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Abstract
We propose and analyze a temporal concatenation heuristic for solving large-scale finite-horizon Markov decision
processes (MDP), which divides the MDP into smaller sub-problems along the time horizon and generates an overall
solution by simply concatenating the optimal solutions from these sub-problems. As a “black box” architecture,
temporal concatenation works with a wide range of existing MDP algorithms. Our main results characterize the
regret of temporal concatenation compared to the optimal solution. We provide upper bounds for general MDP
instances, as well as a family of MDP instances in which the upper bounds are shown to be tight. Together, our
results demonstrate temporal concatenation’s potential of substantial speed-up at the expense of some performance
degradation.

1. Introduction

We are interested in devising computationally efficient architectures for solving finite-horizon Markov
decision processes (MDP), a popular framework for modeling multi-stage decision-making problems
[1,22] with a wide range of applications from scheduling in data and call centers [12] to energy
management with intermittent renewable resources [13]. In an MDP, at each stage, an agent makes a
decision based on the state of the system, which leads to an instantaneous reward and the state is updated
accordingly; the agent aims to find an optimal policy that maximizes the total expected rewards over
the time horizon. While finding efficient algorithms for solving MDPs has long been an active area of
research (see [17,20] for a survey), we will, however, take a different approach. Instead of creating new
algorithms from scratch, we ask how to design architectures that leverage existing MDP algorithms as
“black boxes” in creative ways, in order to harness additional performance gains.

As a first step in this direction, we propose the temporal concatenation heuristic, which takes a
divide-and-conquer approach along the time axis: for an MDP with horizon {0, . . . , 𝑇 − 1}, we divide
the original problem instance (I0) over the horizon into two sub-instances: {0, . . . , 𝑇/2 − 1} (I1) and
{𝑇/2, . . . , 𝑇 − 1} (I2), respectively. Temporal concatenation then evokes an MDP algorithm, one that
takes as input an MDP instance and outputs an optimal policy, to find the optimal policies 𝜋∗1 and 𝜋∗2 for
the two sub-instances I1 and I2, separately. Finally, temporal concatenation outputs a policy, 𝜋TC, for
the original MDP by simply concatenating 𝜋∗1 and 𝜋∗2: run 𝜋∗1 during the first half of the horizon, and 𝜋∗2
the second.1

In a nutshell, temporal concatenation is intended as a simple “black box” architecture to substantially
speed up existing MDP algorithms, at the expense of potentially minor performance degradation. First,
acceleration comes from the fact that the optimal policies for the sub-instances can be derived entirely in
parallel. In particular, a classical MDP problem can be solved by conventional methods such as the value

1More generally, a similar temporal concatenation procedure can be performed over 𝐾 sub-instances, with 𝐾 ≥ 2. Our theoretical analysis will
focus on the case of 𝐾 = 2 because it captures the majority of structural insights.
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iteration, which has a time complexity growing linearly with the horizon, 𝑇 . By applying the temporal
concatenation architecture in this set-up, the computing time can, in principle, be reduced by half. This
speed-up from parallelism can be significant if the original MDP algorithm’s run-time is sufficiently
long. In addition, we point out that a parallelism architecture is well suited for modern machine learning
systems where the instance of a large-scale problem may be stored in separate servers to start with
[8,18,19] . Moreover, temporal concatenation can speed up computation even more significantly if the
MDP algorithm in question admits a run-time that scales super-linearly in the horizon. Typically, these
algorithms suffer a worse dependence on 𝑇 in exchange for a more favorable scaling in the size of the
state and action spaces; see for instance, the complexity of a linear-programming-based algorithm in
[26] that scales as O(𝑇4), and that of the stochastic primal-dual method proposed by Chen & Wang [7],
which scales as O(𝑇6).

While the computational benefit from using temporal concatenation is evident, the quality of its
solution is not: by solving two sub-instances independently, it could be overly short-sighted and lead
to strictly sub-optimal MDP policies. Therefore, our theoretical results will focus on addressing the
following question:

How good is the policy generated by temporal concatenation, 𝜋TC, compared to the optimal policy
to the original problem, 𝜋∗?

Preview of main results. On the positive side, we provide sufficient conditions under which the
performance gap between 𝜋TC and 𝜋∗ is small. Specifically, we establish upper bounds to show that the
performance gap is bounded by a function that depends linearly on an MDP’s diameter (a measure that
reflects the ease with which the agent can traverse the state space) but independent from the horizon, 𝑇 .
Conversely, we provide lower bounds by showing that, for any finite diameter, there exist MDP instances
for which the upper bounds are tight for all large 𝑇 .

Organization. The remainder of this paper is organized as follows. In Section 2, we formally introduce
the problem formulation and performance metrics. In Section 3, we summarize the main results and
contrast our approach to the extant literature. Section 4 provides several examples of MDP instances,
including one that is motivated by the application of dynamic energy management with on-site storage.
We also provide simulation results that substantiate the theoretical results and illustrate the run-time
reduction obtained by running the temporal concatenation heuristic on a multi-core PC. Section 5
concludes the paper.

Notation. We will denote by [𝑛] the set of integers {0, 1, . . . , 𝑛− 1}, 𝑛 ∈ N. We will use 𝛿TV(𝜇, 𝜈) to
denote the total variation distance between two distributions 𝜇 and 𝜈: 𝛿TV(𝜇, 𝜈) = 1

2
∑

𝑠 |𝜇(𝑠) − 𝜈(𝑠) | =∑
𝑠:𝜇 (𝑠) ≥𝜈 (𝑠) (𝜇(𝑠) − 𝜈(𝑠)). For a sequence {𝑎𝑖}𝑖∈N, and 𝑠, 𝑡 ∈ N, 𝑠 ≤ 𝑡, we use 𝑠 → 𝑡 to denote the set

{𝑠, 𝑠 + 1, . . . , 𝑡}, and use 𝑎𝑠→𝑡 to denote the sub-sequence {𝑎𝑠, 𝑎𝑠+1, . . . , 𝑎𝑡−1, 𝑎𝑡 }. Similarly, for some
S ⊆ N, 𝑎S denotes the set {𝑎𝑖 : 𝑖 ∈ S}. For 𝑥 ∈ R, we will denote by (𝑥)+ and (𝑥)− the positive and
negative portion of 𝑥, respectively: (𝑥)+ = max{𝑥, 0} and (𝑥)− = max{−𝑥, 0}. For 𝑐, 𝑑 ∈ R with 𝑐 ≤ 𝑑,
define 𝑥 [𝑐,𝑑 ] to be the projection of 𝑥 onto the interval [𝑐, 𝑑], i.e., 𝑥 [𝑐,𝑑 ] � I(𝑥 < 𝑐)𝑐 + I(𝑐 ≤ 𝑥 ≤
𝑑)𝑥 + I(𝑥 > 𝑑)𝑑, where I(·) is the indicator function.

2. Problem formulation and performance metric

2.1. System set-up

We consider a discrete-time Markov decision process with a finite time horizon [𝑇], state space S, and
action set A. The decision maker chooses at each step 𝑡 ∈ [𝑇] an action, 𝑎𝑡 ∈ A. We will assume that
A and S stay fixed, and hence omit them from our notation when appropriate. The state of the system
at time 𝑡 is denoted by 𝑆𝑡 . The initial state 𝑆0 is drawn from some probability distribution 𝜇0, and the
state evolution depends on the present state as well as the action chosen:

𝑆𝑡+1 = 𝑝𝑡 (𝑎𝑡 , 𝑆𝑡 , 𝑌𝑆
𝑡 ), 𝑡 ∈ [𝑇] . (1)
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The 𝑌𝑆
𝑡 ’s are i.i.d. uniform random variables over a finite set Y𝑆 , capturing the randomness in the state

transition. The collection {𝑝𝑡 }𝑡 ∈[𝑇 ] is the set of (deterministic) transition functions. The decision maker
receives a reward at each time slot 𝑡, 𝑅𝑡 (𝑎𝑡 , 𝑆𝑡 , 𝑌𝑅

𝑡 ), which depends on the present state, action, and some
i.i.d. idiosyncratic random variables taking values in a finite set, 𝑌𝑅

𝑡 ∈ Y𝑅, with a fixed distribution.
We refer to {𝑅𝑡 }𝑡 ∈[𝑇 ] as the set of reward functions. We assume that the rewards are nonnegative and
bounded from above by a constant, 𝑟 ∈ R+.2 The decision maker’s behavior is described by a policy 𝜋(·),
such that 𝑎𝑡 = 𝜋(𝑡, 𝑆𝑡 , 𝑌 𝑃), 𝑡 ∈ [𝑇]. In other words, the policy chooses an action based on the current
state, and some idiosyncratic randomization 𝑌 𝑃 , which, without loss of generality, can be thought of as
a uniform random variable over [0, 1].

An MDP as described above is specified by the triple, (𝑅 [𝑇 ] , 𝑝 [𝑇 ] , 𝑇), which we will refer to as
a problem instance. We will refer to the original horizon-𝑇 MDP problem instance as the original
instance, denoted by I0 � (𝑅 [𝑇 ] , 𝑝 [𝑇 ] , 𝑇). For an instance I0, policy 𝜋, and initial distribution 𝜇0, the
total expected reward is defined by

𝑉 (I0, 𝜋, 𝜇0) = E𝜋𝑆0∼𝜇0

[
𝑇 −1∑
𝑡=0
𝑅𝑡

(
𝑎𝑡 , 𝑆𝑡 , 𝑌

𝑅
𝑡

) ]
, (2)

where the expectation is taken with respect to all the randomness in the system, and the actions are
chosen according to 𝜋. A policy 𝜋 is optimal if it attains the maximum total expected reward for all
initial distributions, 𝜇0.

2.2. Temporal concatenation

We now define the main object of study, the temporal concatenation heuristic. An MDP algorithm,
denoted by ALG(·), takes as input a problem instance and outputs the optimal policy, 𝜋∗, for that
instance. As such, the notion of an MDP algorithm captures the “functionality” of an algorithm that is
used to compute an optimal policy, but abstracts away the inner working of the algorithm, effectively
treating it as a “black box.” By this definition, we have that

𝜋∗ = ALG(I0). (3)

Definition 1 (Temporal concatenation). For an original instance I0, denote by I1 and I2 the sub-
instances generated by partitioning I0 in half along the time horizon:

I1 �
(
𝑅0→𝑇 /2−1, 𝑝0→𝑇 /2−1, 𝑇/2

)
, and I2 �

(
𝑅𝑇 /2→𝑇 −1, 𝑝𝑇 /2→𝑇 −1, 𝑇/2

)
, (4)

and by 𝜋∗1 and 𝜋∗2 their corresponding optimal policies:

𝜋∗1 � ALG(I1), and 𝜋∗2 � ALG(I2). (5)

The temporal concatenation heuristic generates a policy, 𝜋TC, by temporally concatenating optimal
solutions for I1 and I2, 𝜋∗1 and 𝜋∗2, i.e.,

𝜋TC (𝑡, 𝑆𝑡 , 𝑌 𝑃) =
⎧⎪⎪⎨⎪⎪⎩
𝜋∗1(𝑡, 𝑆𝑡 , 𝑌 𝑃

1 ), 0 ≤ 𝑡 ≤ 𝑇

2
− 1,

𝜋∗2(𝑡 − 𝑇/2, 𝑆𝑡 , 𝑌 𝑃
2 ), 𝑇

2
≤ 𝑡 ≤ 𝑇 − 1,

(6)

where𝑌 𝑃
1 and𝑌 𝑃

2 are two independent uniform random variables generated from𝑌 𝑃 as follows: express
𝑌 𝑃 ∈ [0, 1] as an infinite binary sequence, and set 𝑌 𝑃

1 and 𝑌 𝑃
2 to be the sub-sequence corresponding to

all odd and even elements in the binary sequence, respectively.

2Note that the results in this paper would be unchanged if the reward function 𝑅𝑡 were shifted by a constant. In particular, the general case in
which 𝑅𝑡 ( ·, ·, ·) ∈ [𝑟min , 𝑟max ] for −∞ < 𝑟min ≤ 𝑟max < ∞, is equivalent to having 𝑅𝑡 ∈ [0, 𝑟 ] where 𝑟 = 𝑟max − 𝑟min. Throughout this paper,
we let 𝑅𝑡 ( ·, ·, ·) ∈ [0, 𝑟 ] for simplicity of notation unless otherwise specified.
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2.3. Performance metric

The following definition of regret is our main metric, which measures how the expected reward of the
policy 𝜋TC deviates from the optimal policy 𝜋∗:

Definition 2 (Regret of temporal concatenation). For an original instance I0 and initial distribution
𝜇0, the regret of temporal concatenation, or regret for short, is defined by:

Δ(I0, 𝜇0) � 𝑉 (I0, 𝜋
∗, 𝜇0) −𝑉 (I0, 𝜋TC, 𝜇0), (7)

where 𝜋∗ is an optimal policy for I0, and 𝜋TC is defined in Definition 1.

Note that the above definition differs from the conventional notion of regret of the online learning
literature and reinforcement learning. For instance, regret in [4] is due to not having complete information
of the MDP in hindsight, whereas in our case, it is due to the intrinsic sub-optimality from dividing an
original MDP instance into smaller sub-problems and solving each separately.

3. Main results

We present our main results in this section. The first result, Theorem 1, provides an upper bound on the
regret of temporal concatenation in an MDP, which does not depend on the length of the horizon, 𝑇 .
Instead, the regret is shown to be related to a notion of diameter of the MDP, which we define below.

