S(Kco) ⊕ K⊥
co

,

and it remains to check that S and S′ send S(Kco)
⊥ to K⊥

co
, which follows from (3.3)

and (3.4). The converse is proved similarly.
We also notice that, if the previous splitting property is satisfied for each c ∈ C, then

((Gc,1)c∈C , (Gc,2)c∈C , S, S′, h12)

=
( ⊕

c∈C

(Kc, S(Kc), S, S, h12)
)

⊕ ((G′
c,1)c∈C , (G′

c,2)c∈C , S, S′, h′
12),

where the last term satisfies the minimality property of Definition 2.10. Indeed, we then
have K ′

c = 0 for any c ∈ C.
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3.e. Description at θo, θ′
o

Let us fix bases of Gci,�, � = 1, 2, i = 1, . . . , r, in such a way that the matrix of h(i)
12 is

the identity. If we denote by Σθo , Σθ′
o

the matrices of Sθo , Sθ′
o

in these bases (recall that
Σθo is block-lower triangular and Σθ′

o
is block-upper triangular), then the matrix of hθo

11
is Σθo , that of hθ′

o

11 is Σθ′
o
. Moreover, according to (3.5 f), h is ι-skew-Hermitian if and

only if
Σθ′

o
= −tΣθo

. (3.11)

The results of Remark 3.6 can be read in Lθo via a1, a
′
1 : L1

∼−→ Lθo , Lθ′
o
. We set canθ′

o
:=

S−1
1 − S−1

2 : Lθ′
0

→ Lθo
and F = Im canθ′

o
⊂ Lθo

. Then hθ′
o
: Lθ′

o
⊗ Lθo

→ k induces
hθ′

o
: F ⊗ F → k by setting hθ′

o
(u, v) = hθ′

o
(x′, v) for some (or any) x′ ∈ Lθ′

o
such

that canθ′
o
x′ = u. As above, one checks that if h is non-degenerate (respectively ι-skew-

Hermitian), then hθ′
o

is non-degenerate (respectively Hermitian) on F .
On the other hand, the vector space Kc is the intersection of the radical of Σθo

+ tΣθo

with Gc,1, and the matrix of hKc is the conjugate of that of S|Kc
. If the splitting property

at co considered in Remark 3.10 is satisfied, and if we choose correspondingly bases of
Gco,1 and Gco,2, the diagonal block Σθo,coco is itself block-diagonal with respect to this
splitting, and the block Σθo,Kco

is skew-adjoint.

Corollary 3.12. Assume k = R or C. If h is non-degenerate and ι-skew-Hermitian, and
if the Hermitian matrix Σθo

+ tΣθo
is positive semi-definite, then hθ′

o
is positive definite

on F .

Proof. Since hθ′
o

is non-degenerate, it is enough to show that hθ′
o
(u, u) � 0 for all u ∈ F .

Set u = canθ′
o
x′ and x1 = a′−1

1 x′. Then

hθ′
o
(u, u) = hθ′

o
(x′, canθ′

o
x′) = h12(a

′−1
1 x′, a−1

2 (S−1
1 − S−1

2 )x′).

Now,

a−1
2 S−1

1 x′ = a−1
2 S−1

1 a′
1x1 = Sθo

x1 and a−1
2 S−1

2 x′ = a−1
2 S−1

2 a′
1x1 = Sθ′

o
x1,

hence
hθ′

o
(u, u) = h12(x1, (Sθo − Sθ′

o
)x1).

Since h is ι-skew-Hermitian, the matrix of h12(•, (Sθo − Sθ′
o
)•) is Σθo + tΣθo after (3.11),

which is positive semi-definite by assumption, hence hθ′
o
(u, u) � 0. �

3.f. Sesquilinear forms on the cohomology

We now fix c ∈ C such that

(a) grc L = 0, and

(b) ci <θo
c for any i (that is, all the ci lie in an open half-plane with boundary going

through c).

Let us first compute the cohomology.
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Lemma 3.13. We have Hk(S1,L�c) = 0 if k �= 1, Hk(S1,L /L�c) = 0 if k �= 0 and
the exact sequence 0 → L�c → L → L /L�c → 0 induces an exact sequence (defining
the morphism can):

0 → H0(S1,L ) → H0(S1,L /L�c)
can−−→ H1(S1,L�c) → H1(S1,L ) → 0.

Proof. We compute the cohomology with the covering (I1, I2). Then Hk(I1,L�c) = 0
for any k (and similarly for I2): indeed, because of (a), there is a Stokes direction
in I1 for the pair (c, ci) for each i, and according to the splitting given by Proposi-
tion 2.2 (1), L�c|I1 decomposes as the direct sum of sheaves, each of which is constant
on a proper open interval of I1 and 0 on the complementary set, which is also con-
nected; the assertion follows from the vanishing of Hk

(0,1)([0, 1),k) for any k. We also
have Hk(I1 ∩ I2,L�c) = 0 for k �= 0 and H0(I1 ∩ I2,L�c) = Lθo after (b). We conclude
that H1(S1,L�c) = H0(I1 ∩ I2,L�c) = Lθo

.
Similarly, Hk(Ij ,L /L�c) = 0 (j = 1, 2) for k �= 0 follows from the similar vanishing of

Hk([0, 1),k). We also have Hk(I1 ∩I2,L /L�c) = 0 for k �= 0 and H0(I1 ∩I2,L /L�c) �
Lθ′

o
. Moreover, the restriction morphisms H0(Ij ,L /L�c) → H0(I1 ∩ I2,L /L�c) are

isomorphisms. Therefore, the Čech complex

H0(I1,L /L�c) ⊕ H0(I2,L /L�c) → H0(I1 ∩ I2,L /L�c)

has cohomology in degree 0 at most. �

Proposition 3.14. If c satisfies Assumptions (a) and (b), the natural pairing induced
by hc from (3.7):

hc : H0(S1,L /L�c) ⊗ H1(S1, ι−1L �c) → H1(S1,k) = k (3.14)(∗)

is non-degenerate and corresponds to hθ′
o
, via the isomorphisms

H0(S1,L /L�c)
∼−→ H0(I1 ∩ I2,L /L�c) = Lθ′

o
,

H1(S1, ι−1L �c) = H0(I1 ∩ I2, ι
−1L �c) = Lθo .

Proof. That the pairing hc of ((3.14)(∗)) is non-degenerate a priori follows from (3.9).
But this can also be obtained from the second part of the corollary, that we now prove
with details. Let us consider the covering (I1, I2) of S1 with θo as in (b) above. As a
consequence, F := L /L�c and G := ι−1L �c are local systems in some neighbourhood
of I1 ∩ I2. Let us also denote by C the constant sheaf kS1 , and by j1 : I1 ↪→ S1, j2 : I2 ↪→
S1, j12 : I1 ∩ I2 ↪→ S1 the open inclusions. Given a sheaf F on S1, we set Fa = ja,∗j

−1
a F

(a = 1, 2, 12), F0 = F1 ⊕ F2, and F1 = F12. We have a Mayer–Vietoris complex

F0 δ−→ F1, δ(u1, u2) = u1 − u2.

The following is easy.

Lemma 3.15. Let F be a sheaf on S1. If F is a local system in some neighbourhood of
I1 ∩ I2, then the Mayer–Vietoris complex is a resolution of F on S1.
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We will apply this lemma to F , G , C . The simple complex s(F • ⊗ G •) is therefore a
resolution of F ⊗ G . The pairing hc : F ⊗ G → C extends as a morphism of complexes
h̃ : s(F • ⊗ G •) → C • as follows: we set

h̃0 : F 0 ⊗ G 0 = (F1 ⊕ F2) ⊗ (G1 ⊕ G2) → C 0 = (C1 ⊕ C2)
(u1, u2) ⊗ (v1, v2) �→ (hc(u1, v1), hc(u2, v2)),

h̃1 : (F 0 ⊗ G 1) ⊕ (F 1 ⊗ G 0) → C 1

([(u1, u2) ⊗ v12], [u12 ⊗ (v1, v2)]) �→ 1
2 [hc(u1 + u2, v12) + hc(u12, v1 + v2)],

h̃2 = 0,

where we implicitly have extended hc to pairings Fa ⊗ Ga → k, a ∈ {1, 2, 12}.

