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Abstract. We consider a locally path-connected compact metric space K with finite first
Betti number b1(K) and a flow (K , G) on K such that G is abelian and all G-invariant
functions f ∈ C(K) are constant. We prove that every equicontinuous factor of the flow
(K , G) is isomorphic to a flow on a compact abelian Lie group of dimension less than
b1(K)/b0(K). For this purpose, we use and provide a new proof for Theorem 2.12 of
Hauser and Jäger [Monotonicity of maximal equicontinuous factors and an application to
toral flows. Proc. Amer. Math. Soc. 147 (2019), 4539–4554], which states that for a flow
on a locally connected compact space the quotient map onto the maximal equicontinuous
factor is monotone, i.e., has connected fibers. Our alternative proof is a simple consequence
of a new characterization of the monotonicity of a quotient map p : K → L between
locally connected compact spaces K and L that we obtain by characterizing the local
connectedness of K in terms of the Banach lattice C(K).
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1. Introduction
The study of topological dynamical systems via their maximal equicontinuous factors
playsan important role for, e.g., tiling dynamical systems (see [KLS15, Ch. 5]), Toeplitz
flows (see [Dow05]), or the Furstenberg structure theorem for minimal distal flows. One
reason is that, for group actions, the maximal equicontinuous factor coincides with the
Kronecker factor. The latter is highly structured, is minimal if and only if it is isomorphic
to a minimal rotation on a homogeneous space of some compact group, and also captures
spectral-theoretic information. In light of this, it is important to understand how the specific
structure and properties of a system can be used to determine its maximal equicontinuous
factor. For example, it is known that if (M , G) is a distal minimal flow on a compact
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manifold M , then its maximal equicontinuous factor is a flow on a homogeneous space
of some compact Lie group; see [Ree77, Theorem 1.2] or [IM84, Theorem 1.2]. If,
additionally, the acting group G is abelian, the maximal equicontinuous factor is in fact
isomorphic to a flow on a compact abelian Lie group. For non-distal systems, however, few
results in this spirit seem to exist. Notably, Hauser and Jäger recently proved the following.

THEOREM. [HJ19, Theorem 3.1] Suppose that f is a homeomorphism of the two-torus.
If the maximal equicontinuous factor of (T2, f ) is minimal, then it must be one of the
following three:
(i) an irrational translation on the two-torus;
(ii) an irrational rotation on the circle;
(iii) the identity on a singleton.

Thus, the geometric properties of the two-torus imply that the maximal equicontinuous
factor of a flow on it must have a relatively simple structure if it is minimal: it is a
rotation on a compact abelian Lie group of dimension less than two. As it turns out, this
is representative of the following general phenomenon, which is the main result of this
article. Recall that every compact abelian Lie group is isomorphic to the product F × Tm

of a finite abelian group F and a torus Tm.

THEOREM. Let (K , G) be a flow such that K is locally path-connected with finite first
Betti number b1(K), G is abelian, and K is metrizable. If all G-invariant functions
f ∈ C(K) are constant, then every equicontinuous factor of (K , G) is isomorphic to a
minimal flow on some compact abelian Lie group of dimension less than b1(K)/b0(K).

This provides a bound on the complexity of the maximal equicontinuous factor in terms
of topological invariants of the underlying space K and applies in particular to minimal
systems on compact manifolds. As a corollary, we obtain in Corollary 4.4 and Corollary 4.5
that the above-cited [HJ19, Theorem 3.1] holds analogously for tori of arbitrary dimension
and, in an appropriate version, more generally for quotients H/� of connected, simply
connected Lie groups H by discrete, cocompact subgroups � ⊂ H . Examples for such
spaces are in particular given by nilmanifolds; see [HK18, Ch. 10].