The diameter captures how easy it is for the decision maker to reach different state distributions. Let
P be the collection of all distributions over S. We will denote by 𝜇𝜋

𝑡 the state distribution at time 𝑡
under policy 𝜋. Starting at time 𝑡0 ≥ 0, for two distributions 𝜇, 𝜈 ∈ P, we say that 𝜈 is 𝜖-reachable from
𝜇 in 𝑡 steps for some 𝜖 ∈ [0, 1], if there exists a policy 𝜋 such that under 𝜋 and with the distribution of
𝑆𝑡 at time 𝑡0 being 𝜇, we have that

𝛿TV (𝜇𝜋
𝑡0+𝑡 , 𝜈) ≤ 𝜖 . (8)

Denote by P𝑡0
𝜖 (𝜇, 𝑡) the set of all distributions that are 𝜖-reachable from 𝜇 in 𝑡 steps starting from time

𝑡0 ∈ [𝑇 − 𝑡]. We have the following definition of diameter.

Definition 3 (𝜖-Diameter). For an MDP instanceI0 with horizon [𝑇] and transition functions {𝑝𝑡 }𝑡 ∈[𝑇 ] ,
we define the 𝜖-diameter as the least number of steps with which, starting from any time step, all possible
distributions in P are 𝜖-reachable from one another:

𝜏𝜖 (I0) � inf{𝑡 ≥ 0 : 𝜈′ ∈ P𝑡0
𝜖 (𝜈, 𝑡) for all 𝜈, 𝜈′ ∈ P and all 𝑡0 ∈ [𝑇 − 𝑡]}. (9)

Note that since 𝜏𝜖 captures the hardness of traversing the state space by applying feasible actions, it
will depend on the sizes of the state and action spaces in general. We have the following theorem.

Theorem 1 (Upper bound on regret of temporal concatenation). Fix an original instance I0 with
horizon [𝑇], and an initial distribution 𝜇0. If there exists 𝜖 ≥ 0 such that 𝜏𝜖 (I0) ≤ 𝑇/2, then the regret
of temporal concatenation satisfies:

Δ(I0, 𝜇0) ≤ 𝑟𝜏𝜖 (I0)
1 − 𝜖 , (10)

where 𝑟 is the maximum reward in a given time slot. In particular, if 𝜏0(I0) ≤ 𝑇/2, then the above
inequality implies that

Δ(I0, 𝜇0) ≤ 𝑟𝜏0(I0). (11)
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A direct implication of the above theorem is that, for problems that admit a moderate 𝜖-diameter for
some 𝜖 ∈ [0, 1), temporal concatenation produces a near-optimal policy regardless of the length of the
horizon, 𝑇 , thus making the heuristic especially appealing for problems with a relatively large horizon.

It is also worth noting that while the original temporal concatenation algorithm requires an optimal
policy to be used in each of the two sub-instances, it is easy to substitute these optimal policies with
sub-optimal ones with a bounded regret and obtain similar regret bounds to those in Theorem 1. In
particular, suppose we use in each sub-instance a policy whose total expected reward over the sub-
instance is at most 𝛿 less than that of an optimal policy starting from any initial state, then it follows the
resulting regret bounds would be those in Theorem 1 with an additional 2𝛿 additive factor.

The next result provides a lower bound that demonstrates that a small diameter is also necessary
for temporal concatenation to perform well, in a worst-case sense. We look at MDP instances with a
bounded 0-diameter, 𝜏0(I0). In Theorem 2, we show that, for any 𝑑0 ∈ N, there exists an instance with a
0-diameter equal to 𝑑0 such that the performance regret is essentially 𝑟𝑑0 for any horizon 𝑇 > 2𝑑0 + 2.
This result implies that the upper bound in (11) of Theorem 1 is tight in a worst-case instance.

Theorem 2 (Lower bound on regret of temporal concatenation). Fix 𝑟 ∈ R+, 𝜎 ∈ (0, 𝑟/2), and integer
𝑑0 ≥ 5. Then there exists an MDP instance I0 with maximum per-slot reward 𝑟 , finite 0-diameter
𝜏0(I0) = 𝑑0, and an initial distribution 𝜇0, such that for any 𝑇 > 2𝑑0 + 2, the regret satisfies

Δ(I0, 𝜇0) = (𝜏0(I0) − 2)𝑟 − 𝜎. (12)

The proofs of Theorems 1 and 2 will be presented in Appendix A.
Theorem 1 shows that for MDP instances that admit a bounded 𝜖-diameter, the regret of temporal

concatenation is bounded from above by a value independent of the time horizon 𝑇 . This is encouraging,
since it would suggest that the quality of approximation afforded by our heuristic does not degrade over
longer time horizons. On the other hand, Theorem 2 shows that the regret could be very large if the
diameter is large, though it would appear from our proof that the “bad” examples we know so far tend
to be fairly pathological. We accompany these findings by examining in Section 4 a number of specific
MDP models. Our theoretical and simulation results there suggest that temporal concatenation at least
performs reasonably well for several such “average” instances.

3.1. Related work

Our method is related to the literature on MDP decomposition methods, which aim to overcome the
so-called curse of dimensionality by breaking down the original MDP with a large state space into
sub-problems with smaller state spaces. Hierarchical MDP algorithms utilize hierarchical structures
to decompose the state space and action space and transform the original problem into a collection
of sequential sub-tasks [9,10,20,21] . The method in [24] decomposes the problem into parallel sub-
tasks that can be computed simultaneously, where each sub-task is an MDP with the same state and
action space, but with different reward functions. Steimle et al. [23] adopts a decomposition via mixture
models. Finally, Ie et al. [14] leverages decomposition in the 𝑄-function by exploiting combinatorial
structures of the recommender systems.

While our approach also works by dividing the original MDP instance into smaller sub-problems,
there is a number of crucial features that differentiate our approach. Firstly, our method focuses on
decomposing the problem along the time axis rather than over the state space or action space, which is a
more common approach in the literature. Secondly, the focus of temporal concatenation is to serve as a
simple “black box” architecture, rather than a custom-made MDP algorithm. As such, each sub-problem
can be solved by any MDP algorithm of the user’s choice, and the procedure is very simple to implement
and does not involve complex procedures to transform the structure of the original problem. Finally, as
alluded to in the introduction, temporal concatenation lends itself easily to parallel processing, and thus
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achieving speed-up that is not possible under a decomposition algorithm in which sub-problems still
need to be solved in a sequential manner (cf. [24]).

Related to our approach in spirit is [16], which proposes a heuristic for finite-horizon MDPs by
sequentially solving a series of smaller MDPs with increasing horizons, and the numerical results show
that the heuristic provides good performance even if the process is terminated prematurely. However, no
rigorous guarantees in terms of regret of this heuristic relative to the optimal policy were established.

Related notions of the diameter of an MDP have been used in the literature to capture the ease with
which the system can transit between any pair of states in the state space. For instance, a diameter 𝐷∗

is defined in [15] Definition 1 as

𝐷∗ � max
𝑠,𝑠′ ∈S, 𝑠≠𝑠′

min
𝜋
E
𝜋

[
min

𝑁 ≥1,𝑆𝑁=𝑠′
𝑁





 𝑆0 = 𝑠

]
. (13)

The diameter 𝐷∗ has been used for analyzing the total regret of reinforcement learning algorithms (see
[15,25] for example). In [15], the authors introduced a learning algorithm for MDP with total regret
O(𝐷∗ |S|

√
|A|𝑇). In [25], an improved upper bound for the total regret of MDP is introduced, which

depends on the variance of the bias function defined in [25] Definition 2 but does not depend on 𝐷∗. In
comparison, our definition of 𝜖-diameter is different, and in some sense stronger. First, while 𝐷∗ is the
expected number of steps necessary to transit between any pair of states, 𝜖-diameter corresponds to the
number of steps required to traverse between any pair of distributions over the state space. Second, the
definition of 𝐷∗ implies the existence of a policy under which the target state is reached with no more
than 𝐷∗ time steps, while for 𝜏𝜖 , we require a policy such that the target distribution is achieved after
exactly 𝜏𝜖 time steps (a total variation distance no greater than 𝜖 is allowed). Notably, the lower bound
in Theorem 2 shows that our notion of diameter cannot be weakened when applied to the analysis of
temporal concatenation, thus suggesting that our formulation reveals structural properties of the MDP
distinct from those in the extant literature. We will further discuss the connection between the 𝜖-diameter
and the 𝐷∗ diameter in Appendix B.

4. Examples and illustrative applications

In this section, we discuss several examples to illustrate the properties of the 𝜖-diameter and corroborate
the theoretical results in Section 3. In Section 4.1, we introduce the deterministic graph traversal (DGT)
problems, a family of MDP instances with finite 0-diameter and noiseless transitions. In Section 4.2,
we introduce the 𝜉-stochastic graph traversal (𝜉-SGT) problems, which is a generalization of the DGT
with stochastic transitions. In Section 4.3, we present a model of dynamic energy management with
storage, which is an illustrative example of the 𝜉-SGT family. We also present simulation results for
the deterministic graph traversal models in Section 4.4 to explore the average-case scaling behavior of
the regret within this family. In Section 4.5, we provide additional simulation examples of this model
to illustrate the run-time reduction from using the temporal concatenation heuristic. In Section 4.6,
we present simulation results of a more popular family of MDP instances known as the Generalized
Average-Reward Non-stationary Environment Test-bench (GARNET) model.

4.1. Deterministic graph traversal problems

In this subsection, we introduce the deterministic graph traversal (DGT) problems, a family of MDP
instances with finite 0-diameter. Let Gcsl be the set of all strongly connected graphs that include at least
one self-loop. A DGT instance denoted byI𝐺 has a time-homogeneous deterministic transition function,
i.e. 𝑝𝑡 = 𝑝 for all 𝑡, which can be described by a strongly connected directed graph 𝐺 = (V, E) ∈ Gcsl
where at least one vertex in 𝐺 has a self-loop. Here, V, E are the collections of vertices and edges of
𝐺, respectively. In other words, for any 𝐺 = (V, E) ∈ Gcsl, there exists a vertex 𝑣𝑖 ∈ V such that the
self-loop edge exists, i.e., 𝑒𝑖𝑖 ∈ E. In a DGT instance, once the current state 𝑆𝑡 and action 𝑎𝑡 are given,
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the next state 𝑆𝑡+1 is determined. We formally define a DGT instance with state space S, action space
A, and transition function 𝑝 as follows.

Definition 4 (Deterministic graph traversal instance). Let𝐺 = (V, E) ∈ Gcsl. A DGT instance depicted
by 𝐺, I𝐺 , is an MDP instance whose state space and transition function satisfy:

(1) Each state 𝑖 ∈ S corresponds to a vertex 𝑣𝑖 ∈ V.
(2) The state transition is deterministic and can be described by the edges in E.

In particular, for 𝑖, 𝑗 ∈ S, an edge 𝑒𝑖 𝑗 ∈ E implies the existence of an action 𝑎𝑖 𝑗 ∈ A such that
starting from state 𝑖, the system will deterministically go to state 𝑗 once the agent takes action 𝑎𝑖 𝑗 , i.e.,
𝑗 = 𝑝(𝑎𝑖 𝑗 , 𝑖, 𝑌𝑆

𝑡 ) with probability 1 for all 𝑡.

Note that we are not imposing additional restrictions on the reward functions in the definition of
DGT instances. As an example, the MDP instance we construct for proving Theorem 2 is a special case
that belongs to this family (see Appendix A.2).

Now we study the 𝜖-diameter of DGT instances. We first briefly recall the definition of the classical
diameter of a directed graph𝐺 = (V, E), denoted by 𝑑𝑐 (𝐺). For any two vertices of the graph, 𝑖, 𝑗 ∈ V,
let 𝑑𝐺 (𝑖, 𝑗) be the distance between them on graph 𝐺, which is defined as the length of the shortest path
from 𝑖 to 𝑗 . Here, a path is a sequence of distinct vertices such that each two consecutive vertices are
connected by an edge in E. The classical diameter is the maximum taken over all pairwise distances,
i.e., 𝑑𝑐 (𝐺) = max𝑖, 𝑗∈V 𝑑𝐺 (𝑖, 𝑗). For a strongly connected graph 𝐺, each pairwise distance is finite, in
which case 𝑑𝑐 (𝐺) is also finite. Further, it is not difficult to verify that for a strongly connected graph,
the classical diameter is at most |V| − 1. Literature has shown that 𝑑𝑐 (𝐺) can be computed within at
most 𝑂 (|V|3) time using classical algorithms such as the breadth first search (see [3] for example).

Recall that 𝑑𝑐 (𝐺) < ∞ because 𝐺 is strongly connected. In the following lemma, we prove that
DGT instances indeed have a finite 0-diameter, which is closely related to the classical diameter of the
corresponding graph, 𝑑𝑐 (𝐺).

Lemma 1 (From 𝜖-diameter to classical graph diameter). For a DGT instance, I𝐺 , based on a graph
𝐺 = (V, E) ∈ Gcsl, we have

𝑑𝑐 (𝐺) ≤ 𝜏0(I𝐺) ≤ 2𝑑𝑐 (𝐺). (14)

With Lemma 1, we have shown that the 0-diameter of I𝐺 is finite and bounded between 𝑑𝑐 (𝐺) and
2𝑑𝑐 (𝐺). It follows that for any 𝜖 > 0, the 𝜖-diameter of I𝐺 satisfies

𝜏𝜖 (I𝐺) ≤ 𝜏0(I𝐺) ≤ 2𝑑𝑐 (𝐺). (15)

The proof of this lemma is given in Appendix C.1.

