THE REVIEW OF SYMBOLIC LOGIC
Volume 12, Number 1, March 2019

A NOTE ON THE REVERSE MATHEMATICS OF THE SORITES
DAMIR D. DZHAFAROV

Department of Mathematics, University of Connecticut

Abstract. Sorites is an ancient piece of paradoxical reasoning pertaining to sets with the fol-
lowing properties: (Supervenience) elements of the set are mapped into some set of “attributes’;
(Tolerance) if an element has a given attribute then so are the elements in some vicinity of this
element; and (Connectedness) such vicinities can be arranged into pairwise overlapping finite chains
connecting two elements with different attributes. Obviously, if Superveneince is assumed, then
(1) Tolerance implies lack of Connectedness, and (2) Connectedness implies lack of Tolerance.
Using a very general but precise definition of “vicinity”, Dzhafarov & Dzhafarov (2010) oftered
two formalizations of these mutual contrapositions. Mathematically, the formalizations are equally
valid, but in this paper, we offer a different basis by which to compare them. Namely, we show
that the formalizations have different proof-theoretic strengths when measured in the framework of
reverse mathematics: the formalization of (1) is provable in RCA(, while the formalization of (2)
is equivalent to ACAg over RCA. Thus, in a certain precise sense, the approach of (1) is more
constructive than that of (2).

§1. Introduction. In November of 2009, the Reverse Mathematics: Foundations and
Applications workshop at the University of Chicago asked about using mathematical logic
as a possible new basis for judging and comparing alternative and competing quantitative
approaches to problems in cognitive science. There have been several papers written in this
direction (e.g., [2, 6]), and this note is a further such contribution. In it, we show that two
ostensibly equivalent mathematical approaches for a certain problem in cognitive science
can be teased apart in terms of their logical (or proof-theoretic) strength.

Sorites is a “paradox” attributed to Eubulites of Miletus, a philosopher of the Megarian
School in the 4th century BCE. It continues to be of interest to philosophers of mind and
philosophers of language, as well as logicians and cognitive scientists. The essence of
the two original versions of Sorites (known as The Heap and The Bald Man) is that if
natural numbers can be classified as very large and not very large, and if N is a very
large number (of grains in a large heap of sand, or of hairs in a full head of hair), then
so is N — 1; but by repeated subtractions of 1 (removing grains or hairs one-by-one) one
can get from N to any n that is not a very large number. There are obvious analogues of
Sorites in a continuum of real numbers (e.g., growing a very short person by a sufficiently
small amount would not make this person not very short), and spaces without linear orders
(e.g., in the set of spectra of color patches, a sufficiently small change in the spectral
composition of a patch judged to be red would not change its redness). There is an opinion
that due to the use of the notion of “small changes” (sufficiently small, or as small as
possible) Sorites requires a metric space [13] or at least a full-fledged topological space
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[12]. In [4], a far more general formulation of Sorites is presented that only requires a
variant of the pre-topological structure proposed by Fréchet that he dubbed V-spaces (see,
e.g., [8]).

DEFINITION 1.1. A V-space is a pair (X, {Vx : x € X}), where X is a set, and for each
x € X, Vy is a nonempty collection of subsets of X containing x.

When we have fixed a particular V-space (X, {V : x € X}), wecalleach V € V, a
vicinity of x. Each x € X has at least one vicinity, and one can think of each such vicinity
as representing a “sense” in which the elements of that vicinity are close to x. Since x
belongs to each of its vicinities, it is therefore close to itself in every sense. On the other
hand, {x} need not belong to V., and more generally, if V, € V, and V C V,, then V
need not belong to V.. Furthermore, if some y € X belongs to some vicinity of x, it need
not be the case that x belongs to some vicinity of y. In other words, y can be close to x in
some sense, without x needing to be close to y in any sense; the notion of “being close to
in some sense” is not necessarily symmetric.

