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Abstract

We study an urn process with two urns, initialized with a ball each. Balls are added
sequentially, the urn being chosen independently with probability proportional to the
αth power (α > 1) of the existing number of balls. We study the (rare) event that the
urn compositions are balanced after the addition of 2n − 2 new balls. We derive precise
asymptotics of the probability of this event by embedding the process in continuous time.
Quite surprisingly, fine control of this probability may be leveraged to derive a lower-
tail large deviation principle (LDP) for L =∑n

i=1 (S2
i /i2), where {Sn : n ≥ 0} is a simple

symmetric random walk started at zero. We provide an alternative proof of the LDP via
coupling to Brownian motion, and subsequent derivation of the LDP for a continuous-
time analog of L. Finally, we turn our attention back to the urn process conditioned to be
balanced, and provide a functional limit law describing the trajectory of the urn process.
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1. Model and summary of results

Consider two urns, each of which initially has one ball. Balls come sequentially. When
there are i balls in the first urn and j balls in the second urn, the next ball is placed in the first
urn with probability iα/(iα + jα) and in the second urn with probability jα/(iα + jα). Here α

is a constant. In this work we shall consider only α > 1, though we note that the case α = 1
is the classic Pólya urn model [10, 23]; see Remark 1.1. Equivalently, we define a Markov
chain {(Xn, Yn) : n ≥ 2} with states N×N and initial state (X2, Y2) = (1, 1), and transition
probabilities

P[(Xn+1, Yn+1) = (i + 1, j) | (Xn, Yn) = (i, j)] = iα

iα + jα
, (1.1)

P[(Xn+1, Yn+1) = (i, j + 1) | (Xn, Yn) = (i, j)] = jα

iα + jα
. (1.2)

(We have chosen the notation such that Xn + Yn = n; we thus start with n = 2.)
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In this model the rich get richer. It is highly unstable, as demonstrated by Theorems 2.1
and 2.3 below. We examine the (rare) event that the urn populations remain stable. For
definiteness we concentrate on the event that state (n, n) is reached, i.e. (X2n, Y2n) = (n, n),
which we denote BINGO (n, n).

This work has three interrelated goals. First, we find the asymptotic probability of the urn
population remaining stable, more precisely that it reaches the state (n, n) (see Theorem 2.3).
Second, we study the typical behavior of the urn process {(Xn, Yn) : n ≥ 2}, conditional on
the rare event that state (n, n) is reached. We find that the typical walk from (1, 1) to (n, n)
is given asymptotically by a distorted Brownian bridge (see Theorem 1.2 below) and locally,
suitably scaled, by an Ornstein–Uhlenbeck process, stated in Theorem 1.4. The technique of
continuous-time embedding, as described in Section 2, is crucially utilized in deriving these
results. Finally, as an independent application of these ideas, we provide a lower-tail large
deviation principle (LDP) for a quadratic functional of simple symmetric random walk, defined
formally in (1.3).

For the convenience of the reader, we start with a high-level description of the connection
of our urn process to the random walk statistic L defined below. Note that a sequence
ξ1, . . . , ξ2n−2 = ±1 corresponds bijectively to a path P of length 2n − 2 on N×N starting
at (1, 1), with ±1 representing horizontal and vertical moves respectively. P[P] represents the
probability the Markov chain follows the path P. P[BINGO (n, n)] is then the sum of P[P]
over all paths from (1, 1) to (n, n). The values P[P] vary considerably. The further P is from
the main diagonal the lower is P[P]. Set St =∑t

i=1 ξi. St then measures how far the path is from
the main diagonal after t steps. The exact relationship between the St and P[P] is given by a
somewhat complex formula. Perhaps surprisingly, the asymptotic relationship is well captured
by a single statistic, L :=∑2n−2

t=1 t−2S2
t . This relationship is captured in Section 4. P[P] is given

by a term BASE, common to all paths, and an expression FIT, defined in (4.3) and (4.5). FIT,
in turn, will be approximated by exp [ − λL], λ given by (4.2). P[BINGO (n, n)] is then given
by the number of paths times BASE times the expected value of FIT. The expectation of FIT,
critically, is approximated by the Laplace transform E[ exp [ − λL]]. An approximation for
P[BINGO (n, n)] thus provides tight estimates of the Laplace transform of L, which in turn
governs the lower-tail large deviations of L, given by Theorem 1.1 below.

We return to a more formal presentation. Let ξ1, . . . , ξn = ±1, uniformly and indepen-
dently, and set St :=∑t

i=1 ξi. That is, St is the position of the simple symmetric random walk
at time t. (Note that we are not conditioning on

∑
ξi = 0.) We set

L = Ln :=
n∑

i=1

S2
i

i2
. (1.3)

As E[S2
i ] = i,

E[Ln] =
n∑

i=1

i−1 = ln n + O(1),

and, as will be seen later, Ln is typically about ln n.
Our concern is with the lower tail of the distribution of Ln, and we prove the following. (See

Theorem 8.4 for a corresponding result for the upper tail.)

Theorem 1.1. For any fixed c ∈ (0, 1),

P[Ln ≤ c ln n] = e−(K(c)+o(1)) ln n
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with

K(c) = (1 − c)2

8c
. (1.4)

The connection between the urn process and the random walk statistic L, alluded to above,
provided the original motivation for our investigations. In pursuing these investigations we
have found Ln to have quite subtle properties.

In studying Ln it is helpful to parametrize Si =
√

iNi; the Ni are asymptotically (in i) standard
Gaussian and L =∑N2

i /i. The harmonic series suggests a logarithmic scaling, t = ln i. Note
that under this scaling we have strong correlation when t, t′ are close, which fades as the
distance increases. That is, Si, Siλ are closely correlated when λ is close to one and have
positive asymptotic correlation for any fixed λ, but that correlation approaches zero as λ

approaches infinity.
We give two very different arguments for Theorem 1.1. In Sections 4–6 we employ the

Markov process (Xn, Yn) and the continuous-time argument for it in Section 2 to derive the
Laplace transform of L, and from that deduce the large deviation Theorem 1.1. In Sections 7–8
we provide a more traditional proof, which turns out to be quite challenging. We couple
the random walk to a standard Brownian motion via the celebrated KMT (Komlós–Major–
Tusnády) coupling, and establish that it suffices to derive the corresponding LDP for a
Brownian analog of L. Subsequently, we derive the LDP by the general theory for quadratic
functionals of Brownian motion.

Theorem 1.1 establishes a rigorous lower-tail LDP for a quadratic functional of the simple
symmetric random walk. Large deviations for non-linear functions of {±1} variables have been
an active research area in recent years. In a breakthrough paper, Chatterjee and Dembo [7]
initiated a systematic study of LDPs of non-linear functionals of {±1} variables. The theory
was subsequently extended by Eldan [11], and has been applied to numerous problems in
probability and combinatorics (see e.g. [3], [4], [12], [13], and [20]). We emphasize that
Theorem 1.1 does not follow using the general theory established in these prior works, and
that our approaches are entirely different. We elaborate more on this in Remark 8.2.

In Section 9 we return to the Markov process (Xk, Yk) defined above, conditioned on the
rare event BINGO (n, n), and examine the typical path from (1, 1) to (n, n). We define �k :=
Xk − Yk, so that

(Xk, Yk) =
(

k + �k

2
,

k − �k

2

)
, k ≥ 2, (1.5)

and define, for completeness, �0 = �1 := 0. (For typographical reasons, we sometimes write
�(k).) Note that the event BINGO (n, n) can be written �2n = 0. We provide a functional limit
law which shows that conditioned on BINGO (n, n), �k is typically of order

√
n for 2 < k < 2n,

and that suitably rescaled, (�k)2n
k=2 converges to a distorted Brownian bridge.

Theorem 1.2. Let Gα(t), t ∈ [0, 1], be the continuous Gaussian process with mean 0 and
covariance function

Cov(Gα(s), Gα(t)) = 2

2α − 1
sα(t1−α − tα), 0 ≤ s ≤ t ≤ 1. (1.6)

Then, as n → ∞, conditioned on BINGO (n, n) (i.e. �2n = 0),

n−1/2�
2nt�
d−→Gα(t), t ∈ [0, 1], (1.7)

in D[0, 1] with the Skorokhod topology.
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Gα(t) can be constructed from a standard Brownian bridge Br(t) as

Gα(t) := (α − 1/2)−1/2t1−αBr(t2α−1), (1.8)

with Gα(0) := 0. Related constructions from a Brownian motion are given in (9.16)–(9.17).
We give also a version of this theorem for k = o(n). Now a Brownian motion B(t) appears

instead of a Brownian bridge.

Theorem 1.3. Let mn → ∞ be real numbers with mn = o(n). Then, as n → ∞, conditioned on
BINGO (n, n) (i.e. �2n = 0),

mn
−1/2�
mnt�

d−→Hα(t) := (2α − 1)−1/2t1−αB(t2α−1), t ∈ [0, ∞), (1.9)

in D[0, ∞) with the Skorokhod topology.

In particular, taking mn integers and t = 1, it follows that for any integers m = mn → ∞ with
m = o(n), conditioned on BINGO (n, n),

m−1/2�m
d−→N

(
0,

1

2α − 1

)
.

For m < n with m = �(n), we obtain from Theorem 1.2 a similar result with a correction factor
for the variance. Thus, �m is typically of order

√
m for m < n.

Under a suitable logarithmic scaling, we have in the limit a stationary Ornstein–Uhlenbeck
process, defined by (1.11) below.

Theorem 1.4. Fix any sequence tn such that tn → ∞ and log n − log tn → ∞. Then we have,
as n → ∞, conditional on BINGO (n, n),

e−(s+tn)/2�(
es+tn�)
d−→Z(s), −∞ < s < ∞, (1.10)

in D( − ∞, ∞) with the Skorokhod topology, where Z(s) is a centered Gaussian process with
covariance function

E[Z(s)Z(t)] = 1

2α − 1
e−(α−1/2)|s−t|, s, t ∈R. (1.11)

Remark 1.1. As said above, we consider in this paper only α > 1, which is necessary
for Theorem 2.1, for example. However, it would also be interesting to study α ∈ [0, 1],
when (Xk, Yk) behaves quite differently. Note that α = 0 yields �k as a simple symmetric
random walk, and then it is well known that (1.7) holds with G0(t) := √

2Br(t) (see e.g. [5,
Theorem 24.1]). (The factor

√
2 is because of our choice of normalization.) Furthermore, for

α = 1, when, as mentioned above, (Xk, Yk) is the classical Pólya urn, it is well known that the
increments are exchangeable, and thus, conditioned on BINGO (n, n), all paths to (n, n) have
the same probability. This can be seen from (4.5)–(4.7) below, noting that for α = 0 or α = 1,
FITi in (4.3) is constant 1. Thus, conditioned on BINGO (n, n), α = 1 and α = 0 coincide,
and therefore (1.7) holds for α = 1 too, with G1(t) = G0(t) = √

2Br(t). Note further that this
agrees with (1.6). However, for (1.8), it holds for α = 1 but not for α = 0. Similarly, (1.9) and
(1.10)–(1.11) hold for α = 1, with H1(t) = B(t). It would be interesting to find an analog of
Theorem 1.2 for 0 < α < 1.
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2. Continuous time

In this section we examine the Markov chain defined in Section 1 (1.1)–(1.2) with initial state
(1, 1).

Definition 2.1. BINGO (i, j) denotes the event that state (i, j) is reached.

In this section, we study asymptotic probabilities of various BINGO events. These
probabilities will turn out to be extremely crucial in our proof of Theorem 1.1 in Sections 4, 5,
and 6.

This preferential attachment model is best tackled (see Remark 2.1) via continuous time.
Let Vi, Wi, i ≥ 1, denote exponential distributions with rate parameter iα . That is, Vi, Wi

have probability density function λ e−λx with λ = iα . The Vi, Wi are all chosen mutually
independently. Begin the urn model, as before, with each urn having one ball. Begin time
at zero. When an urn has i balls it waits time Vi until it receives its next ball. The forgetfulness
property of the exponential distribution (plus a little calculus) gives that when the bins have
i, j balls, respectively, the probability that Vi < Wj is iα/(iα + jα) as desired. This leads to a
remarkable theorem ([8], but see Remark 2.1) with what is surely a Proof from The Book.

Theorem 2.1. With probability 1, one of the bins gets all but a finite number of the balls.

Proof. Let V =∑∞
i=1 Vi, W =∑∞

i=1 Wi. As
∑

i−α is finite (here using that α > 1), both V
and W are finite a.s. (almost surely). As the distribution is non-atomic, V �= W a.s. Say V < W.
Then bin one receives all its balls before bin two does. When bin one has all its balls the process
stops (a countable number of balls have been placed) and bin two has only a finite number of
balls. �

Corollary 2.1.

lim
M→∞ lim

k→∞

k−M∑
i=M

P[BINGO (i, k − i)] = 0. (2.1)

Proof. For M fixed let FENCE (k) denote the union of the BINGO (i, k − i) over M ≤ i ≤
k − M; this is the event that at the time when there are k balls in the urns, there are at least M
balls in each urn. As these BINGO (i, k − i) are disjoint (a path can only hit one state with a
given sum of coefficients), Pr [FENCE (k)] is given by the sum in (2.1). Further, FENCE (k)
implies FENCE (k′) for all k′ ≥ k, as once a path hits the fence at k it cannot escape the fence
at k′. Thus the union of all FENCE (k) has probability limk→∞ of the sum. But the union is the
event that both bins eventually get at least M balls. From Theorem 2.1, this has limiting value
(in M) of zero. �

Remark 2.1. The use of continuous time appears to be due to Herman Rubin, as attributed by
Burgess Davis in [8]. A thorough study of preferential attachment (in a far more general setting)
via continuous time was given in the PhD thesis of Roberto Oliveira. Many of the results
of Oliveira’s thesis are given in [22]. Theorem 2.1 and Corollary 2.1 provided the original
motivation for our current research. The senior author (JS) searched for a combinatorial proof,
appropriately counting paths with their respective probabilities, for Corollary 2.1. This in turn
led to attempts to estimate BINGO (i, j) without using continuous time. Somewhat surprisingly,
one result is in the opposite direction. The estimates on BINGO (i, j) given by continuous time
have given a fairly roundabout argument for the large deviation results for the random variable
L given by Theorem 1.1.
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Continuous time gives us excellent asymptotics on BINGO. We first provide the bridge
between continuous time and BINGO.