4.2. 𝜉-stochastic graph traversal problems

In Section 4.1, we introduced a family of MDP instances with finite 0-diameter 𝜏0 where the transition
is deterministic. However, this model can not capture the stochasticity in many real-world applications.
To this end, we study in this subsection a generalization of the DGT family where transitions can
be impacted by stochastic shocks. As a result, we will see concrete examples of instances where the
𝜖-diameter is finite for 𝜖 > 0, even though the 0-diameter may be infinite.

Specifically, we consider the 𝜉-stochastic graph traversal (𝜉-SGT) problems with state space S,
action space A, and time-homogeneous transition function 𝑝, defined as follows.

Definition 5 (𝜉-Stochastic graph traversal instance). Fix 𝐺 = (V, E) ∈ Gcsl, and 𝜉 ∈ (0, 1). For 𝑖 ∈ V,
define the neighbor set of 𝑖 as N𝑖 = { 𝑗 ∈ V : (𝑖, 𝑗) ∈ E}. A 𝜉-SGT instance based on (𝐺, 𝜉), I 𝜉

𝐺 , is an
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MDP instance whose state space and transition function satisfy:

(1) Each state 𝑖 ∈ S corresponds to a vertex 𝑣𝑖 ∈ V.
(2) The state transition is stochastic and can be described by the edges in E. In particular, for 𝑖, 𝑗 ∈ S

such that the edge 𝑒𝑖 𝑗 ∈ E exists, there exists an action 𝑎𝑖 𝑗 ∈ A under which starting from state 𝑖,
the system goes to state 𝑗 with a probability at least 1 − 𝜉, i.e.,

𝑝(𝑎𝑖 𝑗 , 𝑖, 𝑌𝑆
𝑡 ) =

{
𝑗 with a probability at least 1 − 𝜉
𝑍𝑡 ,𝑖, 𝑗 otherwise

, (16)

where 𝑍𝑡 ,𝑖, 𝑗 is a random variable that takes values in N𝑖\{ 𝑗} if |N𝑖 | ≥ 2, and 𝑍𝑡 ,𝑖, 𝑗 = 𝑗 if |N𝑖 | = 1.

From Definitions 4 and 5, we see that the 𝜉-SGT and DGT problems are closely related. For both of
these families of MDP instances, the state space corresponds to the vertices of a directed graph, and the
state transition function can be described by the edges in the same graph. The 𝜉-SGT instance can be
regarded as a noisy version of the DGT instance, where the transition along the edges is perturbed by a
random noise. The parameter 𝜉 can be interpreted as the noise level. In a DGT instance based on 𝐺, the
system can deterministically traverse the state space along the edges of 𝐺 when appropriate actions are
taken. In an 𝜉-SGT based on (𝐺, 𝜉), however, when a proper action is chosen, the system will traverse
along the “intended” edge with a probability at least 1 − 𝜉 but may be diverged to one of the other
neighbors otherwise.

The following result connects the 𝜖-diameter of the 𝜉-SGT instance, 𝜏𝜖 (I 𝜉
𝐺 ), the 0-diameter of the

DGT instance, 𝜏0(I𝐺), and the classical diameter of the underlying graph, 𝑑𝑐 (𝐺); the proof is given in
Appendix C.2.

Lemma 2 (Diameter of 𝜉-SGT instances). Fix 𝐺 ∈ Gcsl, and 𝜉 ∈ (0, 1). Let I𝐺 be the DGT instance
characterized by 𝐺, and I 𝜉

𝐺 the 𝜉-SGT instance described by (𝐺, 𝜉). For 𝜖 ≥ 1− (1− 𝜉)𝜏0 (I𝐺 ) , we have

𝜏𝜖 (I 𝜉
𝐺 ) ≤ 𝜏0(I𝐺). (17)

Combining the above with Lemma 1, we have

𝜏𝜖 (I 𝜉
𝐺 ) ≤ 2𝑑𝑐 (𝐺) (18)

for 𝜖 ≥ 1 − (1 − 𝜉)2𝑑𝑐 (𝐺) .

Lemma 2 implies the following communicating property of a 𝜉-SGT instance: when we are allowed
a total variation distance 𝜖 and the noise level 𝜉 is sufficiently small such that 𝜉 < 1− (1− 𝜖)1/𝜏0 (I𝐺 ) , we
can traverse the state space in a 𝜉-SGT instance using no more than 𝜏0(I𝐺) steps. Further, with Lemma
1, the 0-diameter of the DGT instance, I𝐺 , is bounded from above by two times the classical diameter of
the corresponding graph 𝐺. This in turn implies that the 𝜖-diameter is bounded from above by 2𝑑𝑐 (𝐺).

While determining the closed-form 0-diameter of a general DGT instance remains a direction for
future work, we have provided in this paper an example of DGT instance whose 𝜏0 can be derived
explicitly. In particular, the MDP instance depicted by Figure 5 in Appendix A.2, which is designed for
proving the lower bound in Theorem 2, is a DGT instance of 𝑘 +2 states with 𝜏0(I𝐺) = 𝑘 +2. For 𝜉-SGT
instances corresponding to the graph in Figure 5, we can apply Lemma 2 and obtain 𝜏𝜖 (I 𝜉

𝐺 ) ≤ 𝑘 + 2
for 𝜖 ≥ 1 − (1 − 𝜉)𝑘+2. If the 0-diameter of the DGT instance cannot be derived in closed form, we can
apply the upper bound in Eq. (18) instead. This upper bound depends only on the classical diameter,
which can be calculated for any directed graph by existing algorithms.

While Lemma 2 is a general result that holds for any 𝜉-SGT instance, we introduce another stronger
characterization on the 𝜖-diameter of 𝜉-SGT instances when the graph𝐺 = (V, E) ∈ Gcsl is undirected,
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and each node of 𝐺 has a noiseless self-loop, i.e., (𝑖, 𝑖) ∈ E, and 𝑝(𝑎𝑖𝑖 , 𝑖, 𝑌𝑆
𝑡 ) = 𝑖 with probability one,

for all 𝑖 ∈ S. We have the following lemma, which is proved in Appendix C.3.

Lemma 3. Fix an undirected connected graph 𝐺 = (V, E) ∈ G𝑐𝑠𝑙 where each node has a noiseless
self-loop, i.e., (𝑖, 𝑖) ∈ E for all 𝑖 ∈ S, and 𝜉 ∈ (0, 1

2 ). Let I𝐺 be the DGT instance characterized by
𝐺, and I 𝜉

𝐺 be the 𝜉-SGT instance described by (𝐺, 𝜉). Then for any 𝜖 ∈ (0, 1), the 𝜖-diameter of I 𝜉
𝐺

satisfies that

𝜏𝜖 (I 𝜉
𝐺 ) ≤ 𝑑𝑐 (𝐺)

1 − 2𝜉
+ 𝑓 (𝑑𝑐 (𝐺), 𝜉)

𝜖
, (19)

with

𝑓 (𝑑𝑐 (𝐺), 𝜉) = 4𝜉 (1 − 𝜉)
(1 − 2𝜉)2

(
2 +

√
4 + (1 − 2𝜉)𝑑𝑐 (𝐺)

𝜉 (1 − 𝜉)

)
, (20)

where 𝑑𝑐 (𝐺) is the classical diameter of graph 𝐺. Note that when 𝜉 → 0, Eq. (19) reduces to
𝜏𝜖 (I𝐺) ≤ 𝑑𝑐 (𝐺).

Lemma 3 suggests that for a 𝜉-SGT instance with undirected𝐺 and noiseless self-loops for all nodes,
there is an upper bound on the 𝜖-diameter, which grows linearly in 1

𝜖 . Moreover, we observe that the
upper bound coincides with the classical diameter, 𝑑𝑐 (𝐺), when the noise level 𝜉 goes to 0, which
corresponds to the result for DGT instances.

Note that the upper bound in Lemma 3 depends only on the classical diameter of the underlying
graph, 𝑑𝑐 (𝐺), and parameters 𝜖 , 𝜉, but not on 𝜏0(I𝐺). Furthermore, in contrast to Lemma 2, in Lemma
3, the parameter 𝜖 can take any value in (0, 1). On the flip side, where the noise parameter 𝜉 can take
on any value in (0, 1) in Lemma 2, the result in Lemma 3 is restricted to the case where 𝜉 ∈ (0, 1/2).
This restriction is due largely to the limitation of our analysis. Specifically, in the proof of Lemma 3,
we employ a random walk-based argument. In each step, we move one step closer to a target state with
probability 1− 𝜉, and one step away from the target with probability 𝜉. Within this framework, we show
that the process is able to reach a target node with high probability within a sufficiently large number of
steps if the noise level 𝜉 < 1/2, which leads to an upper bound on 𝜏𝜖 . When the noise level 𝜉 approaches
or exceeds 1/2, however, basic results from the theory of random walks show that the expected number
of steps for a random walk to reach the target becomes infinite (see [11] for example). We are hopeful that
improved analysis in a future work can help remedy this restriction and address the case where 𝜉 ≥ 1/2.

4.3. Dynamic energy management with storage

In Section 4.2, we introduced the 𝜉-SGT family of MDP instances, which is a stochastic variant of the
DGT instance introduced in Section 4.1. In this subsection, we provide an illustrative application that
can be modeled by the 𝜉-SGT family. We consider the following model of dynamic energy management
with storage.

Consider an operator and a battery with 𝐵 charging levels S = {0, . . . , 𝐵−1}, and a power parameter,
𝐶 ∈ {1, . . . , 𝐵 − 1}, representing the maximum units of charging and discharging within one time step.
The state 𝑆𝑡 corresponds to the battery level at time 𝑡. The transition function is given by

𝑆𝑡+1 = (𝑆𝑡 + min{𝑎𝑡 , 𝑌𝑆
𝑡 })[0,𝐵−1] , (21)

where (𝑥)[𝑎,𝑏] represents the projection of 𝑥 onto the interval [𝑎, 𝑏]. Here, 𝑌𝑆
𝑡 is a nonnegative random

variable representing the on-site renewable generation (e.g., wind or solar) at time 𝑡. We will assume
that 𝑌𝑆

𝑡 satisfies P(𝑌𝑆
𝑡 < 𝐶) = 𝛽, and P(𝑌𝑆

𝑡 ≥ 𝐶) = 1 − 𝛽. The value 𝛽 is a noise level, such that
1 − 𝛽 corresponds to the probability that there is enough renewable generation for the decision maker
to achieve maximum per-step charge, 𝐶.
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The variable 𝑎𝑡 ∈ {−𝐶, . . . , 𝐶} represents the control at time 𝑡: the decision maker may choose to
sell the stored energy by setting −𝐶 ≤ 𝑎𝑡 < 0, charge the battery by setting 0 < 𝑎𝑡 ≤ 𝐶, or hold the
current battery level by setting 𝑎𝑡 = 0. Any unused energy is stored in the battery, up to its capacity,
𝐵 − 1. Note that when 𝑎𝑡 > 0, the actual amount of energy charged to the battery is

𝑎𝐶𝑡 = min{𝐵 − 1 − 𝑆𝑡 , (𝑎𝑡 )+, 𝑌𝑆
𝑡 }. (22)

When 𝑎𝑡 < 0, the actual amount of energy sold is

𝑎𝑆𝑡 = min{(𝑎𝑡 )−, 𝑆𝑡 }. (23)

In other words, the charging process may be impacted by the random renewable generation, while the
selling and holding actions are assumed to be noiseless in this model.

The goal of an operator is to maximize the expected total reward 𝑉 =
∑𝑇 −1

𝑡=0 𝑅𝑡 (𝑎𝑡 , 𝑆𝑡 , 𝑌𝑅
𝑡 ) for some

reward function 𝑅𝑡 , which takes values in [𝑟min, 𝑟max] for some 𝑟min, 𝑟max ∈ R with 𝑟max − 𝑟min = 𝑟 > 0.
One example of the reward function can be the operator’s net revenue, defined as the difference between
the revenue generated from selling energy and the charging costs. In particular, the reward function can
be expanded as

𝑅𝑡 (𝑎𝑡 , 𝑆𝑡 , 𝑌𝑅
𝑡 ) = −𝑎𝐶𝑡 𝑃𝐶

𝑡 + 𝑎𝑆𝑡 𝑃𝑆
𝑡 , (24)

where 𝑃𝐶
𝑡 , 𝑃𝑆

𝑡 are the charging costs and the selling prices at time 𝑡, respectively. The prices 𝑃𝐶
𝑡 , 𝑃𝑆

𝑡

are bounded nonnegative random variables with mean 𝑝𝐶𝑡 , 𝑝𝑆𝑡 , respectively. At each time step, the agent
plans the control 𝑎𝑡 ahead when only the mean prices are available, but not the actual prices.