As noted in [4], none of this is meant to suggest that being closed under subset, or being
symmetric, are not natural properties for some, or perhaps even all, notions of ‘closeness’.
The definition merely does not require these properties, and so allows for a far more general
treatment. In particular, this approach accommodates metric spaces and topological spaces,
and indeed, is arguably the most general formalization of ‘closeness’ possible.

The vicinities of a V-space can be used for the following natural definition of connect-
edness.

DEFINITION 1.2. Let (X, {Vy : x € X}) be a V-space.

(1) A cover of this V-space is a sequence {V, : x € X} such that V, € V, for each
xeX.

(2) Two elements a, b € X are connected in this V-space if for every cover {V, : x € X}
there is a finite sequence Xy, . . . , X of elements of X such that a = xo, b = xi, and
Vy; NV, # 0 foreach j < k.

3) Ifa, b € X are not connected, then we say a cover {V, : x € X} for which there is
no finite sequence x, . . . , Xy as in (2) witnesses that a and b are not connected.

Using the language of V-spaces, Dzhafarov & Dzhafarov [4] formulated the following
theorem central to our analysis.

THEOREM 1.3 ([4, Theorem 3.5]). Let (X,{V, : x € X}) be a V-space, Y a set, and
7 : X = Y afunction. If a,b € X are connected and n(a) # m (b), then there exists a
x € X such that & is not constant on any vicinity of x.

The significance of this theorem for Sorites is as follows. The soritical reasoning is based
on the assumption that the function # : X — Y can be chosen so that every x € X has a
vicinity Vy with z(y) = m(x) for any y € V.. This assumption is called Tolerance. The
assumption that there are connected a, b € X with 7 (a) # = () is called Connectedness.
Using this terminology, the theorem above says that, for any V-space and any function 7,
Connectedness implies lack of Tolerance.

Dzhafarov & Dzhafarov [4] also considered the following alternative formulation, in
which tolerance is assumed a priori. The theorem below can, by analogy with Theo-
rem 1.3, be seen as a formalization of the statement that Tolerance implies lack of Con-
nectedness.
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DEFINITION 1.4. Let X and Y be sets, and # : X — Y a function. The V-space induced
by 7 is (X, {Vy : x € X}), where for each x € X, Vy contains the single vicinity {y € X :

m(x) = z(y)}

THEOREM 1.5 ([4, Theorem 3.10]). Let X and Y be sets and © : X — Y a function. If
7 (a) # n(b) for some a,b € X, then a and b are not connected in the V-space induced
by r.

It should be noted for completeness, that in many specific versions of Sorites the main
culprit of the ensuing contradiction is the very assumption that there is a function mapping
a specific set X, such as the set of heights, into a set of attributes Y, such as “tall, not
tall.” However, this assumption (called Supervenience) often can be saved or at least made
plausible by redefining the set X (e.g., replacing its elements by sequences in which they
are listed) or the set of the attributes Y (e.g., replacing such attributes as “tall, not tall” with
probability distributions thereof). With this in mind, we can say that Theorems 1.3 and 1.5
above tell us that Supervenience can only be achieved by dispensing with either Tolerance
or Connectedness. Which of them it is in specific cases can be revealed by adopting the
“behavioral” approach to Sorites [3,4].

Our focus in the present paper is the proof-theoretic strength of the two theorems above.
The proofs we give are not deep, but the results are meant to offer a new way to dis-
tinguish between the two alternative approaches. Our goal, ultimately, is just to present
these results, but we do offer the following additional interpretation, meant to address
the potential epistemological ramifications of our work. This concerns different systems
(‘observers’, in the parlance of [4]) to which Sorites can be applied, for example a human
responding with ‘is a heap’ or ‘is not a heap’ to various collections of sand presented
to her. As in the case of human judgements and reasoning (see, e.g., Devlin [1]), many
mathematical models can arise to explain the behavior of such a system, and these can
have very different underlying logics. We take the view (endorsed in the specific case of
human reasoning, e.g., by Stenning and van Lambalgen [11]) that there is an argument to
be made for choosing, where possible, the weakest logic available to accommodate one’s
theories in this respect, so as to fit all or most possible models. The results of this paper
say precisely that Theorem 1.5 can be established in a strictly weaker logical system than
Theorem 1.3. More precisely, while both theorems offer formal resolutions to the Sorites
paradox and are classically essentially contrapositives, the former can be formalized by
strictly more constructive methods than the latter, and as such, ought to be seen as a more
general resolution in terms of possible systems for which the Sorites ‘paradox’ can be
formulated.