Lemma 3.16. The resolution s(F • ⊗ G •) of F ⊗ G is Γ (S1, •)-acyclic.

Proof. It is similar to that of Lemma 3.13. �

Clearly, C • is also Γ (S1, •)-acyclic. As a consequence (see [7, Theorem II.4.7.2]), the
morphism hc is expressed by taking H1 of the morphism of complexes

s(Γ (S1,F •) ⊗ Γ (S1,G •)) → Γ (S1, s(F • ⊗ G •))
Γ (S1,h̃)−−−−−→ Γ (S1,C •).

Using that Γ (S1,G 0) = 0, after Lemma 3.13, we regard hc as the composition

Γ (S1,F 0) ⊗ Γ (S1,G 1) �� Γ (S1,F 0 ⊗ G 1) h̃1
�� Γ (S1,C 1)

��
H0(S1,F ) ⊗ H1(S1,G )



H1(S1,k)

Let
(u, u) ∈ H0(S1,F ) ⊂ Γ (S1,F1) ⊕ Γ (S1,F2) = Lθ′

o
⊕ Lθ′

o

and let v ∈ H1(S1,G ) = Γ (I1∩I2,G ) = Lθo
. Using the previous formula for h̃1, (u, u)⊗v

is sent to hθ′
o
(u, v) in the component kθ′

o
of Γ (I1 ∩ I2,k) and to 0 in the component kθo

.
The second assertion of Proposition 3.14 follows. �

3.g. A Hermitian pairing on the cohomology

We continue to assume that c satisfies Assumptions (a) and (b) of § 3.f. Let us first
make explicit the middle morphism in the exact sequence of Lemma 3.13.

Lemma 3.17. Through the natural identifications

H0(S1,L /L�c)
∼−→ Lθ′

o
and H1(S1,L�c)

∼−→ Lθo ,

the natural morphism can: H0(S1,L /L�c) → H1(S1,L�c) is identified with canθ′
o

=
S−1

1 − S−1
2 : Lθ′

o
→ Lθo .
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Proof. Applying the snake lemma, we obtain the exact sequence of Lemma 3.13 from
the following exact sequence of (vertical) Mayer–Vietoris complexes which computes the
cohomology of the corresponding sheaves, where the vertical arrows are the differences
ρ1 − ρ2 of the natural restriction morphisms from I1 or I2 to I1 ∩ I2:

0 �� 0 ��

��

Γ (I1,L ) ⊕ Γ (I2,L ) ��

��

Γ (I1,L /L�c) ⊕ Γ (I2,L /L�c) ��

��

0

0 �� Γ (I1 ∩ I2,L�c) �� Γ (I1 ∩ I2,L ) �� Γ (I1 ∩ I2,L /L�c) �� 0

Given u ∈ Γ (I1,L /L�c) � Lθ′
o
, its lift in Γ (I1,L ) � Lθo

is S−1
1 u. Then (u, u) ∈

Lθ′
o

⊕ Lθ′
o

is lifted as (S−1
1 u, S−1

2 u), and its image in Γ (I1 ∩ I2,L ) � Lθ′
o

⊕ Lθo
is

(0, (S−1
1 − S−1

2 )u). �

Let Fc = Im can ⊂ H1(S1,L�c). According to Proposition 3.14, Lemma 3.17 and
Remark 3.6, the sesquilinear pairing hc, as defined by ((3.17)(∗)), induces a sesquilinear
pairing

hc : Fc ⊗ F c → k (3.17)

by setting hc(u, v) := hc(x′, v) for some (or any) x′ ∈ H0(S1,L /L�c) such that
can x′ = u. Moreover, if h is non-degenerate (respectively ι-skew-Hermitian), then hc is
non-degenerate (respectively Hermitian) on Fc. From Corollary 3.12 we get the following.

Corollary 3.18. Assume k = C and the involution is the conjugation, or k = R or Q

and the involution is the identity. If the invertible matrix Σθo is such that the Hermitian
matrix Σθo

+ tΣθo
is positive semi-definite, then hc is positive definite on Fc.

4. Minimal constructible sheaves on P1 with Stokes structure at infinity

In this section, we set X = A1 ∪ S1
∞ (with respect to the setting of § 1.b, the coordi-

nate on A1 should be denoted by τ). The inclusions are denoted by j∞ : A1 ↪→ X and
i∞ : S1

∞ ↪→ X and the projection X → P1 by �.
Let F be a constructible sheaf on A1 with finite singularity set Σ. Its extension j∞,∗F

is a sheaf on X whose restriction to X � Σ (hence also to S1
∞) is a local system.

Definition 4.1. By a Stokes structure at infinity (F ,F•) on F we will mean the data
of a family of subsheaves F�c (c ∈ C) of j∞,∗F such that

(1) for each c ∈ C, j−1
∞ F�c = F ,

(2) the family L• := i−1
∞ F• of subsheaves of L := i−1

∞ j∞,∗F is a Stokes filtration of
the local system L as in § 2.a.

We also say that (F ,F•) is a Stokes-filtered constructible sheaf on A1, meaning that the
Stokes filtration is at infinity.
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Recall that a sheaf on X can be defined through its restrictions to A1 and S1
∞ and

gluing data. In such a way, the inclusion L<c ↪→ L�c determines a unique subsheaf F<c

of F�c whose restriction to A1 is F and that to S1
∞ is L<c.

We define in this way a category, for which the morphisms are morphisms of sheaves
λ : F → F ′ such that i−1

∞ j∞,∗λ is a morphism of Stokes-filtered local systems. As a
consequence of Proposition 2.4, this category is abelian.

Lemma 4.2. Let (F ,F•) be a Stokes-filtered constructible sheaf. Then for each c ∈ C
the complex i!∞F�c has cohomology in degree 1 at most and H 1(i!∞F�c) = L /L�c.
A similar assertion holds for F<c.

Proof. We have Rj∞,∗F = j∞,∗F and the distinguished triangle

i−1
∞ F�c → i−1

∞ Rj∞,∗F → i!∞F�c[1] +1−−→

reduces to the exact sequence

0 → L�c → L → L /L�c → 0,

showing that i!∞F�c[1] has cohomology in degree 0 at most, this cohomology being equal
to L /L�c. �

In the following, we only consider constructible sheaves F for which the singularity
set Σ is reduced to {τ = 0}. We denote by j0 the inclusion A1�{0} ↪→ A1. We say that F
or (F ,F•) is minimal (or middle extension) if F = j0,∗j

−1
0 F (by our assumption, j−1

0 F
is a locally constant sheaf on A1 � {0}).

It should be noted that minimality at τ = 0, as considered here, is a priori not related
to the minimality property of the Stokes filtration at τ = ∞, as in Definition 2.10 and
Lemma 1.1. At the level of C[t]〈∂t〉 and C[τ ]〈∂τ 〉-modules considered in § 1.b, the latter
is related to the property that M is a minimal extension at its singularities at finite
distance, while the former is related to the property that N is a minimal extension at
τ = 0.

Lemma 4.3. Given a Stokes-filtered local system (L ,L•) on S1
∞, there exists a unique

(up to unique isomorphism) minimal Stokes-filtered constructible sheaf (F ,F•) such
that (L ,L•) = (i−1

∞ j∞,∗F , i−1
∞ F•).

