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Both experiments and numerical simulations pertinent to the study of self-similarity
in shock-induced turbulent mixing often do not cover sufficiently long times for
the mixing layer to become developed in a fully turbulent manner. When the
Mach number of the flow is sufficiently low, numerical simulations based on the
compressible flow equations tend to become less accurate due to inherent numerical
cancellation errors. This paper concerns a numerical study of the late-time behaviour
of a single-shocked Richtmyer—Meshkov instability (RMI) and the associated
compressible turbulent mixing using a new technique that addresses the above
limitation. The present approach exploits the fact that the RMI is a compressible
flow during the early stages of the simulation and incompressible at late times.
Therefore, depending on the compressibility of the flow field, the most suitable model,
compressible or incompressible, can be employed. This motivates the development of
a hybrid compressible—incompressible solver that removes the low-Mach-number
limitations of the compressible solvers, thus allowing numerical simulations of
late-time mixing. Simulations have been performed for a multi-mode perturbation at
the interface between two fluids of densities corresponding to an Atwood number of
0.5, and results are presented for the development of the instability, mixing parameters
and turbulent kinetic energy spectra. The results are discussed in comparison with
previous compressible simulations, theory and experiments.
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1. Introduction

When a shock wave impacts on the interface between two fluids of different
densities a Richtmyer—-Meshkov instability (RMI) is initiated, leading to turbulent
mixing between the two fluids (Richtmyer 1960; Meshkov 1969). The RMI appears
in different applications in science and engineering. In inertial confinement fusion
(ICF), the RMI causes the mixing between the capsule material and the fuel within,
diluting and cooling the fuel, with a significant loss of reaction efficiency (Lindl,
McCrory & Campbell 1992). In scramjet engines, the instability enhances the mixing
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between fuel and oxidiser, thus increasing the efficiency of the combustion (Yang,
Kubota & Zukosky 1993). Arnett (2000) attributed to the RMI the lack of stratification
of the products of supernova 1987A, and Almgreen et al. (2006) showed how the
RMI, together with the Rayleigh—Taylor instability (RTI), is the cause of the loss of
spherical symmetry in the supernovae remnants.

Due to the presence of shock waves, the modelling and simulation of the RMI
requires the use of compressible flow equations. After the shock wave has passed
the interface, the effects of compressibility on the mixing layer are gradually reduced
and eventually a fully incompressible flow is established. It is well established in the
literature that for low-Mach-number flows compressible methods exhibit cancellation
errors and slow convergence rates (Guillard & Viozat 1999; Thornber et al. 2008 and
references therein). Several remedies have been proposed; however, the above issues
still influence the performance of compressible solvers in low-speed regimes, which
also includes the late-time development of the self-similar growth of the mixing
zone. Most of the existing experiments and simulations do not reach a fully turbulent
regime, and the self-similar growth of the instability remains to a certain extent
a hypothesis (Abarzhi 2008). Progress in numerical methods (see Thornber et al.
2010, Youngs 2013 and references therein) has pushed the boundaries of numerical
simulations to late time, enabling the investigation of self-similarity, the influence
of initial conditions on the RMI and RTI, and turbulent mixing driven by spherical
implosions (Thornber et al. 2010, 2012; Hahn et al. 2011; Lombardini, Pullin &
Meiron 2014a,b). In Hahn et al. (2011), the flow physics associated with the passage
of a shock wave, including reshocked flow, through an inclined material interface
with perturbations with different spectra but the same variance was investigated
by implicit large-eddy simulations (ILES) using two different computational codes
and different grid resolutions. The results showed that short-wavelength surface
irregularities approximated by a power spectrum proportional to the wavenumber of
the mode lead to more total mixing in the early stages, but cannot maintain the
turbulent mixing rate at late times due to the lack of long-living large energetic
scales. Additionally, the turbulent kinetic energy decays faster after shock interaction
with the inclined interface when compared with long-wavelength surface irregularities
characterised by a spectrum of the form k2.

Past numerical simulations of the RMI with multi-mode perturbation rely entirely
on compressible methods. One of the first works published (Youngs 1984) showed
2D single- and multi-mode simulations for a shock-tube experiment. Over the last
three decades, the increasing computational power has allowed researchers to use
compressible computational fluid dynamics to simulate the 3D RMI, (e.g. Youngs
1994; Oron et al. 2001; Hill, Pantano & Pullin 2006; Thornber et al. 2010, 2012).
Fully incompressible simulations have been limited to simpler test cases where the
perturbation at the interface is formed by a periodic wave of constant length (Pham
& Meiron 1993; Mueschke et al. 2005). Velikovich & Dimonte (1996) have also
presented a nonlinear theory for incompressible fluids driven by an impulsive force.
The motivation for using an incompressible method at late times, as an alternative to
compressible flow solvers, arises primarily from the need to circumvent cancellation
errors associated with the compressible flow solvers, extend the simulation time
interval by solving the computationally less demanding set of incompressible flow
equations and provide, complementary to the compressible flow equations, a set
of data for comparison purposes. The present work aims to simulate the RMI by
following an approach not previously explored. The main idea is to use the most
appropriate numerical model depending on the flow conditions. Therefore, we propose
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to use the compressible and incompressible flow solvers at the early and late times
of the RMI mixing respectively. This approach avoids the numerical errors in the
low-Mach-number regime, and allows us to run the simulations for longer times. Thus,
it can potentially allow a better understanding of late-time RMI mixing as well as
obtaining simulation data for calibrating empirical models. It should also be mentioned
that in the past 10-15 years significant progress has been achieved with respect to
the theoretical understanding of the RMI. Comparison with rigorous theories, (see
Abarzhi 2008, 2010; Nishihara et al. 2010; Anisimov et al. 2013; Sreenivasan &
Abarzhi 2013 and references therein), would be beneficial for numerical simulations,
and this would be part of future work.