Another result of Hauser and Jäger [HJ19] and a key element in their proof of
[HJ19, Theorem 3.1] is that for a large class of flows the factor map onto the maximal
equicontinuous factor is monotone, meaning that preimages of points are connected.
Similar results were, it seems, first obtained in [MW76], where the authors proved that
for each extension p : (K , G) → (L, G) of minimal flows that decomposes into a tower
of equicontinuous extensions, the quotient map K → K/S(p) is monotone, where S(p)

denotes the relativized equicontinuous structure relation. Hence, for a distal minimal
flow its Furstenberg tower consists entirely of monotone quotient maps, see [Gre14,
Proposition 2.2], and in particular the map onto the maximal equicontinuous factor
is monotone. Without such structural assumptions, the monotonicity of the maximal
equicontinuous factor does not hold in general (take, e.g., the extension of the shift
τ : Z → Z, x �→ x + 1 to the one-point compactification of Z). If, however, the underlying
space is locally connected, it is shown in [HJ19, Theorem 2.12] that the quotient map onto
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the maximal equicontinuous factor is indeed monotone, which is notable since monotone
quotient maps relate the geometry of a space to that of a quotient: every monotone
quotient map between suitable spaces induces a surjective homomorphism on the level of
fundamental groups; see [CGM12, Theorem 1.1] (stated below as Theorem 4.1). Since
this idea will be crucial for the proof of Theorem 4.2, we also provide an alternative
proof for the monotonicity of the maximal equicontinuous factor under the assumption
of local connectedness. This is based on two results that are of interest by themselves: we
characterize the local connectedness of a compact space K in terms of the Banach lattice
C(K) and then use this to give a new characterization for the monotonicity of a quotient
map between locally connected compact spaces. (For background information on Banach
lattices, see [EFHN15, §7.1].) The above-mentioned monotonicity result then is a simple
application of these characterizations. We prove these results in § 3 after collecting some
preliminaries in §2. The main result is proved in §4.

1.1. Notation and terminology. By a topological dynamical system (K , S, �) we mean
a continuous action � : S × K → K of a topological semigroup S on a compact space K .
(We always assume compact spaces to be Hausdorff.) We usually drop � from the notation
and write sx instead of �(s, x) for s ∈ S and x ∈ K . We simply call (K , S) a flow if S is a
group. If we refer to a pair (K , ϕ) of a compact space K and a continuous map ϕ : K → K

as a topological dynamical system, we regard the N- or Z-action on K given by the powers
of ϕ, depending on whether ϕ is explicitly specified to be invertible or not. By an extension
p : (K , S) → (L, S) of topological dynamical systems we mean a continuous, surjective,
S-equivariant function p : K → L. Given such an extension, we also call p a factor map
and (L, S) a factor of (K , S). A system (K , S) is called equicontinuous if the family
{�(s, ·) | s ∈ S} ⊂ C(K , K) is equicontinuous.

If ϕ : K → L is a continuous function between compact spaces, we denote by Tϕ its
Koopman operator

Tϕ : C(L) → C(K),

f �→ f ◦ ϕ.

We assume the reader to be familiar with Koopman operators and the theory of com-
mutative C∗-algebras and refer to [EFHN15, Ch. 4] for background information. If H is
an abelian group, then rank(H) denotes its torsion-free rank, i.e., the dimension of the
Q-vector space Q ⊗ H . For a topological space X and i ∈ N0, we denote by bi (X) the ith
Betti number of X. Note that for a compact, locally path-connected space X, b0(X) is the
(finite) number of connected components of X.

2. Factors and invariant subalgebras
Consider the categories CTop of compact topological spaces and C∗

com,1 of commutative
unital C∗-algebras as well as the contravariant functor

C: CTop → C∗
com,1

given by K �→ C(K) and ϕ �→ Tϕ for compact spaces K and L and continuous functions
ϕ : K → L. It is a consequence of the classical Gelfand representation theorem (see
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[EFHN15, Theorem 4.23]) that C is an antiequivalence of categories. This allows us
to use operator-theoretic concepts to understand topological dynamical systems (cf.
Theorem 3.7) but also, conversely, to use geometric tools to obtain results about operators
(cf. Corollary 4.7). A particular consequence of this antiequivalence that we will use
throughout the article is the relationship between factors of a topological dynamical system
(K , S) and S-invariant unital C∗-subalgebras of C(K): suppose that p : (K , S) → (L, S)

is a factor map of topological dynamical systems. Then the Koopman operator

Tp : C(L) → C(K),

f �→ f ◦ p

is an S-equivariant C∗-embedding and its image AL := Tp(C(L)) ⊂ C(K) is an
S-invariant unital C∗-subalgebra of C(K), i.e., Ts(AL) ⊂ AL for each s ∈ S. Moreover, if
q : (K , S) → (M , S) is another factor map such that Tq(C(M)) = Tp(C(L)), then

� := T −1
p ◦ Tq : C(M) → C(L)

defines an S-equivariant C∗-isomorphism and so there is a unique S-equivariant homeo-
morphism η : L → M such that � = Tη, making the following diagram commutative.