It is easy to verify that the dynamic energy management system depicted above is a 𝜉-SGT problem
based on (𝐺, 𝜉), where 𝜉 = 𝛽 and 𝐺 is a connected undirected graph with 𝐵 vertices and a noiseless
self-loop around each vertex. Each node in 𝐺 has no more than 2𝐶 + 1 edges. In particular, for any pair
of states in the state space, 𝑠, 𝑠′ ∈ {0, . . . , 𝐵 − 1}, such that 0 < 𝑠′ − 𝑠 ≤ 𝐶, we can choose an action
𝑎 = 𝑠′ − 𝑠 such that by taking action 𝑎, the state transitions from 𝑠 to 𝑠′ in one step with a probability
at least 1 − 𝛽. If −𝐶 ≤ 𝑠′ − 𝑠 ≤ 0, we can choose 𝑎 = 𝑠′ − 𝑠 such that by taking action 𝑎, the state goes
from 𝑠 to 𝑠′ with probability one. Note also that with 𝐵 battery levels and parameter 𝐶, we have

𝑑𝑐 (𝐺) ≤ 𝐵

𝐶
+ 1. (25)

With these observations in mind, by applying Theorem 1 and Lemma 3, we have the following result
that characterizes the regret of temporal concatenation in this family of problems. The proof is provided
in Appendix C.4.

Theorem 3. For a dynamic energy management system with 𝐵 battery levels, power parameter 𝐶 ≤
𝐵− 1, and noise level 𝛽, the regret of temporal concatenation for any initial distribution 𝜇0 and horizon
𝑇 is bounded from above as follows:

Δ(𝜇0, 𝑇) ≤ 𝑟 (
√
𝜔 + 𝛼 + √

𝜔)2. (26)

where we use shorthands 𝛼 := (𝐵/𝐶 + 1)/(1 − 2𝛽),𝜔 := 𝑓 (𝐵/𝐶 +1, 𝛽), with 𝑓 (·, ·) defined in Eq. (20).

Figure 1 contains a numerical example for the right-hand side of (26), illustrating its relationship with
the ratio 𝐵/𝐶 given fixed noise level 𝛽. To put the figure in context, let us look at the following illustrative
example. Consider an energy-storage system with a total capacity of 36 MWh and hourly power rating
of 9 MW [5]. Assume further that each time slot in the MDP amounts to approximately 10 min (e.g.,
the California ISO has a 5 or 15-min dispatch window for the real-time utility energy market [6]). This
translates to 𝐵 = 36, 𝐶 = 9/6 = 1.5, and 𝐵/𝐶 = 24. With 𝛽 = 0.1 and a normalized 𝑟 = 1, Theorem 3
would suggest that the total regret is bounded from above by 90, uniformly over all time horizons. Since
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Figure 1. An illustration of the upper bound in Theorem 3, with 𝛽 = 0.1, 𝑟 = 1, and 𝐵/𝐶 ranging from
1 to 30.

there are 144 time slots in a 24-h period, this suggests that the average regret of one step incurred by
temporal concatenation is at most 62.5% over a one-day horizon, or 8.9% for a one-week horizon.

4.4. Simulation results for DGT instances

In this section, we provide numerical examples to illustrate the trajectory of the regret of temporal
concatenation, which will allow us to investigate the degree to which the theoretical results in Section 3
hold in “average” instances with different diameters. We also explore the performance of a generalized
temporal concatenation, which temporally concatenates the policies of 𝐾 sub-instances, for 𝐾 ≥ 2.

We will consider the DGT instance based on a graph 𝐺 with finite 0-diameter and deterministic state
transition, as defined in Definition 4. Suppose the reward functions, {𝑅𝑡 }𝑡 ∈[𝑇 ] , are also deterministic
and depend only on the current state. In this case, each vertex in the graph 𝐺 corresponds to a state of
the MDP instance and is associated with a reward. In graph 𝐺, an edge from vertex 𝑖 to vertex 𝑗 means
that the system can transition from state 𝑖 to state 𝑗 within one step when an appropriate action is taken.

We present a group of simulations where the transition function can be represented by a strongly
connected directed graph with at least one self-loop.

4.4.1. Simulation set-up
We consider DGT instances depicted by directed graphs. This generative model allows us to control the
diameter of the instance by varying the density of the randomly added edges. We randomly construct
𝑁𝐷 = 3 × 104 DGT instances with |S| = 200 states. For each realization, the MDP has a deterministic
transition function, which can be represented by 𝐺 (𝑖)

𝐷 ∈ Gcsl, a strongly connected directed graph
including at least one self-loop, for 𝑖 ∈ [𝑁𝐷]. Let 𝑝 (𝑖)𝐷 = 𝑊 (𝑖)

𝐷 /200, where 𝑊 (𝑖)
𝐷

i.i.d.∼ Unif(0, 1]. We
generate directed graphs 𝐺 (𝑖)

𝐷 by randomly adding edges to a ring, which is similar to the small-world
model in [27]. Specifically, the graphs 𝐺 (𝑖)

𝐷 are independently generated using the following steps:

(i) construct a ring that connects all the states with edges (1, 2), (2, 3), . . . , (|S| − 1, |S|), (|S|, 1);
(ii) add a self-loop around the vertex 1;
(iii) with probability 𝑝 (𝑖)𝐷 add an edge ( 𝑗 , 𝑘) if there is currently no edge from 𝑗 to 𝑘 , for 𝑗 , 𝑘 ∈ S. (If

𝑗 = 𝑘 this will be a self-loop around 𝑗 .)

In the 𝑖th realization, the reward associated with each node 𝑅 (𝑖) ( 𝑗) is drawn uniformly at random
from the set {1, 2, . . . , 200}, for 𝑗 ∈ S, which implies that the maximal reward 𝑟 (𝑖) ≤ 200. In Figure 2,
we provide an example of 𝐺 (𝑖)

𝐷 with 20 nodes.
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Figure 2. An example of a strongly connected directed graph with at least one self-loop, 𝐺 (𝑖)
𝐷 , with

𝑛 = 20 nodes.

Once an MDP instance is constructed, we compute the regret of temporal concatenation with a
uniform initial state distribution 𝜇0 = (1/|S|, . . . , 1/|S|) for different horizons 𝑇 . Definition 1 can be
easily generalized to temporal concatenation with 𝐾 sub-instances for 𝐾 ≥ 2, which will be elaborated
in the subsequent paragraph. For temporal concatenation with 𝐾 sub-instances with 𝐾 = 2, 3, 4, 5, we
let 𝑇 vary from 𝐾 to 800. For each case, we run 𝑁𝐷 = 3 × 104 simulations and compute the classical
diameter 𝑑𝑐 of the graph in each realization. Let N𝑑 = {𝑖 : 𝑑𝑐 (𝐺 (𝑖)

𝐷 ) = 𝑑, 𝑖 ∈ [𝑁𝐷]} be the collection of
all graphs generated in the simulation with classical diameter 𝑑. For realizations with the same diameter
𝑑, we compute the (normalized) empirical average regret of temporal concatenation for different 𝑇 ,
which can be expanded as

Δ̂(𝑑, 𝑇) � 1
|N𝑑 |

∑
𝑖∈N𝑑

1
𝑟 (𝑖)

(
E
𝜋∗

[
𝑇 −1∑
𝑡=0
𝑅 (𝑖) (𝑆 (𝑖)𝑡 )

]
− E𝜋TC

[
𝑇 −1∑
𝑡=0
𝑅 (𝑖) (𝑆 (𝑖)𝑡 )

])
. (27)

Here, 𝑆 (𝑖)𝑡 is the state at time 𝑡 in the 𝑖th realization,𝐺 (𝑖)
𝐷 , while 𝑅 (𝑖) ( 𝑗), 𝑗 ∈ S are regarded as parameters

in (27). Note that in Δ̂(𝑑, 𝑇), we normalize the regret of the 𝑖th instance by its maximal reward 𝑟 (𝑖) . For
each diameter 𝑑, we find the (normalized) empirical maximum average regret with respect to 𝑇 , i.e.,

Δ̂max(𝑑) = max
𝑇

Δ̂(𝑑, 𝑇), (28)

where the maximum is taken over all 𝑇 included in the simulation.
Now we define temporal concatenation with 𝐾 sub-instances (𝐾 ≥ 2) in an analogous way as in

Definition 1. For an original instanceI0, denote by {I𝑘 }𝑘∈[𝐾 ] the sub-instances generated by partitioning
I0 into 𝐾 sub-instances of (approximately) equal length along the time horizon. Let 𝜋∗𝑘 = ALG(I𝑘 ),
𝑘 ∈ [𝐾]. The temporal concatenation heuristic with 𝐾 sub-instances generates a policy, 𝜋TC, by
temporally concatenating optimal solutions for I𝑘 , which is analogous to (6).

4.4.2. Results
Our first finding shows that the empirical maximum average regret Δ̂max(𝑑) increases linearly with
respect to the diameter 𝑑. As illustrated in Figure 3(a), the empirical maximum average regret Δ̂max(𝑑)
exhibits an increasing trend as the diameter 𝑑 increases from 20 to 50 for temporal concatenation
with 𝐾 = 2, 3, 4, 5 sub-instances. By Lemma 1, for a DGT instance based on 𝐺, I𝐺 , the 0-diameter is
bounded between 𝑑 and 2𝑑. Hence, the numerical result is consistent with Theorem 1, which bounds
the performance regret from above by the 0-diameter 𝜏0 if the maximal reward is normalized to be 1.
Note that the slopes in Figure 3(a) are much smaller than 1, which, as expected, is due to the worst-case
nature of the upper bound. From the same figure, we also see that increasing the number of sub-
instances in temporal concatenation will increase the average regret. In particular, when the horizon [𝑇]
is fixed, as the number of sub-instances, 𝐾 , increases, the length of each sub-instance decreases. Shorter
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Figure 3. The normalized regret of DGT instances based on directed graphs for temporal concatenation
with 𝐾 = 2, 3, 4, 5 sub-instances. (The original temporal concatenation corresponds to 𝐾 = 2.) (a)
Empirical maximum average regret Δ̂max (𝑑) as a function of the diameter 𝑑; (b) Empirical average
regret Δ̂(𝑑, 𝑇) as a function of the horizon 𝑇 , for a fixed diameter 𝑑 = 23. (The plots are smoothed by a
5-step moving-average filter.)

sub-instances will more likely lead to overly short-sighted policies, which impede the performance of
temporal concatenation.

The second finding suggests that for a fixed diameter 𝑑, as 𝑇 grows, the empirical average regret
Δ̂(𝑑, 𝑇) first increases, then decreases after reaching a peak, and finally stabilizes when 𝑇 is sufficiently
large. This trend is illustrated in Figure 3(b). Intuitively, when 𝑇 starts growing from zero, temporal
concatenation starts to incur performance regret. Since the temporal concatenation policy is sub-optimal,
the regret becomes larger with more time steps. When 𝑇 is sufficiently large, however, the regret no
longer increases. An intuitive explanation is that the temporal concatenation policy and the optimal
policy become similar when the length of a sub-instance is sufficiently large, which causes the regret to
start decreasing in this region. It remains an interesting open problem for finding the minimum horizon
𝑇 beyond which the average regret starts to decrease.

4.5. Run-time reduction by temporal concatenation

In this subsection, we conduct additional numerical simulations to assess the benefit of run-time
reduction from using temporal concatenation. We apply the classic value iteration algorithm to solve
DGT instances and compare the run-time of the following two cases:

1. sequentially computing the optimal policy of the original instance;
2. using temporal concatenation, where we employ the built-in Matlab command spmd to solve the

two sub-instances in parallel on a multi-core processor.

We run all experiments on a standard multi-core desktop computer; the specifications of the envi-
ronment are described in detail in Appendix D. We construct DGT models with the same setting as
described in Section 4.4, except that here we vary the number of states and time horizon length. We
consider the cases that the number of states |S| = 1,000, 2,000, 3,000, and the time horizon 𝑇 = 50,
500, 12,000, respectively. For each pair of |S| and 𝑇 , we randomly generate 30 instances and present
their respective run-time in Table 1(a)–(c). We will denote by 𝑇seq the run-time of solving the original
problem sequentially. 𝑇tc denotes the time taken by the temporal concatenation method when run with
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Table 1. Computation time comparison between sequential value iteration and temporal concatenation.

𝑇 𝑇seq (𝜎𝑇seq ) 𝑇tc (𝜎𝑇tc ) 𝜂 (𝜎𝜂)

(a) |S| = 1,000
50 0.292 (0.007) 0.280 (0.020) 0.958 (0.060)
500 2.881 (0.058) 2.065 (0.117) 0.717 (0.042)
12,000 68.494 (1.542) 48.482 (2.182) 0.708 (0.035)

(b) |S| = 2,000
50 1.463 (0.033) 0.989 (0.034) 0.676 (0.022)
500 14.747(0.149) 8.883 (0.248) 0.602 (0.018)
12,000 349.295 (5.910) 212.220 (10.334) 0.608 (0.020)

(c) |S| = 3,000
50 3.514 (0.026) 2.135 (0.061) 0.608 (0.017)
500 35.381 (0.143) 19.633 (0.327) 0.555 (0.009)
12,000 837.234 (15.070) 472.133 (14.640) 0.564 (0.015)

Matlab’s native parallel computation framework. The ratio between the two values 𝜂 = 𝑇tc/𝑇seq is there-
fore a metric of interest, showing the multiplicative speed-up obtained by temporal concatenation. For
a value 𝑥, we will use 𝑥 to denote its empirical mean, and 𝜎𝑥 its standard deviation.

We can see from the results that the temporal concatenation heuristic reduces the run-time thanks
to parallelism. We also note that the time reduction is not exactly 50% as one might expect, and this is
largely due to the fact that there is a non-trivial overhead for Matlab to initiate a parallel computation
instance. That being said, the reduction is still fairly significant across the board and gets closer to
50% when the run-time of the original problem is sufficiently long (e.g., for the cases of |S| = 3,000,
𝑇 = 500, 12,000).