The paper is organised as follows. Section 2 presents the existing theories for the
RMI associated with multi-mode interface perturbations. The computational models
are presented in § 3. The results from the hybrid and compressible simulations are
discussed in §4 and the main conclusions are summarised in § 5.

2. The Richtmyer-Meshkov instability

The RMI is closely related to the RTI and sometimes is also referred to as the
impulsive or shock-induced RTI (Kull 1991). According to the two-dimensional
compressible vorticity equation,

d /o 1
— (2 )=—=VpxVp, 2.1
pdt(p> o pxVp (2.1)

where p is the density, w is the vorticity and p is the pressure, the mechanism
primarily involved in the process is the deposition of baroclinic vorticity at the
interface (Zabusky 1999; Mikaelian 2003; Aure & Jacobs 2008), which increases the
circulation in this area with time. When the shock wave passes from one fluid to
the other, clockwise vorticity is deposited and an unstable sheet of vortices, which
drives the deformation of the interface, is created. The first model, also known as the
impulsive model, was derived by Richtmyer (1960) and predicts the growth of the
interface, a, according to the formula

= —kAua, 2", (2.2)

where k is the wavenumber of the perturbation, Au is the impulse of velocity imparted
by the incident shock wave, a, is the initial amplitude of the perturbation and
At = (p2 — p1)(p2 + p1) is the Atwood number. The accuracy of the model sensibly
improves when the post-shocked quantities aj and A' are employed (Richtmyer
1960). A discussion on the agreement and disagreement between compressible linear
theory, based on the linearisation of the Euler equations in one space dimension, and
the impulsive model was given in Yang, Zhang & Sharp (1994) and Velikovich &
Dimonte (1996). Large-eddy and direct numerical simulations can greatly benefit from
comparing the numerical results with theoretical results, including zero-order, linear,
weakly nonlinear and highly nonlinear theories, similarly to Stanic et al. (2012).

2.1. Self-similarity and late-time development

During recent decades, several attempts have been made to describe the late-time
evolution of the RMI, i.e. when the mixing layer has passed the initial linear
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growth stage and evolves in a fully turbulent manner. Different models based on
self-similarity considerations, or bubble formation, have been formulated. Irrespective
of the approach used, all the theories and experiments agree on the fact that the
growth of the instability, W, follows an exponential trend:

W) =C(t —19)°, (2.3)

where C and ¢, are constants dependent on the perturbation and the initial conditions,
where the value of the growth exponent, 6, is the main subject of the investigation.
One of the first studies was carried out by Barenblatt, Looss & Joseph (1983), where
the authors discussed the propagation of turbulence from an instantaneous planar
source. Observing that the rate of turbulent kinetic energy (TKE) for this case is
governed by a balance of turbulent diffusion and dissipation into heat and by using
dimensional analysis, they calculated that the growth of the mixing layer has the form
of W(t) o<#’, where # =2/3 in the case of absence of dissipation and § =1 — u, with
1/3 < <1, in the presence of dissipation. The same result was achieved by Youngs
(1994), who applied self-similarity considerations by starting from the Kolmogorov
process and the scaling law of the turbulent dissipation rate in order to formulate the
following model equations:

d
kinetic energy dissipation: ” (LU =—a%?,

dw
growth of the mixing layer: T v, 24)
length scale: L =bW + cApin,

where a, b and ¢ are model constants and A,,;, is the shortest wavelength included in
the perturbed interface. For initial values W =% =0, the growth of the mixing layer

1S
w Vor \’
=Al(1+ 2 —1], 2.5)
/1min PA/lmin

where A is a model constant, A,,;, is the shortest wavelength included in the perturbed
interface and 6 = 2/3 in the case without dissipation or 6 < 2/3 otherwise. These
results were also verified by Ramshaw (1998), who used a Lagrangian formulation for
the energy to obtain an equation for the evolution of W. For low Reynolds numbers,
a different value for the growth exponent was found by Huang & Leonard (1994),
obtaining 6 = 1/4 by applying Saffman’s hypothesis (Saffman 1967) that bounds the
integral moments of vorticity distribution for the large scales. Zhou (2001) investigated
the inertial subrange energy spectrum associated with the RMI, extending the classic
Kolmogorov phenomenology to shock-driven turbulence and proposing the following
form for the turbulent subinertial range:

E(k, x) = Crisk ™3> \/A, Aue(x), (2.6)

which predicts a slightly lower decay than the classic k—/° given by the Kolmogorov
spectrum for homogeneous decaying turbulence. Developing the analysis further,
Zhou (2001) also proposed 2/3, 5/8 and 7/12 as possible values for the growth
exponent (the choice depends on how the evolution of the energy-containing range
of the spectrum is modelled). The upper-bound value also agrees with the analysis of
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Barenblatt er al. (1983) and Youngs (1994). Another study based on analogies with
weakly anisotropic turbulence was proposed by Clark & Zhou (2006), suggesting that
6 varies between 2/7 and 2/5. More recently, Llor (2006) investigated the behaviour
of a freely decaying slab of turbulence with respect to the invariance of angular
momentum. The author showed that for self-similar decay the kinetic energy decays
as t~", where n depends on the range of wavenumbers involved in the problem. Using
the impulsive field as initial condition (Saffman & Meiron 1989), it was found that
for n =4/3 and n = 10/7 the exponent 6 is 1/3 and 2/7 respectively. Poujade &
Peybernes (2010) found a similar range of values, 1/4 <0 <2/7.

2.2. Experiments and numerical simulations

Obtaining reliable data from experiments that involve multi-mode perturbations at the
interface is not a straightforward task. Youngs (1994) showed how the development of
the RMI is affected by the initial conditions through (2.5); therefore, the generation of
an interface with well-defined properties is crucial for the production of reliable data.
A significant step regarding RMI experiments was achieved by Castilla & Redondo
(1993) and Jones & Jacobs (1997). Castilla & Redondo (1993) adopted a new solution
to generate the impulse that triggers the instability. Instead of using the classic shock-
tube, the authors impulsively accelerated a box containing the fluids by allowing it to
fall onto a cushioned surface. The technique was successively improved by using coils
instead of cushions by Jacobs & Sheeley (1996). Jones & Jacobs (1997) generated
the interface between two fluids without using any solid membrane, which was until
then the standard approach but introduced experimental uncertainties, e.g. the pieces
of membrane shredded by the passage of the shock significantly affected the evolution
of the flow field, thus not allowing any proper comparison with numerical simulations.
Dimonte (1999) recreated the RMI by enclosing the two fluids in a box that was
driven downwards at very high acceleration for a short time by linear electric motors.
A range of values were obtained and the trend was expressed through the following

equation:
0.2240.05
0, =0, (p”) , @2.7)
L1

for a range of Atwood numbers between 0.15 and 0.96, where 6; and 6, are the
growth exponents for the spike and the bubble, respectively. Experiments (Dimonte
& Schneider 2000) confirmed the results, giving an exponent for the formula (2.7)
of 0.21 £ 0.05. Studying separately the evolution of bubble and spikes, the authors
found that 6, is substantially independent of the Atwood number and has a value of
0.25 £ 0.05, whereas the exponent of the spikes has a very similar value to 6, only
for A, <0.8. For 0.9 <A, <0.96, 6, drastically increases from 0.35 to 0.85. A possible
explanation is given by Thornber et al. (2010), where it was shown that for a high
Atwood number (A, =0.9) the self-similar regime is achieved compared with lower A,.

In the numerical simulations of the late-time behaviour of the RMI by Thornber
et al. (2010), two multi-mode perturbations with different power spectra and
combinations of fluids with different Atwood numbers were investigated in order
to examine the influence of initial conditions in the growth of the instability. When
the interface was characterised by a constant power spectrum of a combination of
narrowband wavenumbers, 6 ~ 0.23 was computed, which is in agreement with
Dimonte & Schneider (2000). On the other hand, a value of 6 ~ (0.62 was found in
the case where the interface was formed by a broadband of modes with a power
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spectrum proportional to k=2, which is close to the upper-bound limit calculated by
the theoretical analysis presented in §2.1.

In summary, previous investigations of the RMI were based on compressible
simulations, at both the early and the late times of the RMI mixing. Use of
an incompressible flow approach at late times can shed light on several issues,
both physics and numerics related, e.g. better understanding of cancellation errors
associated with compressible solvers, turbulent mixing behaviour before the flow
reaches the self-similar regime, as well as in the self-similar regime, values of the
growth exponent and understanding of the discrepancies between experiments and
numerical simulations, as well as different ILES models.

3. Numerical methods
3.1. Governing equations

Two computational models are employed in this study, the full compressible model
and the hybrid model which combines compressible and incompressible methods. The
compressible model is governed by the compressible Euler equations:

oU dJE JF 0G
o7 + ox + 3y + oz 0, (3.1)
where
U= (p, pu, pv, pw, E)",
E = (pu, pu* + p, puv, puw, (E +p)u)",
F = (pv, puv, pv> +p, pvw, (E +p)v)T, (3.2)
G = (pw, puw, pvw, pw* +p, (E+p)w)",
E=pe+0.5p*+v>+w?).
The variables u, v and w are the velocity components; E is the total energy per unit
volume and e is the specific internal energy. The system is closed by the equation of
state for ideal gas, p = pe(y — 1), where y is the ratio of the specific heats.
The hybrid model uses the compressible Euler equations at the initial stage of the
simulations and the variable-density incompressible Euler equations at late times:

ou dv Oow
—+—4+—=0,
ox dy 0z (3.3)
8U1+8E1+8F,+8G,_ v '
or ox oy ez P
where
Uzz(puépv, ow)T, ;
EI:(P“ ’IOMU’IOMW) ) (34)

F; = (puv, pv*, pvw)",

G, = (pwu, pwv, pw?)T.
The subscript (.); stands for the incompressible model. An additional transport
equation is added to the models in order to keep track of the species propagation:

99  d(up) d(vg)  d(wp)
EJF ax + ay + dz

This equation is cast in terms of the volume fraction multiplied by the density, ¢ =
p Vs = pvi/vror, where v; represents the volume occupied by the species i inside the
cell and vyor is the total volume of the cell. In the variable-density incompressible
model, the transport equation is cast in terms of the total density, ¢ = p.