Theorem 2.2. Set

� :=
i−1∑
s=1

Vi −
j−1∑
t=1

Wj.

Then BINGO (i, j) occurs if and only if either 0 ≤ � < Wj or 0 ≤ −� < Vi.

Proof. � is the time difference between when urn one receives its ith ball and urn two
receives its jth ball. Suppose � ≤ 0. At time T =∑i−1

s=1 Vi, urn one receives its ith ball. Urn two
will receive its jth ball at time T − �. BINGO (i, j) occurs when urn one has not yet received
its (i + 1)th ball, which it does at time T + Vi. This occurs if and only if Vi > −�. The case
� ≥ 0 is similar. �
Theorem 2.3. There is a positive constant β, dependent only on α, so that when i, j→∞

P[BINGO (i, j)] ∼ β[i−α + j−α].

In particular,
P[BINGO (n, n)] ∼ 2βn−α . (2.2)

Remark 2.2. Set �† :=∑∞
i=1 (Vi − Wi). Basically � is estimated by �† and β is the probabil-

ity density function of �† at 0. Wj is almost always o(1) (as j→∞) so that 0 ≤ � < Wj should
occur with asymptotic probability βE[Wj] = βj−α . However, the validity of the approximation
is non-trivial and has forced our somewhat technical calculations.

Proof of Theorem 2.3. We analyze P[0 ≤ � < Wj] as i, j → ∞. The analysis of the other
term is similar, and is thus omitted. Note that � = �ij is the sum of independent random
variables, each with a density with respect to Lebesgue measure. Thus �ij has a probability
density function, which we denote as fij.

We will use characteristic functions to study the density fij. We set φij(t) =E[ exp (it�ij)].
Upon direct computation, we have

φij(t) =
i−1∏
k=1

kα

kα − it

j−1∏
k=1

kα

kα + it
.

Using the Fourier inversion theorem, the density may be related to the characteristic
function. Thus, provided i + j ≥ 4, φij(t) is integrable with respect to Lebesgue measure and
then

fij(x) = 1

2π

∫ ∞

−∞
e−itxφij(t) dt = 1

π

∫ ∞

0
cos (tx)φij(t) dt.

In particular,

fij(0) = 1

2π

∫ ∞

−∞
φij(t) dt.

Further, note that for each t ∈R as i, j → ∞,

φij(t) →
∞∏

k=1

k2α

k2α + t2
,
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and thus by dominated convergence,

fij(x) → 1

2π

∫ ∞

−∞
cos (tx)

∞∏
k=1

k2α

k2α + t2
dt =: f∞(x).

This establishes the pointwise convergence of the density. Moreover, the same argument
shows that for any convergent sequence xij → x, fij(xij) → f∞(x). In particular, we define β :=
f∞(0). We have, since Wj is independent of �ij, and has the same distribution as j−αW1,

P[0 ≤ �ij < Wj] =E

[ ∫ Wj

0
fij(z) dz

]
=E

[
j−α

∫ W1

0
fij( j−αz) dz

]
and hence, by dominated convergence,

jαP[0 ≤ �ij < Wj] →E

[ ∫ W1

0
f∞(0) dz

]
= f∞(0)

as i, j → ∞. This establishes the required asymptotics of P[0 ≤ �ij < Wj]. �

3. More continuous time

We generalize BINGO to allow for arbitrary initial states. These results will be used
crucially to establish finite-dimensional convergence in Section 9.

Definition 3.1. BINGO (a, b; c, d) denotes the event that the Markov chain (Xk, Yk) given by
(1.1)–(1.2) with initial state (a, b) reaches state (c, d).

As before, let Vi, Wj be exponentials at rate iα, jα but now restrict to i ≥ a, j ≥ b. Again we
have a bridge.

Theorem 3.1. Let a ≤ c and b ≤ d, and set

� :=
c−1∑
i=a

Vi −
d−1∑
j=b

Wj.

BINGO (a, b; c, d) occurs if and only if either 0 ≤ −� < Vc or 0 ≤ � < Wd.

Proof. The same as for Theorem 2.2. �

Continuous time gives the asymptotics of BINGO for a wide variety of the parameters. We
derive accurate estimates for various BINGO events, which will be used in our subsequent
discussions.

We begin with the simplest case, starting and ending on the diagonal. (See (2.2), when
starting at (1, 1).)

Theorem 3.2. For any sequence A = A(n) → ∞ with A(n) = o(n), as n → ∞,

P[BINGO (A, A; n, n)] ∼
(

2α − 1

π

)1/2

A(2α−1)/2n−α . (3.1)
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In the proof of Theorem 1.1, we will use only the weaker

Pr [BINGO (A, A; n, n)] = n−α+o(1), A = no(1). (3.2)

Before proving Theorem 3.2 we state a generalization, where we allow initial and final
points that are off the diagonal (but not too far away; we consider only what will turn out to
be the typical cases: see Theorems 1.2 and 1.3). Also, for later use in Section 9, we allow
A = �(n) as long as n − A = �(n) (and in this connection we change the notation from n to B).

Theorem 3.3. Fix M > 0, and θ > 1. Then, uniformly for all A, B, �, 
 ∈ 1
2Z with A ± � ∈Z,

B ± 
 ∈Z such that A > 0, B ≥ θA, |�| ≤ M
√

A, and |
| ≤ M
√

B,

P[BINGO (A + �, A − �; B + 
, B − 
)]

= (1 + oA(1))

√
2α − 1

π

Aα−1/2

Bα
√

1 − (A/B)2α−1

× exp

(
− 2α − 1

1 − (A/B)2α−1

(
�

A1/2
− 


BαA1/2−α

)2)
, (3.3)

where oA(1) is a quantity that tends to 0 as A → ∞, uniformly in the other variables; that is,
|oA(1)| ≤ ε(A) for some function ε(A) → 0 as A → ∞.

Remark 3.1. The right-hand side of (3.3), omitting the oA term, is the density function at 


for a normal distribution N(μ, σ 2) with parameters

μ = (B/A)α�,

σ 2 = A1−2αB2α(1 − (A/B)2α−1)

2(2α − 1)
.

The two main cases of interest to us are A � B = n, as in Theorem 3.2, and B/A constant
(at least up to rounding errors). For convenience, we state immediate corollaries covering these
cases.

Corollary 3.1. Suppose A = A(n) → ∞ with A = o(n). Then, for all � = �(n) and 
 = 
(n)
with � = O(

√
A) and 
 = O(

√
n),

P[BINGO (A + �, A − �; n + 
, n − 
)] ∼
√

2α − 1

π

Aα−1/2

nα
exp

(
−(2α − 1)

�2

A

)
.

In Section 5 we use only the rougher asymptotics, extending (3.2):

Pr [BINGO (A + �, A − �; n + 
, n − 
)] = n−α+o(1), A = no(1). (3.4)

Corollary 3.2. Suppose A = A(n) and B = B(n) with A → ∞ and B/A → θ > 1 as n → ∞.
Then, for all � = �(n) and 
 = 
(n) with � = O(

√
A) and 
 = O(

√
B),

P[BINGO (A + �, A − �; B + 
, B − 
)]

∼
√

2α − 1

π

Aα−1/2

Bα
√

1 − θ1−2α
exp

(
− (2α − 1)

(1 − θ1−2α)A
(� − θ−α
)

2
)

.
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The proofs of Theorems 3.2 and 3.3 are similar to the proof of Theorem 2.3. We begin with
a proof of the simpler Theorem 3.2, to show the main features of the proof. We then show the
modifications needed for the more general Theorem 3.3.

Remark 3.2. Theorem 3.2 is basically a local CLT for �; see Remark 2.2. Set

�n :=
n−1∑
k=A

(Vk − Wk).

Then �n is asymptotically Gaussian with mean μ = 0 and variance

σ 2
n := Var[�n] = 2

n−1∑
k=A

k−2α ∼ 2

2α − 1
A1−2α . (3.5)

Approximating �n by this Gaussian, its probability density function at zero is asymptotically

(2π )−1/2σ−1 = ((2α − 1)/4π )1/2A(2α−1)/2.

The probability that 0 ≤ −�n < Vn is then ∼E[Vn] = n−α times this, and P[BINGO ] is twice
that.

Note that in Corollary 3.1, the probability has an extra factor of exp [ − (2α − 1)(�/
√

A)2]
over the basic λ = 0 case of Theorem 3.2. Roughly, while � is still asymptotically Gaussian,
the mean has moved ∼ 2�A−α from zero.

As before, the validity of the approximations is non-trivial and has forced our somewhat
technical calculations.

Proof of Theorem 3.2. We assume A ≤ n − 1 and define, as in Remark 3.2,

�n :=
n−1∑
k=A

(Vk − Wk).

We note that �n is centered with variance σ 2
n given by (3.5), and, by the same argument as in

the proof of Theorem 2.3, it has a probability density function, which we denote as fn.
We set the characteristic function φn(t) :=E[ exp (it �n)] and note that, by direct computa-

tion,

φn(t) =
n−1∏
k=A

k2α

k2α + t2
. (3.6)

As in our earlier analysis, we use the Fourier inversion formula to conclude that

fn(x) = 1

2π

∫ ∞

−∞
e−itxφn(t) dt. (3.7)

This again implies that fn(x) ≤ fn(0). Note that (3.7) implies

σnfn(0) = σn

π

∫ ∞

0
φn(t) dt.

Using the change of variables v = σnt, we have, by (3.6),

σnfn(0) = 1

π

∫ ∞

0
φn

(
v

σn

)
dv = 1

π

∫ ∞

0

n−1∏
k=A

k2α

k2α + v2/σ 2
n

dv. (3.8)
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We use the dominated convergence theorem, and begin by noting that for k ≥ A, we have,
using (3.5) and letting C and c denote unspecified positive constants,

k−2α v2

σ 2
n

≤ A−2α v2

σ 2
n

= O(v2/A). (3.9)

In particular, for any fixed real v, recalling again (3.6) and (3.5),

ln φn

(
v

σn

)
= −

n−1∑
k=A

ln

(
1 + v2/σ 2

n

k2α

)
∼ −

n−1∑
k=A

v2/σ 2
n

k2α
= −v2

2
(3.10)

and thus

φn

(
v

σn

)
→ e−v2/2. (3.11)

Furthermore, if |v| ≤ √
A, then (3.9) shows k−2αv2/σ 2

n = O(1) and thus, for some c > 0, ln (1 +
k−2αv2/σ 2

n ) ≥ ck−2αv2/σ 2
n and, similarly to (3.10), ln φn(v/σn) ≤ −c(v2/2) and thus

φn

(
v

σn

)
≤ e−cv2/2, |v| ≤ √

A. (3.12)

If |v| > √
A, we instead have, when k ≤ 2A, using again (3.5),

k2α

k2α + v2/σ 2
n

≤ (2A)2α

(2A)2α + A/σ 2
n

≤ 22α

22α + c1
= c2 < 1.

Thus, crudely, by (3.6) and (3.5), for large enough n and |v| > √
A,

φn

(
v

σn

)
≤

2A∏
A

k2α

k2α + v2/σ 2
n

≤ A2α

A2α + v2/σ 2
n

2A∏
A+1

c2 ≤ A2ασ 2
n

v2
cA

2 . (3.13)

For convenience, we combine (3.12) and (3.13) into the (far from sharp) estimate, valid for
large n and all v,

φn

(
v

σn

)
= O

(
1

1 + v2

)
. (3.14)

Consequently, dominated convergence yields, using (3.8), (3.11), and (3.14),

σnfn(0) = 1

π

∫ ∞

0
φn

(
v

σn

)
dv → 1

π

∫ ∞

0
e−v2/2 dv = 1√

2π
. (3.15)

Moreover, for any sequence xn = o(σn), we obtain in the same way from (3.7)

σnfn(xn) = 1

2π

∫ ∞

−∞
e−ivxn/σnφn

(
v

σn

)
dv → 1

2π

∫ ∞

−∞
e−v2/2 dv = 1√

2π
. (3.16)

We again use the fact that Wj has the same distribution as j−αW1, and obtain

P[0 ≤ �n < Wn] =E

∫ Wn

0
fn(x) dx = n−α

E

∫ W1

0
fn

(
y

nα

)
dy. (3.17)
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Recall also that fn(x) ≤ fn(0) for every x, and thus (3.15) implies that σnfn(x) is uniformly
bounded for all n and x.

Since, for every fixed y, y/nα = o(σn) by (3.5), we can use (3.16) and dominated
convergence (twice) in (3.17) and obtain

nασnP[0 ≤ �n < Wn] =E

∫ W1

0
σnfn

(
y

nα

)
dy →E

[
W1√
2π

]
= 1√

2π
. (3.18)

Thus,

P[0 ≤ �n < Wn] ∼ 1√
2π

σ−1
n n−α =

(
2α − 1

4π

)1/2

A(2α−1)/2n−α . (3.19)

The probability P[0 ≤ −�n < Vn] is the same, and (3.1) follows. �

Proof of Theorem 3.3. The proof is similar to that of Theorem 3.2 and thus we detail only
the novelties and omit some parts which are similar to the earlier proof.