§2. Reverse mathematical analysis. Reverse mathematics is an area of mathemati-
cal logic devoted to classifying mathematical theorems according to their proof-theoretic
strength. The goal is to calibrate the strength of a given theorem according to which system
of axioms is necessary (as opposed to merely sufficient) to prove it. This is a two-step
process. The first involves searching for a system of axioms sufficient to prove the theorem,
while the second gives sharpness by showing that the theorem is in fact equivalent to this
system over some base (minimal) theory. In practice, we use for these systems certain
fragments of second-order arithmetic. As the base theory, we use a weak fragment called
RCAy, which suffices to prove the existence of the computable sets, but not of any noncom-
putable ones. As such, RCA corresponds to computable or constructive mathematics. A
strictly stronger system is ACAg, which adds to RCA the comprehension scheme for sets
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described by arithmetical formulas. ACAy is considerably stronger than RCAy, sufficing
to prove the existence of, e.g., the halting set, and many other noncomputable sets. There
is, more generally, a rich and fruitful relationship between reverse mathematics on the one
hand, and computability theory on the other (see, e.g., [7] for a discussion). We refer the
reader to Simpson [9] or Hirschfeldt [5] for background on reverse mathematics, and to
Soare [10] for background on computability.

In this section, we provide the computability-theoretic and reverse mathematical analysis
of Theorems 1.3 and 1.5. We begin by formalizing the concepts from Definition 1.1 in a
countable setting.

DEFINITION 2.1. Let X be a nonempty subset of .

(1) A weak system of vicinities for x in X is a sequence VW = (W, : n € w) such that
x e W, C X forall n.

(2) A weak V-space is a pair (X, {Wy : x € X}), where for each x € X, W, is a weak
system of vicinities for x in X.

(3) A strong system of vicinities for x in X is a sequence S = (S, : n € I), where I
is a nonempty (possibly finite) initial segment of v, x € S, C X foralln € I, and
Sy # Sy foralln,m € I withn # m.

(4) A strong V-space is a pair (X, {Sy : x € X}), where for each x € X, Sy is a strong
system of vicinities for x in X.

Note that every strong system of vicinities for x in X computes a weak such system.
Namely, if (S, : n € I) is a strong system of vicinities for x, define a weak system of
vicinities (W,, : n € w) for x by setting W, = S, foralln € I,and W,, = Sy foralln ¢ I.
The converse is false, because in a weak system of vicinities (W, : n € ) it could in
principle be that W,, = W,,, for some n # m, and there is no computable way to tell when
this is the case.

PROPOSITION 2.2. Let (X,{W, : x € X}) be a computable weak V-space, Y a
computable set, and © : X — Y a computable function. If there exist a,b € X with
w(a) # n(b), but every x € X has a vicinity on which w is constant, then there is a
@' -computable cover witnessing that a and b are not connected.

Proof. For each x € X, write Wy = (W, ,, : n € w). Now given x, search computably
in @ for the least n such that 7 (y) = = (x) for all y € W, _,, which exists by assumption,
and define V, = W, ,. Then (V, : x € X) is a cover of X, and 7 is constant on each V.
Since 7 (a) # 7 (b), this cover obviously witnesses that @ and b are not connected. U

In the proof of the following result, we fix a computable enumeration #'[s] of &’. So for
all x, we have x € #' if and only if x € @/[s] for some s, in which case also x € §'[¢] for
all 1 > 5. We write x \y @'[s]if x € @'[s] and x ¢ @'[¢] for any 7 < s.