0. (3.5)
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3.2. Numerical methods

The numerical methods employed in this study for solving the compressible and
incompressible equations fall into the category of ILES (Youngs 1991; Drikakis 2003;
Grinstein, Margolin & Rider 2007). Implicit large-eddy simulation methods do not
make use of any subgrid scale model (SGS), as conventional large-eddy simulation
does, but rely on high-resolution non-oscillatory (physics-capturing) schemes in
order to obtain the amount of dissipation needed to keep the solution stable, as
well as modelling (or mimicking) the effects of the unresolved turbulent scales.
High-resolution methods were originally designed to address issues of accuracy, and
physically correct behaviour in the proximity of discontinuities such as shock waves,
as well as contact discontinuities. Implicit large-eddy simulation is the established
numerical approach for compressible turbulent mixing but is also widely used in
many other fluid mechanics applications (see e.g. Grinstein et al. 2007; Drikakis
et al. 2009 and references therein). Furthermore, Bell & Colella (1989) and Drikakis,
Govatsos & Papantonis (1994) have shown that non-oscillatory methods can also be
used for incompressible flows.

In this study, the incompressible and compressible Euler equations are solved by
non-oscillatory methods (Drikakis & Rider 2004). The compressible equations are
discretised by the characteristics-based method, as detailed in Eberle (1987), Drikakis
(2003) and Bagabir & Drikakis (2004). High resolution is achieved by the monotonic
upstream-centred scheme for conservation laws (MUSCL) scheme in its total variation
diminishing form (Van Leer 1977) in conjunction with the fifth-order accurate limiter
(Kim & Kim 2005) and low-Mach-number corrections (Thornber et al. 2008). The
fifth-order version of the MUSCL scheme has been found to provide accurate results
for a broad range of flows (Drikakis et al. 2009).

The incompressible equations are solved by a pressure-projection technique which
uses the pressure to enforce the divergence-free constraint for incompressible flows.
The momentum equations are advected without taking into account the pressure,
thus disregarding the solenoidal nature of the field. The pressure is then computed
iteratively by solving an elliptic equation, and the velocity components are projected
onto the divergence-free space, thus recovering the sought incompressible solution.
The advective fluxes are discretised by the Rusanov flux (Rusanov 1961; Drikakis
& Rider 2004; Shapiro & Drikakis 2005), and similarly to the compressible case
the fifth-order MUSCL scheme has been used for reconstructing the cell-face
variables. For the time integration, a second-order Runge—Kutta method in its
strong-stability-preserving version (Spiteri & Ruuth 2002), has been employed in
conjunction with Courant—Friedrichs—Lewy (CFL) numbers of 0.2 and 0.5 for the
incompressible and compressible solvers respectively.

3.3. Initial conditions

The RMI case considered here consists of a shock wave travelling from a heavy to
a light gas with Mach number Ma = 1.84 along the x direction (Youngs 2004). The
perturbation at the interface consists of a constant narrowband high wavenumber, A,
power spectrum with modes bounded between A,;,, = 16Ax and A, = 32Ax, where
Ax is the grid spacing. The standard deviation of the perturbation, o, is set as 0.14,,,,
a value that assures that the modes are linear at the initialisation. The perturbation
wavelengths become shorter as the grid is refined, implying that the mixing layer at
a given moment in time will be shorter for a finer grid if exactly the same initial
conditions are assumed. Further information on the initial conditions can be found in
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Domain dimensions (L, x L, x L)  Resolution (N, x N, x N,)

6T X 2T X 21 768 x 256 x 256
281 x 21 x 27 720 x 512 x 512

TABLE 1. Domain dimensions and relative grid resolutions.

Hahn et al. (2011) and Thornber et al. (2012). The dimensions of the computational
domain and the grid resolutions used are summarised in table 1. In order to reduce the
reflection of the transmitted and reflected shock waves at the inlet and the outlet of the
computational domain, a one-dimensional extended domain (beyond the computational
domain) is connected to these boundaries. This extended domain comprises 7000 cells
with the same step size as the cells in the main field. The above implementation
significantly eliminates the reflection of the shock waves.
The initial conditions of the non-shocked fluids are

heavy fluid: (p, u, p) = (3.0, —29.16, 1000), (3.6)
light fluid: (p, u, p) = (1.0, —29.16, 1000), 3.7

corresponding to A, =0.5.