Proof. For the existence, let us denote by π : A1 � {0} → S1
∞ the projection (quotient

by R∗
+). Set F ∗ = π−1L and F = j0∗F ∗. Then i−1

∞ j∞,∗F = L and the inclusion
L• ↪→ L determines a unique subsheaf F• of j∞,∗F such that i−1

∞ F• = L• and j−1
∞ F• =

F .
Given two such objects (F ,F•) and (F ′,F ′

•), the identity morphism L = L extends
in a unique way as an isomorphism F ∗ � F ′∗ and then as an isomorphism j0,∗F ∗ �
j0,∗F ′∗, proving the uniqueness. The uniqueness of the isomorphism inducing the identity
L = L is also clear. �
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Concerning the compatibility, through the equivalence of Lemma 4.3, of the operations
considered in § 3, let us notice that compatibility with involution ι is straightforward. For
the duality, we will check it now. Before doing so, notice that, for each c ∈ C, we have a
natural morphism j∞,!F → F�c which induces, after applying i!∞ and after Lemma 4.2,
the surjection L → L /L�c.

Recall that the dualizing complex on X is j∞,!kA1 [2]. If G is a sheaf on X, we
denote by D(G ) = R Hom(G , j∞,!kA1 [2]) its Poincaré–Verdier dual, and by D′(G ) =
R Hom(G , j∞,!kA1) the shifted complex. As in § 3.b, we say that D′(G ) is a sheaf to
mean that the complex D′(G ) has cohomology in degree 0 at most. In such a case, we
identify D′(G ) with the sheaf Hom(G , j∞,!kA1).

Note that, on A1, if F is a minimal constructible sheaf as above, D′F is a sheaf, which
is constructible with singularity at 0 at most, and is minimal. We will denote it by F∨.

Proposition 4.4 (duality). The category of minimal Stokes-filtered constructible
sheaves is stable by Poincaré–Verdier duality (up to a shift by 2). More precisely, for
each object (F ,F•),

(1) D′(j∞,!F ), D′(F�c) and D′(F<c) are sheaves for each c ∈ C,

(2) the dual D′(F�c) → D′(j∞,!F ) = j∞,∗F∨ of the natural morphism j∞,!F → F�c

is injective for each c ∈ C, and similarly for F<c,

(3) the family (F∨
�c)c∈C of subsheaves of j∞,∗F∨ defined by F∨

�c = D′(F<−c) is a
Stokes filtration at infinity of F∨, for which F∨

<c = D′(F�−c).

Proof. On A1, the first assertion is equivalent to saying that D′F is a sheaf, and this has
been noticed before the proposition. It is therefore enough to prove that i−1

∞ D′(j∞,!F ),
etc., are sheaves on S1

∞, because i−1
∞ commutes with taking cohomology sheaves.

It is classical that Dj∞,!F = Rj∞,∗DF , and hence D′j∞,!F = Rj∞,∗D′F = j∞,∗F∨,
so i−1

∞ D′(j∞,!F ) = i−1
∞ j∞,∗F∨ is a sheaf.

For each c ∈ C, we have (see [19, Proposition 3.1.13])

i!∞D′(F�c) = R Hom(i−1
∞ F�c, i

!
∞j∞,!kA1)

= R Hom(i−1
∞ F�c,kS1

∞
[−1]) =: D′(i−1

∞ F�c)[−1] (4.5)

and by biduality, we have D′(i!∞F�c[1]) = i−1
∞ D′(F�c). Lemmas 3.1 and 4.2 show that

D′(i!∞F�c[1]) = D′(L /L�c) and D′(i−1
∞ F�c) = D′(L�c) are sheaves. The first property

implies then that i−1
∞ D′(F�c) is a sheaf.

Arguing similarly for F<c, we obtain that i−1
∞ D′(F<c) is a sheaf.

The assertion Proposition 4.4 (2) needs only be checked on S1
∞, and by duality, accord-

ing to (4.5), it amounts to proving that H 1(i!∞j∞,!F ) → H 1(i!∞F�c) is onto. This
follows from Lemma 4.2 and the paragraph after the proof of Lemma 4.3.

Now, Proposition 4.4 (3) follows from Lemma 3.1. �

Let h be an ι-sesquilinear form on F , that is, a pairing F ⊗ ι−1F → kA1 . It
extends in a unique way as an ι-sesquilinear pairing h : j∞,!F ⊗ ι−1j∞,∗F → j∞,!kA1
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and defines a morphism j∞,!F → D′(j∞,∗F ). Arguing as for (4.5), it induces a mor-
phism i!∞j∞,!F [1] � L → D′(i−1

∞ j∞,∗F ) = L
∨
, and thus a sesquilinear pairing

h∞ : L ⊗L → kS1
∞

. Arguing as in Proposition 4.4, one checks that if h is non-degenerate,
i.e. F → D′(F ) is an isomorphism, then so is h∞. Conversely, arguing as in Lemma 4.3,
one reconstructs h from h∞ and obtains the non-degeneracy of h from that of h∞.

Let us now express in terms of (F ,F•) the compatibility of h∞ with the Stokes
filtration. Extend h as a pairing j∞,∗h : j∞,∗F ⊗ ι−1j∞,∗F → j∞,∗kX . This pairing
induces for each c ∈ C a pairing hc : F<c ⊗ ι−1(F�c) → j∞,∗kX .

Lemma 4.6. The pairing h∞ is compatible with the Stokes filtration if and only if, for
each c ∈ C, the pairing hc takes values in j∞,!kX . When such is the case, the induced
pairing i!∞F<c[1]⊗i−1

∞ ι−1(F�c) → kS1
∞

is identified with h∞,c : (L /L<c)⊗ι−1(L �c) →
kS1

∞
.

Proof. We first note that the pairing i−1
∞ j∞,∗h : L ⊗ L → kS1

∞
coincides with h∞

through the natural isomorphisms i−1
∞ j∞,∗F → i!∞j∞,!F [1] and similarly for kX . The

condition on hc is then equivalent to the vanishing of h∞ when restricted to L<c ⊗
ι−1(L �c) for each c, and this is equivalent to the compatibility with the Stokes filtration.
The second part of the lemma follows from (4.5) and Lemma 3.1. �

When the condition of the lemma is fulfilled, we say that h is an ι-sesquilinear form
on (F ,F•). We say that it is non-degenerate if it is non-degenerate on F .

Proposition 4.7 (sesquilinear pairing on cohomology). Let h be a non-degenerate
ι-sesquilinear form on (F ,F•). Let us choose c ∈ C satisfying the Assumptions (a)
and (b) of § 3.f, so that in particular F�c = F<c and F∨

�−c = D′(F�c). Then the
following properties hold.

(1) Hk(X, F�c) = 0 for k �= 1 and, via the natural restriction morphism, H1(X, F�c)
is identified with Fc := Im can ⊂ H1(S1

∞,L�c) (see Lemma 3.17).

(2) The sesquilinear pairing hc : F<c ⊗k ι−1(F�c) → j∞,!kA1 induces a sesquilinear
pairing ĥc : H1(X, F�c) ⊗k H1(X, F�c) → k which is identified with hc, defined
by (3.17), via the identification of (1).

In (2), we use the canonical isomorphism H1(X, F�c) � H1(X, ι−1(F�c)).

Proof of Proposition 4.7 (1). Let us fix some notation. We denote by e : Y → X the
real blow-up of the origin in X and we set S1

0 = e−1(0), so that Y = S1 × [0,∞]. We
consider the covering Y = U1 ∪ U2, with Uk = Ik × [0,∞], k = 1, 2, where I1, I2 are as
in § 2.b.

We set X∗ = X �{0} = Y ∗ = Y �S1
0 and we denote by j the inclusion X∗ = Y ∗ ↪→ Y .

We also set F ∗
�c = F�c|X∗ and we define L ∗ as the pull-back of L by the projection

Y ∗ → S1
∞.

Set G = j∗F ∗
�c and G ′ = j!F ∗

�c. We have G = Rj∗F ∗
�c and F�c = e∗G (distinct from

Re∗G if the monodromy of L admits 1 as an eigenvalue). Let us denote by j1 : U1 ↪→ Y

the open inclusion, and by G1 the complex Rj1,∗(G|U1). We similarly use the notation
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G2 and G12. It will be convenient to denote by LY the pull-back of L by the projection
Y → S1

∞.