(K , S)

p

�����
��
��
�� q

���
��

��
��

��

(L, S)
η �� (M , S)

This shows that a factor of (K , S) is, up to isomorphy, uniquely determined by its
corresponding C∗-subalgebra of C(K). Conversely, every S-invariant unital C∗-subalgebra
of C(K) canonically corresponds to a factor of (K , S) via the Gelfand representation
theorem and one thereby obtains, again up to isomorphy, a one-to-one correspondence
between factors of (K , S) and S-invariant unital C∗-subalgebras of C(K). For the
convenience of the reader, Remark 2.3 below explains a more elementary approach to
this correspondence.

Given that the C∗-subalgebras of many factors such as the maximal trivial factor, the
maximal equicontinuous factor, the maximal tame factor, the Kronecker factor, or the
Abramov factor admit relatively simple descriptions, it is convenient to study factors and
factor maps via their corresponding subalgebras. We do so in Corollary 3.6 to give a simple
criterion characterizing the monotonicity of a factor via its corresponding C∗-subalgebra.
We will then see that this criterion is readily verified for the C∗-subalgebra of the maximal
equicontinuous factor.

Example 2.1. Let (K , S) be a topological dynamical system.
(a) The factor consisting of a single point corresponds to the subalgebra C1K ⊂ C(K) of

constant functions.
(b) Let p : (K , S) → (L, S) be a factor map onto a trivial factor, i.e., one on which S acts

trivially. Then Tp(C(L)) is a subalgebra of

Atriv := {f ∈ C(K) | ∀s ∈ S : Tsf = f } .
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This ‘fixed’ algebra corresponds to the maximal trivial factor (Ktriv, S) of (K , S)

through which every factor map onto another trivial factor factorizes.
(c) Similarly, the subalgebra

Aeq := {f ∈ C(K) | {Tsf | s ∈ S} is equicontinuous}
corresponds to the maximal equicontinuous factor (Keq, S) of (K , S) since a topo-
logical dynamical system (M , S) is equicontinuous if and only if for each g ∈ C(M)

the orbit {Tsg | s ∈ S} is equicontinuous. By the Arzelà–Ascoli theorem, this is
equivalent to the orbits {Tsg | s ∈ S} being relatively compact for each g ∈ C(M).
If S acts via homeomorphisms, this means that the maximal equicontinuous factor
(Keq, S) coincides with the Kronecker factor, which corresponds, for abelian S, to
the C∗-subalgebra

A := lin{f ∈ C(K) | ∀s ∈ S ∃λs ∈ T : Tsf = λsf }
spanned by the eigenfunctions of the action of S; see [EFHN15, Corollary 16.32].

Remark 2.2. Let (M , G) be an equicontinuous flow. Then each orbit closure is a minimal
subset of M (see [Aus88, Lemma 2.3]) and so M decomposes into minimal subsets.
Moreover, the orbit closure relation

∼G := {(x, y) ∈ M × M | Gx = Gy}

is a closed equivalence relation (see [Aus88, Exercise 2.6]) and a moment’s thought reveals
that, hence, M/∼G together with the trivial G-action is the maximal trivial factor of
(M , G). In particular, (M , G) is minimal if and only if the maximal trivial factor of
(M , G) is a point. We note for the proof of Theorem 4.2 that as a consequence, given
an arbitrary system (K , G), its maximal equicontinuous factor is minimal if and only if
every G-invariant function f ∈ C(K) is constant.

Remark 2.3. Given a compact space K , one can describe the relationship between compact
quotients L of K and unital C∗-subalgebras A of C(K) without using the Gelfand
representation theory: if p : K → L is a continuous surjective map onto a compact space
L, define the unital C∗-subalgebra

AL := {f ∈ C(K) | ∀l ∈ L, ∀x, y ∈ p−1(l) : f (x) = f (y)}

of functions constant on fibers of p and note that AL = Tp(C(L)). Conversely, if A ⊂
C(K) is a unital C∗-subalgebra, define the closed equivalence relation

∼A := {(x, y) ∈ K × K | ∀f ∈ A : f (x) = f (y)}

and set LA := K/∼A. Then the assignments L �→ AL and A �→ LA are, up to isomorphy
of the compact spaces, mutually inverse. Analogously, one obtains the above-explained
correspondence between factors and invariant subalgebras if one considers topological
dynamical systems (K , S) on K .
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3. Local connectedness and monotonicity of factors
As noted in the introduction, one cannot expect the factor map onto the maximal
equicontinuous factor of a flow to be monotone in general, i.e., its preimages of points are
not generally connected. Therefore, we focus on quotient maps p : K → L between locally
connected compact spaces and characterize their monotonicity in terms of the subalgebra
AL ⊂ C(K) of functions constant on fibers of p. We then apply this to the maximal
equicontinuous factor. Recall the following elementary results on locally connected
spaces.