Interestingly, we notice that the value of |S| seems more significant in determining the ratio 𝜂 than
the horizon 𝑇 . Suppose we fix |S|. In this case, increasing 𝑇 from 50 to 500 reduces 𝜂 notably, while
further increasing its value from 500 to 12,000 seems not very influential. On the other hand, if we fix
𝑇 and increase |S| from 1,000 to 2,000 and then to 3,000, the value of 𝜂 decreases remarkably. We
conjecture that this is due to the fact that the run-time of each sub-instance scales quadratically in |S|
but only linearly in 𝑇 . Therefore, as the two sub-instances become larger, its computation time would
tend to dwarf Matlab’s computational overhead in setting up the parallel computation instance, leading
to a more favorable ratio of speed-up 𝜂.

Admittedly, what we have here is a relatively simple proof-of-concept with off-the-shelf software,
and we expect that a more optimized implementation of the parallel computation, possibly on distinct
physical machines, would further decrease the run-time.

4.6. Simulation results for the GARNET MDP model

In this subsection, we provide numerical simulations for a more widely studied family of MDP instances
introduced in [2], known as the GARNET model. In this generative model of MDP, a branching factor
𝐵 determines the transition kernels. When sampling an MDP instance, under each action, every state is
randomly assigned 𝐵 possible next states, while the probability of transitioning to each of them is also
randomly drawn. Here, we construct GARNET MDP models with |S| = 200 states, |A| = 3 actions,
and let 𝐵 range from 3 to 15. For each choice of 𝐵, we construct 𝑁𝐺 = 5,000 examples independently
and record their average regrets. To make sure that the MDP is aperiodic, we introduce a self-loop
around each state for every action, i.e., each state has one edge to itself and 𝐵 − 1 edges to other states
under each action. The reward functions 𝑅𝑡 are deterministic, which are determined by the current state
and the chosen action. For each pair of state and action, the corresponding reward is drawn uniformly
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Figure 4. The normalized regret of temporal concatenation with two sub-instances for the GARNET
MDP model with |S| = 200, 𝑇 = 200, |A| = 3, 𝐵 = 3, 4, . . . , 15.

at random from 1 to 200. In this simulation, we focus on the regret of temporal concatenation with two
sub-instances.

In Figure 4, we present the simulation results. Here, Δ̂ is the empirical average regret normalized by
the maximal reward, defined as follows:

Δ̂ =
1
𝑁𝐺

𝑁𝐺∑
𝑖=1

1
𝑟 (𝑖)

(
E
𝜋∗

[
𝑇 −1∑
𝑡=0
𝑅 (𝑖)
𝑡 (𝑎 (𝑖)𝑡 , 𝑆

(𝑖)
𝑡 )

]
− E𝜋TC

[
𝑇 −1∑
𝑡=0
𝑅 (𝑖)
𝑡 (𝑎 (𝑖)𝑡 , 𝑆

(𝑖)
𝑡 )

])
, (29)

where 𝑅 (𝑖)
𝑡 , 𝑎 (𝑖)𝑡 , 𝑆 (𝑖)𝑡 , 𝑟 (𝑖) are, respectively, the reward functions, actions, states, and maximal reward in

the 𝑖th realization of the GARNET model, 𝑖 ∈ [𝑁𝐺].
The shaded area in the figure depicts the area within one empirical standard deviation of the mean.

Overall, the performance is favorable. We see that the regret in the GARGET model is substantially
smaller than that of DGT (Figure 3), and it decreases even more as 𝐵 becomes large. We suspect that
the random and uniform nature with which GARGET generates transition kernels contributes to the
resulting MDP having a relatively small 𝜖-diameter, even when 𝐵 is moderate, and the diameter becomes
even smaller as the number of neighboring states, 𝐵, increases.

5. Conclusion

In this paper, we propose and analyze a heuristic architecture, temporal concatenation, for speeding
up existing MDP algorithms when solving a finite-horizon Markov decision process. Temporal con-
catenation decomposes the problem over the time horizon into smaller sub-problems and subsequently
concatenating their optimal policies.

Using a notion of 𝜖-diameter, we provide upper bounds that show, when the underlying MDP instance
admits a bounded 𝜖-diameter the regret of temporal concatenation is bounded and independent of the
length of the horizon. Conversely, we provide lower bounds by showing that, for any finite diameter,
there exist MDP instances for which the regret upper bound is tight for all sufficiently large horizons.

At the high level, we aim to explore an alternative approach for solving large-scale MDPs: instead of
creating new algorithms from scratch, we may be able to leverage existing MDP algorithms in creative
ways to harness additional performance gains. The present paper takes a first step towards this direction
by decomposing the problem along the time axis. There is a number of interesting directions for future
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work. While we have demonstrated that the 𝜖-diameter of an MDP has a substantial impact on the
performance of temporal concatenation, it remains a challenge in general to compute such diameter for
a given MDP. Understanding how to obtain sharp bounds for, or numerically compute, the 𝜖-diameter
can be an interesting direction of future research. The theory of our present paper has mostly focused on
dividing the MDP into two equal-sized sub-instances, while in general, one may consider 𝐾 ≥ 2 sub-
instances or study the case where the sizes of the sub-instances may even vary. It would be interesting
to understand how best to choose the number and the sizes of the sub-instances, especially when the
original MDP is time-inhomogeneous.

In addition, it will be interesting to explore connections between temporal concatenation and other
approximation heuristics aimed at reducing the complexity of solving an MDP. For instance, if we further
assume that the MDP is time-homogeneous (transitions and rewards do not vary with time) and that the
time horizon is very large, then a natural alternative would be to directly deploy a stationary optimal
policy associated with the average-reward version of the MDP, which can be calculated efficiently using
a horizon-independent linear program. The regret of such an approach would likely depend on whether
the steady-state optimal policy could quickly reach its stationary distribution from an arbitrary initial
condition, and it would be interesting to understand, for instance, whether the latter is related to the
notion of diameter studied in this paper.

Finally, in a broader sense, the present work only explores decomposing an MDP along the time axis,
and it would be interesting to explore the efficiency of other forms of decomposition architectures, such
as those that operate through states.

Acknowledgments. We thank the anonymous referees for their comments and feedback.
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Appendix A. Proofs of main results

This section is devoted to the proofs of the main results. Before delving into the details, we first provide
a high-level overview of the key ideas.

Upper bounds (Section A.1). For Theorem 1, observe that the temporal concatenation heuristic by
construction achieves optimal total expected reward during the first sub-instance,I1. The problem arises,
however, if acting greedily during I1 would result in the system being in a disadvantageous state at the
beginning of the second sub-instance, I2, thus leading to a large regret. Our analysis for the regret upper
bound in Theorem 1 will therefore focus on the dynamics of temporal concatenation during I2. To this
end, we will employ a coupling argument, by bounding temporal concatenation’s regret from above
using that of a carefully constructed, and likely strictly sub-optimal, ‘fictitious’ policy, 𝜋̃, during I2.
The policy 𝜋̃ consists of multiple phases of length approximately 𝜏𝜖 . In the 𝑘th phase, it aims to reduce
the (total variation) distance with the overall optimal policy 𝜋∗ over the course of 𝜏𝜖 steps. Using an
argument based on recursion, we show that in the 𝑘th phase this policy incurs a regret that is up to
𝜖 𝑘−1𝑟𝜏𝜖 . This will in turn allow us to show that the regret of 𝜋̃ incurred during the second phase is small.

Lower bounds (Sections A.2). For the lower bound in Theorem 2, we build on the insights gathered
from the proof of Theorem 1 to generate worst-case MDP instances. The main idea is to construct
instances in such a way that during the first sub-instance, the temporal concatenation heuristic is
guaranteed to be lured by some small short-term rewards and end up in a ‘bad’ subset of the state space,
from which it will suffer large losses in the second half of the time horizon compared to the optimal
policy.

Proof of Theorem 1
Recall that 𝜇𝜋

𝑡 is the distribution of the state 𝑆𝑡 induced by a policy 𝜋. For simplicity of notation, we
will write 𝜇𝑡 in place of 𝜇𝜋

𝑡 when there is no ambiguity and use the shorthand:

𝜇𝜋∗
𝑡 � 𝜇

∗
𝑡 , and 𝜇𝜋TC

𝑡 � 𝜇TC
𝑡 . (A.1)
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We also define the cumulative rewards from time 𝑡1 to 𝑡2 as

𝑉̃ (𝑡1, 𝑡2) �
𝑡2∑
𝑡=𝑡1

𝑅𝑡 (𝑎𝑡 , 𝑆𝑡 , 𝑌𝑅
𝑡 ), 𝑡1 < 𝑡2. (A.2)

The next lemma is the key technical result. Recall from (2) that, for a given instance, the total
expected reward of a policy depends on the initial distribution. In Lemma 4, we provide an upper bound
on the performance difference of the optimal policy when the system starts from two different initial
distributions.

Lemma 4. Fix an instance I with horizon [𝑇]. Fix distributions 𝜇0, 𝜈0 ∈ P. Let 𝜋∗ be the optimal
policy for the instance I. If there exists 𝜖 > 0 such that 𝜏𝜖 (I) ≤ 𝑇 , the difference in total expected
reward under 𝜋∗ between the cases where the initial distribution is 𝜇0 versus 𝜈0 is bounded from above
as follows:

|𝑉 (I, 𝜋∗, 𝜇0) −𝑉 (I, 𝜋∗, 𝜈0) | ≤ 𝑟𝜏𝜖 (I)
1 − 𝜖 . (A.3)

We first prove Lemma 4, using a coupling argument. For state 𝑠 ∈ S, starting time 𝑡 ∈ [𝑇], and
policy 𝜋, we define the value function as follows:

𝑉 𝜋
𝑡 (𝑠) = E𝜋 [𝑉̃ (𝑡, 𝑇 − 1) | 𝑆𝑡 = 𝑠] . (A.4)

For the instance I and policy 𝜋∗, the total expected reward for initial distribution 𝜇 is

𝑉 (I, 𝜋∗, 𝜇) =
∑
𝑠∈S
E
𝜋∗ [𝑉̃ (0, 𝑇 − 1) | 𝑆0 = 𝑠]𝜇(𝑠) =

∑
𝑠∈S

𝑉 𝜋∗
0 (𝑠)𝜇(𝑠). (A.5)

Fixing the policy 𝜋∗, the difference in total expected rewards under 𝜋∗ but starting with two initial
distributions, 𝜇0 and 𝜈0, can be expanded as:

|𝑉 (I, 𝜋∗, 𝜇0) −𝑉 (I, 𝜋∗, 𝜈0) | =





∑
𝑠∈S

𝑉 𝜋∗
0 (𝑠)(𝜇0(𝑠) − 𝜈0(𝑠))






 . (A.6)

Without loss of generality, suppose that

𝑉 (I, 𝜋∗, 𝜇0) ≥ 𝑉 (I, 𝜋∗, 𝜈0). (A.7)

Now we provide an upper bound on the difference in total expected reward by introducing a “fictitious”
policy 𝜋̃. Suppose 𝜏𝜖 (I) ≤ 𝑇 for some 𝜖 > 0. Recall that by the definition of 𝜖-diameter, there exists a
policy 𝜋̃ap such that starting from 𝜈0, the state distribution at time 𝜏𝜖 (I) under 𝜋̃ap, which is denoted by
𝜈̃𝜏𝜖 (I) , satisfies

𝛿TV (𝜇∗𝜏𝜖 (I) , 𝜈̃𝜏𝜖 (I) ) ≤ 𝜖, (A.8)

where 𝜇∗
𝜏𝜖 (I) is the state distribution at time 𝜏𝜖 (I) starting from 𝜇0 under policy 𝜋∗. The policy 𝜋̃ is

defined as follows: for time 𝑡 ∈ 0 → 𝜏𝜖 (I) − 1, let 𝜋̃ = 𝜋̃ap; for time 𝑡 ∈ 𝜏𝜖 (I) → 𝑇 − 1, let 𝜋̃ = 𝜋∗.
Note that 𝜋̃ is sub-optimal compared to 𝜋∗, and we have

𝑉 (I, 𝜋∗, 𝜈0) ≥ 𝑉 (I, 𝜋̃, 𝜈0). (A.9)

Recall that the reward function 𝑅𝑡 takes values in [0, 𝑟]. We have that

|𝑉 (I, 𝜋∗, 𝜇0) −𝑉 (I, 𝜋∗, 𝜈0) | = 𝑉 (I, 𝜋∗, 𝜇0) −𝑉 (I, 𝜋∗, 𝜈0) (A.10)
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≤ 𝑉 (I, 𝜋∗, 𝜇0) −𝑉 (I, 𝜋̃, 𝜈0) (A.11)

≤ 𝑟𝜏𝜖 (I) +
∑
𝑠∈S

𝑉 𝜋∗
𝜏𝜖 (I) (𝑠)(𝜇∗𝜏𝜖 (I) (𝑠) − 𝜈̃𝜏𝜖 (I) (𝑠)), (A.12)

where (A.10) follows from (A.7), (A.11) from (A.9), and (A.12) from 𝑅𝑡 ≤ 𝑟 .
For 𝑠 ∈ S, let 𝜔(𝑠) = min{𝜇∗

𝜏𝜖 (I) (𝑠), 𝜈̃𝜏𝜖 (I) (𝑠)}. Define 𝜖0 =
∑

𝑠∈S (𝜈̃𝜏𝜖 (I) (𝑠) − 𝜔(𝑠)). Note that∑
𝑠∈S (𝜇∗𝜏𝜖 (I) (𝑠) − 𝜔(𝑠)) =

∑
𝑠∈S (𝜈̃𝜏𝜖 (I) (𝑠) − 𝜔(𝑠)) = 𝜖0.

