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In this paper, we study an adsorption model arising in the dynamics of several surfactants

at the air-water interface, where the Langmuir isotherm is employed for modelling the

time-dependent surface concentration, providing a nonlinear dynamical boundary condition.

Existence of a weak solution is proved by using the Rothe method for a semi-discrete

problem in time. After obtaining some a priori estimates and passing to the limit in the time

discretization parameter, we conclude that the original Langmuir problem has a bounded

solution. An uniqueness result is also given.
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1 Introduction

Here we focus on the diffusion-controlled model arising in the surfactant behaviour at the

air-water interface, using the so-called Langmuir isotherm and a finite diffusion length,

as it has been addressed in [2, 16], and has huge applications in the chemical industry

(see, for instance, [5, 6, 13] and the references therein). Diffusion is the mechanism that

mainly governs this dynamic process since adsorption is assumed to be instantaneous and

prescribed by the Langmuir isotherm, which defines a nonlinear relationship between the

surface and subsurface concentrations.

From the mathematical point of view, this process is modelled by the diffusion partial

differential equation in one spatial dimension, coupled with the Langmuir isotherm by

means of a boundary condition at the subsurface, the unknowns being both the bulk

and the surface concentrations. This adsorption model yields a non-standard parabolic

problem in terms of a nonlinear dynamical boundary condition for which an existence

result is provided here. Uniqueness is also proved using a technique previously introduced

in [11] for the process of washing contaminants.

Several mathematical investigations have been carried out concerning the different

models involved in this problem. The analysis of the problem taking into account the
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linear Henry isotherm was earlier considered in [9] for the diffusive model and in [10]

for the mixed-kinetic one. The mathematical and numerical analyses of the Langmuir–

Hinshelwood model for the mixed-kinetic adsorption model are provided in [8]. Moreover,

several numerical methods have been used in order to approximate their solutions (see

[14, 15] and the references therein). The new contribution of our work is to prove an

existence result for the diffusive model including the derivative of the Langmuir isotherm

into the boundary condition at the subsurface. We also prove that this solution makes

sense from the chemical point of view since it is bounded between zero and the so-called

bulk concentration.

The outline of this paper is as follows. In Section 2, we describe the mathematical

model and we introduce the variational formulation of the problem. The existence of a

bounded weak solution is proved in Section 3 by using the Rothe method, an intermediate

problem (for which the existence of a unique weak solution is obtained applying Brouwer’s

fixed-point theorem), a priori estimates and passing to the limit. The uniqueness issue is

solved using some arguments already introduced in [11], as the integration in time of the

respective variational equations and the definition of adequate test functions.

2 The mathematical model and the variational formulation

In this section we introduce the mathematical framework arising in the modeling of several

surfactants at the air-water interface. Indeed, when a new air-water interface is formed,

the surfactant molecules tend to migrate onto the interface in order to reduce its surface

tension. The analysis of the dynamic surface tension is then closely related to molecular

transport, assuming here a lattice-type model where the surfactant surface molecules do

not interact with their lattice neighbours or with the vacant sites. Hereafter we refer the

bulk as the spatial interval [0, l] occupied by the surfactant, the subsurface being located

at x = 0 (see [9] for further details). Denoting the concentration of surfactant, at time

t ∈ [0, T ] and point x ∈ [0, l], by c̃(t, x), and the time-dependent surface concentration by

Γ (t) and taking into account the Fick’s law, we consider the diffusion partial differential

equation:

∂c̃

∂t
(t, x) − D

∂2c̃

∂x2
(t, x) = 0, t > 0, x ∈ (0, l), (2.1)

together with the boundary conditions (see [2]):

D
∂c̃

∂x
(t, 0) =

dΓ

dt
(t), t > 0, (2.2)

c̃(t, l) = cb, t > 0, (2.3)

and the initial conditions:

c̃(0, x) = c̃0(x), x ∈ (0, l), (2.4)

Γ (0) = Γ0. (2.5)

In equations (2.1)–(2.3), D is the diffusion coefficient and the positive constant cb is the

bulk concentration. Besides, in equation (2.4), c̃0(x) is a function defined in [0, l] which
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equals cb on x = l, and Γ0 in equation (2.5) stands for the initial surface concentration,

being zero for a fresh surface. We remind the reader that the time-dependent surface

concentration, Γ (t), is also an unknown of the system, so an additional condition is

needed in order to close the problem. As we said previously, we consider the well-known

and classical Langmuir isotherm (see [2]):

Γ (t) = Γm
KL c̃(t, 0)

1 +KL c̃(t, 0)
, t � 0, (2.6)

where Γm is the maximum surface concentration and KL is the Langmuir equilibrium

adsorption constant. Note also that boundary condition (2.2) together with (2.6) involve

the time derivative of the solution at the boundary, introducing then a dynamical boundary

condition. Notice that from (2.4)–(2.6) the following compatibility condition is needed:

Γ0 = Γm
KL c̃0(0)

1 +KL c̃0(0)
.

For the sake of clarity in the presentation and without loss of generality, hereinafter we

assume that the constants D,KL and Γm are equal to 1 and we define the nondecreasing

Lipschitz function F : � → � as follows

F(z) =

{ z

1 + z
if z � 0,

0 if z < 0.
(2.7)

Notice that a primitive to F given by

H(z) =

{
z − ln(1 + z) if z � 0,

0 if z < 0,
(2.8)

is nondecreasing and convex. Therefore, using (2.7), boundary condition (2.2) can be

written as

D
∂c̃

∂x
(t, 0) =

d(F ◦ c̃(t, 0))

dt
, t > 0. (2.9)

We remark that equation (2.9) determines a nonlinear dynamical boundary condition

due to the function F coming from Langmuir isotherm (see [12, 20] and the references

therein).

Now, in order to obtain a homogeneous boundary condition in the bulk and simplify

the calculations, we define a new variable c = c̃ − cb and then problem (2.1), (2.3)–(2.5)

and (2.9) can be written as follows:

∂c

∂t
(t, x) − ∂2c

∂x2
(t, x) = 0, t > 0, x ∈ (0, l), (2.10)

∂c

∂x
(t, 0) =

d(F ◦ (c(t, 0) + cb))

dt
, t > 0, (2.11)

c(t, l) = 0, t > 0, (2.12)

c(0, x) = c0(x), x ∈ (0, l), (2.13)

where c0(x) = c̃0(x) − cb.
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We now obtain the variational formulation of problem (2.10)–(2.13). We write H =

L2(0, l), with (·, ·)H and ‖ · ‖H its scalar product and its corresponding norm, respectively,

defined by (see [1]):

(v, w)H =

∫ l

0

v(x)w(x) dx, ‖v‖H = (v, v)
1/2
H , ∀v, w,∈ H.

Moreover, let V be the closed subspace of H1(0, l) given by

V = {v ∈ H1(0, l) ; v(l) = 0}.

On this space V we consider the inner product and the corresponding norm given by

((v, w)) =

∫ l

0

∂v

∂x
(x)

∂w

∂x
(x) dx, ‖v‖V = ((v, v))1/2, ∀v, w ∈ V .