LEMMA 3.1. Let X and Y be topological spaces.
(a) X is locally connected if and only if for every open set O ⊂ X each connected

component of O is open in X.
(b) X is locally connected if and only if for every basis B for the topology of X and every

O ∈ B each connected component of O is open in X.
(c) If X is compact, X is locally connected if and only if it is uniformly locally connected,

i.e., if each entourage U ∈ UX contains an entourage V ∈ UX such that V [x] is
connected for each x ∈ X.

(d) If X is locally connected and f : X → Y is a surjective quotient map, then Y is locally
connected.

(e) If X is compact and locally connected, X has only finitely many connected compo-
nents.

Proof. For (a), (d), and (e), see Theorem 27.9, Corollary 27.11, and Theorem 27.12 of
[Wil04] and for (c), see [Jam99, Proposition 9.39]. Part (b) follows from the definition of
local connectedness and part (a).

Since in a compact space K the sets of the form [f �= 0] for continuous, complex-valued
functions f ∈ C(K) constitute a base of the topology, Lemma 3.1(a) and (b) provide a
natural way to characterize the local connectedness of K purely in terms of the Banach
lattice C(K). For this purpose, we call f , g ∈ C(K) orthogonal and write f ⊥ g if they
are orthogonal in the Banach lattice C(K). (That is, f ⊥ g if and only if |f | ∧ |g| =
0, which is equivalent to fg = 0.) A decomposition f = g + h is called orthogonal if
g and h are orthogonal. A function f ∈ C(K) is called reducible if f = 0 or if there
is an orthogonal decomposition f = g + h with non-zero g, h ∈ C(K) and f is called
irreducible otherwise. If f = g + h is an orthogonal decomposition and g is irreducible,
then g is called an irreducible part of f . For a function f ∈ C(K), define

irr(f ) := {g ∈ C(K) | g is an irreducible part of f }
and, for a subset F ⊂ C(K), set

irr(F) :=
⋃

f ∈ F
irr(f ).

A decomposition f = ∑
g ∈ F f for some at most countable set F ⊂ C(K) is called

irreducible if all g ∈ F are irreducible and pairwise orthogonal and the sum converges
uniformly to f .
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PROPOSITION 3.2. Let K be a compact space.
(a) If f ∈ C(K) and M ⊂ [f �= 0], then 1Mf ∈ C(K) if and only if M is clopen in

[f �= 0].
(b) If f ∈ C(K), then f is irreducible if and only if [f �= 0] is connected.
(c) For each f ∈ C(K),

irr(f ) = {1Of | O is an open connected component of [f �= 0]}.
(d) For each f ∈ C(K) and ε > 0, the set

{g ∈ irr(f ) | ‖g‖∞ > ε}
is finite. In particular, irr(f ) is countable.

(e) K is locally connected if and only if each f ∈ C(K) admits a unique irreducible
decomposition. In that case, the irreducible decomposition is given by

f =
∑

g ∈ irr(f )

g.

Proof. For a fixed f ∈ C(K), the multiplication operator

Cb([f �= 0]) → C(K), g �→ gf

is well defined and, if M ⊂ [f �= 0] is clopen, then 1M |[f �=0] ∈ Cb([f �= 0]). Therefore,
f1M ∈ C(K). Conversely, if M ⊂ [f �= 0] is such that 1Mf ∈ C(K), the restriction
1Mf |[f �=0] is continuous and so dividing by f |[f �=0] yields the continuity of 1M |[f �=0].
This proves (a), which in turn yields (b).