Let p(A, B, �, 
) denote the left-hand side of (3.3), and let q(A, B, �, 
) denote the right-
hand side without the factor 1 + oA(1). First, note that if the asserted uniform estimate does
not hold, then there exist ε > 0 and A = A(n) → ∞, B = B(n), � = �(n), and 
 = 
(n) that
satisfy the conditions such that |p(A, B, �, 
)/q(A, B, �, 
) − 1| > ε for every n. By selecting
a subsequence, we may furthermore assume that

A/B → ζ, �/
√

A → λ, 
/
√

B → γ, (3.20)

for some ζ ∈ [0, 1) and λ, γ ∈R. Hence, to obtain the desired contradiction, it suffices to
prove that p(A, B, �, 
) ∼ q(A, B, �, 
) under the extra assumption (3.20). (This assumption
is convenient below, but not essential.)

We assume (3.20) and define

�n =
B+
−1∑
k=A+�

Vk −
B−
−1∑
k=A−�

Wk.

From Theorem 3.1, BINGO (A + �, A − �; B + 
, B − 
) occurs if either {0 ≤ −�n <

VB+
} or if {0 ≤ �n < WB−
}. We analyze P[0 ≤ �n < WB−
].
We first compute the variance of �n and observe that, using (3.20),

σ 2
n := Var(�n)

=
B+
−1∑
k=A+�

VarVk +
B−
−1∑
k=A−�

VarWk

=
B+
−1∑
k=A+�

k−2α +
B−
−1∑
k=A−�

k−2α

∼ 2

2α − 1
(A−(2α−1) − B−(2α−1))

∼ 2

2α − 1
A−(2α−1)(1 − ζ 2α−1). (3.21)
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We continue with the characteristic function

φn(t) :=E[eit�n] =
B+
−1∏
k=A+�

kα

kα − it

B−
−1∏
k=A−�

kα

kα + it
.

This is no longer real, but we can still estimate its absolute value as in (3.12) and (3.13), with
minor modifications, and obtain (3.14). Furthermore,

ln φn(t) = −
B+
−1∑
k=A+�

ln

(
1 − it

kα

)
−

B−
−1∑
k=A−�

ln

(
1 + it

kα

)
.

We consider t = v/σn for a fixed real v, and obtain by Taylor expansions, recalling (3.9) (with
a trivial modification), (3.21) and (3.20),

ln φn

(
v

σn

)
=
( B+
−1∑

k=A+�

−
B−
−1∑
k=A−�

)
iv/σn

kα
−
( B+
−1∑

k=A+�

+
B−
−1∑
k=A−�

)
v2/σ 2

n

2k2α
(1 + o(1))

= −2�
iv/σn

Aα
+ 2


iv/σn

Bα
− v2

2
+ o(1)

→
√

2(2α − 1)

1 − ζ 2α−1
(−λ + ζ α−1/2γ )v i − v2

2
. (3.22)

It follows by Fourier inversion and dominated convergence, using (3.22) and (3.14), that, for
any sequence xn = o(σn), with c1 :=√2(2α − 1)/(1 − ζ 2α−1),

σnfn(xn) = σn

2π

∫ ∞

−∞
e−ixntφn(t) dt

= 1

2π

∫ ∞

−∞
e−ivxn/σnφn

(
v

σn

)
dv

→ 1

2π

∫ ∞

−∞
e−c1(λ−ζα−1/2γ )v i−v2/2 dv

= 1√
2π

e−c2
1(λ−ζα−1/2γ )2/2. (3.23)

Furthermore, using (3.14) again, we have the uniform bound, for all real x,

σnfn(x) ≤ 1

2π

∫ ∞

−∞

∣∣∣∣φn

(
v

σn

)∣∣∣∣ dv ≤ 1

2π

∫ ∞

−∞
C

1 + v2
dv ≤ C.

We complete the proof as in (3.17)–(3.19), now obtaining

P[0 ≤ �n < WB−
] ∼ 1√
2π

σ−1
n B−α e−c2

1(λ−ζα−1/2γ )2/2.

P[0 < −�n < VB+
] is similar, and thus

p(A, B, �, 
) ∼ 2√
2π

σ−1
n B−α e−c2

1(λ−ζα−1/2γ )2/2.

If we use (3.20) in (3.3), a simple calculation shows that the same asymptotics hold for
q(A, B, �, 
), and thus p(A, B, �, 
) ∼ q(A, B, �, 
). As explained at the beginning of the
proof, this implies the theorem. �
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We end this section with two less precise estimates that are useful because they do not
require the condition B ≥ θA in Theorem 3.3.

Lemma 3.1. Suppose that 0 < A < B, and that �, 
 ≥ 0 with � < A, B − 
 ≥ A, and 
/B ≤
1
8�/A. Then, for some constant c > 0 depending on α only,

P

[⋃
�≤


BINGO (A + �, A − �; B + �, B − �)

]
≤ e−c�2/A. (3.24)

Proof. Denote the event on the left-hand side of (3.24) by E . We may assume B + 
 ≥
A + �, since otherwise E is empty. By an argument similar to the proof of Theorem 2.2, the
event E occurs if and only if

B+
∑
i=A+�

Vi ≥
B−
−1∑
j=A−�

Wj.

Note that this event is monotonically decreasing in �; hence it suffices to prove (3.24) for
� ≤ A/2 (and 
/B ≤ 1

4�/A), since we may otherwise decrease � to A/2 (changing c); we
make these assumptions.

By Markov’s inequality and independence, for every t ≥ 0,

Pr [E] = P

[ B+
∑
i=A+�

Vi −
B−
−1∑
j=A−�

Wj ≥ 0

]
≤E et

∑B+

i=A+� Vi−t

∑B−
−1
j=A−� Wj

=
B+
∏

i=A+�

E etVi

B−
−1∏
j=A−�

E e−tWj . (3.25)

Furthermore, when −∞ < t < iα ,

E etVi =E etWi = 1

1 − ti−α
.

Consequently, (3.25) implies, for 0 ≤ t ≤ 1
2 A−α and some constant C ≥ 1 (depending on α),

using the convexity of j �→ j−α in the fourth inequality,

ln Pr [E] ≤ −
B+
∑

i=A+�

ln (1 − ti−α) −
B−
−1∑
j=A−�

ln (1 + tj−α)

≤
B+
∑

i=A+�

(ti−α + t2i−2α) −
B−
−1∑
j=A−�

(tj−α − t2j−2α)

≤ −
A+�−1∑
j=A−�

tj−α +
B+
∑

i=B−


ti−α + 2
∞∑

i=A−�

t2i−2α

≤ −2�tA−α + (2
 + 1)t(B − 
)−α + Ct2A1−2α

≤ −t�A−α + Ct2A1−2α, (3.26)

where the last inequality follows because the assumptions imply (2
 + 1)/(B − 
) ≤ �/A.
Now choose t := (2C)−1�Aα−1; then (3.26) yields (3.24), with c = 1/4C. �
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Lemma 3.2. For any A < n and � with |�| ≤ A − 1, for some universal constants C, C′,

P[BINGO (A + �, A − �; n, n)] ≤ C√
n − A

e−�2/(n−A) ≤ C′

�
e−�2/2(n−A). (3.27)

Proof. Consider the Markov chain (Xk, Yk)∞2A, started at (X2A, Y2A) = (A + �, A − �). We
couple the chain with a simple random walk (X∗

k , Y∗
k )∞2A, also started at (A + �, A − �), such

that, for every k ≥ 2A,
|Xk − Yk| ≥ |X∗

k − Y∗
k |. (3.28)

This can be achieved as follows. If strict inequality holds in (3.28), so |Xk − Yk| ≥ |X∗
k − Y∗

k | +
2 since both sides have the same parity, we may couple the next steps for the two chains
arbitrarily. The same holds if |Xk − Yk| = |X∗

k − Y∗
k | = 0. Finally, if |Xk − Yk| = |X∗

k − Y∗
k | >

0, we have to couple such that if |X∗
k+1 − Y∗

k+1| = |X∗
k − Y∗

k | + 1, then |Xk+1 − Yk+1| = |Xk −
Yk| + 1; this is always possible, since the first event has probability 1/2, and the second has
probability max{Xα

k , Yα
k }/(Xα

k + Yα
k ) > 1/2.

Using this coupling, (3.28) shows |X2n − Y2n| ≥ |X∗
2n − Y∗

2n|, and thus

P[BINGO (A + �, A − �; n, n)] = P[X2n = Y2n = n]

≤ P[X∗
2n = Y∗

2n]

= P[Bin(2n − 2A, 1/2) = n − A − �]

= 2−(2n−2A)
(

2n − 2A

n − A − �

)
,

and (3.27) follows by standard calculations using Stirling’s formula. �

4. A basic case

Here we prove a modified version of Theorem 1.1. Initially ξ1, . . . , ξ2n−2 = ±1 are uniform
and independent. We set

A = 
ln10 n�. (4.1)

We shall be splitting the walk into an initial part, until time 2A − 2, and the main part, in the
time interval 2A − 2 ≤ i ≤ 2n − 2. See Remark 4.1 for further comments.

We condition on S2A−2 = 0 and S2n−2 = 0. We may and shall consider the Si in two regimes.
For 0 ≤ i ≤ 2A − 2 the Si form a random excursion, beginning (i = 0) and ending (i = 2A − 2)
at zero. For 2A − 2 ≤ i ≤ 2n − 2 the Si form a random excursion beginning (i = 2A − 2) and
ending (i = 2n − 2) at zero. We note, importantly, that the two sides of the walk are mutually
independent excursions. Let COND denote this condition. The function L = L2n−2 splits
naturally into two parts:

Linit =
2A−2∑
i=1

S2
i

i2
,

Lmain =
2n−2∑

i=2A−1

S2
i

i2
.

Theorem 4.1. Under COND, for c ∈ (0, 1),

P[Lmain ≤ c ln n | COND] = e−(K(c)+o(1)) ln n
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with (as in Theorem 1.1)

K(c) = (1 − c)2

8c
.

Remark 4.1. There is considerable flexibility in the choice of the breakpoint A. The basic
object is to protect against rare events. Our basic argument will break down when, say, |Si| ≥
0.01i. This occurs with probability exponentially small in i. However, Theorem 1.1 deals with
polynomially small (in n) probabilities. Thus a priori, for small i, the probability of this rare
event is not automatically negligible on the scale of interest. Restricting to i ≥ A, exponentially
small probabilities in i are less than polynomially small in n, and hence negligible. The split at
A should be considered an artifact of the proof and it is quite possible that an argument exists
that does not use this artificial split. Both the restriction to i ≥ A and the restriction to a random
excursion will be removed later.

We shall actually find the asymptotics of the Laplace transform of Lmain. For notational
convenience, given α > 1 we define

λ = α(α − 1)

2
. (4.2)

Theorem 4.2. For any α > 1,

E[e−λLmain | COND] = n−(α−1)/2+o(1).

As α ranges over (1, ∞), t := −λ ranges over the negative reals. Theorem 4.2 then gives
the asymptotics of the Laplace transform of Lmain | COND: letting L̂n be Lmain | COND for a
particular value of n,

lim
n→∞

1

ln n
ln E etL̂n = �(t) := −(α − 1)/2, t < 0.

Then (as done in more detail in Section 8.3), the Legendre transform of �(t) is, by a simple
calculation,

�∗(x) = K(x),

and the Gärtner–Ellis theorem [9, Theorem 2.3.6] yields the asymptotics of P[L̂n ≤ c ln n] of
Theorem 4.1.

Remark 4.2. The main contribution to E[e−λLmain | COND] comes when Lmain ≈ c ln n with
c = (2α − 1)−1, i.e. α = (c + 1)/(2c).

Now we study P[BINGO (A, A; n, n)] as the sum of the probabilities of all paths P from
(A, A) to (n, n). Let P2A = (A, A), . . . , P2n = (n, n) denote the points of path P, Pi having sum
of coordinates i, 2A ≤ i ≤ 2n. Let Pi = (xi, yi). Critically, we parametrize, as in (1.5),

xi = i + δi

2
so that yi = i − δi

2
.

Here δi reflects the ‘distance’ of the path from the main diagonal. By Pr (P) we mean the
probability of following precisely the path P. The P(P) vary in an interesting way. The
numerators multiply out the same with factors iα for A ≤ i < n and jα for A ≤ j < n. The
denominator factor xα

i + yα
i is minimal when xi = yi = i/2. We define

FITi = 2(i/2)α

xα
i + yα

i
. (4.3)
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Then FITi = f (ε), where ε = δi/i and

f (ε) = 2

(1 + ε)α + (1 − ε)α
≤ 1.

We shall make critical use of the asymptotics

ln ( f (ε)) ∼ −λε2 as ε→0. (4.4)

Set

FIT = FIT (P) =
2n−1∏
i=2A

FITi . (4.5)

Each FITi ≤ 1 and hence FIT ≤ 1. A low FIT tells us that the path P is relatively unlikely.
Roughly, paths P which stay close to the main diagonal will have a high FIT, meaning they
will be more likely than those that stray far from the main diagonal. We now split

P[P] = BASE · FIT . (4.6)

Here BASE is what P would be if the terms xα
i + yα

i were replaced with 2(i/2)α and FIT is the
additional factor with the actual xi, yi, 2A ≤ i < 2n. Then the denominator would be precisely
the product of 2(i/2)α over 2A ≤ i < 2n. That is,

BASE =
∏n−1

i=A iα
∏n−1

j=A jα∏2n−1
i=2A 2(i/2)α

. (4.7)

BINGO (A, A; n, n) is the sum of BASE · FIT (P) over all
(2(n−A)

n−A

)
paths from (A, A) to (n, n).