Note that ‖ · ‖H1(0,l) and ‖ · ‖V are equivalent norms and so there exists a positive constant

Ce such that

‖v‖H1(0,l) � Ce‖v‖V , ∀v ∈ V . (2.14)

As usual, we denote the dual space to V by V ′ and the duality pairing of V and V ′ by

〈·, ·〉V ′×V . In what follows, we use the space V = L2(0, T ;V ) and

W(0, T ) =

{
v ∈ V ;

∂v

∂t
∈ V′

}
.

It is well known (see [19]) that W(0, T ) ⊂ V ⊂ L2(0, T ;H) ⊂ V′ and W(0, T ) ⊂
C([0, T ];H). Finally, we denote by γ0 : H1(0, l) → � the trace operator given by γ0(v) =

v(0). From the continuity of the trace operator, it follows that

|γ0(v)| � Ctr‖v‖V , (2.15)

for all v ∈ V with Ctr = ‖γ0‖L(V ,�). Moreover, we assume the following hypothesis:

(H1). The initial condition c0 belongs to V and −C � c0 � 0 a.e. in (0, l), where C is a

positive constant.

Now, assume that c is a smooth function which solves problem (2.10)–(2.13) and let v

be a smooth function such that v(t, l) = 0 a.e. t ∈ (0, T ). Multiplying equation (2.10) by v,

integrating in (0, l) and using integration by parts, we obtain

∫ l

0

∂c

∂t
(t, x)v(t, x)dx+

∫ l

0

∂c

∂x
(t, x)

∂v

∂x
(t, x)dx+

∂c

∂x
(t, 0)v(t, 0) = 0,

for a.e. t ∈ (0, T ). Using equation (2.11), we find that

∫ l

0

∂c

∂t
(t, x)v(t, x)dx+

∫ l

0

∂c

∂x
(t, x)

∂v

∂x
(t, x)dx+

d(F ◦ (c(t, 0) + cb))

dt
v(t, 0) = 0, (2.16)

for a.e. t ∈ (0, T ). Integrating now in (0, T ), we have the following weak formulation of

problem (2.10)–(2.13).
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Problem PW . For a given c0 ∈ H , find a function c ∈ W(0, T ) such that F(γ0(c(t)) + cb) ∈
H1(0, T ), and

∫ T

0

〈
∂c

∂t
(t), v(t)

〉
V ′×V

dt+

∫ T

0

((c(t), v(t)))dt

+

∫ T

0

d(F(γ0(c(t)) + cb))

dt
γ0(v(t)) dt = 0, ∀v ∈ V, (2.17)

c(0) = c0. (2.18)

We remark that the initial condition (2.18) makes sense since the inclusion W(0, T ) ⊂
C([0, T ];H) is satisfied.

3 Existence and uniqueness results

In this section, we use the Rothe method of semi-discretization in time (see [18]) in order

to prove the existence of solution to Problem PW . The scheme of the proof is as follows:

the first step is to consider the semi-discretization in time of problem (2.16) and show that

this problem has a unique solution; secondly, using this solution, we construct piecewise

constant and piecewise linear in time functions and then, using some estimates of these

functions and passing to the limit, we arrive at the existence result.

First of all, before dealing with the proof of existence, we introduce the following

technical lemma gathering the properties of functions F and H that will be useful later.

Lemma 1 Functions F and H , defined in (2.7) and (2.8), respectively, satisfy the following

properties:

F(z)z −H(z) � 0, ∀z ∈ �, (3.1)

(F(z1) − F(z2))(z1 − z2) � (F(z1) − F(z2))
2, ∀z1, z2 ∈ �. (3.2)

Proof Taking into account the definitions of functions F and H given by (2.7) and (2.8),

respectively, (3.1) is trivially obtained for z < 0. Otherwise, if z is nonnegative, we define

the function

G(z) = F(z)z −H(z),

and then, we have G(0) = 0 and G ∈ C1([0,∞)]. Moreover, for z � 0, G′(z) = z
(1+z)2

� 0

and, therefore, G(z) � G(0) = 0.

Thus, property (3.1) follows. Now, taking into account that F is nondecreasing and

1-Lipschitz, it follows that, for all z1, z2 ∈ �,

(F(z1) − F(z2))(z1 − z2) = |F(z1) − F(z2)| |z1 − z2| � (F(z1) − F(z2))
2,

and property (3.2) is obtained. �

Now, we prove the following preliminary result.
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Lemma 2 Assuming that cs−1 ∈ V and τ > 0, there exists a unique function cs ∈ V such

that, for all v ∈ V ,

∫ l

0

(cs − cs−1)

τ
vdx+

F(γ0(cs) + cb) − F(γ0(cs−1) + cb)

τ
γ0(v) +

∫ l

0

∂cs
∂x

∂v

∂x
dx = 0. (3.3)

Moreover, if −C � cs−1 � 0 a.e. in (0, l) then

−C � cs � 0 a.e. in (0, l), (3.4)

C being a positive constant.

Proof Existence. The proof of the existence of a solution to the nonlinear problem (3.3) is

based on the study of an intermediate problem, followed by the application of Brouwer’s

fixed point theorem (see [7]).

Intermediate problem. For a given cs−1 ∈ V , τ > 0 and c� ∈ �, find c ∈ V such that, for

all v ∈ V ,

∫ l

0

(c− cs−1)

τ
vdx+

F(c� + cb) − F(γ0(cs−1) + cb)

τ
γ0(v) +

∫ l

0

∂c

∂x

∂v

∂x
dx = 0. (3.5)

The existence of a unique solution to problem (3.5) can be straightforwardly proved

applying the Lax-Milgram theorem, by taking into account that the bilinear mapping

a(u, v) =

∫ l

0

u vdx+ τ

∫ l

0

∂u

∂x

∂v

∂x
dx

is continuous and coercive in V , and the functional

L(v) =

∫ l

0

cs−1 vdx+ (F(γ0(cs−1) + cb) − F(c� + cb)) γ0(v)

belongs to V ′.

Now, we define the operator G : � → � given by G(c�) = γ0(c), where c ∈ V is the

unique solution to problem (3.5) corresponding to c�. Moreover, for the operator G, we

find that G maps [−M,M] into itself, where

M :=
Ctr Ce‖cs−1‖H + C2

tr

τ
,

Ctr and Ce being the trace constant and the norms equivalence constant (see (2.15) and

(2.14), respectively).

Indeed, in order to prove that G maps [−M,M] into itself, we take c ∈ V as a test

function in (3.5) and we get

∫ l

0

c2dx+

∫ l

0

τ

(
∂c

∂x

)2

dx =

∫ l

0

cs−1 c dx+ (F(γ0(cs−1) + cb) − F(c� + cb))γ0(c).
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Using the Hölder and trace inequalities and the fact that |F(a)−F(b)| � 1, for all a, b ∈ �,

and taking into account that the first term of the previous equality is nonnegative and

(2.14), we have

τ‖c‖2
V � Ce‖cs−1‖H‖c‖V + Ctr‖c‖V .