If O is an open connected component of [f �= 0], then 1Of ∈ irr(f ) by (a) and (b).
Conversely, take g ∈ irr(f ). Then g = 1[g �=0]f and so, by (a), [g �= 0] is a clopen subset
of [f �= 0] and hence a union of connected components of [f �= 0]. However, since g is
irreducible, [g �= 0] is connected and so it is an open connected component of [f �= 0],
proving (c). Moreover, (c) yields that irr(f ) is a bounded and equicontinuous set in C(K)

and so, by the Arzelà–Ascoli theorem, irr(f ) is relatively compact. Since, by (c), for every
two g, h ∈ irr(f ) with g �= h, one has ‖g − h‖ = max{‖g‖, ‖h‖}, (d) follows from the
relative compactness of irr(f ).

Now suppose K to be locally connected and take f ∈ C(K). Since K is locally
connected, each connected component of [f �= 0] is open and so, by (c) and (d), the sum∑

g ∈ irr(f ) g converges uniformly to f . Hence, f admits an irreducible decomposition,
which is readily verified to be unique. Conversely, assume that each f ∈ C(K) admits
an irreducible decomposition and let x ∈ K . To show that K is locally connected at x,
let U ⊂ K be an open neighborhood of x. Since K is completely regular, there exists
an f ∈ C(K) with x ∈ [f �= 0] ⊂ U . Moreover, since f admits a unique irreducible
decomposition, there is a unique g ∈ irr(f ) such that g(x) = f (x) �= 0. In particular,
x ∈ [g �= 0] ⊂ [f �= 0] ⊂ U and, since g is irreducible, [g �= 0] is connected, showing
that K is locally connected.

After these preparatory notes on local connectedness, we now turn towards the notion
of monotonicity and its characterizations. We restrict to compact spaces although many of
the arguments are easily adapted to completely regular spaces.
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Definition 3.3. Let X and Y be topological spaces and p : X → Y a map. Then p is called
monotone if for each y ∈ Y the preimage p−1(y) is a connected subset of X.

If p : K → L is a continuous surjective map, then as noted in § 2 and in particular
in Remark 2.3, L is, up to isomorphy, uniquely determined by the subalgebra AL =
Tp(C(L)) ⊂ C(K) of functions constant on the fibers of p. If K is locally connected,
this allows us to use Proposition 3.2 to characterize the monotonicity of a quotient map
p : K → L in terms of the subalgebra AL and the Koopman operator Tp.

PROPOSITION 3.4. Let K and L be compact spaces, K locally connected, and p : K → L

continuous and surjective. Then the following assertions are equivalent.
(a) p is monotone.
(b) For every connected set C ⊂ L the preimage p−1(C) is connected.
(c) For every open, connected set U ⊂ L the preimage p−1(U) is connected.
(d) For every irreducible f ∈ C(L) the set p−1([f �= 0]) is connected.
(e) Tp preserves irreducibility of functions.
(f) The subalgebra AL = Tp(C(L)) ⊂ C(K) satisfies irr(AL) ⊂ AL.

Proof. For the implication (a) �⇒ (b), suppose C ⊂ L to be connected and that
p−1(C) = U ∪ V for disjoint, open sets U , V ⊂ p−1(C). Then U and V are saturated,
i.e., p−1(p(U)) = U and p−1(p(V )) = V , since each fiber of p over C is connected.
Hence, the open sets p(U) and p(V ) form a cover of C by disjoint, open sets. Since C is
connected, U = ∅ or V = ∅ and so p−1(C) is connected.

The implication (b) �⇒ (c) is trivial. For the implication (c) �⇒ (a), note that for
l ∈ L

p−1(l) =
⋂

U ∈ U(l)

p−1(U) =
⋂

U ∈ U(l)
closed, connected

p−1(U)

as L is locally connected by Lemma 3.1. Since, in a compact space, the intersection of a
decreasing family of closed, connected subsets is again connected, p is monotone.

The equivalence of (d) and (e) follows since [Tp(f ) �= 0] = [f ◦ p �= 0] = p−1([f �=
0]). Moreover, (e) and (f) are seen to be equivalent using the existence of irreducible
decompositions for functions in C(L). Finally, the implication (c) �⇒ (d) is trivial and
the converse implication follows analogously to (c) �⇒ (a) because, L being locally
connected and completely regular, the sets of the form [f �= 0] for irreducible f ∈ C(L)

form a basis of the topology of L, which allows us to copy the argument.

Definition 3.5. Let K be a compact space. A unital C∗-subalgebra A ⊂ C(K) is called
monotone if the canonical quotient map K → K/∼A is monotone.