Let 𝜇−
𝜏𝜖 (I) (𝑠) = (𝜇∗

𝜏𝜖 (I) (𝑠) − 𝜔(𝑠))/𝜖0, and 𝜈−
𝜏𝜖 (I) (𝑠) = (𝜈̃𝜏𝜖 (I) (𝑠) − 𝜔(𝑠))/𝜖0. By the definition of

total variation, we have 𝜖0 ≤ 𝜖 . Note that 𝜇−
𝜏𝜖 (I) , 𝜈

−
𝜏𝜖 (I) ≥ 0, and

∑
𝑠∈S 𝜇

−
𝜏𝜖 (I) (𝑠) = 1,

∑
𝑠∈S 𝜈

−
𝜏𝜖 (I) (𝑠) =

1. Hence, 𝜇−
𝜏𝜖 (I) , 𝜈

−
𝜏𝜖 (I) are probability distributions.

Then

|𝑉 (I, 𝜋∗, 𝜇0) −𝑉 (I, 𝜋∗, 𝜈0) | =





∑
𝑠∈S

𝑉 𝜋∗
0 (𝑠)(𝜇0(𝑠) − 𝜈0(𝑠))







≤ 𝑟𝜏𝜖 (I) +

∑
𝑠∈S

𝑉 𝜋∗
𝜏𝜖 (I) (𝑠)(𝜇∗𝜏𝜖 (I) (𝑠) − 𝜈̃𝜏𝜖 (I) (𝑠))

= 𝑟𝜏𝜖 (I) + 𝜖0
∑
𝑠∈S

𝑉 𝜋∗
𝜏𝜖 (I) (𝑠)(𝜇−𝜏𝜖 (I) (𝑠) − 𝜈−𝜏𝜖 (I) (𝑠))

≤ 𝑟𝜏𝜖 (I) + 𝜖0





∑
𝑠∈S

𝑉 𝜋∗
𝜏𝜖 (I) (𝑠)(𝜇−𝜏𝜖 (I) (𝑠) − 𝜈−𝜏𝜖 (I) (𝑠))







(A.13)

≤ 𝑟𝜏𝜖 (I) + 𝜖





∑
𝑠∈S

𝑉 𝜋∗
𝜏𝜖 (I) (𝑠)(𝜇−𝜏𝜖 (I) (𝑠) − 𝜈−𝜏𝜖 (I) (𝑠))






 . (A.14)

Here (A.13) follows from the definition of 𝜇−
𝜏𝜖 (I) and 𝜈−

𝜏𝜖 (I) , and (A.14) from 𝜖0 ≤ 𝜖 . Let 𝑁 =
�𝑇/𝜏𝜖 (I)
. For 𝑘 = 0, 1, . . . , 𝑁 − 1, starting from time 𝑡 = 𝑘𝜏𝜖 (I), we can use the same argument to
derive the following inequality:




∑

𝑠∈S
𝑉 𝜋∗
𝑘𝜏𝜖 (I) (𝑠)(𝜇−𝑘𝜏𝜖 (I) (𝑠) − 𝜈−𝑘𝜏𝜖 (I) (𝑠))







≤ 𝑟𝜏𝜖 (I) + 𝜖






∑
𝑠∈S

𝑉 𝜋∗
(𝑘+1)𝜏𝜖 (I) (𝑠)(𝜇−(𝑘+1)𝜏𝜖 (I) (𝑠) − 𝜈−(𝑘+1)𝜏𝜖 (I) (𝑠))






 , (A.15)

where 𝜇−
𝑘𝜏𝜖 (I) (𝑠) and 𝜈−

𝑘𝜏𝜖 (I) (𝑠) are defined in the same way as 𝜇−
𝜏𝜖 (I) (𝑠) and 𝜈−

𝜏𝜖 (I) (𝑠). Note also that

𝑉 𝜋∗
𝑁 𝜏𝜖 (I) (𝑠) ≤ 𝑟𝜏𝜖 (I). (A.16)

With (A.15) and (A.16), we have

|𝑉 (I, 𝜋∗, 𝜇0) −𝑉 (I, 𝜋∗, 𝜈0) | ≤ 𝑟𝜏𝜖 (I)(1 + 𝜖 + · · · + 𝜖𝑁 𝑡) ≤ 𝑟𝜏𝜖 (I)
1 − 𝜖 . (A.17)

This completes the proof of Lemma 4.
Lemma 4 suggests that starting from two different initial distributions, 𝜇0 and 𝜈0, the optimal policy

𝜋∗ is guaranteed to have similar performances when the 𝜖-diameter is small. We now prove Theorem 1
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using Lemma 4. First, for any initial distribution 𝜇0, we can expand the regret of temporal concatenation
as the sum of the regrets incurred during the first and second sub-instance, separately:

Δ(I0, 𝜇0) = 𝑉 (I0, 𝜋
∗, 𝜇0) −𝑉 (I0, 𝜋TC, 𝜇0)

= (𝑉 (I1, 𝜋
∗, 𝜇0) −𝑉 (I1, 𝜋

∗
1, 𝜇0))

+ (𝑉 (I2, 𝜋
∗, 𝜇∗𝑇 /2) −𝑉 (I2, 𝜋

∗
2, 𝜇

TC
𝑇 /2)), (A.18)

where, with a slight abuse of notation, we use 𝑉 (I1, 𝜋
∗, 𝜇0) to denote the total expected reward from

applying the policy 𝜋∗ during the first sub-instance. Note that during the first 𝑇/2 steps, the original
optimal policy, 𝜋∗, does not necessarily maximize the reward for this sub-instance, because it aims
at maximizing the overall reward of I0. Hence, for this sub-instance only, the temporal concatenation
method is performing better than, or equally to, the original optimal policy, i.e., the first term in (A.18)
satisfies:

𝑉 (I1, 𝜋
∗, 𝜇0) −𝑉 (I1, 𝜋

∗
1, 𝜇0) ≤ 0. (A.19)

We now bound the second term in (A.18). Suppose for some 𝜖 > 0, we have 𝜏𝜖 (I0) ≤ 𝑇/2. Note that
both 𝜋∗ and 𝜋∗2 achieve the optimal performance for the second sub-instance I2, we have

𝑉 (I2, 𝜋
∗
2, 𝜇

TC
𝑇 /2) = 𝑉 (I2, 𝜋

∗, 𝜇TC
𝑇 /2). (A.20)

Hence, using Lemma 4, we have that

𝑉 (I2, 𝜋
∗, 𝜇∗𝑇 /2) −𝑉 (I2, 𝜋

∗
2, 𝜇

TC
𝑇 /2) = 𝑉 (I2, 𝜋

∗, 𝜇∗𝑇 /2) −𝑉 (I2, 𝜋
∗, 𝜇TC

𝑇 /2)

≤ 𝑟𝜏𝜖 (I2)
1 − 𝜖 (A.21)

≤ 𝑟𝜏𝜖 (I0)
1 − 𝜖 , (A.22)

where (A.21) is derived by applying Lemma 4 to the second sub-instance I2 for initial distributions 𝜇∗
𝑇 /2

and 𝜇TC
𝑇 /2, and (A.22) follows from the fact thatI2 is a sub-instance ofI0, which leads to 𝜏𝜖 (I2) ≤ 𝜏𝜖 (I0).

To complete the proof, we substitute the regret upper bounds for the first (A.19) and second (A.22)
sub-instances into (A.18), and obtain

𝑉 (I0, 𝜋
∗, 𝜇0) −𝑉 (I0, 𝜋TC, 𝜇0) ≤ 𝑟𝜏𝜖 (I0)

1 − 𝜖 . (A.23)

This completes the proof of Theorem 1. �

Proof of Theorem 2
We now prove Theorem 2 by constructing a family of MDP instances and showing that temporal
concatenation suffers the regret given in the theorem on problems from this family. The key intuition is
that the instances can be constructed in such a way that the temporal concatenation heuristic will be led
astray by some small short-term rewards in the first half of the horizon and end up in a bad subset of
the state space, from which it will suffer large losses in the second half of the time horizon compared to
the optimal policy.

Fix 𝑑0 ≥ 5, and let 𝑘 = 𝑑0 − 2. Consider the MDP instance depicted in Figure 5. The state space
has |S| = 𝑘 + 2 elements and we have 𝑑0 = 𝑘 + 2. The transition function is deterministic. In states
𝑑1, . . . , 𝑑𝑘 , and 𝑒, the agent can choose between two actions, such that the system either stays in the same
state or goes to the next state to the right. In state 𝑓 , the system will always go to state 𝑑1 in the next
step. For state 𝑠 ∈ {𝑑1, . . . , 𝑑𝑘 }, the reward function 𝑅𝑡 (𝑎, 𝑠, 𝑦) = 0, for all 𝑡, 𝑎 ∈ A, and 𝑦 ∈ Y𝑅. For
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Figure 5. An MDP instance with bounded diameter and large performance regret.

state 𝑠 = 𝑒 and 𝑓 , the reward 𝑅𝑡 (𝑎, 𝑠, 𝑦) is always equal to 𝑟 −𝜎1, and 𝑟 , respectively, where 𝜎1 ∈ (0, 𝜎)
is a constant to be specified subsequently.

We first verify that the setting has a finite diameter 𝜏0(I0) = 𝑑0 = 𝑘 + 2. Suppose the system starts
from an initial distribution 𝜈 ∈ P and we try to reach another distribution 𝜈′ ∈ P. Consider the following
policy:

Stage 1: If the initial state is in {𝑑1, . . . , 𝑑𝑘 , 𝑒}, stay for one step; if the initial state is 𝑓 , go to 𝑑1 in
the first step. Hence, Stage 1 takes 1 step.

Stage 2: Starting from one of the states in {𝑑1, . . . , 𝑑𝑘 , 𝑒}, the agent reaches the state distribution
𝜈′ after another 𝑘 + 1 steps. Note that starting from any state in {𝑑1, . . . , 𝑑𝑘 , 𝑒}, the system can reach
any state 𝑠 ∈ S using 𝑘 + 1 steps by first staying at the current state for an appropriate number of
steps and then moving forward to reach the target state. We refer to this stay-and-move process as a
(𝑘 + 1)-path to state 𝑠. The agent can thus employ the following randomized policy: starting at state
𝑠0 ∈ {𝑑1, . . . , 𝑑𝑘 , 𝑒}, with probability 𝜈′(𝑠) the agent chooses to take the (𝑘 + 1)-path to state 𝑠, for
𝑠 ∈ S. Stage 2 takes 𝑘 + 1 steps.

Using the policy described above, we can reach any distribution 𝜈′ at time 𝑡 = 𝑘 + 2 starting from
any initial distribution 𝜈. Hence, we have shown that the diameter satisfies

𝜏0(I0) ≤ 𝑘 + 2. (A.24)

We now establish a lower bound for 𝜏0(I0). Suppose the initial distribution is concentrated on state
𝑓 , i.e., 𝜈( 𝑓 ) = 1. At time 𝑡 = 0, 1, the state will be deterministically 𝑓 and 𝑑1, respectively. Hence, in
order to reach a distribution 𝜈′ with 𝜈′(𝑑1) = 𝜈′( 𝑓 ) = 0.5, it takes at least another 𝑘 + 1 steps. Then,

𝜏0(I0) ≥ 𝑘 + 2. (A.25)

In light of (A.24) and (A.25), we conclude that 𝜏0(I0) = 𝑘 + 2 = 𝑑0.
We now consider the regret. Suppose the initial state is deterministically 𝑑1. Recall that𝑇 > 2𝑑0+2 =

2𝑘 + 6. For the optimal policy, the agent will first go to state 𝑒, stay at 𝑒 until time 𝑇 − 2, and finally go
to 𝑓 at time 𝑇 − 1. Hence, the total reward of the optimal policy is

𝑉 (I0, 𝜋
∗, 𝜇0) = (𝑇 − 𝑘)(𝑟 − 𝜎1) + 𝜎1. (A.26)

Under temporal concatenation, since 𝑇/2 > 𝑘 + 3, for time 1 to 𝑇/2, the agent will go to state 𝑒, stay
at 𝑒 until time𝑇/2−2, and go to state 𝑓 at time𝑇/2−1. For time𝑇/2 to𝑇 −1, the agent will have to go to
𝑒 again after passing through 𝑑1, . . . , 𝑑𝑘 , stay at 𝑒 until time 𝑇 − 2, and then go to 𝑓 at time 𝑇 − 1. Recall
that states 𝑑1 through 𝑑𝑘 provide zero reward. The total reward for the temporal concatenation policy is

𝑉 (I0, 𝜋TC, 𝜇0) = 2
((
𝑇

2
− 𝑘

)
(𝑟 − 𝜎1) + 𝜎1

)
. (A.27)
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Figure 6. An MDP instance with time-inhomogeneous reward function.

Therefore, we have that the regret of temporal concatenation is given by

Δ(I0, 𝜇0) = 𝑉 (I0, 𝜋
∗, 𝜇0) −𝑉 (I0, 𝜋TC, 𝜇0)

= 𝑘𝑟 − (𝑘 + 1)𝜎1

= (𝜏0 (I0) − 2)𝑟 − (𝑘 + 1)𝜎1.