Now, dividing by ‖c‖V and using the trace inequality again, we obtain

|γ0(c)| � Ctr
Ce‖cs−1‖H + Ctr

τ
= M.

In order to be able to apply Brouwer’s fixed point theorem, we have to show that

G is a continuous operator. For that purpose, let us consider {c�m}m∈� ⊂ � such that

{c�m}m∈� → c� in � and, for each c�m, m ∈ �, let cm be the solution to the problem:

∫ l

0

(cm − cs−1)

τ
vdx+

F(c�m + cb) − F(γ0(cs−1) + cb)

τ
γ0(v)

+

∫ l

0

∂cm
∂x

∂v

∂x
dx = 0, ∀v ∈ V . (3.6)

Subtracting (3.6) and (3.5) and taking v = cm − c ∈ V as a test function, we get

∫ l

0

(cm − c)2 dx+ τ

∫ l

0

(
∂(cm − c)

∂x

)2

dx = (F(c� + cb) − F(c�m + cb))γ0(cm − c).

Since the first term of the previous equality is nonnegative, it follows that

τ‖cm − c‖2
V � |F(c�m + cb) − F(c� + cb)| |γ0(cm − c)|.

Using the trace inequality (2.15) we obtain

τ

C2
tr

|γ0(cm − c)|2 � |F(c�m + cb) − F(c� + cb)| |γ0(cm − c)|.

Finally, taking into account that F is 1-Lipschitz, we have

|γ0(cm − c)| �
C2
tr

τ
|c�m − c�|.

Since |c�m−c�| → 0 we get the continuity of G. Therefore, Brouwer’s fixed-point theorem

guarantees the existence of a fixed point of G, i.e. there exists an element c� ∈ [−M,M]

such that G(c�) = c� and the result follows.

Uniqueness. Let us assume that there exist two solutions, c1s and c2s , to problem (3.3). We

subtract the resulting two equations obtained for cs = c1s and cs = c2s , respectively, and

take v = c1s − c2s ∈ V as a test function, then

∫ l

0

(
c1s − c2s

)2
dx+ τ

∫ l

0

(
∂

(
c1s − c2s

)
∂x

)2

dx

+ (F
(
γ0

(
c1s

)
+ cb

)
− F

(
γ0

(
c2s

)
+ cb

)
)γ0

(
c1s − c2s

)
= 0. (3.7)
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Since F is nondecreasing, all terms in the left-hand side are nonnegative. Therefore, we

can conclude from (3.7) that all its terms are equal to zero, and then c1s (x) = c2s (x) for

x ∈ (0, l).

In order to prove (3.4), we take v = c+s = max{cs, 0} ∈ V as a test function in (3.3) to

get

∫ l

0

(c+s )2 dx+ (F(γ0(cs) + cb) − F(γ0(cs−1) + cb))γ0(c
+
s ) + τ

∫ l

0

(
∂c+s
∂x

)2

dx

=

∫ l

0

cs−1 c
+
s dx.

Notice that, if γ0(c
+
s ) = 0, then the second term of the previous equation disappears.

On the contrary, if γ0(c
+
s ) is positive then γ0(cs) is positive. Moreover, since cs−1 � 0 a.e.

in (0, l) and cs−1 ∈ V ⊂ C([0, l]) (see [17]), it follows that γ0(cs−1) � 0. Then, due to the

nondecreasing behaviour of function F we know that F(γ0(cs)+ cb) −F(γ0(cs−1)+ cb) � 0.

Therefore, in both cases, the left-hand side of the previous equality is nonnegative, while

the right-hand side is nonpositive and we can conclude that c+s = 0 a.e. in (0, l). Thus

cs � 0 a.e. in (0, l).

Finally, we take v = (cs + C)− = max{0,−(cs + C)} ∈ H1(0, l). Notice that v(l) =

max{0,−(cs(l) + C)} = max{0,−C} = 0, then v ∈ V and it can be taken as a test function

in equation (3.3) to obtain

∫ l

0

(cs − cs−1)(cs + C)−dx+ (F(γ0(cs) + cb) − F(γ0(cs−1) + cb))γ0(cs + C)−

−τ
∫ l

0

(
∂(cs + C)−

∂x

)2

dx = 0. (3.8)

By using the hypothesis −C � cs−1 in (0, l) we have

∫ l

0

(cs − cs−1)(cs + C)−dx =

∫
[cs�−C]

(cs − cs−1)(cs + C)−dx � 0.

Moreover, if γ0(cs) < −C, then γ0(cs + C)− > 0 and γ0(cs) < γ0(cs−1). Taking into account

that F is nondecreasing we get F(γ0(cs)+cb) � F(γ0(cs−1)+cb). Hence, all terms in equation

(3.8) are nonpositive and then (cs + C)− = 0 a.e. in (0, l) and, consequently, −C � cs a.e.

in (0, l). �

Now, regarding cs as the solution to problem (3.3) at time t = s we define the following

piecewise constant and piecewise linear in time functions.

Definition 3.1 Assuming that c0 ∈ V , let cs be the solution to problem (3.3) at time

t = s, s ∈ �. Then, for (0, T ] =
⋃K
s=1((s − 1)τ, sτ], with τ = T/K and K ∈ �, we define

the piecewise linear and piecewise constant in time functions

c̃τ, cτ : [0, T ] → V
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given by

c̃τ(t, x) := cs(x), (3.9)

cτ(t, x) :=

(
s− t

τ

)
cs−1(x) +

(
t

τ
− s+ 1

)
cs(x), (3.10)

for x ∈ (0, l) and (s − 1)τ � t < sτ, s = 1, . . . , K . Moreover, we define Fτ : [0, T ] → � as

follows:

Fτ(t) :=

(
s− t

τ

)
F(γ0(cs−1) + cb) +

(
t

τ
− s+ 1

)
F(γ0(cs) + cb), (3.11)

for (s− 1)τ � t < sτ, s = 1, . . . , K .

Remark 1 Note that

∂cτ
∂t

(t, x) =
cs(x) − cs−1(x)

τ
, (3.12)

dFτ

dt
(t) =

F(γ0(cs) + cb) − F(γ0(cs−1) + cb)

τ
, (3.13)

for x ∈ (0, l) and (s − 1)τ < t < sτ, s = 1, . . . , K , and problem (3.3) can be written for a.e.

t ∈ (0, T ) in the form∫ l

0

∂cτ
∂t

v dx+
d Fτ

dt
γ0(v) +

∫ l

0

∂c̃τ
∂x

∂v

∂x
dx = 0, ∀v ∈ V . (3.14)

Note also that

cτ − c̃τ =

(
t

τ
− s

)
(cs − cs−1) =

(
t

τ
− s

)
τ

∂cτ
∂t
, (3.15)

for x ∈ (0, l) and (s− 1)τ < t < sτ, s = 1, . . . , K .