COROLLARY 3.6. Let K be a locally connected compact space and A ⊂ C(K) a unital
C∗-subalgebra. Then A is monotone if and only if it contains the irreducible parts of all
its functions.

As mentioned in §2, many abstractly defined factors in topological dynamics, including
the maximal equicontinuous factor, naturally have corresponding C∗-subalgebras that
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admit simple descriptions. Hence, Proposition 3.4 and Corollary 3.6 provide a useful way
of verifying the monotonicity of factors. For the maximal equicontinuous factor, this yields
the following.

THEOREM 3.7. Let (K , S) be a topological dynamical system such that K is locally
connected and the semigroup S acts on K via monotone maps. Then the factor map onto
the maximal equicontinuous factor of (K , S) is monotone.

Proof. By Example 2.1 and Corollary 3.6, it suffices to show that the subalgebra

Aeq = {f ∈ C(K) | {Tsf | s ∈ S} is equicontinuous}
satisfies irr(Aeq) ⊂ Aeq. So, let f ∈ Aeq and g ∈ irr(f ). Since the connectedness of a set
is preserved by taking preimages under monotone maps, Tsg is irreducible for each s ∈ S

and so Tsg ∈ irr(Ts(f )). Therefore,

{Tsg | s ∈ S} ⊂
⋃
s ∈ S

irr(Ts(f )) = irr({Ts(f ) | s ∈ S}).

The latter set is equicontinuous by Lemma 3.8 below and so it follows that the orbit {Tsg |
s ∈ S} of g is equicontinuous as well. Hence, g ∈ Aeq.

LEMMA 3.8. Let K be a locally connected compact space and F ⊂ C(K). Then F is
equicontinuous if and only if irr(F) is.

Proof. Suppose F to be equicontinuous and take ε > 0. Then there exists an entourage
V ∈ UK such that for each f ∈ F and (x, y) ∈ V one has |f (x) − f (y)| < ε/2. By
Lemma 3.1, we may assume that V [x] is connected for each x ∈ K . Let g ∈ irr(F), i.e.,
g ∈ irr(f0) for some f0 ∈ F . We claim that |g(x) − g(y)| < ε for all (x, y) ∈ V , which
would show that irr(F) is equicontinuous.

So, let (x, y) ∈ V . If g(x) = g(y) = 0, it holds trivially that |g(x) − g(y)| < ε, so
assume without loss of generality that g(x) �= 0. If V [x] lies in [f �= 0], then it lies in
the connected component of [f �= 0] containing x and so y ∈ V [x] ⊂ [g �= 0]. Therefore,

|g(x) − g(y)| = |f (x) − f (y)| < ε/2.

If V [x] �⊆ [f �= 0], there is a z ∈ V [x] with f (z) = 0 and so

|g(x) − g(y)| � |f (x)| + |f (y)| = |f (x) − f (z)| + |f (y) − f (z)| < ε.

Therefore, irr(F) is equicontinuous. The converse implication follows similarly.

Of course, the most common examples of semigroups acting via monotone maps are
given by group actions, so that we obtain a new proof for [HJ19, Theorem 2.12].

COROLLARY 3.9. Let (K , G) be a flow on a locally connected compact space K . Then
the factor map onto the maximal equicontinuous factor is monotone.

It is known (see [BOT05, Theorem 3.16]) that if (T2, ϕ) is a minimal topological
dynamical system on the two-torus, then ϕ is necessarily monotone, and there do exist
non-invertible examples for such systems with a non-trivial maximal equicontinuous
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factor; see [KST01, Theorem 3.3]. Therefore, there are examples in which Theorem 3.7
provides meaningful information that cannot be deduced from Corollary 3.9.

In preparation for the next section, we collect several properties of monotone
subalgebras.

PROPOSITION 3.10. Let K be a locally connected compact space and A ⊂ C(K) a unital
C∗-subalgebra.
(a) If (fn)n ∈ N is a sequence in C(K) converging to f ∈ C(K) and fn = hn + gn is

an orthogonal decomposition for each n ∈ N, then there is a subsequence (fnk
)k ∈ N

such that (gnk
)k ∈ N and (hnk

)k ∈ N converge uniformly. If f is irreducible, one of the
sequences converges to 0 uniformly.