3.4. Numerical transition from compressible to incompressible flow

The numerical transition (NT) from the compressible to the incompressible model
is implemented according to the local Mach number of the flow, specifically the
highest value of the local Mach number (Ma) throughout the computational domain
(£2). The local Mach number is calculated at the end of each compressible time step.
When max, (Ma) < Mayr, where Mayr is the numerical threshold that distinguishes a
compressible from an incompressible flow, the incompressible solver is initialised from
the compressible solution. From a physical point of view, it is commonly accepted
that a flow can be considered incompressible when maxg(Ma) < 0.3 (Anderson 2007).
Numerical tests performed in this study aimed at addressing the sensitivity of the
incompressible solver with respect to the transition showed that a value of Mayr =0.2
provides accurate results. This also agrees with the threshold value found by Oggian
et al. (2014) for the single-mode RMI case. The incompressibility assumption and
the effects of different numerical schemes on the RMI were also discussed in Oggian
et al. (2014) in detail.

The density varies throughout the computational domain in the compressible model,
whereas the variable-density incompressible model assumes that the density is constant
in all computational cells except for cells where mixing occurs. Therefore, in the
transition from compressible to incompressible, the density of the pure fluids and
the density inside the mixing layer are recalculated. At the end of the compressible
simulation, the incompressible densities (o;); and (p,); are computed by averaging the
densities of cells where only pure fluid 1 or 2 is present. The averaged values allow
the reconstruction of the incompressible mixing layer based on V;:

(omx)r = V(o) + (1 = Vp)(02);. (3.8)

In the above formula, the densities are obtained from the averaging process and the
V; distribution from the compressible solution. The density reconstruction is based on
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(b)

FIGURE 1. Interface deformation (isosurface V; = 0.5) at the instant of the numerical
transition from the compressible to the incompressible model for the 256 cross-section
grid (r ~5.78).

the volume fraction instead of the density field because in the compressible simulation
the same volume fraction for given cells does not (necessarily) correspond to the same
density values. Therefore, average densities for all the cells with V; =1 and V; =0
are calculated, and the density p throughout the domain is recalculated according
to the volume fraction distribution. In the numerical transition the momentum terms
pu, pv and pw are not modified. The pressure is initialised by a constant value,
which is corrected by the incompressible solver at each time step, so as to satisfy
the divergence-free constraint.

4. Numerical simulations

Unless otherwise specified, the results presented in this section refer to the finest
grid. The simulations were carried out on Cranfield University’s high performance
computing facility, Astral, using 64 processors. The approximate computational time
for the compressible simulations was 90 days for 7 = 500. The corresponding time
for the hybrid solver was 10 days for r =1500. This clearly shows the computational
advantage gained by the hybrid solver, which allows longer periods of mixing
development to be computed in less computing time.

In order to allow the comparison of the results on different grid resolutions by
taking into account the grid dependence of the initial perturbation, the time is non-
dimensionalised by the minimum wavelength at the interface, 4,,, = 16Ax,

AtAu
T=1——.
/lmin

The incompressible solver is initialised at #yr ~ 0.156 s, which corresponds to
non-dimensional times of approximately 5.78 and 11.56 for 256 and 512 resolutions
respectively. The densities assigned to the incompressible fluids after the transition
are (p01); = 5.23 and (p,); = 1.82. The status of the interface at the end of the
compressible part of the simulation is presented in figure 1. The linear growth of the
mixing layer (figure 2) is dictated by the larger scales generated by the perturbed
interface. An initial velocity is given to the gas interface so that the centre of the
interface remains stationary after the passage of the shock wave. The initial growth
of W prior to the interaction of the shock wave with the interface is due to numerical
diffusion of the interface (figure 2). This is followed by compression due to the
interaction of the shock wave with the interface, hence the abrupt reduction in W.

4.1)
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0.15

W/ Amin

0.05

FIGURE 2. Growth of the mixing layer during the compressible stage for the 256 cross-
section grid (0 < 7 < 5.78). The rapid decay after the overshoot at t & 0.3 is due to
compression of the initially diffused interface when the shock wave interacts with it.

Source Interpolation interval 0
Compressible (C) 40 <t <500 0.244
Hybrid (H) 40 <1 <500 0.225
40 <1t < 1500 0.213
Thornber et al. (2010) (compressible) 40 < 7 <500 0.260
Youngs (2004) (compressible) Not specified 0.243
Dimonte & Schneider (2000) (experiments) Not specified 0.25 £ 0.05

TABLE 2. Growth exponent values for various compressible and hybrid simulations, as
well as experiments.

4.1. Growth of the instability
The integral length of the mixing zone,

W= / V(1= Vp)dx, (4.2)

where V; is the volume fraction averaged over the y and z planes of the domain, is
shown in figure 3 for both the compressible and the hybrid solutions. Furthermore,
with reference to (2.3), the values of the growth exponent computed by the nonlinear
regression (NLR) analysis are summarised and compared with published results in
table 2.

The growth exponent in the compressible simulation is found to be in good
agreement with both the experiments of Dimonte & Schneider (2000) and the
numerical simulations of Thornber et al. (2010). Excellent agreement is also found
with Youngs (2004), where 6 = 0.243 was obtained from a long-time compressible
simulation; the difference between the simulation of Youngs (2004) and our
simulations is approximately 0.001. The hybrid simulation generally predicts a
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FIGURE 3. Growth of the integral length of the mixing zone computed by the hybrid
solver and interpolated using nonlinear regression analysis. The results of the compressible
simulation from Thornber et al. (2010) are also shown.

lower exponent independently of the time interval across which W is interpolated.
The value of 6 obtained for 40 < v < 500 slightly changes when the interpolation
time window covers the entire simulated time, i.e. 40 < T = 1500. The differences
between the present compressible simulation and the one by Thornber et al. (2010)
are attributed to the different discretisation methods used, specifically the numerical
dissipation embedded on the non-oscillatory schemes.