Definition 3.2 Regarding the functions F and H defined in (2.7) and (2.8), respectively,

for s = 1, . . . , K , we define

Ms :=

∫ l

0

c2s
2
dx+ F(γ0(cs) + cb)(γ0(cs) + cb) −H(γ0(cs) + cb),

and

Ns := cbF(γ0(cs) + cb).

We have the following energy decay property.

Lemma 3 Assuming that c0 ∈ V , it follows that

Ms + τ

∫ l

0

(
∂cs
∂x

)2

dx � Ms−1 + cb, s = 1, . . . , K, (3.16)

MK −NK � · · · � Ms −Ns � Ms−1 −Ns−1 � · · · � M0 −N0, (3.17)
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where cs ∈ V , s = 1, . . . , K , are the solutions to problem (3.3). Moreover,

s∑
n=1

τ

∫ l

0

(
∂cn
∂x

)2

dx � M0 + cb, s = 1, . . . , K, (3.18)

and

Ms � M0 + cb, s = 1, . . . , K. (3.19)

Proof Taking v = cs as a test function in problem (3.3), we get, for s = 1, . . . , K,

∫ l

0

(cs − cs−1)cs dx+ (F(γ0(cs) + cb) − F(γ0(cs−1) + cb))γ0(cs) + τ

∫ l

0

(
∂cs
∂x

)2

dx = 0.

Furthermore, using the fact that x(x − y) � (x2 − y2)/2, for x, y ∈ �, in the first term of

the latter expression, we have, for s = 1, . . . , K ,

∫ l

0

c2s
2
dx−

∫ l

0

c2s−1

2
dx+ (F(γ0(cs) + cb) − F(γ0(cs−1) + cb))(γ0(cs) + cb − cb)

+τ

∫ l

0

(
∂cs
∂x

)2

dx � 0. (3.20)

Keeping in mind that

(F(γ0(cs) + cb) − F(γ0(cs−1) + cb))(γ0(cs) + cb) = F(γ0(cs) + cb)(γ0(cs) + cb)

−F(γ0(cs−1) + cb)(γ0(cs−1) + cb)

+F(γ0(cs−1) + cb)
(
(γ0(cs−1) + cb) − (γ0(cs) + cb)

)
, (3.21)

and, since the primitive H of F , defined in (2.8), is convex, we get (see [7])

H(γ0(cs−1) + cb) −H(γ0(cs) + cb) � F(γ0(cs−1) + cb)(γ0(cs−1) − γ0(cs)). (3.22)

Taking into account (3.21) and (3.22) in (3.20), we obtain, for s = 1, . . . , K ,

∫ l

0

c2s
2
dx−

∫ l

0

c2s−1

2
dx+ F(γ0(cs) + cb)(γ0(cs) + cb) − F(γ0(cs−1) + cb)(γ0(cs−1) + cb)

+H(γ0(cs−1) + cb) −H(γ0(cs) + cb) − cbF(γ0(cs) + cb) + cbF(γ0(cs−1) + cb)

+τ

∫ l

0

(
∂cs
∂x

)2

dx � 0.

Therefore, it follows that, for s = 1, . . . , K ,

Ms −Ms−1 −Ns +Ns−1 + τ

∫ l

0

(
∂cs
∂x

)2

dx � 0, (3.23)
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and we find that, for s = 1, . . . , K ,

Ms + τ

∫ l

0

(
∂cs
∂x

)2

dx � Ms−1 −Ns−1 +Ns. (3.24)

We remark here that, since we have F(z) ∈ [0, 1) for all z ∈ �, we get 0 � Ns < cb, for

s = 1, . . . , K , and, from (3.24), we conclude that

Ms + τ

∫ l

0

(
∂cs
∂x

)2

dx � Ms−1 +Ns � Ms−1 + cb, s = 1, . . . , K. (3.25)

Thus, (3.16) holds. Moreover, from (3.23) and taking into account that its fifth term is

nonnegative, we get

Ms −Ns � Ms−1 −Ns−1, s = 1, . . . , K,

and (3.17) holds. Also, from (3.23) we have

Ms −Ns + τ

∫ l

0

(
∂cs
∂x

)2

dx � Ms−1 −Ns−1, s = 1, . . . , K,

and adding the term τ
∑s−1

n=1

∫ l
0 (

∂cn
∂x

)2dx to both sides of the latter inequality, it follows that

Ms −Ns + τ

s∑
n=1

∫ l

0

(
∂cn
∂x

)2

dx � M0 −N0, s = 1, . . . , K.

Finally, considering that Ns ∈ [0, cb], s = 0, . . . , K, we obtain, for s = 1, . . . , K ,

Ms + τ

s∑
n=1

∫ l

0

(
∂cn
∂x

)2

dx � M0 −N0 +Ns � M0 +Ns � M0 + cb. (3.26)

Note that we can guarantee that Ms � 0 taking into account that its first term is

nonnegative and using (3.1). Thus, from (3.26) we obtain (3.18) and (3.19). �

We have the following a priori estimates.

Proposition 1 Assuming the hypothesis (H1) with C = cb, then functions c̃τ and cτ, defined

in (3.9) and (3.10), respectively, are bounded in the space L2(0, T ;H1(0, l)). Moreover, cτ
is bounded in H1(0, T ;H) and Fτ, defined in (3.11), is bounded in H1(0, T ) independently

of τ. Furthermore,

‖cτ − c̃τ‖2
L2(0,T ;H) � C1τ

2, (3.27)

‖γ0(cτ) − γ0(c̃τ)‖2
L2(0,T ) � C2τ

2, (3.28)

where C1 and C2 are real positive constants independent of τ.
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Proof First, we prove that c̃τ is bounded in L2(0, T ;H1(0, l)). Indeed, by definition we

have

‖c̃τ‖2
L2(0,T ;H) =

∫ T

0

‖c̃τ(t)‖2
Hdt

=

K∑
s=1

∫ sτ

(s−1)τ

(∫ l

0

(c̃τ(t, x))
2dx

)
dt

=

K∑
s=1

∫ sτ

(s−1)τ

(∫ l

0

(cs(x))
2dx

)
dt. (3.29)

Using property (3.1) and Lemma 3, we know that

∫ l

0

(cs(x))
2

2
dx � Ms � M0 + cb, s = 1, . . . , K,

and thus, ∫ l

0

(cs(x))
2dx � 2(M0 + cb), s = 1, . . . , K. (3.30)

Keeping in mind (3.29) and (3.30), it follows that

‖c̃τ‖2
L2(0,T ;H) �

K∑
s=1

∫ sτ

(s−1)τ

(2M0 + 2cb) dt = (2M0 + 2cb)τK = (2M0 + 2cb)T . (3.31)

Moreover, considering inequalities (3.18) and (3.31), we have

‖c̃τ‖2
L2(0,T ;H1(0,l)) =

∫ T

0

‖c̃τ(t)‖2
H1(0,l)dt

=

K∑
s=1

∫ sτ

(s−1)τ

(∫ l

0

(cs(x))
2dx+

∫ l

0

(
∂cs
∂x

(x)

)2

dx

)
dt

� (2M0 + 2cb)T +

K∑
s=1

τ

∫ l

0

(
∂cs
∂x

(x)

)2

dx

� (2M0 + 2cb)T +M0 + cb.