Lemma 4.8. Under Assumptions (a) and (b) of § 3.f, the complex G1 is equal to the
sheaf j1,∗(G|U1). Moreover, Hk(U1,G|U1) = Hk(Y,G1) = 0 for any k. A similar assertion
holds for G2, and for G12 if k �= 0. Moreover, Hk(Y,G ) = 0 if k �= 1 and H1(Y,G ) =
H0(U1 ∩ U2,G ) = H0(Y,G12) � Lθo

.

Proof. By assumption, I1 is the interval (θo − ε, θ′
o + ε). For the first assertion, we

need to check that G1 is a sheaf along ∂I1 × [0,∞]. Note that G is a local system
on Y � S1

∞, so the assertion is clear along ∂I1 × [0,∞). Now the assertion is local
near the points (θo − ε, ∞) and (θ′

o + ε, ∞), and we can use a local splitting of the
Stokes filtration to reduce to the case where G is a local system in the neighbourhood
of (θo − ε, ∞), which is already treated, or G is the extension by zero of a (constant)
local system on an open set like (θ′

o − ε, θ′
o + ε) × (η,∞), with η � 0, via the inclusion

(θ′
o − ε, θ′

o + ε) × (η,∞) ↪→ (θ′
o − ε, θ′

o + ε) × (η,∞] (by our assumption on θo and c, this
occurs only at θ′

o). We are thus reduced to showing, since the local system is constant
on this neighbourhood, and retracting (θ′

o − ε, θ′
o + ε) × (η,∞] to {θ′

o} × (η,∞], that
H1

{∞}((η,∞], C) = 0, which is clear.
Let us show that

Hk(U1,G|U1) = 0 ∀k. (4.9)

According to (2.7), we can choose on U1 an isomorphism LY |U1 �
⊕r

i=1 G
(1)
ci , where G

(1)
ci

are local systems on U1, and the isomorphism is compatible with the Stokes filtra-
tion on I1 × {∞}, so we can work independently with each summand G

(1)
ci . Arguing

as for Rj1,∗G|U1 above, we find that each Rj1,∗G
(1)
ci is a sheaf j1,∗G

(1)
ci and therefore

Hk(U1,G
(1)
ci ) = Hk(U1, j1,∗G

(1)
ci ).

Arguing as for G1, we find that j1,∗G
(1)
ci is a (constant) local system on the locally

closed subset U1 � ([θi, θ
′
o + ε]×{∞}), for some θi ∈ I1, and is zero on [θi, θ

′
o + ε]×{∞}.

Identifying topologically the closure U1 of U1 with a closed disc D, the cohomology of
such a sheaf is the relative cohomology modulo a closed interval in ∂D of the constant
sheaf on D, so identically 0, hence (4.9). The same result holds for U2, of course.

Let us now compute Hk(U1∩U2,G ). We identify each connected component of U1 ∩ U2

to a closed disc, and a similar computation shows that Hk(U1 ∩U2,G ) = 0 for k �= 0 and
Γ (U1 ∩ U2,G ) � Lθo . �

Recall that F�c = e∗G . On the other hand, R1e∗G is a sheaf supported at the origin
on X, whose germ is equal to H1(S1

0 ,LY |S1
0
). Since Re∗G has only two cohomology

sheaves, there is a natural triangle

e∗G → Re∗G → R1e∗G [−1] +1−−→

inducing a long exact sequence in hypercohomology over X. Note that the space
Hk(X, R1e∗G [−1]) = Hk−1(X, R1e∗G ) is equal to 0 if k �= 1 and to the germ
(R1e∗G )0 = H1(S1

0 ,LY |S1
0
) if k = 1. On the other hand, Hk(X, e∗G ) = Hk(X, e∗G ) and

https://doi.org/10.1017/S147474801100003X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801100003X


662 C. Hertling and C. Sabbah

Hk(X, Re∗G ) = Hk(Y,G ). Moreover, from the previous lemma we get H2(Y,G ) = 0.
We therefore obtain a long exact sequence

0 → H1(X, F�c) → H1(Y,G ) → H1(S1
0 ,LY ) → H2(X, F�c) → 0, (4.10)

where the middle map is the restriction morphism to S1
0 . We have a commutative diagram

H1(Y,G )

��

�� H1(Y, j∞,∗j
−1
∞ G )


��

∼ �� H1(S1
0 ,LY )

H1(S1
∞,L�c) �� H1(S1

∞,L )

where the vertical arrows are the restriction to S1
∞, and the lower horizontal line is the

right part of the exact sequence in Lemma 3.13. Moreover, the left vertical morphism is an
isomorphism, according to the computation of Lemma 4.8. As a consequence, H1(Y,G ) →
H1(S1

0 ,LY ) is onto and its kernel H1(X, F�c) is identified with Fc = Im can via the
restriction morphism H1(X, F�c) → H1(S1

∞,L�c). �

Proof of Proposition 4.7 (2). We use the commutative diagram

H1(X, F�c) ⊗ H1(X, ι−1F�c)
ĥc ��

��

H2(X, j∞,!kA1)

H1(S1
∞, i!∞F�c) ⊗ H1(S1

∞, i−1
∞ ι−1F�c)

can



h∞,c �� H1(S1
∞,kS1)



where the vertical morphisms are induced by the restriction or by the natural morphism
Ri∞,∗i

!
∞ → Id and we can eliminate ι−1 in the cohomology. The identification of the lower

pairing h∞,c to hc of ((4.10)(∗)) follows from Lemma 4.2. To conclude, we use (3.17). �

5. Riemann–Hilbert correspondence and sesquilinear pairings

Throughout this section, we will only consider holonomic C[τ ]〈∂τ 〉-modules N (where τ

is the coordinate on the affine line A1 = A1
τ ) with a regular singularity at τ = 0 and

no other singularities at finite distance, and of exponential type at τ = ∞, meaning
that the Laplace (or inverse Laplace) transform has only regular singularities (see, for
example, [32, Lemma 1.5]). For such a holonomic C[τ ]〈∂τ 〉-module N , we will denote
by N the OP1(∗∞)-module with connection associated with N . We will use the notation
of § 4.

5.a. The Riemann–Hilbert correspondence

Denote by A mod ∞
X the sheaf on X of holomorphic functions on A1 which have moderate

growth along S1
∞. This is naturally a subsheaf of j∞,∗OA1 . It is a �−1OP1(∗∞)-submodule

and is stable by the natural action of �−1DP1 on j∞,∗OA1 . We will also consider the
subsheaves ecτA mod ∞

X ⊂ j∞,∗OA1 (c ∈ C), which satisfy similar properties and coincide
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with OA1 on A1. Given eiθ ∈ S1
∞, the germs satisfy ecτA mod ∞

X,θ ⊂ ec′τA mod ∞
X,θ as soon as

c �θ c′ (see item (1) in § 2.a), since ecτ = ec′τ · e(c−c′)τ and e(c−c′)τ has moderate growth
as well as all its derivatives near θ.

For each c ∈ C we denote by DR�c(N) the complex

(ecτA mod ∞
X ) ⊗O

P1 (∗∞) N
∇−→ (ecτA mod ∞

X ) ⊗O
P1 (∗∞) (Ω1

P1 ⊗ N ). (5.1)

(The complex DR�0(N) is also denoted by DRmod ∞(N).) We have a natural identifica-
tion

j−1
∞ DR�c(N) = DRan N. (5.2)

If we denote by E cτ the C[τ ]〈∂τ 〉-module (C[τ ], ∂τ + c), the termwise multiplication by
e−cτ induces an isomorphism DR�c(N) ∼−→ DRmod ∞(E cτ ⊗ N).