Further analysis on the estimation of 6, analogous to the methods applied by
Dimonte et al. (2004) and Ristorcelli & Clark (2004) to estimate the growth rate
coefficient for Rayleigh-Taylor mixing, is presented below. If we assume that the
growth of the Richtmyer—Meshkov mixing layer is modelled by power-law growth
with a virtual time offset

W=A@—1)’, (4.3)

then we can derive the parameters A, fy and 6 from numerical data using the time
derivatives of W. If ¢, is assumed to be small, then we need only the first derivative

W
91 = W, (44)
while if we allow for 7, # 0, then
6, = ! 4.5)
T —wwywe '

In order to generate these estimates of 6, the first and possibly second derivatives of
the layer thickness need to be found. Doing this by simple differencing of noisy data
is known to be a numerically unstable procedure. In order to mitigate this numerical
noise, we pass the layer width data through a Savitzky—Golay filter, with a weighting
function applied to smooth the edges of the filter window, and hence reduce the effect
of sudden changes as individual data points enter it. The results of the above analysis
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FIGURE 4. Analysis of the Richtmyer—Meshkov (RM) exponent 6. Blue shows 6, (4.4)
and green shows 6, (4.5).

are shown in figure 4. The noisier method (8,) depends on second derivatives, so
suffers from noise at late time. Overall, the above results seem to give pretty good
evidence for convergence, though the way in which the first-order curve starts to
wallow at late time (and the second-order version goes haywire) suggests that the
dominant modes are starting to see the box size.

On comparing the hybrid solution with the various analytical theories, the results
agree with Barenblatt’s suggestion for § = 2/3 — v, where v < 1 is a viscous
correction. The hybrid and compressible simulations give v =~ 0.45 and v =~ 0.42,
which are within the range proposed by Barenblatt er al. (1983). The compressible
simulations of Youngs (2004) and Thornber et al. (2010) are also within this range,
giving v~ 0.41 and v ~ 0.42 respectively. The values obtained here are significantly
lower than the range proposed by Zhou (2001), which predicts an upper value of 2/3.
However, the agreement between the numerical and the experimental results is good
and confirms the (generally) accepted viscous correction theory of Barenblatt et al.
(1983).

Information about the self-similar growth of the mixing layer is obtained by
plotting the plane-averaged profiles of the volume fraction at different instants in
time (figure 5). In order to compare the solutions, the variable is normalised by the
width of the mixing layer at the time instant considered. The profiles of figure 5
indicate that for both the compressible and hybrid solutions the evolution of the bulk
of the mixing layer tends to become self-similar at 7 2250, whereas the two extremes
of the mixing layer require more time to achieve this regime. The comparison is made
clearer by plotting the quantity V;(1 —V;) in figure 6. In the compressible simulations,
the spikes do not become self-similar by the end of the simulated time (tr ~ 500). In
the hybrid simulations, we found that the profiles start to develop in a self-similar
manner after t > 500.

The differences in the extremities of the mixing layer are caused by density
differences and, in turn, by the momentum of bubbles and spikes. This makes the
profiles of the volume fraction asymmetric with respect to the centre of the mixing
zone. The higher momentum of the spikes generates coherent vortex rings that travel
away from the interface, which further break down and become part of the mixing
layer only at later time in comparison with the bubbles. The evolution towards
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FIGURE 5. Profiles of the volume fraction, averaged on the x planes, plotted against the
direction of the shock propagation normalised by the integral length of the mixing layer
at different (dimensionless) times for the fine grid. (a) Compressible; (b) hybrid.
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FIGURE 6. Profiles of V;(1 — V), averaged on the x planes, plotted against the direction
of the shock propagation normalised by the integral length of the mixing layer at different
(dimensionless) times for the fine grid. (a) Compressible; (b) hybrid.

self-similarity as predicted by the hybrid simulation is found to be in good agreement
with the compressible analysis of Thornber et al. (2010) which obtained self-similar
evolution for the centre of the mixing layer at t & 238. In Thornber et al. (2010),
a value for bubbles and spikes was not predicted since the simulation ran up to
7 =500 and at that time it was found that although the profiles were tending towards
collapsing on top of each other, self-similarity was still not yet clearly achieved. The
above facts imply that a much finer grid resolution is necessary to correctly capture
the extremities of the mixing layer since the fine structures in this region of the
domain make the results extremely sensitive to the dissipative characteristics of the
numerical scheme at high wavenumbers.