Thus, we can conclude that c̃τ is bounded in L2(0, T ;H1(0, l)) independently of τ. The

following step is to show that cτ is bounded in L2(0, T ;H1(0, l)) as well. Indeed, by

definition we get

‖cτ‖2
L2(0,T ;H) =

∫ T

0

‖cτ(t)‖2
Hdt =

∫ T

0

∥∥∥∥
(
s− t

τ

)
cs−1 +

(
t

τ
− s+ 1

)
cs

∥∥∥∥
2

H

dt.

Regarding that f(x) = ‖x‖2 is a convex function and for (s − 1)τ � t � sτ, s = 1, . . . , K ,
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we get that 0 � s− t
τ
< 1, then

‖cτ‖2
L2(0,T ;H) �

∫ T

0

((
s− t

τ

)
‖cs−1‖2

H +

(
t

τ
− s+ 1

)
‖cs‖2

H

)
dt

=

∫ T

0

((
s− t

τ

) ∫ l

0

(cs−1(x))
2dx+

(
t

τ
− s+ 1

) ∫ l

0

(cs(x))
2dx

)
dt.

Now, using inequality (3.30), we have

‖cτ‖2
L2(0,T ;H) �

K∑
s=1

∫ sτ

(s−1)τ

((
s− t

τ

)
2(M0 + cb) +

(
t

τ
− s+ 1

)
2(M0 + cb)

)
dt

=

K∑
s=1

∫ sτ

(s−1)τ

2(M0 + cb) dt = 2(M0 + cb)

K∑
s=1

τ = 2(M0 + cb)T .

Using the same arguments, we also get

∥∥∥∥∂cτ
∂x

∥∥∥∥
2

L2(0,T ;H)

=

∫ T

0

∥∥∥∥∂cτ
∂x

(t)

∥∥∥∥
2

H

=

∫ T

0

∥∥∥∥
(
s− t

τ

)
∂cs−1

∂x
+

(
t

τ
− s+ 1

)
∂cs
∂x

∥∥∥∥
2

H

dt

�
K∑
s=1

∫ sτ

(s−1)τ

((
s− t

τ

)∫ l

0

(
∂cs−1

∂x
(x)

)2

dx+

(
t

τ
− s+ 1

) ∫ l

0

(
∂cs
∂x

(x)

)2

dx

)
dt

=
τ

2

∫ l

0

(
∂c0
∂x

(x)

)2

dx+

K−1∑
s=1

τ

2

∫ l

0

(
∂cs
∂x

(x)

)2

dx+

K∑
s=1

τ

2

∫ l

0

(
∂cs
∂x

(x)

)2

dx,

and, using (3.18) and keeping in mind that τ � T , we obtain

∥∥∥∥∂cτ
∂x

∥∥∥∥
2

L2(0,T ;H)

�
τ

2
‖c0‖2

V +
1

2
(M0 + cb) +

1

2
(M0 + cb) �

T

2
‖c0‖2

V +M0 + cb.

In order to prove that cτ is bounded in H1(0, T ;H), it is enough to show that ∂cτ
∂t

is bounded in L2(0, T ;H) since the boundedness of cτ in L2(0, T ;H) has already been

proven. Taking v = cs − cs−1 ∈ V as a test function in (3.14), we get, for a.e. t ∈ (0, T ) and

s = 1, . . . , K ,

∫ l

0

∂cτ
∂t

(cs − cs−1) dx+
d Fτ

dt
γ0(cs − cs−1) +

∫ l

0

∂cs
∂x

∂(cs − cs−1)

∂x
dx = 0.
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Then, considering (3.12) and (3.13), it follows that, for a.e. t ∈ (0, T ) and s = 1, . . . , K ,

∫ l

0

(cs − cs−1)
2

τ
dx+

F(γ0(cs) + cb) − F(γ0(cs−1) + cb)

τ
γ0(cs − cs−1)

+

∫ l

0

∂cs
∂x

∂(cs − cs−1)

∂x
dx = 0.

Using the fact that x(x − y) � x2

2
− y2

2
, for x, y ∈ �, in the third term of the previous

equality, we have, for s = 1, . . . , K ,

∫ l

0

(cs − cs−1)
2

τ
dx+

F(γ0(cs) + cb) − F(γ0(cs−1) + cb)

τ
γ0(cs − cs−1)

+

∫ l

0

1

2

(
∂cs
∂x

)2

dx �

∫ l

0

1

2

(
∂cs−1

∂x

)2

dx. (3.32)

Now, using (3.2), we obtain, for s = 1, . . . , K ,

∫ l

0

(cs − cs−1)
2

τ
dx+

(F(γ0(cs) + cb) − F(γ0(cs−1) + cb))
2

τ
+

∫ l

0

1

2

(
∂cs
∂x

)2

dx

�

∫ l

0

1

2

(
∂cs−1

∂x

)2

dx.

Adding the term

s−1∑
n=1

(∫ l

0

(cn − cn−1)
2

τ
dx+

(F(γ0(cn) + cb) − F(γ0(cn−1) + cb))
2

τ

)

to both sides of the previous inequality, we find that, for s = 1, . . . , K ,

s∑
n=1

∫ l

0

(cn − cn−1)
2

τ
dx+

s∑
n=1

(
F(γ0(cn) + cb) − F(γ0(cn−1) + cb)

)2

τ

+

∫ l

0

1

2

(
∂cs
∂x

)2

dx �

∫ l

0

1

2

(
∂c0
∂x

)2

dx.

Then, since all terms of the left-hand side are nonnegative, it follows that, for s = 1, . . . , K ,

s∑
n=1

∫ l

0

(cn − cn−1)
2

τ
dx �

∫ l

0

1

2

(
∂c0
∂x

)2

dx, (3.33)

s∑
n=1

(F(γ0(cn) + cb) − F(γ0(cn−1) + cb))
2

τ
�

∫ l

0

1

2

(
∂c0
∂x

)2

dx. (3.34)
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Therefore, using (3.12) and (3.33) we have

∥∥∥∥∂cτ
∂t

∥∥∥∥
2

L2(0,T ;H)

=

∫ T

0

∥∥∥∥∂cτ
∂t

(t)

∥∥∥∥
2

H

dt =

K∑
s=1

∫ sτ

(s−1)τ

∫ l

0

(
∂cτ
∂t

(t, x)

)2

dx dt

=

K∑
s=1

∫ sτ

(s−1)τ

∫ l

0

(cs − cs−1)
2

τ2
dx dt =

K∑
s=1

τ

∫ l

0

(cs − cs−1)
2

τ2
dx

�

∫ l

0

1

2

(
∂c0
∂x

)2

dx =
‖c0‖2

V

2
,

and the result follows.