PROPOSITION 2.3. There exists a computable strong V-space (X,{Sy : x € X}), a
computable function t : X — {0, 1}, and a, b € X with the following properties:

(1) m(a) # 7 (b);
(2) every x € X has an vicinity on which  is constant;

(3) every cover witnessing that a and b are not connected computes §'.

Proof. We work with X = w. Let a < b be any two numbers not in #’. For every
x € X, we uniformly construct a computable strong system of vicinities. Each of a and b
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will have a single vicinity, V, and V}, respectively, while every other x will have infinitely
many vicinities, Vy o, Vi 1, . ... Specifically, we let

Ve ={a}U{(x,s) € ®®:x \ ¥[s]},

and
Vo ={b)U{x,s) e’ :s>1Ax N\ 0[s — 1]},

and for every x ¢ {a, b} and for every n, we let
Vin =1{xtU{(x, 1) e ot > n}.

Obviously, each of these vicinities is such that the resulting V-space is computable. Note
that if x is different from a and b then V, , # V, , for all n # m. Also, if x is enumerated
into @ at some stage s, then (x, s) belongs to V, and (x,s + 1) to Vp, so forany n < s,
Va Vi, #@and V, NV, , # 0. It follows that, for any such 7, no cover containing V,
Vi, and Vy , can witness that a and b are not connected. We shall make use of this fact
below.

We next define the function 7 : X — {0, 1}. To begin, set 7(a) = 0 and z(b) = 1.
For all other numbers, we proceed by induction. Unless already defined, set 7 (0) = 0 and
(1) = 0. Now fix y > 1 such that 7 (y) is undefined, and assume we have defined 7 on all
smaller numbers. Say y = (x, s), so that in particular x < y. If x \y §'[s], set 7 (y) = 0; if
s > landx N\ @'[s — 1], set z(y) = 1; and otherwise, set 7 (y) = 7 (x). This completes
the definition. It is immediate that 7 is constant on each of V,, and V},. For every x different
from a and b, if x ¢ @' then & is also constant on each Vy ,. And if x is enumerated into
@', say at stage s, then x is constant on every Vy , forn > s + 2.

It follows by construction that our V-space and function 7 satisfy conditions (1) and (2)
in the statement of the proposition. We conclude by verifying property (3). Fix any cover
witnessing that a and b are not connected. Since a and b each have just one vicinity, the
cover must contain V,, and V},. As noted above, if x € @', then this cover cannot contain
Vyn forany n < s, where s is the stage at which x is enumerated into @' 1t follows that
x € @ if and only if x is different from a and b, and x € @'[¢] for the least ¢ such that
(x, t) belongs to the vicinity of x in the cover. Thus, #’ is computable from the cover, as
desired. O

Combining the above results allows us to characterize the proof-theoretic strength of
Theorem 1.3.

THEOREM 2.4. The following are equivalent over RCA.

(1) ACA,.

(2) Let (X, {Wy : x € X}) be a weak V-space, Y a set, and © : X — Y a function.
Suppose a,b € X are connected in this V-space, and w(a) # 7w (b). Then there
exists an x € X such that  is not constant on any W € W,.

(3) Let (X,{Sy : x € X}) be a strong V-space, Y a set, and & : X — Y a function.
Suppose a,b € X are connected in this V-space, and 7w (a) # 7w (b). Then there
exists an x € X such that  is not constant on any S € Sy.

Proof. The implication from part 1 to part 2 follows by formalizing the proof of Propo-
sition 2.2 in ACA¢. The implication from 2 to 3 is immediate by the remark following
Definition 2.1. The implication 3 to 1 follows by formalizing the proof of Proposition 2.3
in RCA,. O
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We obtain a very contrasting result concerning the strength of Theorem 1.5. It is an easy
observation that if X, Y, and 7 : X — Y are all computable, then the V-space induced by
7 is a computable strong V-space. Formalizing this, we have that, given sets X and ¥ and
a function 7 : X — ¥, RCAy can prove the existence of the V-space (as a strong V-space)
induced by 7.