Summing over all paths P, we rewrite (4.6) with the exact formula

Pr [BINGO (A, A; n, n)] = BASE ·
(

2(n − A)

n − A

)
·E[FIT (P)], (4.8)

where expectation is over a uniformly chosen path from (A, A) to (n, n). Equation (4.8) is
of fundamental importance in our analysis; indeed, this relation connects the study of the
reinforced urn model with the random walk. Stirling’s formula asymptotics give

BASE = n−α/2+o(1)2−2(n−A)

and

Pr [BINGO (A, A; n, n)] = n−(1+α)/2+o(1) ·E[FIT (P)]. (4.9)

Applying (3.2) we deduce

E[FIT (P)] = n(1−α)/2+o(1). (4.10)

Remark 4.3. We had originally hoped to apply (4.9) in reverse. That is, a combinatorial (or
other) argument for the asymptotics of E[FIT (P)] would yield an alternative proof, a non-Book
Proof, for P[BINGO ]. It was surprising that the continuous-time approach led to (4.10), which
is quite difficult to prove directly.
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Now we try to estimate FIT using (4.4). The technical difficulty is that we do not have
ε = δi/i = o(1) tautologically. Call a walk P weird if |Si| > i0.99 for some A ≤ i ≤ n. Otherwise
call P normal. Large deviation results give that the probability P is weird for a particular i is at
most exp [ − i0.98/2]. We only look at i ≥ A. We have selected A so that this probability is sub-
polynomial. As FIT (P) ≤ 1 tautologically, the effect on E[FIT (P)] of weird P is negligible.
Hence in calculating E[FIT (P)] we can restrict ourselves to normal P. Normal P have ε =
|Si|/i < i−0.01 = o(1) uniformly. We apply (4.4), each ln ( FITi ) ∼ −λS2

i i−2 so that ln ( FIT ) ∼
−λLmain. Therefore

E[e−λLmain | COND] = n(1−α)/2+o(1)

as desired, giving Theorem 4.2 and hence Theorem 4.1.
We now extend Theorem 4.1 to L = Linit + Lmain. As Linit ≥ 0,

P[L ≤ c ln n | COND] ≤ Pr [Lmain ≤ c ln n | COND] ≤ e−(K(c)+o(1)) ln n.

Now we show Linit under COND is appropriately negligible. We have ξ1, . . . , ξ2A−2 = ±1
conditioned on their sum being zero. Si = ξ1 + · · · + ξi. A standard second moment calculation
gives the precise value E[S2

i ] = i − i(i − 1)(2A − 3)−1 but we shall only use E[S2
i ] ≤ i. (That is,

the conditioning lowers the variance.) Then, using (4.1),

E[Linit | COND] ≤
2A−2∑
i=1

i

i2
≤ (10 + o(1)) ln ln n.

By Markov’s inequality, with n sufficiently large, Linit ≤ 21 ln ln n with probability at least 0.5.
We have created Linit, Lmain to be independent, so with probability at least 0.5 · e−(K(c)+o(1)) ln n

both Linit ≤ 21 ln ln n and Lmain ≤ c ln n. Hence

P[L ≤ c ln n + 21 ln ln n | COND] ≥ 1

2
e−(K(c)+o(1)) ln n.

The multiplicative factor of 1/2 and the additive factor of 21 ln ln n get absorbed in the
asymptotics, giving

P[L ≤ c ln n | COND] ≥ e−(K(c)+o(1)) ln n.

We have shown the following.

Theorem 4.3. Under COND,

P[L ≤ c ln n | COND] = e−(K(c)+o(1)) ln n.

5. The lower bound

Let |�| ≤ √
A, |
| ≤ √

n. We generalize the Basic Case. Initially ξ1, . . . , ξ2n−2 = ±1 are
uniform and independent. Here we condition on S2A−2 = 2� and S2n−2 = 2
. We may and
shall consider the Si in two regimes. For 0 ≤ i ≤ 2A − 2, the Si form a random excursion,
beginning (i = 0) at 0 and ending (i = 2A − 2) at 2�. For 2A − 2 ≤ i ≤ 2n − 2, the Si form a
random excursion beginning (i = 2A − 2) at 2� and ending (i = 2n − 2) at 2
. As in Section 4,
the two excursions are independent. Let COND (�, 
) denote this condition.

Theorem 5.1. Uniformly in |�| ≤ √
A, |
| ≤ √

n, under COND (�, 
),

P[L ≤ c ln n | COND (�, 
)] = e−(K(c)+o(1)) ln n.
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Proof. This follows the same lines as Theorem 4.3. The critical preferential attachment
Theorem 3.2 and (3.2) are replaced by Corollary 3.1 and (3.4). �

From Theorem 5.1 we derive the lower bound of Theorem 1.1.

Theorem 5.2. For c ∈ (0, 1),

P[L ≤ c ln n] ≥ e−K(c)+o(1)) ln n

with

K(c) = (1 − c)2

8c
.

Proof. We split (sum over |�| ≤ √
A, |
| ≤ √

n)

P[L ≤ c ln n] ≥
∑
�,


P[L ≤ c ln n | COND (�, 
)] Pr [COND (�, 
)].

These conditionings are disjoint. An unrestricted random walk has probability �(1) of
having these ‘reasonable’ values at 2A − 2 and 2n − 2, so the sum of the probabilities of COND
is �(1). From Theorem 5.1 the conditional probabilities of L ≤ c ln n are all bounded from
below. �

6. The upper bound

We employ coupling arguments to give upper bounds on the large deviation of L.

Theorem 6.1. For any � with |�| ≤ A and any z,

P[Lmain ≤ z | COND(�, 0)] ≤ P[Lmain ≤ z | COND(0, 0)]. (6.1)

Proof. We couple paths

P2A = (A + �, A − �), . . . , P2n = (n, n)

with paths

P∗
2A = (A, A), . . . , P∗

2n = (n, n).

Determine the random paths P, P∗ sequentially, starting at 2A. Let t be the first value (if any)
for which, setting Pt = (a, b), either P∗

t = (a, b) or P∗
t = (b, a). In the first case couple Ps = P∗

s
for all t ≤ s ≤ 2n. In the second case couple P∗

s to be Ps with coordinates reversed (i.e. flip
the path on the diagonal) for all t ≤ s ≤ 2n. For any paired P, P∗, |Si| > |S∗

i | for 2A ≤ i < t and
|Si| = |S∗

i | for t ≤ i ≤ 2n. Thus Lmain(P) ≥ Lmain(P∗) and (6.1) follows. �

Corollary 6.1. For any � with |�| ≤ A and any z,

P[L ≤ z | COND(�, 0)] ≤ P[Lmain ≤ z | COND(0, 0)]. (6.2)

Proof. Lmain ≤ L so P[L ≤ z] ≤ P[Lmain ≤ z]. �
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Corollary 6.2. For any z,

P[L ≤ z | P2n = (n, n)] ≤ P[Lmain ≤ z | COND(0, 0)].

Proof. The event P2n = (n, n) is the disjoint union of the events COND(�, 0). Since, from
(6.2), P[L ≤ z] is uniformly bounded conditional under each of the events COND(�, 0), it has
the same bound conditional on their union. �
Theorem 6.2. For any 
 with |
| ≤ n,

P[L ≤ z | P2n = (n + 
, n − 
)] ≤ P[L ≤ z | P2n = (n, n)]. (6.3)

Proof. We reverse time, and consider the random walk starting at P∗
2n = (n + 
, n − 
) and

ending at P∗
2 = (1, 1). That is, at a state (a, b) one moves to either (a − 1, b) or (a, b − 1) with

the probabilities that the random walk from (1, 1) to (a, b) goes through those states. We couple
walks P∗

2n, . . . , P∗
2 with walks P2n, . . . , P2. Let t be the first value (here, highest index value)

so that, with P∗
t = (a, b), either Pt = (a, b) or Pt = (b, a). In the first case we couple P∗

s = Ps

for 2 ≤ s ≤ t and in the second case Ps is P∗
s with coordinates reversed for 2 ≤ s ≤ t. For any

paired paths P∗, P, L(P∗) ≥ L(P) and so the lower-tail inequality (6.3) follows. �
Corollary 6.3. For any 
 with |
| ≤ n,

P[L ≤ z | P2n = (n + 
, n − 
)] ≤ P[Lmain ≤ z | COND(0, 0)].

Proof. Combine Corollary 6.2 and Theorem 6.2. �
Theorem 6.3. Let ξ3, . . . , ξ2n = ±1 independently and uniformly. Let St be the walk with
initial value S2 = 0 and step St = St−1 + ξt. Set L =∑2n

i=2 S2
i /i2. Then

Pr [L ≤ z] ≤ P[Lmain ≤ z | COND(0, 0)].

Proof. The unrestricted walk is the disjoint union of the excursions ending at P2n = (n +

, n − 
). Corollary 6.3 gives the upper bound under any of these conditions, so the upper
bound holds under their union. �

We set z = c ln n. Theorems 6.3 and 4.1 yield the upper bound to Theorem 1.1 and hence,
together with Theorem 5.2, prove Theorem 1.1.

7. Brownian approximations

In this section we introduce a Brownian analog for L, and establish that for the purposes
of establishing Theorem 1.1, it is enough to establish the corresponding statement for the
Brownian analog. To this end, let {Bt : t ≥ 0} be a standard Brownian motion (with B0 = 0).
Thus Bn is a natural approximation of Sn.

Recall L = Ln from (1.3) and define the two natural approximations

L̃ = L̃n =
n∑

i=1

B2
i

i2
, (7.1)

L̂ = L̂n =
∫ n

1

B2
t

t2
dt. (7.2)
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We introduce a cut-off A; A := 
ln10 n� as in (4.1) works in this case as well, except that we
assume that A is an even integer (this is convenient and simplifies the argument in Lemma 7.2
below, but is not essential). Define

L′ = L′
n =

n∑
i=A+1

S2
i

i2
,

L̃′ = L̃′
n =

n∑
i=A+1

B2
i

i2
,

L̂′ = L̂′
n =
∫ n

A

B2
t

t2
dt

and

L′′ = L′′
n =

n∑
i=A+1

(Si − SA)2

i2
, (7.3)

L̃′′ = L̃′′
n =

n∑
i=A+1

(Bi − BA)2

i2
, (7.4)

L̂′′ = L̂′′
n =
∫ n

A

(Bt − BA)2

t2
dt. (7.5)

Note that

ELn =EL′
n =

n∑
i=1

1

i
= ln n + O(1) (7.6)

and

EL′′
n =
∫ n

1

1

t
dt = ln n.

Throughout this discussion, C denotes some unspecified finite constants, changing from one
occurrence to the next (in contrast to c, which is our main parameter). We implicitly assume
that n is large. At least, assume n ≥ 8 throughout, so ln ln n ≥ 1.

Lemmas 7.1–7.4 establish that the random variable Ln and those defined in (7.1)–(7.5) are
equivalent for our purposes.

Lemma 7.1. For any c > 0 and ε > 0, for n large enough,

P(Ln ≤ c ln n) ≥ 1

2
P(L′′

n ≤ (c − ε) ln n), (7.7)

P(̃Ln ≤ c ln n) ≥ 1

2
P(̃L′′

n ≤ (c − ε) ln n), (7.8)

P(̂Ln ≤ c ln n) ≥ 1

2
P(̂L′′

n ≤ (c − ε) ln n). (7.9)

Proof. The proofs of all three parts are identical, up to obvious (notational) changes. Hence
we consider only (7.7).

By Minkowski’s inequality (the triangle inequality in �2),√
L′

n ≤√L′′
n +
( n∑

i=A+1

S2
A

i2

)
1/2 ≤√L′′

n + |SA|√
A
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and thus √
Ln =√L′

n + LA ≤√L′
n +√LA ≤√L′′

n + |SA|√
A

+√LA. (7.10)

Furthermore, ES2
A = A and ELA = O(ln A) = O(ln ln n) by (7.6); hence, by Chebyshev’s and

Markov’s inequalities, for a suitable C,

P

( |SA|√
A

> C

)
≤ 1

4
,

P(LA > C ln ln n) ≤ 1

4
,

and thus

P

( |SA|√
A

+√LA > C
√

ln ln n

)
≤ 1

2
. (7.11)

Since L′′
n is independent of SA and LA, it follows from (7.10) and (7.11) that

P(Ln ≤ c ln n) ≥ P(L′′
n ≤ (c − ε) ln n)P

( |SA|√
A

+√LA ≤ C
√

ln ln n

)
≥ 1

2
P{L′′

n ≤ (c − ε) log n}. �
Obviously, Ln ≥ L′

n, L̃n ≥ L̃′
n and L̂n ≥ L̂′

n. The next lemma says that L′
n is stochastically

larger than L′′
n , and so on.

Lemma 7.2. For any y ≥ 0,

P(Ln ≤ y) ≤ P(L′
n ≤ y) ≤ P(L′′

n ≤ y), (7.12)

P(̃Ln ≤ y) ≤ P(̃L′
n ≤ y) ≤ P(̃L′′

n ≤ y), (7.13)

P(̂Ln ≤ y) ≤ P(̂L′
n ≤ y) ≤ P(̂L′′

n ≤ y). (7.14)

Proof. Consider first (7.12). Define Si := Si − SA for i ≥ A. Then Si, i ≥ A, is a simple
random walk starting at SA = 0.

If we condition (Si)i≥A on SA = x, we obtain a simple random walk starting at x. This has
the same distribution as x + Si, but we shall use a different coupling defined as follows. Recall
that A is chosen to be even, and thus SA is an even integer.

For a given even integer x, define the stopping time τ := inf{k ≥ A : Sk = x/2}, and

S(x)
i :=

{
x − Si A ≤ i ≤ τ,

Si i > τ .

Then S(x)
i is a simple random walk, started at S(x)

A = x, and thus (S(x)
i )∞A has the same distribution

as (x + Si)∞A . Furthermore, it is easily seen that, for all i ≥ A,

|S(x)
i | ≥ |Si|.

(To see this, we may by symmetry assume x ≥ 0. It suffices to consider A ≤ i ≤ τ , and then
Si ≤ x/2, and thus either Si ≤ 0 and S(x)

i = x + |Si|, or 0 < Si ≤ x/2 ≤ S(x)
i .)
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Consequently, for every even integer x and every y ≥ 0,

P(L′′
n ≤ y) = P

( n∑
i=A+1

S
2
i

i2
≤ y

)

≥ P

( n∑
i=A+1

(S(x)
i )

2

i2
≤ y

)

= P

( n∑
i=A+1

S2
i

i2
≤ y

∣∣∣∣ SA = x

)
= P(L′

n ≤ y | SA = x).