There is a rapid-decay analogue. Firstly, the subsheaf A rd ∞
X ⊂ A mod ∞

X consists of
those functions which have rapid decay along S1

∞. Then DR<c(N) is defined by a complex
similar to (5.1) where we replace A mod ∞

X with A rd ∞
X (the complex DR<0(N) is also

denoted by DRrd ∞(N)). We also have e−cτ : DR<c(N) ∼−→ DRrd ∞(E cτ ⊗ N).

Proposition 5.3. If N as above is a minimal extension at τ = 0, the complexes DR�c(N)
and DR<c(N) have cohomology in degree 0 at most for each c ∈ C, and the Riemann–
Hilbert correspondence

N �→ (H 0 DRan N, H 0 DR•(N)) = (F ,F•)

is an equivalence between the full subcategory of the category of holonomic C[τ ]〈∂τ 〉-
modules whose objects are of exponential type at infinity, are minimal extensions with
a regular singularity at 0 and have no other singularity, and the category of minimal
Stokes-filtered constructible sheaves on X (see Definition 4.1).

Moreover, under this correspondence, we have

F<c = H 0 DR<c(N) ∀c ∈ C.

Proof. This is a slight adaptation of the main statement in [5] (see also [1,21,22]). �

5.b. Sesquilinear pairings

Let h : N ′ ⊗C N ′′ → S ′(A1
τ ) be a sesquilinear pairing between holonomic C[τ ]〈∂τ 〉-

modules as considered in the beginning of this section. Then h induces a morphism of
bicomplexes

hDR,0 : DRrd ∞τ

X N ′ ⊗C DRmod ∞τ

X N
′′ → Db

rd ∞τ ,(•,•)
X ,

where Db
rd ∞τ ,(•,•)
X is the bicomplex of currents on X with rapid decay along S1

∞τ
. More

generally, since for each c ∈ C, the function ecτ−cτ has moderate growth along ∞τ ∈ P1
τ

or S1
∞τ

⊂ X as well as all its derivatives, h defines a morphism of complexes

hDR,c : DR<c(N ′) ⊗C DR�−c(N
′′
) → Db

rd ∞,(•,•)
X . (5.4)
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Since the simple complex associated to the double complex Db
rd ∞τ ,(•,•)
X is a resolution

of j∞τ ,!CA1
τ
, by taking H 0 we deduce for each c a pairing

hDR,c : F ′
<c[1] ⊗ F

′′
�−c[1] → j∞,!CA1

τ
[2], (5.5)

where j∞,!CA1
τ
[2] is the dualizing complex on X. All these pairings hDR,c coincide, when

restricted to A1 and using the identification (5.2), with the pairing

hDR : DRan N ′ ⊗C DRan N
′′ → Db

(•,•)
A1 .

In particular, if h : N ⊗C ι+N → S ′(A1
τ ) is an ι-sesquilinear pairing on N , it induces an

ι-sesquilinear pairing hDR,c : F<c ⊗C ι−1(F�c) → j∞,!CA1
τ

for each c ∈ C.

Lemma 5.6. Let (F ′,F ′
•), (F ′′,F ′′

• ) be minimal Stokes-filtered constructible sheaves
corresponding to holonomic C[τ ]〈∂τ 〉-modules N ′, N ′′ through the equivalence of Propo-
sition 5.3. Then any sesquilinear pairing hB between (F ′,F ′

•) and (F ′′,F ′′
• ) takes the

form hDR for a unique sesquilinear pairing h between N ′ and N ′′.

Remark 5.7. The minimality property at 0 is assumed in Proposition 5.3 and Lemma 5.6
for the sake of simplicity. Without this assumption, the proposition would also hold, but
one should first correctly define the category of perverse sheaves on X with a Stokes
filtration at infinity. We will not need such a generalization.

Proof of Lemma 5.6. The equivalence of categories of Proposition 5.3 gives a unique
correspondence between morphisms. We will therefore express the pairings as morphisms.

On the one hand, recall (see Proposition 4.4) that (F ′′∨,F ′′∨
• ) is a minimal Stokes-

filtered constructible sheaf, as well as its conjugate, so that hB can be regarded as a
morphism from (F ′,F ′

•) to the conjugate (F ′′†,F ′′†
• ) of (F ′′∨,F ′′∨

• ). By the equivalence
of Lemma 4.3 it corresponds in a unique way to a morphism (L ′,L ′

•) → (L ′′†,L ′′†
• ).

The Stokes data of the latter are obtained by conjugating ((2.8)∨).
On the other hand, let us set N ′′† = Hom

C[τ ]〈∂τ 〉(N
′′
,S ′(A1)), that we consider as

a C[τ ]〈∂τ 〉-module through the C[τ ]〈∂τ 〉-module structure of S ′(A1). It is known that
N ′′† is a holonomic C[τ ]〈∂τ 〉-module which belongs to the category considered in Propo-
sition 5.3. Indeed, this is obtained by sheafifying the construction on P1. Then, on A1,
the result follows from [18], and near ∞ it follows from [27, § II.3]. Now, a sesquilinear
pairing h : N ′ ⊗C N

′′ → S ′(A1
τ ) is regarded as a C[τ ]〈∂τ 〉-linear morphism N ′ → N ′′†.

The lemma reduces then to identifying the Stokes data at infinity of N ′′† to the
conjugate of ((2.8)∨) (we will not recall here the classical relationship between Stokes
data at infinity for a meromorphic connection N considered as matrices of the form
Id +rapid decay and the Stokes data considered in § 2.b). We will recall in this simple
case a sketch of the proof given in [27, § II.3]. We will work locally near infinity, with
local coordinate z = 1/τ , and denote by N the germ of OP1(∗∞) ⊗C[τ ] N ′′ at infinity. Set-
ting O = C{z} and D = O〈∂z〉, N is a O[z−1]-module with connection and a holonomic
D-module. We also denote by Db

mod ∞ the germ at ∞ of the sheaf Db
mod ∞
P1 already

considered in § 1.a and we set N† = HomD(N,Db
mod ∞).

https://doi.org/10.1017/S147474801100003X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801100003X


Examples of non-commutative Hodge structures 665

It will be convenient to work on X near S1
∞. We denote by A mod ∞ the germ along

S1
∞ of A mod ∞

X and by D̃b
mod ∞

that of the sheaf on X of distributions having moderate
growth along S1

∞. If � : X → P1 denotes the projection, we set Ñ = A mod ∞ ⊗	−1O N.
There exists Nel of the form Nel =

⊕r
i=1(E

−ciτ ⊗ Ri), where each Ri has regular singu-
larity, such that Ñ is locally on S1

∞ isomorphic to Ñel. It is proved in [27] that

• (Nel)† is a germ of meromorphic connection at ∞,

• Ñ† = (Ñ)† := Hom	−1D(�−1N, D̃b
mod ∞

), which is also an R Hom,

• (Ñ)† is locally isomorphic to (Ñel)† and the Stokes data (i.e. gluing data) needed to
recover (Ñ)† from (Ñel)† are obtained from those corresponding to Ñ in a natural
way, i.e. are inverse transposed conjugate of these. (The point is to prove that these
inverse transposed conjugate Stokes data are indeed Stokes data, i.e. are of the form
Id +rapid decay, while they a priori only have moderate growth.)

This shows that N† corresponds, via Proposition 5.3, to (L †,L †
• ). �

5.c. Compatibility of the sesquilinear pairing with taking cohomology

Let h : N ⊗C ι+N → S ′(A1
τ ) be an ι-sesquilinear pairing on N , where N is as occurring

in the equivalence of categories in Proposition 5.3. Let us fix c ∈ C satisfying (a) and (b)
of § 3.f.

On the one hand, h defines hDR,c : F�c⊗Cι−1(F�c) → j∞,!CA1
τ

(because F<c = F�c),
and then ĥDR,c on H1(X, F�c), according to Proposition 4.7.