By choosing 𝜎1 = 𝜎/(𝑘 + 1), we have

Δ(I0, 𝜇0) = (𝜏0(I0) − 2)𝑟 − 𝜎. (A.28)

This completes the proof of Theorem 2. �

Appendix B. Connection to the 𝐷∗ diameter

In this section, we further discuss the connection between the 𝜖-diameter, 𝜏𝜖 , and the diameter 𝐷∗

introduced in [15]. As shown in [15], for a time-homogeneous MDP, the value function of the optimal
policy, 𝜋∗, satisfies that

max
𝑠,𝑠′ ∈S

(𝑉 𝜋∗
𝑡 (𝑠) −𝑉 𝜋∗

𝑡 (𝑠′)) ≤ 𝑟𝐷∗. (B.1)

Hence,
sup

𝜇,𝜇′ ∈P
(𝑉 (I, 𝜋∗, 𝜇) −𝑉 (I, 𝜋∗, 𝜇′)) ≤ 𝑟𝐷∗. (B.2)

Therefore, when both the reward function and the transition function are time-homogeneous, a small
diameter 𝐷∗ guarantees that the total expected rewards of different initial distributions are close.
However, for the more general scenarios where either the reward function or the transition function is not
time-homogeneous, a small diameter 𝐷∗ is not sufficient for this to hold. In the remainder of this section,
we present examples with either a time-inhomogeneous reward function, or a time-inhomogeneous
transition function. For each instance, we show that there exist two initial distributions such that the
difference of total expected reward is large although the diameter 𝐷∗ is small. Hence, Lemma 4 is more
general than (B.2) and the 𝜖-diameter more precisely characterizes the communicating property of an
MDP than the diameter 𝐷∗.

Time-inhomogeneous reward function
In this subsection, we consider the case where the transition function is time-homogeneous but the
reward function is not. We construct an example with a small 𝐷∗ and show that there exist two initial
distributions such that the difference in total expected reward grows in 𝑇 .

Consider the MDP instance in Figure 6, where there are two states 𝑐 and 𝑑. The transition is
deterministic: starting at state 𝑐, the agent can only go to 𝑑; starting at 𝑑, the agent can only go to 𝑐. The
reward function, 𝑅𝑡 , varies in time. In particular, at state 𝑐, the reward is 𝑟 when 𝑡 is an even number,
and 0 when 𝑡 is odd; at state 𝑑, the reward is 𝑟 when 𝑡 is an odd number, and 0 when 𝑡 is even.

It is easy to verify that the 𝐷∗ diameter is small for this instance. In particular, we can go from one
state to another with exactly one step. Hence, 𝐷∗ = 1. However, we show that the initial state distribution
can significantly impact the total expected reward despite the small 𝐷∗. Suppose an agent starts at state
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Figure 7. An MDP instance with time-inhomogeneous transition function.

𝑐 when 𝑡 = 0, then the state at time 𝑡 = 0, 1, 2, . . . is deterministically 𝑐, 𝑑, 𝑐, . . ., generating a reward
𝑟 at each time. However, if the agent starts at state 𝑑 when 𝑡 = 0, the reward at each step is always 0.
Therefore,

𝑉 (I, 𝜋∗, 𝛿𝑐) −𝑉 (I, 𝜋∗, 𝛿𝑑) = 𝑟𝑇, (B.3)

where 𝛿𝑐 and 𝛿𝑑 are the point measures at states 𝑐 and 𝑑, respectively. Note that 𝑟𝑇 is the largest possible
difference in total expected reward, which is attained in this example although 𝐷∗ is small.

Time-inhomogeneous transition function
Now we consider the case that the reward function is time-homogeneous but the transition function
is not. Consider the instance in Figure 7 with states S = {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}. The reward function is
deterministic and depends only on the state. The reward is 𝑟 for state 𝑠2, and 0 for the other five states.
The state transition is also deterministic but varies in time, which is elaborated as follows:

1. Starting from state 𝑠0, 𝑠1, 𝑠3, 𝑠4, the system will deterministically transition to 𝑠1, 𝑠2, 𝑠4, 𝑠5,
respectively.

2. Starting from state 𝑠2, when 𝑡 is an even number, the agent can choose to go to 𝑠3 or 𝑠5; when 𝑡 is an
odd number, the agent can only go to state 𝑠3.

3. Starting from state 𝑠5, the agent can choose to go to 𝑠0 or 𝑠2 if 𝑡 is odd; the system can only go to 𝑠0
if 𝑡 is even.

Intuitively, there is a one-way ‘bridge’ between states 𝑠2 and 𝑠5 that shifts direction at each time step.
It is easy to see that this instance has a small 𝐷∗ diameter with 𝐷∗ ≤ 5.

Suppose the agent starts from state 𝑠2 at 𝑡 = 0. Then the optimal policy is to go to 𝑠5, then keep
returning between 𝑠2 and 𝑠5. Note that this is feasible because whenever the agent arrives in states 𝑠2 and
𝑠5, the bridge is always in the proper direction such that the agent can go through it. The total expected
reward can be expanded as

𝑉 (I, 𝜋∗, 𝛿𝑠2 ) =
𝑟𝑇

2
. (B.4)

However, if the system starts from state 𝑠4, whenever the agent arrives in states 𝑠2 and 𝑠5, the bridge
is always in the opposite direction such that the agent can never use it. Then the optimal policy is to go
to 𝑠5, 𝑠0, 𝑠1, . . ., with

𝑉 (I, 𝜋∗, 𝛿𝑠4 ) =
𝑟𝑇

6
. (B.5)
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Hence, the difference in total expected reward with initial distributions 𝛿𝑠2 and 𝛿𝑠5 is

𝑉 (I, 𝜋∗, 𝛿𝑠2 ) −𝑉 (I, 𝜋∗, 𝛿𝑠5 ) =
𝑟𝑇

3
, (B.6)

which grows linearly in 𝑇 despite the small 𝐷∗ diameter.

Appendix C. Proofs of additional theoretical results

Proof of Lemma 1
Recall that 𝐺 ∈ Gcsl is strongly connected with classical graph diameter 𝑑𝑐 (𝐺) < ∞. For vertices
𝑣, 𝑣′ ∈ V, define 𝑑𝐺 (𝑣, 𝑣′) as the distance from vertex 𝑣 to vertex 𝑣′. The classical diameter satisfies
𝑑𝑐 (𝐺) = max𝑣,𝑣′ ∈V 𝑑𝐺 (𝑣, 𝑣′).
(1) First, we show that 𝜏0(I𝐺) ≥ 𝑑𝑐 (𝐺). By the definition of the classical diameter, there exist vertices

𝑣𝑖 , 𝑣 𝑗 ∈ V with distance 𝑑𝐺 (𝑣𝑖 , 𝑣 𝑗) = 𝑑𝑐 (𝐺). Consider the point measure on state 𝑖, 𝜈 with
𝜈(𝑖) = 1, and the point measure on state 𝑗 , 𝜈′ with 𝜈′( 𝑗) = 1. Starting from distribution 𝜈, it takes
at least 𝑑𝑐 (𝐺) steps to achieve distribution 𝜈′, which implies that 𝜏0(I𝐺) ≥ 𝑑𝑐 (𝐺).

(2) Now, we prove that 𝜏0(I𝐺) ≤ 2𝑑𝑐 (𝐺) analogously to the proof of Theorem 2. Recall that 𝐺 ∈ Gcsl
has at least one self-loop. Without loss of generality, let 𝑒11 ∈ E. For any pair of distributions 𝜈, 𝜈′,
we show that starting from the initial distribution 𝜈, the system can reach 𝜈′ after 2𝑑𝑐 (𝐺) steps. In
particular, we consider the following policy:

Stage 1: If the initial state is 1, stay at state 1 for 𝑑𝑐 (𝐺) steps until time 𝑡 = 𝑑𝑐 (𝐺); otherwise, if the
initial state is 𝑖, 𝑖 ≠ 1, first go to state 1 using 𝑑𝐺 (𝑖, 1) steps, and stay at state 1 for (𝑑𝑐 (𝐺) − 𝑑𝐺 (𝑖, 1))
steps until time 𝑡 = 𝑑𝑐 (𝐺). This stage requires 𝑑𝑐 (𝐺) steps.

Stage 2: Starting from state 1, we reach the distribution 𝜈′ in another 𝑑𝑐 (𝐺) steps. Analogous to
Stage 2 in the proof of Theorem 2, for any state 𝑖 ∈ S, we can take a 𝑑𝑐 (𝐺)-path to reach state 𝑖 starting
from state 1: first stay at state 1 for (𝑑𝑐 (𝐺) − 𝑑𝐺 (1, 𝑖)) steps, then go to state 𝑖 using another 𝑑𝐺 (1, 𝑖)
steps. In order to reach the distribution 𝜈′ in exactly 𝑑𝑐 (𝐺) steps starting from state 1, with probability
𝜈′( 𝑗) we take a 𝑑𝑐 (𝐺)-path to state 𝑗 , for 𝑗 ∈ S. This stage requires 𝑑𝑐 (𝐺) steps.

Hence, starting from an arbitrary distribution 𝜈, the policy introduced above achieves any distribution
𝜈′ in 2𝑑𝑐 (𝐺) steps, which implies that the 0-diameter is at most 2𝑑𝑐 (𝐺), i.e. 𝜏0(I𝐺) ≤ 2𝑑𝑐 (𝐺).

Combining (1) and (2) completes the proof of this lemma. �

Proof of Lemma 2
Fix 𝜖 ∈ [1 − (1 − 𝜉)𝜏0 (I𝐺 ) , 1). It suffices to show that for any pair of distributions over the state space
𝜈, 𝜈′ ∈ P, 𝜈′ is 𝜖-reachable from 𝜈 in 𝜏0(I𝐺) steps.

Recall that when 𝜉 = 0, the 𝜉-SGT instance becomes a DGT instance with 0-diameter 𝜏0(I𝐺). Hence,
for any pair of distributions 𝜈, 𝜈′, there exists a policy 𝜋𝜈,𝜈′ such that the state distribution transitions
from 𝜈 to 𝜈′ precisely after 𝜏0(I𝐺) steps.

We can formulate the following policy, 𝜋 𝜉
𝜈,𝜈′ , for the 𝜉-SGT instance: At each time step 𝑡, the agent

makes the decision using the same policy as in the corresponding DGT instance, pretending 𝜉 = 0, i.e.,

𝜋 𝜉
𝜈,𝜈′ (𝑡, 𝑆𝑡 , 𝑌 𝑃) = 𝜋𝜇𝑡 ,𝜈′ (𝑡, 𝑆𝑡 , 𝑌 𝑃), (C.1)

where 𝜇𝑡 is the state distribution at time 𝑡. In other words, at time 𝑡, the policy 𝜋 𝜉
𝜈,𝜈′ makes the same

decision as would 𝜋𝜇𝑡 ,𝜈′ .
When applying the policy 𝜋 𝜉

𝜈,𝜈′ in the 𝜉-SGT instance, I 𝜉
𝐺 , during the first 𝜏0(I𝐺) steps, let 𝐸 be the

event that the random perturbation never occurs, and 𝐸̄ the event that the perturbation occurs in at least
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one step. Recall that whether the perturbation occurs in each step is independent, the probability of the
event 𝐸 is at least (1 − 𝜉)𝜏0 (I𝐺 ) :

P(𝐸) ≥ (1 − 𝜉)𝜏0 (𝐼𝐺 ) . (C.2)

Therefore, with probability at least (1 − 𝜉)𝜏0 (I𝐺 ) , the state distribution becomes exactly 𝜈′ after 𝜏0(I𝐺)
steps under 𝜋 𝜉

𝜈,𝜈′ . Otherwise, the stochastic perturbation takes place in at least one step before the state
distribution reaches 𝜈′. Starting from 𝜈 at time 𝑡 = 0, the distribution at time 𝑡 = 𝜏0(I𝐺) under 𝜋 𝜉

𝜈,𝜈′ ,
denoted by 𝜇̃𝜏0 (I𝐺 ) , can be expanded as

𝜇̃𝜏0 (I𝐺 ) (𝑠) = P𝑆0∼𝜈 (𝑆𝜏0 (I𝐺 ) = 𝑠 | 𝐸)P(𝐸) + P𝑆0∼𝜈 (𝑆𝜏0 (I𝐺 ) = 𝑠 | 𝐸)P(𝐸̄)
= 𝜈′(𝑠)P(𝐸) + P𝑆0∼𝜈 (𝑆𝜏0 (I𝐺 ) = 𝑠 | 𝐸)P(𝐸̄), (C.3)

for 𝑠 ∈ S, where Eq. (C.3) follows from the fact that the distribution of 𝑆𝜏0 (I𝐺 ) conditioned on the event
𝐸 , i.e. conditioned on the event that no perturbation occurs, is exactly 𝜈′. The total variation between
𝜇̃𝜏0 (I𝐺 ) and the target distribution 𝜈′ satisfies

𝛿TV( 𝜇̃𝜏0 (I𝐺 ) , 𝜈′) = 1
2

∑
𝑠∈S

| 𝜇̃𝜏0 (I𝐺 ) (𝑠) − 𝜈′(𝑠) |

=
1
2

∑
𝑠∈S

| − 𝜈′(𝑠)(1 − P(𝐸)) + P𝑆0∼𝜈 (𝑆𝜏0 (I𝐺 ) = 𝑠 | 𝐸)P(𝐸) |

= (1 − P(𝐸)) · 1
2

∑
𝑠∈S

|P𝑆0∼𝜈 (𝑆𝜏0 (I𝐺 ) = 𝑠 | 𝐸) − 𝜈′(𝑠) | (C.4)

= (1 − P(𝐸)) · 𝛿TV(P𝑆0∼𝜈 (𝑆𝜏0 (I𝐺 ) = · |𝐸), 𝜈′)
≤ 1 − (1 − 𝜉)𝜏0 (I𝐺 ) , (C.5)

where Eq. (C.4) follows from P(𝐸) = 1 − P(𝐸), Eq. (C.5) from P(𝐸) ≥ (1 − 𝜉)𝜏0 (I0) and 𝛿TV (·, ·) ≤ 1.
Hence, for 𝜖 ≥ 1 − (1 − 𝜉)𝜏0 (I𝐺 ) , we have shown that the policy 𝜋 𝜉

𝜈,𝜈′ achieves the target distribution 𝜈′

in 𝜏0(I𝐺) steps within a total variation distance 𝜖 , i.e. 𝜏𝜖 (I 𝜉
𝐺 ) ≤ 𝜏0(I𝐺). This completes the proof. �

Proof of Lemma 3
In order to prove Lemma 3, we first introduce the following lemma.