Thus, P(L′′
n ≤ y) ≥ P(L′

n ≤ y | SA), and we obtain (7.12) by taking the expectation.
The proofs of (7.13) and (7.14) are the same, with Sn replaced by Bt. �

Lemma 7.3. For every ε > 0, c > 0, and a < ∞,

P(L′′
n ≤ c ln n) ≤ P(̃L′′

n ≤ (c + ε) ln n) + O(n−a), (7.15)

P(̃L′′
n ≤ c ln n) ≤ P(L′′

n ≤ (c + ε) ln n) + O(n−a), (7.16)

P(̃L′′
n ≤ c ln n) ≤ P(̂L′′

n ≤ (c + ε) ln n) + O(n−a), (7.17)

P(̂L′′
n ≤ c ln n) ≤ P(̃L′′

n ≤ (c + ε) ln n) + O(n−a). (7.18)

Proof. By [18], there exists a coupling (the ‘dyadic coupling’) of the simple random walk
(Si)i≥0 and the Brownian motion (Bt)t≥0 such that, with probability 1 − O(n−a), for some
constant Ca,

max
i≤n

|Si − Bi| ≤ Ca ln n (7.19)

(see also [19, Chapter 7]). If (7.19) holds, then |(Si − SA) − (Bi − BA)| ≤ 2Ca ln n for A ≤ i ≤ n,
and thus, by Minkowski’s inequality,

|√L′′
n −
√

L̃′′
n| ≤
( n∑

i=A+1

((Si − SA) − (Bi − BA))2

i2

)1/2

≤ 2Ca
ln n√

A
= o(1).

(7.20)

Hence, (7.15) and (7.16) follow.
In order to prove (7.17)–(7.18), we introduce yet another version of Ln:

Ľ′′ = Ľ′′
n :=
∫ n

A

(B�t� − BA)2

t2
dt =

n∑
i=A+1

(Bi − BA)2

i(i − 1)
.

Then (see (7.4)),

L̃′′
n ≤ Ľ′′

n ≤ A + 1

A
L̃′′

n = (1 + o(1))̃L′′
n . (7.21)
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Moreover, by simple standard properties of Brownian motion,

P

(
sup
t≤n

|B�t� − Bt| > ln n
)

≤ nP
(

sup
0≤t≤1

|B1 − Bt| > ln n
)

≤ nP

(
sup

0≤t≤1
|Bt| > 1

2
ln n

)
≤ 4nP

(
B1 >

1

2
ln n

)
≤ Cn e− ln2 n/8

= O(n−a).

Hence, similarly to (7.20), with probability 1 − O(n−a),

|
√

Ľ′′
n −
√

L̂′′
n| ≤ ln n√

A
= o(1). (7.22)

We obtain (7.17) and (7.18) from (7.21), and (7.22). �

Lemma 7.4. For every ε > 0, c > 0, and a < ∞,

P(Ln ≤ c ln n) ≤ 2P(̂Ln ≤ (c + ε) ln n) + O(n−a), (7.23)

P(̂Ln ≤ c ln n) ≤ 2P(Ln ≤ (c + ε) ln n) + O(n−a). (7.24)

Proof. By (7.12), (7.15), (7.17), and (7.9),

P(Ln ≤ c ln n) ≤ P(L′′
n ≤ c ln n)

≤ P(̃L′′
n ≤ (c + ε) ln n) + O(n−a)

≤ P(̂L′′
n ≤ (c + 2ε) ln n) + O(n−a)

≤ 2P(̂Ln ≤ (c + 3ε) ln n) + O(n−a),

which yields (7.23) after replacing ε with ε/3.
Similarly, (7.14), (7.18), (7.16), and (7.7) yield

P(̂Ln ≤ c ln n) ≤ P(̂L′′
n ≤ c ln n)

≤ P(̃L′′
n ≤ (c + ε) ln n) + O(n−a)

≤ P(L′′
n ≤ (c + 2ε) ln n) + O(n−a)

≤ 2P(Ln ≤ (c + 3ε) ln n) + O(n−a). �

Consequently, it does not matter whether we use Ln or L̂n (or L̃n) in Theorem 1.1: the
different versions are equivalent.

8. Analysis of the Brownian versions

Note from (7.1)–(7.2) that both L̃n and L̂n are quadratic functionals of Gaussian variables.
There is a general theory for such studying large deviation for such variables. This facilitates a
direct analysis of the moment generating function of (7.2).

https://doi.org/10.1017/apr.2019.42 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.42


1090 S. JANSON ET AL.

8.1. Moment generating function of ̂L

We utilize the general theory of Gaussian Hilbert spaces to compute the moment generating
function of L̂n. For the convenience of the reader, we include a brief summary, relevant for this
application, in Appendix A, and refer the interested reader to [16, Chapters VII and VI] for
further details.

By Theorem A.2 and Lemma A.1, for every t < (2 max λj)−1,

E et̂Ln =
∏

j

(1 − 2λjt)
−1/2, (8.1)

where (λj) are the non-zero eigenvalues of the integral operator

Tf (x) :=
∫ n

0

(
1

1 ∨ x ∨ y
− 1

n

)
f (y) dy, (8.2)

acting in L2(0, n). As shown in Appendix A (see Remark A.1), T = Tn is a positive compact
operator, and thus λj > 0; furthermore,

∑
j λj =EL̂n = ln n < ∞.

Suppose that f is an eigenfunction with a non-zero eigenvalue λ. Thus f ∈ L2(0, n) is
not identically 0, and Tf = λf . It follows from (8.2) by dominated convergence that Tf (x)
is continuous in x ∈ [0, n]; thus f = λ−1Tf is continuous on [0, n]. Similarly, f = λ−1Tf is
constant on [0, 1], and f (n) = 0. By (8.2), we have

λf (x) = Tf (x) =
∫ 1∨x

0

(
1

1 ∨ x
− 1

n

)
f (y) dy +

∫ n

1∨x

(
1

y
− 1

n

)
f (y) dy,

and it follows that f is continuously differentiable on (1, n), with

λf ′(x) = (Tf )′(x) = − 1

x2

∫ x

0
f (y) dy, 1 < x < n. (8.3)

Conversely, if f is continuous on [0, n], constant on [0, 1] and satisfies (8.3) on (1, n) with
the boundary condition f (n) = 0, then Tf = λf .

Letting F(x) := ∫ x
0 f (y) dy, we have F′(x) = f (x), and thus (8.3) yields the differential

equation
F′′(x) = −λ−1x−2F(x), 1 < x < n. (8.4)

Furthermore, F(1) = ∫ 1
0 f (x) dx = f (1) = F′(1) and F′(n) = f (n) = 0. Hence, we have the

boundary conditions (with derivatives at the endpoints 1 and n interpreted by continuity)

F′(1) = F(1), (8.5)

F′(n) = 0. (8.6)

Conversely, if F solves (8.4) on (1, n) with the boundary conditions (8.5)–(8.6), then f (x) :=
F′(x ∨ 1) solves (8.3) and λ is an eigenvalue of T .

For a given λ > 0, the differential equation (8.4) has the solutions

F(x) = Axα+ + Bxα− , (8.7)

where α± are the solutions of α(α − 1) = −λ−1, and thus

α± = 1

2
±
√

1

4
− 1

λ
. (8.8)
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If λ = 4, so we have a double root α+ = α− = 1/2, we instead have the solutions

F(x) = Ax1/2 + Bx1/2 ln x. (8.9)

Suppose that λ > 0 with λ �= 4. It is easily verified that the solutions (8.7) that satisfy (8.5)
are multiples of F(x) := α+xα+ − α−xα− . Hence, λ is an eigenvalue of T if and only if this
function satisfies (8.6), that is, if and only if

α2+nα+−1 = α2−nα−−1. (8.10)

Furthermore, this eigenvalue is simple.
Consider first the case 0 < λ < 4. Then (8.8) yields the complex roots α± = 1

2 ± ω i, with
ω = √

1/λ − 1/4 and thus

λ = 1

ω2 + 1/4
= 4

1 + 4ω2
. (8.11)

We rewrite (8.10) as (
1/2 + ω i

1/2 − ω i

)2

e2ω ln n i = 1, (8.12)

or, taking logarithms,
4 Im ln (1 + 2ω i) + 2ω ln n ∈ 2πZ. (8.13)

The left-hand side of (8.13) is a continuous increasing function of ω ∈ [0, ∞), with the value 0
for ω = 0. Hence, for a given n ≥ 2, there is for each integer k ≥ 1 exactly one solution ωk > 0
with

4 Im ln (1 + 2ωk i) + 2ωk ln n = 2πk, (8.14)

and it follows, by (8.11), that the eigenvalues of T in (0, 4) are

λk := 4

4ω2
k + 1

, k = 1, 2, . . . . (8.15)

In fact, these are all the non-zero eigenvalues, since if λ > 4, so α± are real with α+ > α−,
then (8.10) cannot hold, and a similar argument shows that no non-zero F of the form (8.9)
satisfies (8.5)–(8.6). (This also follows from Remark 8.1 below.) Hence, (8.1) shows that, for
every t > −1/8, at least,

E e−t̂Ln =
∞∏

k=1

(1 + 2λkt)−1/2 =
∞∏

k=1

(
1 + 8t

1 + 4ω2
k

)−1/2

. (8.16)

Note that Im ln (1 + 2ωk i) ∈ (0, π/2), and thus (8.14) yields
π

ln n
(k − 1) < ωk <

π

ln n
k. (8.17)

Remark 8.1. The norm of T = Tn is λ1 = 4/(1 + 4ω2
1) = 4 − O(1/ ln2 n) (see (8.15) and

(8.17)). If we replace the lower cut-off 1 in (8.2) with a, which by homogeneity and a change
of variables is equivalent to considering Tn/a, and then let a → 0 and n → ∞, we obtain as a
weak limit of T the integral operator on L2 with kernel 1/(x ∨ y). This limiting operator T∞
is bounded on L2[0, ∞) with norm 4, but it is not compact and has no eigenvectors. That the
norm is 4 follows from the result for Tn above; that it is at most 4 follows also from [14,
Theorem 319]; that there are no eigenvectors in L2[0, ∞) is seen by a direct calculation similar
to the one above; that T∞ is bounded but not compact follows also from [2, Theorems 3.1
and 3.2], where a class of integral operators (including both T∞ and Tn) is studied.
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8.2. Asymptotics of the moment generating function

So far we have kept n fixed. Now consider asymptotics as n → ∞. Taking logarithms in
(8.16), and using (8.17), we obtain for t > 0

1

2

∞∑
k=1

ln

(
1 + 8t

1 + (4π2/ ln2 n)k2

)
< − ln E e−t̂Ln <

1

2

∞∑
k=0

ln

(
1 + 8t

1 + (4π2/ ln2 n)k2

)
.

(8.18)
For −1/8 < t < 0, (8.18) holds with the inequalities reversed. Hence, for a fixed t > −1/8,
uniformly in n,

ln E e−t̂Ln = −1

2

∞∑
k=1

ln

(
1 + 8t

1 + (4π2/ ln2 n)k2

)
+ O(1)

= −1

2

∫ ∞

0
ln

(
1 + 8t

1 + (4π2/ ln2 n)x2

)
dx + O(1).

= − ln n

4π

∫ ∞

0
ln

(
1 + 8t

1 + y2

)
dy + O(1).

(8.19)

Furthermore,∫ ∞

0
ln

(
1 + 8t

1 + y2

)
dy

=
∫ ∞

0
(ln (1 + 8t + y2) − ln (1 + y2)) dy

= [y(ln (1 + 8t + y2) − ln (1 + y2)) + 2
√

1 + 8t arctan (y/
√

1 + 8t) − 2 arctan (y)]∞0
= π (

√
1 + 8t − 1). (8.20)

Consequently, by (8.19) and (8.20), we have shown the following.

Theorem 8.1. For any fixed t > −1/8, and all n ≥ 2,

ln E e−t̂Ln = 1 − √
1 + 8t

4
ln n + O(1).

For t = −1/8, a little extra work shows that (8.19) holds with the error term O( ln ln n). If
t < −1/8, then −2tλ1 > 1 for large n, and thus E e−t̂Ln = ∞.

8.3. A second proof of Theorem 1.1

By Theorem 8.1 (and the comments after it, for completeness),

lim
n→∞

1

ln n
ln E et̂Ln = �(t) :=

⎧⎨⎩
1 − √

1 − 8t

4
t ≤ 1/8,

+∞ t > 1/8.
(8.21)

The Legendre transform of �(t) is, by a simple calculation,

�∗(x) := sup
t∈R

(tx − �(t)) =
⎧⎨⎩

1

8x
(x − 1)2 = x

8
+ 1

8x
− 1

4
x > 0,

+∞ x ≤ 0.
(8.22)
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By (8.21) and the Gärtner–Ellis theorem (see e.g. [9, Theorem 2.3.6], and Remark (a)
after it), the large deviation principle holds for the variables L̂n/ ln n with rate function �∗(x)
in (8.22), in the sense that, for example,

lim
n→∞

ln P(̂Ln ≤ c ln n)

ln n
= −�∗(c), 0 < c ≤ 1.

Note that �∗(c) = K(c) given by (1.4). Consequently, we have shown the following Brownian
analog of Theorem 1.1.

Theorem 8.2. For every c ∈ (0, 1],

P(̂Ln ≤ c ln n) = n−K(c)+o(1).

Second proof of Theorem 1.1. We use Theorem 8.2 and Lemma 7.4. �
Moreover, (8.21) and the Gärtner–Ellis theorem also give a corresponding result for the

upper tail.

Theorem 8.3. For every c ∈ [1, ∞),

P(̂Ln ≥ c ln n) = n−K(c)+o(1).