On the other hand, let us denote by M = FN the inverse Laplace transform of N ,
which by assumption is a regular holonomic C[t]〈∂t〉-module with singular set con-
tained in C. The complex M

t−c−−→ M is identified with the algebraic de Rham complex
N

−∂τ −c−−−−→ N , which can be computed analytically as RΓ (X, DRmod ∞(E cτ ⊗ N)), and
we have seen that this complex is isomorphic to RΓ (X, DR�c(N)) via the multiplication
by ecτ termwise. For c �∈ C, the latter complex has cohomology in degree 1 at most,
so the fibre M/(t − c)M is identified with H1(X, F�c). Now, the inverse Fourier trans-
form F τh is a sesquilinear pairing on the inverse Laplace transform M of N . We set
h = ĥ = −2πiF τh. Restricting it to A1

t � C, it takes values in C ∞
A1

t �C
. Restricting it

to the fibre at c also induces a sesquilinear pairing on H1(X, F�c), that we denote by
hDR,c = ĥDR,c. We will give a detailed proof of the following lemma in the appendix.

Lemma 5.8. We have ĥDR,c = ĥDR,c.

5.d. The main theorem

Let ((Gc,1, Gc,2)c∈C , S, S′) be Stokes data of type (C, θo) as in Definition 2.6. Let us fix
bases of Gc,�, c ∈ C and � = 1, 2 and let us denote by Σ, Σ′ the matrices of S, S′ in these
bases. The choice of bases also fixes a sesquilinear form h12 whose matrix in these bases
is the identity. According to the Riemann–Hilbert correspondence, these data define a
meromorphic bundle (H (∗0),∇) on A1,an

z with connection having a pole at z = 0 only.
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The connection is of exponential type. We denote by (H ,∇) the Deligne–Malgrange
lattice DM>0(H (∗0),∇).

If Σ′ = −tΣ, the local system attached to (H (∗0),∇) is equipped with an ι-skew-
Hermitian pairing hB, and we can apply the ‘twistor gluing procedure’ of [9, Lemma 2.14]
and [31, Definition 1.25] (see § 1.e) by using the ι-Hermitian pairing −2πihB.

Theorem 5.9. Let ((Gc,1, Gc,2)c∈C , S, S′) be Stokes data of type (C, θo). Assume that
there exist bases of Gc,�, c ∈ C and � = 1, 2 such that the matrices Σ, Σ′ of S, S′ satisfy

Σ′ = −tΣ and Σ + tΣ is positive semi-definite, (5.9)(∗)

∀c ∈ C, either Kc = 0 or 2πihKc is positive definite on Kc (5.9)(∗∗)

(see Remark 3.10 for hKc). The twistor structure on P1 obtained from (H ,∇,−2πihB)
(where (H ,∇) is the Deligne–Malgrange lattice defined by Σ) by the ‘twistor gluing
procedure’ is then pure of weight 0 and polarized.

Proof. Condition (5.9)(∗∗) implies that hKc is non-degenerate for each c ∈ C. Then,
as we already noticed at the end of Remark 3.10, the Stokes data enriched with the
sesquilinear form h12 split as a direct sum of minimal Stokes data and trivial Stokes data
on each Kc (both enriched with sesquilinear forms). The proof splits correspondingly.
The non-trivial part concerns the case of minimal Stokes data (all Kc equal to zero),
that we consider now.

In accordance with the previous part of the article, we will work with the variable
τ = 1/z, so we now denote by (H (∗∞),∇) the meromorphic bundle defined above on
P1

τ � {0}. Let us denote by N(∗0) the Deligne meromorphic extension (with a regular
singularity) at τ = 0 of H (∗∞), by N its minimal extension at τ = 0 and by N the
global sections of N on P1.

As indicated in Lemma 4.6, the pairing hB,∞ on (L ,L•) determined by the Stokes
data and the properties of Σ, Σ′ (see § 3.e) gives rise in a unique way to an ι-sesquilinear
form hB on (F ,F•) which restricts (in the sense of Proposition 4.4) to hB,∞ on S1

∞,
and, according to Lemma 5.6, to a unique ι-sesquilinear pairing h on N . Let us choose
c ∈ C which satisfies both properties (a) and (b) of § 3.f with respect to F ((a) means
that c �∈ C). Then, after our assumption on Σ, Σ′ and according to Corollary 3.18 and
Proposition 4.7, ĥDR,c is positive definite. Hence, ĥDR,c is so, according to Lemma 5.8.
We conclude by applying Corollary 1.5, since F̂h = −2πih.

Let us now consider the easy case with enriched Stokes data (Kco , S(Kco), S, S, hKco
),

which are isomorphic to enriched Stokes data (Kco , Kco , Id, Id, hKco
), where hKco

is a
non-degenerate skew-Hermitian form on Kco

. We will first adapt Proposition 5.3 and
Lemma 5.6 in this case.

Let us set N = (Kco ⊗ C[τ ], d − co Id dτ) and consider some Hermitian form hKco
on

Kco
. Then we define the ι-Hermitian form h on N by the formula

h(uco
⊗ f(τ), vco

⊗ g(τ)) = hKco
(uco

, vco
)f(τ)g(−τ)ecoτ−coτ .

The complex DRan N has cohomology in degree 0 only and

H 0 DRan N ⊂ O
A

1,an
τ

⊗ N = Kco
⊗ O

A
1,an
τ
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is identified with the constant sheaf Kco
⊗ C · ecoτ and, with this identification,

hDR(uco
⊗ ecoτ , vco

⊗ e−coτ ) = hKco
(uco , vco).

Setting G = (Kco
⊗ C[τ, τ−1], d − co dτ) = (Kco

⊗ C[z, z−1], d + co dz/z2), we have
DM0 G = Kco ⊗ C[z] and DM>0 G = Kco ⊗ (zC[z]). It is easy to check (see [31, Exam-
ple 1.33(1)]) that, if hKco

is positive definite on Kco
, then (DM0 G, ∇, hDR) defines, by

twistor gluing, an integrable twistor structure which is pure of weight 0 and polarized. It
easily follows that (DM>0 G, ∇,−hDR) defines, by twistor gluing, an integrable twistor
structure which is pure of weight 0 and polarized. Below, we will not distinguish between
hDR and hKco

.
In conclusion, starting with the skew-Hermitian form hKco

on Kco , if the Hermitian
form hKco

:= 2πihKco
is positive definite, then (DM>0 G, ∇,−2πihKco

) defines, by twistor
gluing, an integrable twistor structure which is pure of weight 0 and polarized. �

Remarks 5.10.

• This statement was conjectured (and proved in a particular case) in [11, Con-
jecture 10.2] and was the main motivation for proving Theorem 5.9. As in the
particular case treated in [11, Lemma 10.1], the main idea is to apply the results
of [31].

• If Σ is real, the integrable twistor structure that we get is a TERP structure in
the sense of [9]. If Σ is rational, we get a non-commutative Hodge structure, in the
sense of [20].

• The simplest example of a complex variation of polarized Hodge structure on A1�C

is that of a holomorphic vector bundle V with a flat Hermitian metric (the weight is
zero and the Hodge type is (0, 0)). Recall more generally that variations of polarized
Hodge structures on A1 � C correspond exactly to variations of polarized pure
integrable twistor structures which are tame (i.e. have regular singularities) at the
singularities C ∪ {∞}, after [14, Theorem 6.2].

Similarly, Theorem 5.9 gives the simplest example of an integrable twistor structure
whose associated variation by rescaling z (see [11, § 4] and [31, § 2.d]) is wild at
τ = ∞. It is obtained by Fourier–Laplace transformation from the previous one.

• One can conjecture a kind of converse of Theorem 5.9 in the following way. Given a
block lower triangular matrix Σ such that the diagonal blocks Σii (i = 1, . . . , n) are
invertible, then Σ + tΣ is positive semi-definite if, for all pairs (C, θo) consisting
of a subset C ⊂ C with #C = n and θo ∈ R/2πZ generic with respect to C

(see § 2.b), the corresponding twistor structure considered in Theorem 5.9 is pure
and polarized.