Moreover, regarding Fτ and keeping in mind (3.13), we obtain

‖Fτ‖2
H1(0,T ) =

∫ T

0

|Fτ(t)|2dt+
∫ T

0

∣∣∣∣dFτdt (t)

∣∣∣∣
2

dt

�
K∑
s=1

∫ sτ

(s−1)τ

((
s− t

τ

)
|F(γ0(cs−1) + cb)|2 +

(
t

τ
− s+ 1

)
|F(γ0(cs) + cb)|2

)
dt

+

K∑
s=1

∫ sτ

(s−1)τ

(F(γ0(cs) + cb) − F(γ0(cs−1) + cb))
2

τ2
dt.

Taking into account that |F(z)| � 1, for all z ∈ �, and applying (3.34), we get

‖Fτ‖2
H1(0,T ) �

K∑
s=1

τ+

K∑
s=1

τ
(F(γ0(cs) + cb) − F(γ0(cs−1) + cb))

2

τ2

� T +

∫ l

0

1

2

(
∂c0
∂x

)2

dx = T +
‖c0‖2

V

2
.

Note also that

‖cτ − c̃τ‖2
L2(0,T ;H) =

∫ T

0

‖cτ(t) − c̃τ(t)‖2
Hdt

=

K∑
s=1

∫ sτ

(s−1)τ

(
t

τ
− s

)2 ∫ l

0

(cs(x) − cs−1(x))
2dx dt

=

K∑
s=1

τ

3

∫ l

0

(cs(x) − cs−1(x))
2dx

=
τ2

3

K∑
s=1

∫ l

0

(cs(x) − cs−1(x))
2

τ
dx,

https://doi.org/10.1017/S0956792514000199 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000199


644 J. R. Fernández et al.

and using (3.33) we get

‖cτ − c̃τ‖2
L2(0,T ;H) �

τ2

3

∫ l

0

1

2

(
∂c0
∂x

)2

dx = C1 τ
2,

where C1 = ‖c0‖2
V /6. Finally, we find that

‖γ0(cτ(t)) − γ0(c̃τ(t))‖2
L2(0,T ) =

∫ T

0

|γ0(cτ(t)) − γ0(c̃τ(t))|2dt

=

K∑
s=1

∫ sτ

(s−1)τ

(
t

τ
− s

)2

(γ0(cs) − γ0(cs−1))
2dt

=
τ2

3

K∑
s=1

(γ0(cs) − γ0(cs−1))
2

τ
. (3.35)

By using hypothesis (H1) for C = cb and Lemma 2, it follows that −cb � cs � 0 for

s = 1, . . . , K . Hence, we have

−cb � γ0(cs) � 0, s = 1, . . . , K, (3.36)

and then

0 � γ0(cs) + cb � cb, s = 1, . . . , K. (3.37)

Considering the definition of function F and (3.36), we have, for s = 1, . . . , K ,

(F(γ0(cs) + cb) − F(γ0(cs−1) + cb))(γ0(cs) − γ0(cs−1))

=
( γ0(cs) + cb

1 + γ0(cs) + cb
− γ0(cs−1) + cb

1 + γ0(cs−1) + cb

)
(γ0(cs) − γ0(cs−1))

=
(γ0(cs) − γ0(cs−1))

2

(1 + γ0(cs) + cb)(1 + γ0(cs−1) + cb)

�
(γ0(cs) − γ0(cs−1))

2

(1 + cb)2
,

and, using this inequality in (3.32), we obtain, for s = 1, . . . , K ,

∫ l

0

(cs − cs−1)
2

τ
dx+

(γ0(cs) − γ0(cs−1))
2

τ(1 + cb)2
+

∫ l

0

1

2

(
∂cs
∂x

)2

dx �

∫ l

0

1

2

(
∂cs−1

∂x

)2

dx.

Adding the term

s−1∑
n=1

(∫ l

0

(cn − cn−1)
2

τ
dx+

(γ0(cn) − γ0(cn−1))
2

τ(1 + cb)2

)
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to both sides of the previous inequality, we get, for s = 1, . . . , K ,

s∑
n=1

∫ l

0

(cn − cn−1)
2

τ
dx+

s∑
n=1

(γ0(cn) − γ0(cn−1))
2

τ(1 + cb)2
+

∫ l

0

1

2

(
∂cs
∂x

)2

dx

�

∫ l

0

1

2

(
∂c0
∂x

)2

dx.

From this inequality, we have, for s = 1, . . . , K ,

s∑
n=1

(γ0(cn) − γ0(cn−1))
2

τ
�

(1 + cb)
2

2

∫ l

0

(
∂c0
∂x

)2

dx,

and using this expression in (3.35), we conclude that

‖γ0(cτ) − γ0(c̃)‖2
L2(0,T ) � C2τ

2,

where C2 = (1+cb)
2

6
‖c0‖2

V . �

The following theorem establishes the existence of a unique solution to Problem PW .

Theorem 3.3 Assuming that hypothesis (H1) holds with C = cb, then there exists a unique

solution to Problem PW with the regularity

c ∈ H1(0, T ;H) ∩ L2(0, T ;H1(0, l)),

F(γ0(c) + cb) ∈ H1(0, T ), F(γ0(c(0)) + cb) = F(γ0(c0) + cb).

Moreover, this solution also satisfies

−cb � c(t, x) � 0 a.e. in QT = (0, T ) × (0, l). (3.38)

Proof Existence. The estimates of Proposition 1 and the reflexivity of the space L2(0, T ;V )

lead to the existence of a function c ∈ L2(0, T ;V ) such that, for a subsequence (not

relabelled),

c̃τ ⇀ c weakly in L2(0, T ;V ), (3.39)

cτ ⇀ c weakly in L2(0, T ;V ). (3.40)

Notice that the weak limits of these sequences coincide in L2(0, T ;H) due to (3.27).

Moreover, the estimates of Proposition 1 establish that the sequence cτ is bounded in

W = {u ∈ L2(0, T ;V );
∂u

∂t
∈ L2(0, T ;H)}.
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Since W is reflexive, there exists an element c� ∈ W and a subsequence, still denoted by

τ, such that

cτ ⇀ c� weakly in W.

That is, we have

cτ ⇀ c� weakly in L2(0, T ;V ),
∂cτ
∂t

⇀
∂c�
∂t

weakly in L2(0, T ;H). (3.41)

By the convergence (3.40) and the uniqueness of the weak limit we deduce that c = c�.

Furthermore, using the Lions-Aubin Lemma (see [19]) with B0 = V and B = B1 = H and

taking into account that the embedding V ↪→ H is compact, we get

cτ → c in L2(0, T ;H). (3.42)

Moreover, since H ↪→ (H1(0, l))′, there exists a subsequence of cτ (still relabelled by τ)

weakly convergent to c in

W1 = {u ∈ L2(0, T ;H1(0, l));
∂u

∂t
∈ L2(0, T ; (H1(0, l))′)}.