This result too transfers from the Brownian version to the random walk.

Theorem 8.4. For every c ∈ [1, ∞),

P(Ln ≥ c ln n) = n−K(c)+o(1).

Proof. This follows by Theorem 8.3 and an upper-tail version of Lemma 7.4 with P(Ln ≤
c ln n) replaced by P(Ln ≥ c ln n), and so on; this version is proved in the same way as above,
so we omit the details. �
Remark 8.2. In their original paper, Chatterjee and Dembo [7] considered f : [0, 1]n →R, and
Y = (Y1, . . . , Yn), with Yi ∼i.i.d. Ber(p) random variables. For each t > 0, they derived explicit
non-asymptotic bounds for the upper-tail probability P[ f (Y) > tn]. For functions f satisfying a
‘complexity’ condition on its gradient, these bounds are asymptotically tight, and establish an
LDP for this non-linear functional.

Our setting differs from that of [7] in certain crucial ways. First, the relevant deviations for
us occur on the log n scale, rather than the n scale. Second, the approach of [7] is inherently
based on Taylor approximation, and works for a wide number of examples, for example sub-
graph counts, random arithmetic progressions etc. On the other hand, our approach is tailored
to analyzing the specific quadratic functional under consideration.

9. Conditional functional limit laws

In this section we study the preferential attachment process {(Xk, Yk) : k ≥ 2} defined in
Section 1, and establish functional limit theorems for the trajectories, conditional on the event
BINGO (n, n). We define �k := Xk − Yk, so that the process is given by (1.5), and state the
results in terms of the stochastic process {�k : 2 ≤ k ≤ 2n}, conditional on BINGO (n, n); recall
that BINGO (n, n) in this notation is the event �2n = 0.

In particular, we prove Theorem 1.2 stated in Section 1. We also state and prove related
functional limit results for the process at times o(n). We establish the results using the usual
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two-step approach: first we establish finite-dimensional convergence and then we establish
tightness (see e.g. [5]). The proofs proceed using the local CLT estimates in Section 3, in
particular Theorem 3.3. Finite-dimensional convergence follows by straightforward calcula-
tions, but our proof of tightness is rather complicated, and uses several lemmas. We base the
proof of tightness on a theorem by Aldous [1] (see Section 9.1 below), but for technical reasons
discussed there, we do not use Aldous’s result directly. Instead, in Section 9.1 we state and
prove a variant that is convenient in our situation. We then prove Theorem 1.2 in Section 9.2,
and give corresponding results for small times in Section 9.3.

Note that the processes (Xk, Yk), �k, and n−1/2�
2nt� are Markov processes, and so they are
(by a simple, general, calculation) also conditioned on BINGO (n, n).

9.1. A general criterion for tightness

Our proof uses a tightness criterion by Aldous [1] (and, in a slightly different formulation,
Mackevičius [21]); see also [24, Lemma 3.12]. Recall that a sequence of D[0, ∞)-valued
stochastic processes {Zn(t) : n ≥ 1} is stochastically bounded if, for every T > 0,

lim
M→∞ sup

n
P

[
max

0≤t≤T
|Xn(t)| > M

]
= 0. (9.1)

It is well known, and easy to see, that it suffices to show (9.1) with supn replaced by
lim supn→∞.

Lemma 9.1. ([1, 21, 24].) Suppose that Zn(t) is a sequence of stochastic processes in D[0, ∞)
satisfying the following conditions.

(i) {Zn(t) : n ≥ 1} is stochastically bounded.

(ii) For each n ≥ 1, T > 0, ε > 0, λ < ∞, and δ > 0, there exists a number αn(λ, ε, δ, T)
such that

P[|Zn(u) − Zn(tm)| > ε | Zn(t1), . . . , Zn(tm)] ≤ αn(λ, ε, δ, T) (9.2)

a.s. on the event {maxi |Zn(ti)| ≤ λ}, for every finite sequence {ti : 1 ≤ i ≤ m} and
u with 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm ≤ u ≤ T and u − tm ≤ δ. Furthermore, these numbers
αn(λ, ε, δ, T) satisfy

lim
δ↓0

lim sup
n→∞

αn(λ, ε, δ, T) = 0, (9.3)

for every λ, T, ε.

Then the sequence Zn(t) is tight in D[0, ∞).

For Markov processes (as in our case), the condition (9.2) simplifies: by the Markov
property, it suffices to consider the case m = 1.

A technical problem that prevents us from a direct application of Lemma 9.1 to our
processes, using Theorem 3.3 to verify the condition, is that in (9.2), u − tm may be arbitrarily
small, while in Theorem 3.3, B/A is supposed to be bounded below by some θ > 1. We thus
first prove the following variant of Lemma 9.1, where we have a lower bound on u − tm. For
simplicity, we state the lemma only in the Markov case. We assume also, again for simplicity,
that the processes are strong Markov; recall that this means, informally, that the Markov
property holds not only at fixed times but also at stopping times. A discrete-time Markov
process, or a process such as our n−1/2�
2nt� that essentially has discrete time, is automatically
strong Markov.
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The main difference from Lemma 9.1 is that the condition 0 ≤ u − tm ≤ δ is replaced by
δ ≤ u − t ≤ 2δ. We also add a condition that the jumps are uniformly bounded (which trivially
holds in our case); we do not know whether this condition really is needed. (The condition can
presumably be weakened to stochastic boundedness of the jumps, as in [6], but we have not
pursued this.)

Lemma 9.2. Suppose that Zn(t) is a sequence of strong Markov processes in D[0, ∞)
satisfying the following conditions.

(i) {Zn(t) : n ≥ 1} is stochastically bounded.

(ii) For each n ≥ 1, T > 0, ε > 0, λ < ∞, and δ > 0, there exists a number αn(λ, ε, δ, T)
such that

P[|Zn(u) − Zn(t)| > ε
∣∣ Zn(t)] ≤ αn(λ, ε, δ, T) (9.4)

a.s. on the event {|Zn(t)| ≤ λ}, for every t and u with 0 ≤ t ≤ u ≤ T and t + δ ≤ u ≤ t + 2δ.
Furthermore, these numbers αn satisfy

lim
δ↓0

lim sup
n→∞

αn(λ, ε, δ, T) = 0, (9.5)

for every λ, T, ε.

(iii) The jumps are bounded by 1:

|Zn(t) − Zn(t − )| ≤ 1 (9.6)

for all n and t.

Then the sequence Zn(t) is tight in D[0, ∞).

We reduce to Lemma 9.1 using the following lemma.

Lemma 9.3. Suppose that Z(t) is a strong Markov process in D[0, ∞), such that, for some
given numbers λ, T, ε, δ, α > 0,

P[|Z(u) − Z(t)| ≥ ε | Z(t)] ≤ α (9.7)

a.s. on the event {|Z(t)| ≤ λ + 2ε + 1}, for each t and u with 0 ≤ t ≤ u ≤ T + 2δ with t + δ ≤
u ≤ t + 2δ. Suppose further that the jumps in Z(t) are bounded by 1, that is,

|Z(t) − Z(t−)| ≤ 1 (9.8)

for all t ≥ 0. Then, for each t ≤ T,

Pr
[

sup
u∈[t,t+δ]

|Z(u) − Z(t)| > 2ε | Z(t)
]
≤ 2α

a.s. on the event {|Z(t)| ≤ λ}.
Proof. Let Ft be the σ -field generated by {Z(s) : s ≤ t}, and define a stopping time by

τ := inf {u ∈ [t, t + δ] : |Z(u) − Z(t)| ≥ 2ε}, (9.9)

using the definition inf ∅ := ∞ if there is no such u.
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Let v := t + 2δ. If τ < ∞, then τ ∈ [t, t + δ], and thus τ + δ ≤ v ≤ τ + 2δ; hence, by (9.7)
and the strong Markov property,

P[|Z(v) − Z(τ )| > ε | Fτ ] ≤ α (9.10)

a.s. on the event {τ < ∞} ∩ {|Z(τ )| ≤ λ + 2ε + 1}. Furthermore, τ < ∞ implies, by the
definition (9.9) and right-continuity,

|Z(τ ) − Z(t)| ≥ 2ε, (9.11)

and thus also τ > t and, by (9.7) again,

|Z(τ−) − Z(t)| ≤ 2ε. (9.12)

Let E be any event with E ∈Ft and E ⊆ {|Z(t)| ≤ λ}. Then, on the event E ∩ {τ < ∞}, by
(9.8) and (9.12),

|Z(τ )| ≤ |Z(t)| + |Z(τ − ) − Z(t)| + |Z(τ ) − Z(τ − )| ≤ λ + 2ε + 1.

Hence, (9.10) applies, and thus, since Ft ⊆Fτ ,

P[{|Z(v) − Z(τ )| ≤ ε} ∩ E ∩ {τ < ∞}] ≥ (1 − α)P[E ∩ {τ < ∞}].
In other words, recalling that E can be any event in Ft with E ⊆ {|Z(t)| ≤ λ},

P[{|Z(v) − Z(τ )| ≤ ε} ∩ {τ < ∞} | Ft] ≥ (1 − α)P[{τ < ∞} | Ft] (9.13)

a.s. on the event {|Z(t)| ≤ λ}.
Furthermore, τ < ∞ and |Z(v) − Z(τ )| ≤ ε imply, using (9.11), |Z(v) − Z(t)| ≥ ε.

Consequently, (9.7) implies (using the Markov property)

P[{|Z(v) − Z(τ )| ≤ ε} ∩ {τ < ∞} | Ft] ≤ P[{|Z(v) − Z(t)| ≥ ε} | Ft] ≤ α (9.14)

a.s. on the event {|Z(t)| ≤ λ}.
Assume first α ≤ 1/2. Combining (9.13) and (9.14), we obtain

P[{τ < ∞} | Ft] ≤ α

1 − α
≤ 2α,

a.s. on the event {|Z(t)| ≤ λ}. Since the event satisfies{
sup

u∈[t,t+δ]
|Z(u) − Z(t)| > 2ε

}
⊆ {τ < ∞},

the result follows. The case α > 1/2 is trivial. �
Proof of Lemma 9.2. Lemma 9.3 applies to each Zn with ε replaced by ε/2 and α := αn(λ +

ε + 1, ε/2, δ, T + 2δ). This shows that, for each t ≤ T ,

P

[
sup

u∈[t,t+δ]
|Zn(u) − Zn(t)| > ε | Zn(t)

]
≤ α′

n(λ, ε, δ, T) := 2αn(λ + ε + 1, ε/2, δ, T + 2δ)

(9.15)
a.s. on the event {|Zn(t)| ≤ λ}. Hence, assumption (ii) holds with αn replaced by α′

n; note that
(9.3) holds for α′

n by (9.5) and (9.15) (since it suffices to consider δ ≤ 1).
Hence, Lemma 9.1 applies and the result follows. �
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9.2. Proof of Theorem 1.2

Note first that if we define Gα(t) by (1.8), then its covariance function agrees with (1.6); this
shows that the Gaussian process Gα(t) in Theorem 1.2 really exists and is continuous on [0,1]
(also at t = 0, since Br(t) is Hölder( 1

2 − ε) for every ε > 0). Equivalently, we can define Gα(t)
from a Brownian motion B(t) by either

Gα(t) := (α − 1/2)−1(t1−α − tα)Bt2α−1/(1−t2α−1), 0 < t < 1, (9.16)

or (reversing the flow of time)

Gα(t) := (α − 1/2)−1tαBt1−2α−1, 0 < t ≤ 1. (9.17)

Again, these are verified by calculating the covariances. Note that Gα(0) = Gα(1) = 0, for
example by (1.8).

Lemma 9.4. Finite-dimensional convergence holds in (1.7), that is, if 0 ≤ t1 < · · · < tm ≤ 1
are fixed, then, conditioned on BINGO (n, n), as n → ∞,

n−1/2(�
2nt1�, . . . , �
2ntm�)
d−→(Gα(t1), . . . , Gα(tm)). (9.18)

Proof. Since �0 = �2n = 0 and Gα(0) = Gα(1) = 0 by definition, we may assume 0 < t1 <

· · · < tm < 1. We also fix some M > 0. Let ni := 
2nti�, and let k1, . . . , km ∈Z with ni + ki ∈
2Z and |ki| ≤ M

√
n. (Assume n so large that each ni ≥ 2.) Then BINGO (n, n) holds together

with �(ni) = ki for i = 1, . . . , m, if and only if the events A1, . . .Am+1 occur, where we set

A1 = BINGO

(
n1 + k1

2
,

n1 − k1

2

)
, (9.19)

and for 2 ≤ i ≤ m + 1, with nm+1 := 2n and km+1 := 0,

Ai = BINGO

(
ni−1 + ki−1

2
,

ni−1 − ki−1

2
;

ni + ki

2
,

ni − ki

2

)
. (9.20)

The events A1, . . . ,Am+1 are independent, and thus

P[�(n1) = k1, . . . , �(nm) = km | BINGO (n, n)]

=
∏m+1

i=1 P[Ai]

P[BINGO (n, n)]

= P[A1]

P[BINGO (n, n)]

m+1∏
i=2

P[Ai]. (9.21)

By Theorem 2.3, and |k1| ≤ M
√

n ≤ M′√n1,

P[A1]

P[BINGO (n, n)]
=
(
P

[
BINGO

(
n1 + k1

2
,

n1 − k1

2

)])/
P[BINGO (n, n)]

∼
((

n1 + k1

2

)−α

+
(

n1 − k1

2

)−α)/
2n−α

∼ 2(n1/2)−α

2n−α

∼ t−α
1 , (9.22)
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where, as in the estimates below, the implicit factors 1 + o(1) tend to 1 as n → ∞, uniformly
for all k1, . . . , km as above, for fixed t1, . . . , tm and M.