Appendix A. Proof of Lemma 5.8

We will give a detailed proof of this lemma. A proof of a similar result had only been
sketched for [31, Proposition 1.18]. We will keep the setting of § 5.
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A.a. Integral formula for the Fourier transform of a sesquilinear pairing
between D-modules

We start by expressing ĥ (as defined in Corollary 1.5 (3)) by an integral formula.
Let us first recall that the inverse Laplace transform M of N can be obtained as the

algebraic direct image q+(p+N ⊗C[t,τ ] Etτ ), where p (respectively q) denotes the projec-
tion from A1

τ × A1
t to A1

τ (respectively A1
t ) and Etτ = (C[t, τ ], d + τ dt + t dτ). Moreover,

this formula can be sheafified and made analytic, giving M = q+(p+N ⊗ E tτ ), where
N is as in the beginning of § 5, and p, q now denote the projections P1

τ × P1
t → P1

τ

or P1
t in the analytic category (see [6, Appendix A] for details). Since we are only

interested in the behaviour on A1
t � C, we will set Y = A1

t � C and denote by
p : P1

τ × Y → P1
τ the projection, and similarly for q. Then M is a DY -module. By assump-

tion on C, it is OY -locally free. More precisely, if N has the connection ∇, p+N ⊗E tτ is
p∗N := OP1

τ ×Y ⊗p−1O
P1τ

p−1N equipped with the connection p∗∇ + τ dt + t dτ , and M
is the first cohomology of the relative de Rham complex

q∗p
∗N

∇+t dτ−−−−−→ q∗(p∗N ⊗ Ω1
P1

τ ×Y/Y ) (A.1)

equipped with the connection induced by dY + τ dt, where dY is the differential relative
to Y . Notice that p∗N and p∗N ⊗ Ω1

P1
τ ×Y/Y are q∗-acyclic (see [6]). Moreover, this

complex has cohomology in degree 1 at most.
For the sake of simplicity, we will denote the volume form (i/2π) dτ ∧ dτ (on A1

τ ) by
dvolτ , its t-analogue (on Y ) by dvolt.

We will use the following lemma.

Lemma A.2. Let ϕ be C∞ on P1
τ × Y , with compact support. Then the function τ �→∫

Y
etτ−tτϕ dvolt is C∞ on A1

τ , with rapid decay at infinity as well as all its derivatives.

Proof. By assumption, ϕ induces a C∞ function on A1
τ × Y such that |t|m∂α

τ ∂β
τ ∂γ

t ∂δ
t
ϕ

is bounded for all α, β, γ, δ, m � 0 (since, in the coordinate τ ′ = 1/τ , we have ∂τϕ =
−τ ′2∂τ ′ϕ and similarly for ∂τ ).

Let us still denote by F tϕ the integral we consider (with some abuse, since ϕ depends
on τ). That F tϕ is C∞ on A1

τ is clear. It is a matter of showing that each expression
‖τaτ b∂c

τ∂d
τ F t(ϕ)‖L∞ is bounded. We have

τaτ b∂c
τ∂d

τ F t(ϕ) = F t((−∂t)a∂b
t (t + ∂τ )c(−t + ∂τ )dϕ).

Since ψ := (−∂t)a∂b
t
(t + ∂τ )c(−t + ∂τ )dϕ satisfies the same properties as ϕ does, as indi-

cated above, it is enough to get a bound for F tψ for such a ψ. Since |etτ−tτ | = 1, we
have, for m such that (1 + |t|2m)−1 is L1 on A1

t ,

‖F tψ‖L∞ � ‖(1 + |t|2m)−1‖L1‖(1 + |t|2m)ψ‖L∞ < +∞.

�

Let us still denote by h the sheafified sesquilinear pairing N ⊗C ι+N → Db
mod ∞τ

P1
τ

(where N is as in the beginning of § 5). We will define a sesquilinear pairing

h′ : (p+N ⊗ E tτ ) ⊗ ι+p+N ⊗ E tτ → DbP1
τ ×Y .
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We identify ι+p+N ⊗ E tτ with (p+ι+N ) ⊗ E −tτ , where ι denotes the involution τ �→ −τ

either before or after p+. Let n (respectively n′) be a local section of p+N (respec-
tively p+ι+N ). We can write n =

∑
i φini, n′ =

∑
j ψjn

′
j (finite sums) where ni (respec-

tively n′
j) are local sections of N (respectively ι+N ) and φi, ψj are local sections of

OP1
τ ×Y .
Let ϕ be a C∞ form with compact support of maximal degree (namely, degree 4) on

an open subset of P1
τ × Y where n, n′ are defined. By Lemma A.2, the 2-form τ �→∫

Y
etτ−tτφiψjϕ has rapid decay at ∞τ for every i, j, so we can set

〈h′(n, n′), ϕ〉 =
∑
ij

〈
h(ni, n

′
j),

( ∫
Y

etτ−tτφiψjϕ

)〉
, (A.3)

and one checks that this does not depend on the chosen decomposition of n, n′, so that
h′(n, n′) is a section of DbP1

τ ×Y .
Integration of currents along P1

τ composed with h′ induces a sesquilinear pairing

q∗(p∗N ⊗ Ω1
P1

τ ×Y/Y ) ⊗ q∗ι
∗(p∗N ⊗ Ω1

P1
τ ×Y/Y ) → DbY ,

which becomes a sesquilinear pairing (noticing that ι∗ disappears after q∗ and using the
twisted differentials as in (A.1))

q+h′ : M ⊗ M → DbY . (A.4)

(That q+h′ is well defined and sesquilinear is checked in a standard way.)

Lemma A.5. We have ĥ = q+h′.

Proof. Since M is generated by M (inverse Laplace transform of N), and since M = N

as C-vector spaces, it is enough to check the equality for the values at n, n′ ∈ N , according
to sesquilinearity. Let n, n′ ∈ N and let η be a C∞ 2-form on Y with compact support.
By definition,

〈ĥ(n, n′), η〉 = 〈−2πiF τh(n, n′), η〉 = 〈h(n, n′), (F tη) dτ ∧ dτ〉,

where F tη =
∫

Y
etτ−tτη. On the other hand, if we set N [t] = C[t]⊗C N , according to the

identification M = N [t] · dτ/(p∗∇ + t dτ)N [t], we have

〈q+h′(n, n′), η〉 = 〈h′(n dτ, n′ dτ), q∗η〉 =
〈

h(n, n′),
( ∫

Y

etτ−tτη

)
dτ ∧ dτ

〉
,

hence the assertion. �

A.b. Lifting to P̃1
τ × Y and restriction to t = c

Let � : P̃1
τ × Y → P1

τ × Y be the oriented real blow up of ∞τ × Y , and let A mod ∞τ

P̃1
τ ×Y

(respectively A rd ∞τ

P̃1
τ ×Y

) be the corresponding sheaf of holomorphic functions which have
moderate growth (respectively rapid decay) along S1

∞τ
× Y .
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We will lift the sesquilinear pairing h′ as a sesquilinear pairing

h̃′ : [A rd ∞τ

P̃1
τ ×Y

⊗ �−1(p+N ⊗ E tτ )] ⊗ [A mod ∞τ

P̃1
τ ×Y

⊗ �−1ι+(p+N ⊗ E tτ )] → Db
rd ∞τ

P̃1
τ ×Y

.