Taking into account the following space (see [17]):

Wε,2(0, l) =

{
u ∈ H;

|u(x) − u(y)|
|x− y|ε+ 1

2

∈ L2((0, l) × (0, l))

}
,

for 1
2
< ε < 1 and using the Lions-Aubin Lemma again, with B0 = H1(0, l), B = Wε,2(0, l)

and B1 = (H1(0, l))′ and regarding that H1(0, l) ↪→ Wε,2(0, l) is compact (see [17]) and

Wε,2(0, l) ↪→ (H1(0, l))′, we have

cτ → c in L2(0, T ;Wε,2(0, l)).

Now, taking into account that the trace operator is linear and continuous (see [4]), we

obtain

γ0(cτ) → γ0(c) in L2(0, T ).

Besides, using (3.28) we find that

γ0(c̃τ) → γ0(c) in L2(0, T ). (3.43)

Since Fτ is bounded in H1(0, T ) and this space is reflexive, we can extract a subsequence

of τ, still denoted by τ, such that, for some F� ∈ H1(0, T ), we get

Fτ ⇀ F� weakly in H1(0, T ). (3.44)

Due to the fact that the inclusion H1(0, T ) ↪→ L2(0, T ) is compact, it follows that

Fτ → F� in L2(0, T ). (3.45)
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Moreover, taking t ∈ ((s− 1)τ, sτ), s = 1, . . . , K, and using

Fτ(t) − F(γ0(c̃τ(t)) + cb)

=

(
s− t

τ

)
F(γ0(cs−1) + cb) +

(
t

τ
− s+ 1

)
F(γ0(cs) + cb) − F(γ0(cs) + cb)

=

(
t

τ
− s

)
(F(γ0(cs) + cb) − F(γ0(cs−1) + cb)),

together with (3.34), we get

‖Fτ − F(γ0(c̃τ) + cb)‖2
L2(0,T ) =

∫ T

0

|Fτ(t) − F(γ0(c̃τ(t)) + cb)|2dt

=

K∑
s=1

∫ sτ

(s−1)τ

(
t

τ
− s

)2

(F(γ0(cs) + cb) − F(γ0(cs−1) + cb))
2dt

=

K∑
s=1

τ

3
(F(γ0(cs) + cb) − F(γ0(cs−1) + cb))

2

=
τ2

3

K∑
s=1

(F(γ0(cs) + cb) − F(γ0(cs−1) + cb))
2

τ
� τ2

‖c0‖2
V

6
.

Then, letting τ → 0, we deduce

Fτ − F(γ0(c̃τ) + cb) → 0 in L2(0, T ),

and using (3.43) and (3.45), we find that F� = F(γ0(c)+ cb) a.e. in (0, T ) and, consequently,

Fτ → F(γ0(c) + cb) in L2(0, T ). (3.46)

Taking v ∈ V, and integrating (3.14) from t = 0 to t = T , we obtain

∫ T

0

∫ l

0

∂cτ
∂t

v dx dt+

∫ T

0

dFτ

dt
γ0(v) dt +

∫ T

0

∫ l

0

∂c̃τ
∂x

∂v

∂x
dx dt = 0.

Using (3.39), (3.41) and (3.44) and passing to the limit when τ → 0,

∫ T

0

∫ l

0

∂c

∂t
v dx dt+

∫ T

0

dF(γ0(c) + cb)

dt
γ0(v) dt+

∫ T

0

∫ l

0

∂c

∂x

∂v

∂x
dx dt = 0

for any v ∈ V, and therefore (2.17) holds. Moreover, let us take v ∈ V independent of t,

that is to say v(t, x) = v(x), using integration by parts and considering the definition of cτ
given in (3.10), we get, for a.e. t ∈ (0, T ),

∫ t

0

(
∂cτ
∂t

(t), v

)
H

dt = (cτ(t), v)H − (cτ(0), v)H = (cτ(t), v)H − (c0, v)H. (3.47)
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Furthermore, using (3.42) we have

cτ(t) −→ c(t) in H, for a.e. t ∈ (0, T ).

Thus, passing to the limit in (3.47), taking into account (3.41) and integration by parts,

we obtain

(c(t), v)H − (c(0), v)H =

∫ t

0

(
∂c

∂t
(t), v

)
H

dt = (c(t), v)H − (c0, v)H,

for a.e. t ∈ (0, T ). Therefore

(c(0) − c0, v)H = 0, ∀v ∈ V ,

and, since V is dense in H , (2.18) holds a.e. in (0, l).

Note also that, using integration by parts, we have

∫ t

0

dFτ

dt
(t) dt = Fτ(t) − Fτ(0) = Fτ(t) − F(γ0(c0) + cb), for a.e. t ∈ (0, T ).

Besides, using (3.46), passing to the limit in the previous expression and applying integra-

tion by parts, we get, for a.e. t ∈ (0, T ),

F(γ0(c(t)) + cb) − F(γ0(c(0)) + cb) =

∫ t

0

dF(γ0(c(t)) + cb)

dt
dt

= F(γ0(c(t)) + cb) − F(γ0(c0) + cb).

Thus, the previous expression yields

F(γ0(c(0)) + cb) = F(γ0(c0) + cb). (3.48)

Using (3.27) and (3.42), we deduce that

c̃τ → c in L2(QT ).

Then, for a subsequence (see [1])

c̃τ → c a.e. in QT . (3.49)

By using hypothesis (H1) with C = cb, −cb � cs(x) � 0 a.e. in (0, l) and then, by

construction, −cb � c̃τ � 0 also holds a.e. in QT . Thus, keeping in mind (3.49), we get

(3.38).

Uniqueness. In order to prove the uniqueness of solution to Problem PW , we proceed

using several arguments already introduced in [11] which are detailed here for the reader’s

convenience. We consider ψ ∈ V and we define

vτ,n(t, x) = ϕτ,n(t)ψ(x),
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where

ϕτ,n(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 if t ∈ [0, τ],

n(τ− t) + 1 if t ∈ [τ, τ+ 1
n
],

0 if t ∈ [τ+ 1
n
, T ],

for τ ∈ (0, T ) and n ∈ �. Since vτ,n ∈ V, we can use it as a test function in equation (2.17)

to get ∫ T

0

〈
∂c

∂t
(t), vτ,n(t)

〉
V ′×V

dt+

∫ T

0

((c(t), vτ,n(t))) dt

+

∫ T

0

d(F(γ0(c(t)) + cb))

dt
γ0(vτ,n(t)) dt = 0. (3.50)

Notice that vτ,n ∈ H1(0, T ;V ) and therefore, using Theorem 11.5 in [3] and taking into

account that vτ,n(T , x) = 0 for a.e. x ∈ (0, l), the first term of the previous expression

reads, for all τ ∈ (0, T ),∫ T

0

〈
∂c

∂t
(t), vτ,n(t)

〉
V ′×V

dt = −
∫ T

0

〈c(t), ∂vτ,n
∂t

(t)〉V×V ′ − (c(0), vτ,n(0))H

= n

∫ τ+ 1
n

τ

(c(t), ψ)H dt− (c0, ψ)H. (3.51)

Furthermore, using integration by parts, considering ϕτ,n(T ) = 0 in the third term of

equation (3.50) and taking into account expression (3.48), we obtain, for all τ ∈ (0, T ),∫ T