THEOREM 2.5. RCA( proves the following statement. Let X and Y be sets, and © : X —
Y a function with w(a) # = (b) for some a, b € X. Then a and b are not connected in the
V-space induced by m.

Proof. We argue in RCAy. The only cover in the V-space induced by 7 is (S, : x € X),
where S, is the (unique) vicinity of x, {y € X : z(x) = z(y)}. Suppose (xo, ..., Xk)
is a finite sequence of elements of X such that a = xo, b = xg, and ij N ij a F0
for each j < k. Define (y; : j < k) such that y; is the least element of Sy, N Sy, for
all j < k, which exists by A(l) comprehension, and is well-defined by assumption. Thus,
7 (y;) = m(y;j+1) by assumption, so 7 (y;) = x(a) for all j < k by E(l) induction. But
then 7 (@) = w (yx—1) = = (b), a contradiction. O

§3. Acknowledgments. The author was partially supported by NSF Grant
DMS-1400267. The author is grateful to E. N. Dzhafarov for helpful discussions, and to
the two anonymous referees for their feedback and constructive criticism.

BIBLIOGRAPHY

[1] Devlin, K. (2009). Modeling real reasoning. In Sommaruga, G., editor. Formal
Theories of Information: From Shannon to Semantic Information Theory and General
Concepts of Information. Berlin: Springer, pp. 234-252.

[2] Dzhafarov, D. D. (2011). Infinite saturated orders. Order, 28, 163—-172.

[3] Dzhafarov, D. D. & Dzhafarov, E. N. Classificatory sorites, probabilistic
supervenience, and rule-making. In Abasnezhad, A. and Bueno, O., editors. On the Sorites
Paradox. Springer, to appear.

[4] Dzhafarov, E. N. & Dzhafarov, D. D. (2010). Sorites without vagueness I:
Classificatory sorites. Theoria, 76, 4-24.

[5] Hirschfeldt, D. R. (2015). Slicing the Truth: On the Computable and Reverse
Mathematics of Combinatorial Principles, edited by C. Chon, Q. Fen, T. A. Slaman, W. H.
Woodin, and Y. Yang. Lecture Notes Series, Institute for Mathematical Sciences, National
University of Singapore. Hackensack, NJ: World Scientific Publishing.

[6] Marcone, A. (2007). Interval orders and reverse mathematics. Notre Dame Journal
of Formal Logic, 48, 425-448. (electronic).

[7] Shore, R. A. (2010). Reverse mathematics: The playground of logic. Bulletin of
Symbolic Logic, 16, 378-402.

[8] Sierpinski, W. (1952). General Topology. Mathematical Expositions, No. 7. Toronto:
University of Toronto Press, translated by C. Cecilia Krieger.

[9] Simpson, S. G. (2009). Subsystems of Second Order Arithmetic (second edition).
Perspectives in Logic. Cambridge: Cambridge University Press.

[10] Soare, R. I. (2016). Turing Computability: Theory and Applications. Theory and
Applications of Computability. Berlin: Springer-Verlag.

https://doi.org/10.1017/51755020318000461 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020318000461

36 DAMIR D. DZHAFAROV

[11] Stenning, K. & van Lambalgen, M. (2008). Human Reasoning and Cognitive
Science. Boston: MIT Press.

[12] Weber, Z. & Colyvan, M. (2010). A topological sorites. Journal of Philosophy,
107, 311-325.

[13] Williamson, T. (1994). Vagueness. London: Routledge.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CONNECTICUT
STORRS, CONNECTICUT, USA
E-mail: damir@math.uconn.edu

https://doi.org/10.1017/51755020318000461 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020318000461