In order to do so, we use a formula analogous to (A.3), where now each φi is a local
section of A rd ∞τ

P̃1
τ ×Y

, each ψj is a local section of A mod ∞τ

P̃1
τ ×Y

, and ϕ has moderate growth
along S1

∞τ
× Y . Since each term φiψjϕ has then rapid decay along S1

∞τ
× Y , the formula

(A.3) remains meaningful.
We will denote by Db

rd ∞τ

P̃1
τ ×Y/Y

the subsheaf of Db
rd ∞τ

P̃1
τ ×Y

consisting of distributions which
are C∞ with respect to t ∈ Y . For such a distribution, the evaluation at t = c ∈ Y is
well defined as a distribution on P̃1

τ with rapid decay at τ = ∞.
Recall (see after the proof of Lemma A.2) that the sesquilinear pairing h : N ⊗C ι+N →

S ′(A1
τ ) can be sheafified and lifted as above as a sesquilinear pairing

h̃c : [A rd ∞τ

P̃1
τ

⊗ �−1(N ⊗ E cτ )] ⊗ [A mod ∞τ

P̃1
τ

⊗ �−1ι+(N ⊗ E cτ )] → Db
rd ∞τ

P̃1
τ

.

Proposition A.6. The sesquilinear pairing h̃′ takes values in Db
rd ∞τ

P̃1
τ ×Y/Y

and, for each
c ∈ Y , its evaluation at t = c is equal to h̃c.

Proof. The second part of the statement is clear once we have shown the first part, that
we consider now. Notice first that it is a local statement.

Firstly, on A1
τ × Y the statement is clear, since etτ−tτ h̃′, when expressed on sections n

of N and n′ of ι+N , takes values in distributions annihilated by ∂t and ∂t.
We will thus consider the statement locally near S1

∞τ
× Y and we will show that,

locally near (eiθo , c) ∈ S1
∞τ

× Y , h̃′ takes values in C∞ functions which are infinitely flat
along S1

∞τ
× Y , by analysing the differential equations satisfied by h̃′(n, n′). By using

the Hukuhara–Turrittin theorem for N at τ = ∞ (see, for example, [22, Appendix]), we
are reduced to evaluating h̃′ on sections n, n′ which are solutions of

(τ∂τ + ciτ + α)mn = 0, (τ∂τ + cjτ + α′)mn′ = 0, ci, cj ∈ C, α, α′ ∈ C, m � 0.

When restricted to τ �= ∞τ , h̃(n, n′) := h̃0(n, n′) is a C∞ function and the function
h̃(eciτταn, (ecjττα′n′)) is annihilated by (τ∂τ )m and (τ∂τ )m.

Similarly, etτ−tτ h̃′(eciτταn, (ecjττα′n′)) is annihilated by (τ∂τ )m, (τ∂τ )m, ∂t and ∂t.
Therefore, this function does not depend on t and has moderate growth in some neigh-
bourhood of (eiθo , c).

If Re((c − ci)eiθo − (c − cj)eiθo) < 0, then in some neighbourhood of (eiθo , c) we have
Re((t − ci)τ − (t − cj)τ) < 0, and h̃′(n, n′) is a C∞ function with rapid decay along
S1

∞τ
× Y on this neighbourhood, as wanted.

Otherwise, there is an open set of A1
τ × Y containing (eiθo , c) in its closure, on which

Re((t − ci)τ − (t − cj)τ) > 0, hence on which the function h̃′(n, n′) cannot be extended
as a distribution (and even a moderate distribution), unless it is identically zero. In such
a case, the desired statement trivially holds. �
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A.c. The de Rham complexes

In the neighbourhood of ∞τ ×Y , p+N ⊗E tτ is a meromorphic bundle with connection.
Since t varies in Y = A1

t � C, this meromorphic bundle with connection is good, in the
sense of [23, § 3.2]. It follows, by an extension of the result in dimension one, proved
in [22, Appendix 1] for instance, that the moderate and rapid decay de Rham complexes
DRrd ∞τ (p+N ⊗E tτ ) and DRmod ∞τ (p+N ⊗E tτ ) have cohomology in degree 0 at most
in the neighbourhood of ∞τ ×Y . On the other hand, on A1

τ ×Y , p+N ⊗E tτ is isomorphic
to p+N , and since DRan N has cohomology in degree 0 at most (because N is assumed
to be a minimal extension at τ = 0), so does DRan p+N . Therefore, both complexes
DRrd ∞τ (p+N ⊗E tτ ) and DRmod ∞τ (p+N ⊗E tτ ) have cohomology in degree 0 at most.

Recall also (see Proposition 5.3) that, for each c ∈ Y , the complexes DR<c N and
DR�c N have cohomology in degree 0 at most.

Proposition A.7. For each c ∈ Y , there are functorial morphisms

i−1
c H 0(DRrd ∞τ (p+N ⊗ E tτ )) → H 0(DR<c N)

and

i−1
c H 0(DRmod ∞τ (p+N ⊗ E tτ )) → H 0(DR�c N)

which are isomorphisms, where ic : P̃1
τ × {c} ↪→ P̃1

τ × Y denotes the inclusion.

Proof. We will show the proposition in the moderate case, the rapid decay case being
similar. Let us denote by DRmod ∞τ

rel the relative de Rham complex (with differential
forms relative to the projection P̃1

τ × Y → Y only). Evaluating the coefficients at t = c

induces a natural morphism of complexes i−1
c DRmod ∞τ

rel (p+N ⊗ E tτ ) → DR�c N , since
the evaluation at t = c of a section of etτA mod ∞τ

P̃1
τ ×Y

belongs to ecτA mod ∞τ

P̃1
τ

.
We have a natural action of ∂t on

i−1
c DRmod ∞τ

rel (p+N ⊗ E tτ ),

and the kernel of ∂t on its H 0 is equal to i−1
c H 0 DRmod ∞τ (p+N ⊗E tτ ), hence we obtain

the desired morphism to H 0(DR�c N). To show that this morphism is an isomorphism
is now a local question on P̃1

τ × Y .
On A1

τ × Y , the result is clear since p+N ⊗ E tτ � p+N . Near (eiθo , c) ∈ S1
∞τ

× Y ,
we can assume, by functoriality, that N = Nα ⊗ E −ciτ , with ci ∈ C and Nα =
(OP1

τ
(∗∞τ ), d + α dτ/τ). We are reduced to showing that e(t−ci)τ has moderate growth

along S1
∞τ

× Y near (eiθo , c) if and only if e(c−ci)τ has moderate growth along S1
∞τ

near
eiθo . This is clear, and also equivalent to the fact that both functions have rapid decay,
since c �= ci. �

From h̃′ we derive h̃′
DR, which is a pairing of double complexes

h̃′
DR : DRrd ∞τ (p+N ⊗ E tτ ) ⊗ DRmod ∞τ ι+(p+N ⊗ E tτ ) → Db

rd ∞τ ,(•,•)
P̃1

τ ×Y/Y
.
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The de Rham complex of currents which are C∞ with respect to Y and have rapid
decay along S1

∞τ
× Y , which is the simple complex associate to the Dolbeault complex

Db
rd ∞τ ,(•,•)
P̃1

τ ×Y/Y
, is a resolution of j∞,!CA1

τ ×Y .
By Proposition A.7, applying the evaluation at t = c to h̃′

DR defines a pairing h̃′
DR,c

which is nothing but the pairing hDR,c considered in (5.4).

A.d. End of the proof of Lemma 5.8

From Lemma A.5 we deduce that ĥDR,c = (q+h′)DR,c. Denoting by q̃ the projection
P̃1

τ × Y → Y , we also obtain
ĥDR,c = (q̃+h̃′)DR,c,

where q̃+ denotes the integration of currents along the fibres of q̃. Integration of currents
of any degree is compatible with the differentials, therefore (q̃+h̃′)DR,c = (q̃+h̃′

DR)c. On
the other hand, evaluation at t = c is compatible with the integration of currents which
are C∞ with respect to Y , so we finally get

ĥDR,c = (q̃+h̃′
DR,c).

On the other hand, we have seen above that h̃′
DR,c is identified with hDR,c, and its

integration q̃+h̃′
DR,c is nothing but the pairing induced on the cohomology, that is, ĥDR,c.

�
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