Visualisations of the evolution of the mixing layer are presented in figure 7, where
the breakdown of the larger structures at late time and the turbulent development
of the mixing layer are shown. It should be mentioned that the mixing fraction
parameter after the transition remains the same by numerical construction, when
using the volume fraction to initialise the density field. The differences in the volume
fraction contours between compressible and hybrid simulations are attributed to


https://doi.org/10.1017/jfm.2015.392

https://doi.org/10.1017/jfm.2015.392 Published online by Cambridge University Press

424 T Oggian, D. Drikakis, D. L. Youngs and R. J. R. Williams

(@)

(© )

FIGURE 7. Two-dimensional visualisations of compressible (a,c) and hybrid (b,d,e) V;
contour plots: (a,b) t = 200; (c,d) T = 500; (¢) v = 1500. For v = 1500 only hybrid
visualisations are available. The plots are clipped to highlight the mixing layer.

the different inherent numerical dissipation associated with the incompressible and
compressible ILES. It appears that the compressible solution is more dissipative than
the incompressible one. This is similar to the single-mode case (Oggian et al. 2014),
where the incompressible solver predicted mushrooms with two roll-ups, whereas
the compressible solver gave one roll-up. Although investigation of the properties of
ILES models is beyond the scope of the present study, further research is required to
analyse the dissipation and dispersion effects of different ILES models.

Figure 8 shows the evolution of the molecular mixing fraction, &, and the mixing
parameter, =, defined as

[va=vie [ER@ T
O="F———, &= : (4.6a,b)
/Vf(l—vf)dx /min(Vf,l—Vf)dx

The ® and & mixing parameters are measures of the total reaction rates for slow
and fast reactions respectively. Both coefficients follow a similar trend but the
compressible simulations give higher values. The curves do not reach a plateau for
the simulation interval considered here but are characterised by a very low positive
slope which decreases with time. Table 3 summarises the asymptotic values and
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FIGURE 8. Time evolution of the molecular mixing fraction, @, and the mixing parameter,
&, for the 512 cross-section grid.

Source O o)
Compressible (C) 0.87 0.87
Hybrid (H) 0.74 0.80

Thornber et al. (2010) (compressible) 0.84 0.84

TABLE 3. Values of the mixing parameters for compressible and hybrid simulations
compared with the compressible simulation from Thornber et al. (2010).

compares them with the results of Thornber et al. (2010). The hybrid solution
predicts less mixing, and lower & and & than the compressible solution, which is
also evident from the volume fraction plots in figure 7. The ® and Z as obtained
from the present compressible simulations are very similar to the compressible results
of Thornber et al. (2010) despite the fact that different numerical methods were used
in the two compressible simulations. The above results give confidence regarding the
compressible ILES models but also suggest that further investigation and comparison
between incompressible and compressible ILES are required.

4.2. Turbulent kinetic energy (TKE)

The TKE spectra for the hybrid and compressible simulations at various time instants
are shown in figure 9. The spectra have been obtained by an averaging process over
10 slices of the domain along the x direction, which is the direction of the shock
propagation. These slices are selected to be at the centre of the mixing layer.
Previous studies (Zhou 2001; Thornber et al. 2010) have shown that the spectrum
of the narrowband layer prior to reshock takes a k=3/?> form. Immediately following
reshock (where the shock has moved fully clear of the layer) there is a k=3 range
present in the spectrum; however, at the latest time where the flow tends towards a
self-similar solution the spectrum returns to a k=2 form but with more energy at
lower wavenumbers than in the pre-reshock case. As the growth rate of the mixing
layer is essentially the integral of the kinetic energy spectrum, the slight increase of
the growth exponent is most likely due to this increase in low-wavenumber energy.
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FIGURE 9. Compressible and hybrid spectra of the radial turbulent kinetic energy averaged
on the y and z planes in the bulk of the mixing layer for the 512 cross-section grid and the
k=3/% guideline analytically predicted by Zhou (2001). (a) Compressible solution; spectra
for T =50, 100, 150, 200, 250, 300, 350, 400, 450 and 500. (b) Hybrid solution; spectra
for r =50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 1000 and 1500.

The above ranges are also observed in the present spectra; however, comparing
with the results of Thornber et al. (2010) the agreement is less clear in the present
compressible simulations due to the coarser resolution, 512? cross-section here versus
20482 in Thornber et al. (2010). The k~>/* region in the hybrid simulations is also
limited to a shorter range of wavenumbers compared with the compressible results.
These discrepancies are attributed to the scaling of the initial perturbation and the
discretisation methods. The results clearly show that the numerical dissipation has
important effects on the flow physics, and considering that most practical simulations
are under-resolved with respect to the grid, this issue requires more investigation.
Bearing the aforementioned uncertainties in mind, the results further show that the
energy peak progressively moves from an initial k/k,,;,, ~ 0.6 at T =40 to k/k,;, ~0.1
at T = 1500. At high wavenumbers (k/k,;, > 3), the rate of TKE decay increases,
but at the very end of the spectrum, k/k,;, =~ 8, a slight turn-up of the energy is
observed. This part of the spectrum still represents the unknown since there is no
theory that describes the dissipative characteristics of shock-induced turbulent mixing.
The turn-up in the dissipation range of the compressible spectrum appears to be more
evident. The results obtained from both simulation approaches indicate that at the
end of the simulation there is no evidence of memory loss of the initial shock and
the mixing still behaves in an inhomogeneous and anisotropic manner.