Denote the probability density function of the normal distribution N(0, t) by

φt(x) := (2π t)−1/2 e−x2/2t. (9.23)

Furthermore, let

κ :=√α − 1/2, (9.24)

Ti := t1−2α
i − 1, (9.25)

yi := κt−α
i ki/

√
n. (9.26)

Note that ni/2 ∼ tin, where we define tm+1 := 1. Thus (9.20) and Corollary 3.2 yield, for 2 ≤
i ≤ m + 1,

P[Ai] ∼
√

2α − 1

π

1

n1/2tαi

√
t1−2α
i−1 − t1−2α

i

exp

(
− (yi−1 − yi)2

2(t1−2α
i−1 − t1−2α

i )

)

= 2κ

tαi
√

n
φTi−1−Ti(yi−1 − yi). (9.27)

Consequently, (9.21), (9.22), and (9.27) yield, uniformly for |ki| ≤ M
√

n,

P[�(n1) = k1, . . . , �(nm) = km | BINGO (n, n)]

∼ t−α
1

m∏
j=1

2κ

tαj+1
√

n
φTj−Tj+1 (yj − yj+1)

=
m∏

j=1

2κ

tαj
√

n
φTj−Tj+1 (yj − yj+1). (9.28)

Note that T1 > · · · > Tm > Tm+1 = 0, and thus (recalling ym+1 = 0)
∏m

i=1 φTj−Tj+1 (yj −
yj+1) is the joint density function of (B(T1), . . . , B(Tm)) for a Brownian motion B(t). Since
M is arbitrary, it follows easily, recalling the scaling (9.26) and noting that ki + ni ∈ 2Z, so ki

takes values spaced by 2, and thus yi takes values spaced by 2κt−α
i n−1/2, that

n−1/2(κt−α
1 �(n1), . . . , κt−α

m �(nm))
d−→(B(T1), . . . , B(Tm)).

Hence,

n−1/2(�(n1), . . . , �(nm))
d−→(κ−1tα1 B(T1), . . . , κ−1tαmB(Tm)), (9.29)

which, using (9.25) and the construction (9.17), is the same as (9.18). �
Remark 9.1. We assumed in the proof above that t1, . . . , tm are fixed. In fact, the proof shows,
using the uniformity assertion in Theorem 3.3, that the estimates, in particular (9.28), hold
uniformly for all 0 < t1 < · · · < tm < 1 with min{t1, ti+1 − ti, 1 − tm} ≥ δ, for any fixed M < ∞
and δ > 0.
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We let Zn denote the processes Zn(t) := n−1/2�
2nt�, always conditioned on BINGO (n, n).
We also let P̂ denote probabilities conditional on BINGO (n, n).

We proceed to tightness and functional convergence. Our proof requires special arguments
for t close to the endpoints 0 and 1, mainly because of the lack of uniformity in Theorem 3.3
when A is close to 0 or B. We first prove that the sequence Zn(t) is stochastically bounded on a
sub-interval [a, b] ⊂ (0, 1).

Lemma 9.5. Let 0 < a < b < 1. Then, conditioned on BINGO (n, n), the sequence of stochas-
tic processes Zn(t) := n−1/2�
2nt� is stochastically bounded on [a, b].

Proof. Let A0 := 
2na� and B0 := 
2nb�. Further, let K > 0 be a large number. Define
(for each n) the stopping time

τK := inf{k ≥ A0 : |�k| ≥ Kn1/2}, (9.30)

as always with inf ∅ := ∞. Then

Pr [{A0 < τK ≤ B0} ∧ BINGO (n, n)] =
B0∑

k=A0+1

P[τK = k] Pr [BINGO (n, n) | τK = k]. (9.31)

If τK = k > A0, then |�k| = �Kn1/2� or �Kn1/2� + 1 (depending on the parity of k). Denoting
this number by �̂k, and assuming A0 < k ≤ B0, we have by Corollary 3.2, for all n ≥ n0 for
some n0 not depending on k, and some C not depending on n, k, or K (but perhaps on a, b, α),

P[BINGO (n, n) | τK = k] = P

[
BINGO

(
k ± �̂k

2
,

k ∓ �̂k

2
; n, n

)]
≤ Cn−1/2 e−�̂2

k/2k

≤ Cn−1/2 e−K2n/2k

≤ Cn−1/2 e−K2/4. (9.32)

Note also that τK = k > A0 implies |�A0 | < Kn1/2 by (9.30). Hence, (9.31) and (9.32) yield,
for n ≥ n0,

P[{A0 < τK ≤ B0} ∧ BINGO (n, n)] ≤
B0∑

k=A0+1

P[τK = k]Cn−1/2 e−K2/4

= Cn−1/2 e−K2/4
P[A0 < τK ≤ B0]

≤ Cn−1/2 e−K2/4
P[|�A0 | < Kn1/2]. (9.33)

Furthermore, by Theorem 2.3, as n → ∞,

P[|�A0 | < Kn1/2] =
∑

| j|<Kn1/2

Pr

[
BINGO

(
A0 + j

2
,

A0 − j

2

)]
∼ 2Kn1/2 · 2β(A0/2)−α

∼ 4βKa−αn1/2−α . (9.34)

https://doi.org/10.1017/apr.2019.42 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.42


1100 S. JANSON ET AL.

By the same theorem, P[BINGO (n, n)] ∼ 2βn−α . Consequently, (9.33) implies

lim sup
n→∞

P̂[{A0 < τK ≤ B0}] = lim sup
n→∞

P[{A0 < τK ≤ B0} ∧ BINGO (n, n)]

P[BINGO (n, n)]

≤ lim sup
n→∞

Cn−1/2 e−K2/4 · 4βKa−αn1/2−α

2βn−α

= C1K e−K2/4.

We have also, by Lemma 9.4, as n → ∞,

P̂[τK = A0] = P̂[|�A0 | ≥ Kn1/2] → P[Gα(a) ≥ K].

Consequently, conditioned on BINGO (n, n),

lim sup
n→∞

P̂

[
sup

a≤t≤b
|Zn(t)| ≥ K

]
= lim sup

n→∞
P̂[A0 ≤ τk ≤ B0]

≤ C1K e−K2/4 + P[Gα(a) ≥ K].

The right-hand side tends to 0 as K → ∞, and the result follows. �
We next prove that Zn(t) is (with large probability) uniformly small for small t.

Lemma 9.6. For every ε > 0 and η > 0, there exists δ > 0 such that

sup
n≥1

P̂

[
sup

0≤t≤δ

|Zn(t)| > ε
]
≤ η. (9.35)

Proof. The argument is similar to the proof of Lemma 9.5, but with some differences.
Define (for each n) the stopping time

τε := inf{k ≥ 0: |�k| ≥ εn1/2}.
Let A0 := �εn1/2� and fix also some M ≥ ε. Note that if k ≤ A0, then |�k| ≤ k − 2 < εn1/2.
Thus, τε > A0.

Suppose that

A0 ≤ A ≤ ε

16M
n. (9.36)

Then, with �̂k as in the proof of Lemma 9.5 (with ε instead of K),

P[{A < τε ≤ 2A} ∧ {|�n| ≤ Mn1/2} ∧ BINGO (n, n)]

=
2A∑

k=A+1

∑
| j|≤Mn1/2

P[τε = k]P

[
BINGO

(
k ± �̂k

2
,

k ∓ �̂k

2
;

n + j

2
,

n − j

2

)]

× P

[
BINGO

(
n + j

2
,

n − j

2
; n, n

)]
. (9.37)

Let c and C denote positive constants, not depending on n, A, ε, or M, but possibly varying
from one occurrence to another. Lemma 3.1 applies by (9.36), provided n ≥ n1(M) for some
n1(M) depending on M only, and yields, for every k in the sum in (9.37),∑

| j|≤Mn1/2

P

[
BINGO

(
k + �̂k

2
,

k − �̂k

2
;

n + j

2
,

n − j

2

)]
≤ e−cε2n/2k ≤ e−cε2n/A.
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By symmetry the same holds with �̂k replaced by −�̂k. Similarly, Corollary 3.2 yields,
provided n ≥ n2(M),

P

[
BINGO

(
n + j

2
,

n − j

2
; n, n

)]
≤ Cn−1/2.

Hence, (9.37) implies, assuming from now on that n ≥ n1(M) ∨ n2(M),

P[{A < τε ≤ 2A} ∧ {|�n| ≤ Mn1/2} ∧ BINGO (n, n)] ≤ CP[A < τε ≤ 2A] e−cε2n/An−1/2.
(9.38)

If A ≥ 2A0, we use Theorem 2.3 similarly to (9.34) and obtain

P[A < τε ≤ 2A] ≤ P[|�A| < εn1/2] ≤ Cεn1/2A−α . (9.39)

Combining (9.38) and (9.39), and recalling (2.2), we then obtain

P̂[{A < τε ≤ 2A} ∧ {|�n| ≤ Mn1/2}] ≤ Cε e−cε2n/AA−αnα ≤ Cε1−2(α+1)A/n. (9.40)

If A0 ≤ A < 2A0, we instead use P[A < τε ≤ 2A] ≤ 1 and obtain from (9.38) similarly

P̂[{A < τε ≤ 2A} ∧ {|�n| ≤ Mn1/2}] ≤ C e−cε2n/An−1/2nα

≤ C e−cεn1/2
nα−1/2

≤ Cε−2α−1A0/n, (9.41)

yielding the same conclusion as (9.40).
Assume 0 < δ ≤ ε/32M and sum (9.40) or (9.41) with A = Aj := 2jA0, for 0 ≤ j ≤ j0 :=


log2 (2δn/A0)�; note that δn < Aj0 ≤ 2δn, and that (9.36) holds for each Aj. This yields, with
C(ε) denoting constants that may depend on ε,

P̂[{A0 < τε ≤ 2δn} ∧ {|�n| ≤ Mn1/2}] ≤ C(ε)
j0∑

j=0

Aj

n
≤ C(ε)δ

and thus, recalling that τε > A0,

P̂[max{|�k| : k ≤ 2δn} ≥ εn1/2] = P̂[A0 < τε ≤ 2δn] ≤ C(ε)δ + P̂[|�n| > Mn1/2].

The right-hand side can be made smaller than η, uniformly in n, by choosing M large and δ

small. We assumed above that n ≥ n1(M) ∨ n2(M). The result extends trivially to all n as stated
in (9.35) by decreasing δ. �
Lemma 9.7. For every ε > 0 and η > 0, there exists δ > 0 such that

lim sup
n→∞

P̂

[
sup

1−δ≤t≤1
|Zn(t)| > ε

]
≤ η. (9.42)

Unlike in Lemma 9.6, we cannot replace lim supn with supn, since trivially

sup
t≥1−δ

|Zn(t)| ≥ n−1/2

for every n and δ.
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Proof. Assume 0 < δ < 1/2, let A0 := 
(1 − δ)2n� and define (for each n) the stopping time

τε := inf{k ≥ A0 : |�k| ≥ εn1/2}.
Let �̂k, C, and C(ε) be as in the proof of Lemma 9.6. Then, using Lemma 3.2,

P[{A0 < τε < 2n} ∧ BINGO (n, n)]

=
2n−1∑

k=A0+1

P[τε = k]P

[
BINGO

(
k ± �̂k

2
,

k ∓ �̂k

2
; n, n

)]

≤
2n−1∑

k=A0+1

P[τε = k]
C

�̂k
e−ε2n/4(2n−k)

≤ C(ε)n−1/2 e−ε2/8δ
P[τε > A0]. (9.43)

Furthermore, similarly to (9.34), Theorem 2.3 yields

P[τε > A0] = P[|�A0 | < εn1/2] ≤ Cεn1/2A−α
0 ≤ Cεn1/2−α . (9.44)

Combining (9.43) and (9.44) and recalling (2.2), we obtain

P̂[A0 < τε < 2n] ≤ C(ε) e−ε2/8δ . (9.45)

Moreover, as n → ∞, by Lemma 9.4,

P̂[τε = A0] = P̂[|�A0 | ≥ εn1/2] → P[|G1−δ| ≥ ε]. (9.46)

Hence, combining (9.45) and (9.46),

lim sup
n→∞

P̂

[
sup

t≥1−δ

|Zn(t)| ≥ ε
]
= lim sup

n→∞
P̂[{A0 ≤ τε < 2n}]

≤ C(ε) e−ε2/8δ + Pr [|G1−δ| ≥ ε].

The right-hand side can be made less than η by choosing δ small, which yields (9.42). �

Next, consider the processes only on an interval [a, 1), for some fixed a ∈ (0, 1).

Lemma 9.8. Let 0 < a < 1. Then Zn(t)
d−→Gα(t) in D[a, 1) as n → ∞.

Proof. The space D[a, 1) of functions, equipped with the Skorokhod topology, is homeo-
morphic to the space D[0, ∞) by a change of variable. (Any continuous increasing bijection
[a, 1) → [0, ∞) will do; we pick one, for example t �→ (t − a)/(1 − t).) It follows that
Lemma 9.2 applies to D[a, 1) as well, considering only T < 1 in (i), (9.1) and (ii), and t ≥ a
in (ii).

The stochastic boundedness on [a, 1) is given by Lemma 9.5. The condition (9.6) is
satisfied, because trivially each jump in Zn(t) is n−1/2.

It remains to verify (ii) in Lemma 9.2. Let αn(λ, ε, δ, T) be the smallest number such
that (9.4) holds, i.e. the supremum of the left-hand side over all t, u and Zn(t) satisfying the
conditions.
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Let n1 := 
2nt�, n2 := 
2nu� and let k be an integer with |k| ≤ λn1/2. Then

P̂[|Zn(u) − Zn(t)| ≤ ε | Zn(t) = kn−1/2] = P̂[|�(n2) − �(n1)| ≤ εn1/2 | �(n1) = k]

=
∑

| j−k|≤εn1/2

P[A1( j)]P[A2( j)]

P[A0]
, (9.47)

where we define the events

A1( j) := BINGO

(
n1 + k

2
,

n1 − k

2
;

n2 + j

2
,

n2 − j

2

)
,

A2( j) := BINGO

(
n2 + j

2
,

n2 − j

2
; n, n

)
,

A0 := BINGO

(
n1 + k

2
,

n1 − k

2
; n, n

)
.