Lemma 5. Fix an undirected connected graph 𝐺 = (V, E) ∈ G𝑐𝑠𝑙 , and 𝜉 ∈ (0, 1
2 ). Let I𝐺 be the DGT

instance characterized by𝐺, and I 𝜉
𝐺 be the 𝜉-SGT instance described by (𝐺, 𝜉). For any pair of vertices

𝑣, 𝑣′ ∈ V, denote by 𝑑𝐺 (𝑣, 𝑣′) the classical distance between 𝑣 and 𝑣′ on graph 𝐺. For a policy 𝜋, let
𝑇 𝜋
𝑣,𝑣′ = min{𝑡 ≥ 1 : 𝑆𝑡 = 𝑣′ |𝑆0 = 𝑣} be the hitting time of 𝑣′ starting from 𝑣 under 𝜋. Then there exists

a policy 𝜋𝑣,𝑣′ such that for 𝑡 > (𝑑𝐺 (𝑣, 𝑣′) − 1)/(1 − 2𝜉),

P(𝑇 𝜋𝑣,𝑣′
𝑣,𝑣′ ≤ 𝑡) ≥ 1 − 16𝜉 (1 − 𝜉)𝑡

((1 − 2𝜉)𝑡 − (𝑑𝑐 (𝑣, 𝑣′) − 1))2 . (C.6)

We first prove Lemma 5. Recall that 𝐺 is undirected and connected. For 𝑣, 𝑣′ ∈ S, consider the
following policy 𝜋𝑣,𝑣′ . Find the shortest path from 𝑣 to 𝑣′ on 𝐺, 𝑝 = (𝑣0, 𝑣1, . . . , 𝑣𝑑−1, 𝑣𝑑), where
𝑑 = 𝑑𝐺 (𝑣, 𝑣′), 𝑣0 = 𝑣, and 𝑣𝑑 = 𝑣′. For each time step 𝑡, if the system state is on the path 𝑝, i.e., 𝑆𝑡 = 𝑣𝑖
for some 𝑖 ∈ [𝑑], the agent takes the action, 𝑎𝑣𝑖 ,𝑣𝑖+1 , to attempt to go to the next state, 𝑣𝑖+1, on the path 𝑝,
and records the next state 𝑆𝑡+1 in the actual path 𝑝′; if the system state 𝑆𝑡 ∉ 𝑝, then the agent attempts
to go back to the path 𝑝 by tracing back along the path 𝑝′ with action 𝑎𝑆𝑡+1 ,𝑆𝑡 , and records the next state
𝑆𝑡+1 in 𝑝′.
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Let 𝑊𝑖 , 𝑖 = 1, 2, . . . be binary random variables with P(𝑊𝑖 = 1) = 1 − P(𝑊𝑖 = −1) = 1 − 𝜉. Going
from 𝑣 to 𝑣′ under policy 𝜋𝑣,𝑣′ corresponds to the random walk

∑𝑡
𝑖=1𝑊𝑡 . For each step 𝑡, the agent

successfully achieves the intended next state with probability 1 − 𝜉, in which case the agent is one step
closer to 𝑣′ under the policy 𝜋𝑣,𝑣′ , corresponding to𝑊𝑡 = 1; the agent goes elsewhere because of noise
with probability 𝜉, in which case the system is one step farther from the target under 𝜋𝑣,𝑣′ , corresponding
to one step back in the random walk, i.e.,𝑊𝑡 = −1. Then for 𝑡 > 𝑑−1

1−2𝜉 , we have

P(𝑇 𝜋𝑣,𝑣′
𝑣,𝑣′ ≥ 𝑡) = P

(
𝑡∑

𝑖=1
𝑊𝑖 ≤ 𝑑 − 1

)
(C.7)

≤ 16𝜉 (1 − 𝜉)𝑡
((1 − 2𝜉)𝑡 − (𝑑 − 1))2 , (C.8)

where (C.8) follows from the Chebyshev inequality, which completes the proof of the lemma.
Now we prove Lemma 3 using Lemma 5. Given 𝜇, 𝜇′ ∈ P, let 𝜇′ = 𝜇𝐹, where the matrix 𝐹 ∈ R |S |×|S |

satisfies that 𝐹𝑖, 𝑗 ∈ (0, 1) for 𝑖, 𝑗 ∈ S, and 𝐹1 = 1. Let the initial state be drawn from 𝜇, i.e., 𝑆0 ∼ 𝜇. We
consider the following policy in order to achieve state distribution 𝜇′ starting from 𝜇. If the initial state
is 𝑆0 = 𝑖 ∈ S, sample a random variable 𝐽 ∈ S with 𝑃(𝐽 = ·|𝑆0 = 𝑖) = 𝐹 (𝑖, ·). The agent then employs
the policy 𝜋𝑖,𝐽 described in the proof of Lemma 5 to attempt to go to state 𝐽, and stays at the target state
𝐽 after reaching it. Note that this is feasible because each state has a noiseless self-loop. Hence, we have

P(𝑆𝑡 = 𝑗 |𝑆0 = 𝑖) = P(𝑆𝑡 = 𝑗 , 𝐽 = 𝑗 |𝑆0 = 𝑖) + P(𝑆𝑡 = 𝑗 , 𝐽 ≠ 𝑗 |𝑆0 = 𝑖)
= P(𝐽 = 𝑗 |𝑆0 = 𝑖)P(𝑆𝑡 = 𝑗 |𝐽 = 𝑗 , 𝑆0 = 𝑖) + P(𝑆𝑡 = 𝑗 , 𝐽 ≠ 𝑗 |𝑆0 = 𝑖)
= 𝐹𝑖, 𝑗P(𝑇 𝜋𝑖, 𝑗

𝑖, 𝑗 ≤ 𝑡) + P(𝑆𝑡 = 𝑗 , 𝐽 ≠ 𝑗 |𝑆0 = 𝑖) (C.9)

≥ 𝐹𝑖, 𝑗P(𝑇 𝜋𝑖, 𝑗
𝑖, 𝑗 ≤ 𝑡), (C.10)

where (C.9) follows from the definition of the matrix 𝐹 and the hitting time 𝑇 𝜋𝑖, 𝑗
𝑖, 𝑗 , and (C.10) from the

fact that P(𝑆𝑡 = 𝑗 , 𝐽 ≠ 𝑗 |𝑆0 = 𝑖) ≥ 0. Recall that 𝑑𝑐 (𝐺) = max𝑣,𝑣′ ∈V 𝑑𝐺 (𝑣, 𝑣′) is the classical diameter
of graph 𝐺. Then for 𝑡 > (𝑑𝑐 (𝐺) − 1)/(1 − 2𝜉) and 𝑗 ∈ S, the state distribution at time 𝑡 satisfies

𝜇𝑡 ( 𝑗) = P𝑆0∼𝜇 (𝑆𝑡 = 𝑗)
=

∑
𝑖∈S
P(𝑆𝑡 = 𝑗 |𝑆0 = 𝑖)P(𝑆0 = 𝑖)

≥
∑
𝑖∈S

𝐹𝑖, 𝑗P(𝑇 𝜋𝑖, 𝑗
𝑖, 𝑗 ≤ 𝑡)𝜇(𝑖) (C.11)

= P(𝑇 𝜋𝑖, 𝑗
𝑖, 𝑗 ≤ 𝑡)

∑
𝑖∈S

𝐹𝑖, 𝑗𝜇(𝑖)

= P(𝑇 𝜋𝑖, 𝑗
𝑖, 𝑗 ≤ 𝑡)𝜇′( 𝑗) (C.12)

≥
(
1 − 16𝜉 (1 − 𝜉)𝑡

((1 − 2𝜉)𝑡 − (𝑑𝑐 (𝑖, 𝑗) − 1))2

)
𝜇′( 𝑗) (C.13)

≥
(
1 − 16𝜉 (1 − 𝜉)𝑡

((1 − 2𝜉)𝑡 − (𝑑𝑐 (𝐺) − 1))2

)
𝜇′( 𝑗). (C.14)
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Here, (C.11) follows from (C.10), (C.12) from 𝜇𝐹 = 𝜇′, (C.13) from Lemma 5, and (C.14) from the
fact that 𝑡 > (𝑑𝑐 (𝐺) − 1)/(1 − 2𝜉) and 𝑑𝑐 (𝐺) ≥ 𝑑𝐺 (𝑖, 𝑗). Thus, the total variation distance between 𝜇𝑡
and the target distribution 𝜇′ satisfies

𝛿TV(𝜇𝑡 , 𝜇′) =
∑

𝑗∈S:𝜇′ ( 𝑗) ≥𝜇𝑡 ( 𝑗)
(𝜇′( 𝑗) − 𝜇𝑡 ( 𝑗)) (C.15)

≤
∑

𝑗∈S:𝜇′ ( 𝑗) ≥𝜇𝑡 ( 𝑗)

16𝜉 (1 − 𝜉)𝑡
((1 − 2𝜉)𝑡 − (𝑑𝑐 (𝐺) − 1))2 𝜇

′( 𝑗) (C.16)

≤ 16𝜉 (1 − 𝜉)𝑡
((1 − 2𝜉)𝑡 − (𝑑𝑐 (𝐺) − 1))2 , (C.17)

where (C.15) follows from the definition of total variation, (C.16) from (C.14), and (C.17) from the fact
that

∑
𝑗∈S:𝜇′ ( 𝑗) ≥𝜇𝑡 ( 𝑗) 𝜇

′( 𝑗) ≤ 1. With (C.17), we have 𝛿TV(𝜇𝑡 , 𝜇′) ≤ 𝜖 when

𝑡 ≥ 𝑑𝑐 (𝐺)
1 − 2𝜉

+ 4𝜉 (1 − 𝜉)
𝜖 (1 − 2𝜉)2

(
2 +

√
4 + (1 − 2𝜉)𝑑𝑐 (𝐺)𝜖

𝜉 (1 − 𝜉)

)
. (C.18)

Therefore,

𝜏𝜖 (I 𝜉
𝐺 ) ≤ 𝑑𝑐 (𝐺)

1 − 2𝜉
+ 4𝜉 (1 − 𝜉)
𝜖 (1 − 2𝜉)2

(
2 +

√
4 + (1 − 2𝜉)𝑑𝑐 (𝐺)𝜖

𝜉 (1 − 𝜉)

)
(C.19)

≤ 𝑑𝑐 (𝐺)
1 − 2𝜉

+ 4𝜉 (1 − 𝜉)
𝜖 (1 − 2𝜉)2

(
2 +

√
4 + (1 − 2𝜉)𝑑𝑐 (𝐺)

𝜉 (1 − 𝜉)

)
, (C.20)

with (C.20) following from 𝜖 ≤ 1,which completes the proof of Lemma 3. �

Proof of Theorem 3
Denote by I an instance of dynamic energy management with storage. With (25) and Lemma 3, we
have 𝜏𝜖 (I) ≤ (𝐵/𝐶 + 1)/(1 − 2𝛽) + ( 𝑓 (𝐵/𝐶 + 1, 𝛽))/𝜖 = 𝛼 + 𝜔/𝜖 . By Theorem 1, we have

Δ(𝜇0, 𝑇) ≤ 𝑟

1 − 𝜖
(
𝛼 + 𝜔

𝜖

)
. (C.21)

Now we treat 𝐵,𝐶, and 𝛽 as fixed parameters determined by the system and the environment, and regard
𝜖 as a parameter we can tune. It is easy to see that

𝑑

𝑑𝜖

(
𝑟

1 − 𝜖
(
𝛼 + 𝜔

𝜖

))
= 𝑟

(
𝛼𝜖2 + 2𝜔𝜖 − 𝜔
𝜖2(1 − 𝜖)2

)
. (C.22)

Hence, the right-hand side of (C.21) is minimized at 𝜖 = (
√
𝜔2 + 𝜔𝛼 − 𝜔)/𝛼, which implies that

Δ(𝜇0, 𝑇) ≤ 𝑟 (
√
𝜔 + 𝛼 + √

𝜔)2. (C.23)

�
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Appendix D. System specifications

For the simulations in Section 4.5, we used a desktop computer with an Intel Core i7-8700k CPU and
32GB of memory. The operating system is Windows 10 and the Matlab version is R2016b.
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