0

d(F(γ0(c(t)) + cb))

dt
γ0(vτ,n(t)) dt = −

∫ T

0

F(γ0(c(t)) + cb) γ0(ψ)
dϕτ,n

dt
(t) dt

−F(γ0(c0) + cb) γ0(ψ)ϕτ,n(0)

=

∫ τ+ 1
n

τ

n F(γ0(c(t)) + cb) γ0(ψ) dt− F(γ0(c0) + cb) γ0(ψ). (3.52)

Therefore, taking into account (3.51) and (3.52), equation (3.50) reads

∫ τ+ 1
n

τ

(c(t), ψ)H n dt+

∫ T

0

ϕτ,n(t) ((c(t), ψ)) dt+

∫ τ+ 1
n

τ

n F(γ0(c(t)) + cb) γ0(ψ) dt

= (c0, ψ)H + F(γ0(c0) + cb) γ0(ψ), ∀τ ∈ (0, T ). (3.53)

Now, let c1 and c2 be two solutions to Problem PW . Subtracting the resulting equations

obtained from the previous expression for c = c1 and c = c2, we get, for all τ ∈ (0, T ),

∫ τ+ 1
n

τ

(c1(t) − c2(t), ψ)H n dt+

∫ τ+ 1
n

0

((c1(t) − c2(t), ψ))ϕτ,n(t) dt

+

∫ τ+ 1
n

τ

(F(γ0(c1(t)) + cb) − F(γ0(c2(t)) + cb)) n γ0(ψ) = 0, ∀ψ ∈ V . (3.54)
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Taking into account that c1, c2 ∈ W(0, T ) ⊂ C([0, T ];H) (see [18]) and using the mean

value theorem, we have, for t� ∈ [τ, τ+ 1
n
],

∫ τ+ 1
n

τ

(c1(t) − c2(t), ψ)H n dt = (c1(t
�) − c2(t

�), ψ)H. (3.55)

We notice that

∫ τ+ 1
n

0

((c1(t) − c2(t), ψ))ϕτ,n(t) dt

=

∫ T

0

χ

(
0, τ+

1

n

)
((c1(t) − c2(t), ψ))ϕτ,n(t) dt, (3.56)

where χ(0, τ+ 1
n
) denotes the characteristic function over the interval (0, τ+ 1

n
). Now, we

define a sequence of functions given by

fn(t) := χ

(
0, τ+

1

n

)
((c1(t) − c2(t), ψ))ϕτ,n(t), n ∈ �.

We remark that fn ∈ L1(0, T ) for each n ∈ �, and the family of functions fn, n ∈ �,

satisfies

fn(t) −→ f(t), a.e. t ∈ (0, T ),

where

f(t) = χ(0, τ)((c1(t) − c2(t), ψ))

and

|fn(t)| � g(t), a.e. t ∈ (0, T ), (3.57)

with

g(t) = ((c1(t) − c2(t), ψ)).

Then, applying the Lebesgue dominated convergence theorem, we can conclude that

f ∈ L1(0, T ) and

∫ τ+ 1
n

0

((c1(t) − c2(t), ψ))ϕτ,n(t) dt −→
∫ τ

0

((c1(t) − c2(t), ψ)) dt. (3.58)

Moreover, considering that F(γ0(ci(t)) + cb) ∈ H1(0, T ) ⊂ C([0, T ]), for i = 1, 2, and using

the mean value theorem, it follows that, for a given t�� ∈ [τ, τ+ 1
n
],

∫ τ+ 1
n

τ

(F(γ0(c1(t)) + cb) − F(γ0(c2(t)) + cb)) nψ(0) dt

= (F(γ0(c1(t
��)) + cb) − F(γ0(c2(t

��)) + cb))ψ(0). (3.59)

Therefore, passing to the limit when n → ∞ in (3.54) and taking into account (3.55),
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(3.58) and (3.59), it follows that, for all ψ ∈ V and for a.e. τ ∈ (0, T ),

(c1(τ) − c2(τ), ψ)H +

∫ τ

0

((c1(t) − c2(t), ψ)) dt

+(F(γ0(c1(τ)) + cb) − F(γ0(c2(τ)) + cb))ψ(0) = 0. (3.60)

Now, we fix τ ∈ (0, T ) and we take ψ = c1(τ) − c2(τ) in (3.60) to obtain

∫ l

0

(c1(τ, x) − c2(τ, x))
2dx+

∫ τ

0

((c1(t) − c2(t), c1(τ) − c2(τ))) dt

+(F(γ0(c1(τ)) + cb) − F(γ0(c2(τ)) + cb))(γ0(c1(τ)) − γ0(c2(τ))) = 0.

Since F is nondecreasing, the last term of the previous equality is nonnegative, and then,

for a.e. τ ∈ (0, T ),

‖c1(τ) − c2(τ)‖2
H

+

∫ τ

0

∫ l

0

(
∂c1
∂x

(t, x) − ∂c2
∂x

(t, x)

) (
∂c1
∂x

(τ, x) − ∂c2
∂x

(τ, x)

)
dx dt � 0. (3.61)

Taking into account
∂c1
∂x

− ∂c2
∂x

∈ L2(0, T ;H), we define the function

β(τ) :=

∫ τ

0

(
∂c1
∂x

(s) − ∂c2
∂x

(s)

)
ds

which belongs to W 1,2(0, T ;H) (see [19], page 104), and satisfies

dβ

dτ
(τ) =

∂c1
∂x

(τ) − ∂c2
∂x

(τ).

Thus, we deduce (see Chapter III, Corollary 1.1, in [19]),

1

2

d

dτ
‖β(τ)‖2

H =

(
dβ

dτ
(τ), β(τ)

)
H

=

∫ l

0

∫ τ

0

(
∂c1
∂x

(s) − ∂c2
∂x

(s)

)
ds

(
∂c1
∂x

(τ) − ∂c2
∂x

(τ)

)
dτ.

Therefore, taking into account the Fubini Theorem (see Theorem IV.5 in [1]), we can

change the order of the integrals and then replace the previous equality in estimate (3.61)

to obtain, for a.e. τ ∈ (0, T ),

‖c1(τ) − c2(τ)‖2
H +

1

2

d

dτ
‖β(τ)‖2

H � 0.

Integrating from 0 to T , we have

∫ T

0

‖c1(τ) − c2(τ)‖2
Hdτ+

1

2

∫ T

0

d

dτ
‖β(τ)‖2

Hdτ � 0,
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and therefore ∫ T

0

‖c1(τ) − c2(τ)‖2
Hdτ+

1

2
‖β(T )‖2

H � 0.

Consequently, c1 = c2 a.e in QT . �

4 Conclusions

A model was used to describe the dynamics of several surfactants at the air-water

interface taking into account the Langmuir isotherm to tackle the time-dependent surface

concentration. It introduced a nonlinearity at the boundary terms involving the time

derivative of the solution. Existence of a bounded weak solution was obtained by using

the Rothe method for a semi-discrete problem in time, and an uniqueness result was also

stated.
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