Let φt(x) and κ be as in (9.23) and (9.24). Further (see (9.25)–(9.26)), let T1 := t1−2α − 1, T2 :=
u1−2α − 1, x := κt−αk/

√
n, and y := κu−αj/

√
n. By calculations as in the proof of Lemma 9.4

(see (9.27)), we obtain

P[A1( j)]P[A2( j)]

P[A0]
∼ 2κ

uα
√

n

φT1−T2 (x − y)φT2 (y)

φT1 (x)

= 2κ

uα
√

n
φ(T1−T2)T2/T1

(
y − T2

T1
x

)
, (9.48)

uniformly in all t, u, k, j, satisfying the conditions above (see Remark 9.1). Using (9.47) and
summing (9.48) over all j with | j − k| ≤ εn1/2 and j ≡ n2 (mod 2), y takes values with step
2κu−α/

√
n, we obtain, with Z ∼ N(0, 1) a standard normal variable,

P̂[|Zn(u) − Zn(t)| ≤ ε | Zn(t) = kn−1/2]

∼
∫

|uαy−tαx|≤κε

φ(T1−T2)T2/T1

(
y − T2

T1
x

)
dy

= P

[∣∣∣∣( (T1 − T2)T2

T1

)1/2

Z + T2

T1
x − tα

uα
x

∣∣∣∣≤ κεu−α

]
,

uniformly in t and u satisfying the conditions. Hence, taking complements and recalling the
definition of αn,

lim sup
n→∞

αn(λ, ε, δ, T) = sup P

[∣∣∣∣( (T1 − T2)T2

T1

)1/2

Z + T2

T1
x − tα

uα
x

∣∣∣∣> κεu−α

]
, (9.49)

taking the supremum over t, u, x with a ≤ t ≤ u ≤ T , t + δ ≤ u ≤ t + 2δ and |x| ≤ κt−αλ ≤
κa−αλ. For fixed ε, λ > 0 and T < 1, if δ → 0, then t/u → 1, T2/T1 → 1 and T1 − T2 → 0,
uniformly for all t and u satisfying these conditions. It follows from (9.49) that

lim sup
n→∞

αn(λ, ε, δ, T) → 0 as δ → 0,

which verifies (ii) in Lemma 9.2.
We have verified the conditions in Lemma 9.2, and the lemma thus shows that the sequence

Zn(t) is tight in D[a, 1). Combined with the finite-dimensional convergence in Lemma 9.4, this
shows convergence to Gα(t) in D[a, 1). �
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Proof of Theorem 1.2. Lemma 9.8 shows Zn(t)
d−→Gα(t) in D[a, 1) for every a ∈ (0, 1).

This can equivalently be expressed as convergence in D(0, 1), considering the open interval
(0, 1), and this can be improved to convergence in D[0, 1] using Lemmas 9.6 and 9.7 (see e.g.
[15, Proposition 2.4]).

A direct proof can be made as follows. Let ε, η > 0 be given. Find δ > 0 such that (9.35)
and (9.42) hold, and furthermore

P

[
sup

0≤t≤δ

|Gα(t)| > ε
]
≤ η, P

[
sup

1−δ≤t≤1
|Gα(t)| > ε

]
≤ η.

By Lemma 9.8 with a = δ, Zn(t)
d−→Gα(t) in D[δ, 1), and thus in D[δ, 1 − δ]. By the Skoro-

khod coupling theorem [17, Theorem 4.30], we may assume that Zn(t) → Gα(t) uniformly on
[δ, 1 − δ]. Then, now writing Pr instead of P̂,

lim sup
n→∞

P

[
sup

0≤t≤1
|Zn(t) − Gα(t)| > 2ε

]
≤ 4η + lim sup

n→∞
P

[
sup

δ≤t≤1−δ

|Zn(t) − Gα(t)| > 2ε
]

= 4η.

Since η and ε are arbitrary, this shows Zn(t) → Gα(t) in D[0, 1] in probability, and thus in
distribution. �

9.3. The initial part of the process

Proof of Theorem 1.3. The proof is very similar to the proof of Theorem 1.2, and we only
point out the differences. For convenience, we change the notation by replacing n with N and
mn with 2n. Note that the normalization is then by (2n)−1/2, differing by a factor 2−1/2 from
the one in Theorem 1.2.

Finite-dimensional convergence is proved as in Lemma 9.4. The main difference is that the
probability of the last event Am+1 is estimated using Corollary 3.1 instead of Corollary 3.2,
and that we define Ti := t1−2α

i , where now ti ∈ (0, ∞). Then the same calculations as before
show that (9.29) holds, which yields finite-dimensional convergence in (1.9).

Stochastic boundedness on any interval [a, b] with 0 < a < b < ∞ follows as in Lemma 9.5,
again using Corollary 3.1.

The convergence (1.9) in the space D[a, ∞) for any a > 0 now follows as in Lemma 9.8,
again using Lemma 9.2. This is equivalent to convergence in D(0, ∞).

Finally, the analog of Lemma 9.6 holds, by the same proof with trivial modifications, which
yields convergence also in D[0, ∞). �

Proof of Theorem 1.4. Apply Theorem 1.3 with mn := etn . Then (1.9) holds in D[0, ∞),
and thus in D(0, ∞). The change of variables t = es yields

e−tn/2�(
es+tn�)
d−→(2α − 1)−1/2 e(1−α)sB(e(2α−1)s), (9.50)

in D( − ∞, ∞). Multiplying (9.50) by the continuous function e−s/2 yields

e−(s+tn)/2�(
es+tn�)
d−→Z(s) := (2α − 1)−1/2 e(1/2−α)sB(e(2α−1)s), (9.51)

in D( − ∞, ∞), which is (1.10). The covariance (1.11) follows from the definition of Z(s) in
(9.51). �
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Appendix A. Quadratic functionals of Gaussian variables

A Gaussian Hilbert space is a closed subspace H of L2(�,F , P), for some probability
space (�,F , P), such that every element f of H is a random variable with a centered Gaussian
distribution N(0, σ 2) (where σ 2 = ‖ f ‖2

2). (In this appendix, we consider real vector spaces and
real-valued functions; thus L2 = L2

R
is the space of real-valued square-integrable functions.)

Here, for the readers’ and our own convenience, we review some basic and more or less
well-known facts; further details can be found in [16], for example. In our application above,
H is the closed linear span of {Bt : 0 ≤ t ≤ n}, as usual defined on some anonymous probability
space (�,F , P), but we state the results generally.

If ξ, η ∈ H, define their Wick product by : ξη : := ξη −E(ξη), i.e. the centered product. Let
H:2: be the closed linear span of all Wick products : ξη :, ξ, η ∈ H. Hence, if X = Q(ξ1, . . . , ξN)
is a quadratic form in Gaussian random variables ξ1, . . . , ξN ∈ H, then X −EX ∈ H:2:, and
conversely, every element of H:2: is a limit of such centered quadratic forms, and can be
written as a quadratic form in (in general) infinitely many variables. Moreover, this form
can be diagonalized by a suitable choice of orthonormal basis in H, leading to the following
representation theorem. (Note that every X ∈ H:2: has EX = 0 as a consequence of the
definition.)

Theorem A.1. ([16, Theorem 6.1].) If X ∈ H:2:, then there exists a finite or infinite sequence
(λj)N

j=1, 0 ≤ N ≤ ∞, of non-zero real numbers such that
∑

j λ
2
j < ∞ and

X
d=

N∑
j=1

λj(ξ
2
j − 1), (A.1)

where ξj are independent, identically distributed (i.i.d.) N(0, 1) random variables. The numbers
λj are the non-zero eigenvalues (counted with multiplicities) of the compact symmetric bilinear
form

QX(ξ, η) := 1

2
E(Xξη), ξ, η ∈ H,

or, equivalently, of the corresponding compact symmetric operator TX on H defined by

〈TX(ξ ), η〉 = QX(ξ, η) = 1

2
E(Xξη), ξ, η ∈ H.

In particular, (A.1) yields the moment generating function, for all real t such that 2λjt < 1
for every j,

E etX =
∏

j

(1 − 2λjt)
−1/2 e−λjt. (A.2)

In our application, we deal with non-centered quadratic functionals, and then the following
version is more directly applicable. (See the more general but less specific [16, Theorem 6.2].
We do not know a reference for the precise statements in Theorem A.2, so we give a complete
proof.)

Theorem A.2. Suppose the following.

(i) X is a random variable such that X −EX ∈ H:2:.

(ii) X ≥ 0 a.s., and P(X < ε) > 0 for every ε > 0, that is, the lower bound of the support of
X is 0.
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(iii) The bilinear form Q = QX−EX is positive, that is,

QX−EX(ξ, ξ ) = 1

2
E((X −EX)ξ2) ≥ 0

for every ξ ∈ H.

Then

X
d=

N∑
j=1

λjξ
2
j , (A.3)

where ξj are i.i.d. N(0, 1) random variables and the coefficients λj > 0 are the non-zero
eigenvalues (counted with multiplicities) of Q. Furthermore,

EX =
N∑

j=1

λj < ∞ (A.4)

and, for −∞ < t < (2 maxj λj)−1,

E etX =
∏

j

(1 − 2λjt)
−1/2. (A.5)

Proof. Theorem A.1 yields the representation

X −EX =
∑

j

λj(ξ
2
j − 1), (A.6)

where λj > 0 since the positive form Q has only non-negative eigenvalues. Hence, (A.2) applies
for any t < 0, and thus, replacing t with −t, for every t > 0,

1

t
ln E e−t(X−EX) =

∑
j

tλj − 1
2 ln (1 + 2λjt)

t
. (A.7)

Now let t → ∞. By (ii), E e−tX ≤ 1, but

lim inf
t→∞

1

t
ln E e−tX ≥ −ε for every ε > 0,

and thus
1

t
ln E e−tX → 0 and

1

t
ln E e−t(X−EX) →EX.

In the sum on the right-hand side of (A.7), each term is positive, and increases to λj as
t → ∞ (because ln is concave); hence the sum tends to

∑
j λj by monotone convergence.

Consequently, EX =∑j λj, and since EX < ∞, (A.4) holds.
The representation (A.3) follows from (A.6) and (A.4), and (A.5) is an immediate

consequence. �
Remark A.1. The operator T in Theorem A.1 is a Hilbert–Schmidt operator, since

∑
j λ

2
j <

∞. Similarly, in Theorem A.2, T is a trace class operator, with trace and trace norm
∑

j λj =
EX.
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If Y ∈ H, then X := Y2 satisfies (i) and (ii) in Theorem A.2. Furthermore, for ξ, η ∈ H, since
X −EX = Y2 −EY2 = : Y2 :, by [16, Theorem 3.9],

QX−EX(ξ, η) = 1

2
E(: Y2 :ξη) = 1

2
E(: Y2 : : ξη :) =E(Yξ )E(Yη). (A.8)

Taking η = ξ , we see that Q is a positive form. Hence the conditions (i)–(iii) hold for X = Y2,
and it follows that they also hold for any finite sum of squares

∑
i Y2

i with Yi ∈ H, for example
L̃n in (7.1). Moreover, we can take limits, and conclude that the conditions also hold for the
integral L̂n in (7.2), for example. (Note that (ii) is obvious for L̂n.) Hence, Theorem A.2 applies
to L̂n.

A.1. Stochastic integration

In order to find the eigenvalues λi in Theorem A.2 in our application to L̂n, it is convenient
to transfer from the Gaussian Hilbert space H to the function space L2(0, n) by means of
stochastic integrals.

The stochastic integral
∫ n

0 f (t) dBt can be defined for every (deterministic) function f ∈
L2(0, n) as follows. (This is a simple form of stochastic integrals; we have no need for the
general theory of random integrands here.)

First,
∫ n

0 1(0,a)(t) dBt = Ba for every a ∈ [0, n]. This and linearity define
∫ n

0 f (t) dBt for every
step function f (in the obvious, naive way). A simple calculation shows that

E

(∫ n

0
f (t) dBt

)2

=
∫ n

0
f (t)2 dt.

Hence, the mapping I : f �→ ∫ f dBt is an isometry from the subspace of step functions in
L2(0, n) to the linear span of the random variables Bt, t ∈ [0, n]. We let H be the closure of
the latter space, regarded as a subspace of L2(�,F , P); then I extends by continuity to an
isometry I : L2(0, n) → H. We may write I( f ) = ∫ n

0 f (t) dBt. This isometry enables us to regard
the bilinear form Q and operator T as defined on L2(0, n).

If Y = I( f ), ξ = I(g) and η = I(h), for some f , g, h ∈ L2(0, n), and X = Y2, then (A.8) yields

Q(ξ, η) =E(Yξ )E(Yη) = 〈 f , g〉〈 f , h〉 =
∫ n

0

∫ n

0
f (x)f (y)g(x)h(y) dx dy,

which shows that T , regarded as an operator on L2(0, n), is the integral operator with kernel
f (x)f (y).

Example A.1. For any t ∈ [0, n], Bt = I(1(0,t)), and thus X = B2
t corresponds to the integral

operator T with kernel 1(0,t)(x)1(0,t)(y). It follows easily that L̂n = ∫ n
1 (B2

t /t2) dt corresponds to
the integral operator with kernel

Kn(x, y) :=
∫ n

1

1

t2
1(0,t)(x)1(0,t)(y) dt =

∫ n

1∨x∨y

dt

t2
= 1

1 ∨ x ∨ y
− 1

n
. (A.9)

We summarize as follows.

Lemma A.1. Theorem A.2 applies to X = L̂n, with λj the non-zero eigenvalues of the
symmetric integral operator on L2(0, n) with kernel Kn given by (A.9).
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