The evolution of the TKE components defined by

1 1
Kx= = /,0(’/‘_14)2 dV» I(\: 5 /,01)2 dV’ (47a’b)

2
/ pudS
.z
/ pdS
.z

is shown in figure 10. There is good agreement between the compressible and hybrid
simulations. At early times, K, is an order of magnitude larger than K, and K.

where

u=

(4.8)
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FIGURE 10. Evolution in time of the turbulent kinetic energy components and of the ratio
K. /K, for the 512 cross-section grid, for both the compressible and hybrid simulations: (a)
TKE components; (b) K,/K, ratio.

As time passes, the behaviours of the longitudinal and radial components follow
different trends. The former constantly decreases, whereas the latter presents an
initial growth until T &~ 40 and then it successively diminishes until the end of the
simulation.

As has been discussed in Thornber ef al. (2010), given that the width of the
mixing layer scales with ¢/, the empirical relation € ocu®/W can be used to check the
dissipation rate of kinetic energy. From dimensional analysis dK/df oc K*/?/1%, where
K is the turbulent kinetic energy per unit mass, with a solution of the form K oc 2.
This is the decay rate of mean kinetic energy across the mixing layer. The decay of
the total fluctuating kinetic energy is proportional to the width of the mixing layer
multiplied by the mean kinetic energy, i.e. WK o #71*°=2 o< £**=2. This result can also
be gained by assuming that the mean velocity in the mixing layer is proportional
to the growth of the mixing layer itself, giving vK oc dW/dr o< 71, i.e. WK o 92,
Considering that the hybrid solver returned a growth coefficient of 6 = 0.213, the
TKE is supposed to scale with =%, From figure 10(a), it is clear that the decay of
K is consistent with the prediction. As a consequence of the evolution of the TKE in
time, the ratio of K, to the radial components decreases very quickly, until it reaches
a minimum of 1.24 at T 2400, followed by a slow increase. For 800 < t < 1500, the
ratio K,/K, is included in the range 1.315£0.015 with the tendency to increase.

The analysis of the TKE components is also consistent with the TKE spectra. Even
though the trend of these quantities results in a constant and basically equal decay
at the end of the simulation, e.g. at T &~ 250 the rate of decay for all components
becomes almost identical, there is no sign of loss of anisotropy in the flow field as
the x component of the TKE is higher than the radial contributions; this conclusion
also agrees with Thornber et al. (2010). The ratio K, /K, found in this study seemed to
stabilise around a value of 1.2540.02 at t > 50. In comparison with the compressible
simulations, the hybrid approach gives a lower anisotropy at late times.

5. Conclusions

A computational approach for studying the late-time development of the Richtmyer—
Meshkov instability was presented. The method utilises a compressible flow model at
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early times and an incompressible one at later times. The proposed approach enables
longer times of the mixing development to be simulated in shorter computational
time. The results were found to be in good agreement with previous compressible
simulations, theory and experiments.

The simulations indicated that the spikes and bubbles start to converge towards
self-similar behaviour at different time instants, approximately T =600 for spikes and
7 =250 for bubbles. The mixing parameters of the present compressible simulations
were found to be in good agreement with the compressible flow results of Thornber
et al. (2010). The hybrid solution gives less mixing than the compressible solution.
Furthermore, the k=¥ region of the TKE spectra of the hybrid simulations is limited
to a shorter range of wavenumbers compared with the compressible simulations.
The discrepancies between different ILES models and simulations are attributed to
the scaling of the initial perturbation and the discretisation methods. The numerical
dissipation has significant effects on the flow physics, and this issue deserves further
investigation. Contrary to what is assumed in Zhou (2001), the TKE spectra indicated
an anisotropic evolution even at late times. In fact, although the averaged TKE

components were found to decay at the same rate of r~!3°, at late time the x
component exhibited an absolute value approximately 1.31 times higher than the
same parameter along the y and z directions.

Although the results of the present study are promising with respect to the use
of hybrid compressible—incompressible methods for simulating late-time RMI mixing,
they also suggest that further research is required to elucidate the physics of the
RMI (anisotropy and self-similarity) and the effects of numerical methods, ILES in
particular, on the simulation results. The results suggest that although the time window
of the simulations has been extended thanks to the hybrid method, the flow has not
yet become fully self-similar. Olson & Greenough (2014) suggested that the number
of grid points needed for a direct numerical simulation of the RMI is approximately
4 x 10'2, which exceeds the current capabilities of supercomputing resources. For
an RM calculation with fixed small scales computed with an explicit hydrodynamics
scheme, the computational cost to get to width W will be o« W3W'/¢  where the
first term is the number of cells required to resolve the mixing layer and the second
term is the number of time steps required. Therefore, the computational time cost
expands roughly as the dynamic range (W/Ax)’. The easiest factor to address is
the W'?, which an implicit calculation should be able to change to oc W or oc W
log W. Beyond that, it may be possible to gain extra factors, e.g. by de-refining
fine scales at late time. In summary, even two orders of magnitude higher resolution
than the one employed here would seem to require exclusive access to the largest
high performance power computing facilities currently available. Therefore, future
research should justify what resolution is needed to get reliable results (for relevant
parameters, in relevant conditions) from an ILES calculation with the particular
numerical methods being used. Finally, part of our future research will also be to use
the hybrid method to examine the effects of different initial conditions on late-time
mixing.
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