(b) If (fn)n ∈ N is a positive increasing sequence in C(K) converging uniformly to
f ∈ C(K), then for each g ∈ irr(f ) there is a positive increasing sequence (gn)n ∈ N

such that gn ↑ g and for each n ∈ N either gn = 0 or gn ∈ irr(fn).
(c) If f ∈ A, then irr(f ) ⊂ A if and only if irr(|f |) ⊂ A.
(d) If D ⊂ A is a dense Q-vector sublattice containing 1K , then irr(D) ⊂ D implies

that irr(A) ⊂ A.
(e) Let S be a system of unital C∗-subalgebras of C(K) closed under arbitrary inter-

sections and containing C(K). Then there exists a smallest monotone subalgebra
AS

mon ∈ S containing A, called the monotone hull of A in S.
(f) Furthermore, suppose that for every separable C∗-subalgebra B ⊂ C(K) there is

a separable C∗-subalgebra BS ∈ S satisfying B ⊂ BS and that if (Bn)n ∈ N is an
increasing sequence in S, then

⋃
n ∈ N

Bn ∈ S. Then the monotone hull AS
mon is

separable if and only if A is.

Proof. For (a), it follows from the Arzelà–Ascoli theorem that the set

{gn | n ∈ N} ∪ {hn | n ∈ N}
is relatively compact in C(K), which implies the existence of the sequence (nk)n ∈ N. The
limits g and h of (gnk

)k ∈ N and (hnk
)k ∈ N satisfy f = g + h and g ⊥ h and hence yield

an orthogonal decomposition of f . Therefore, if f is irreducible, g = 0 or h = 0, which
proves (a).

For (b), one can pass to (1[g �=0]fn)n ∈ N and 1[g �=0]f = g and hence assume that f itself
is already irreducible. Pick x ∈ [f �= 0]. Without loss of generality, we may assume that
f1(x) > 0. Then, for each n ∈ N, there is a unique gn ∈ irr(fn) with gn(x) = fn(x) > 0.
To see that (gn)n ∈ N is increasing, note that for each n ∈ N

[gn �= 0] ⊂ [fn �= 0] ⊂ [fn+1 �= 0] = [gn+1 �= 0] ∪ [fn+1 − gn+1 �= 0].

This implies that

[gn �= 0] = ([gn �= 0] ∩ [gn+1 �= 0]) ∪ ([gn �= 0] ∩ [fn+1 − gn+1 �= 0])

and, since this union is disjoint, gn is irreducible, and x ∈ [gn �= 0] ∩ [gn+1 �= 0], [gn �=
0] ⊂ [gn+1 �= 0]. Since (fn)n ∈ N is increasing, this yields that (gn)n ∈ N is increasing. Now
consider the orthogonal decomposition fn = gn + (fn − gn). Since gn(x) � g1(x) > 0
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for each n ∈ N, (a) yields that every subsequence of (fn − gn)n ∈ N has a subsequence
converging to 0, showing that fn − gn → 0. Therefore, gn ↑ f .

For (c), note that if f ∈ A, the absolute value yields a bijection irr(f ) → irr(|f |) and
that irr(f ) ⊂ A hence implies that irr(|f |) ⊂ A. So, suppose that, conversely, irr(|f |) ⊂
A and let g ∈ irr(f ). Then |g| ∈ irr(|f |) ⊂ A and so f |g|1/n ∈ A for each n ∈ N.
Without loss of generality, we may assume that |g| � 1, in which case f |g|1/n converges
uniformly to g as n → ∞ and so irr(f ) ⊂ A.

Now let D be as in (d) and f ∈ A. We need to show that irr(f ) ⊂ A and by (c) we
may assume that f is positive. We want to use part (b) and therefore claim that D contains
a positive, increasing sequence (fn)n ∈ N converging to f . To see this, let (hn)n ∈ N be a
sequence in D converging to f . By passing to (|hn|)n ∈ N, we may assume that the sequence
is positive. Moreover, we can arrange that ‖f − hn‖ < 1/n for each n ∈ N and, by passing
to g′

n = (gn − (1/n)1K)+ = sup(gn − (1/n)1K , 0) we may therefore also assume that for
each n ∈ N (

f − 2
n
1K

)
+
� gn �

n∨
k=1

gk � f .

Since (f − (2/n)1K)+ converges uniformly to f as n → ∞, we can set fn := ∨n
k=0 gk

for n ∈ N and obtain a sequence (fn)n ∈ N in D such that fn ↑ f . Now pick g ∈ irr(f ).
Then, by (b), there is a sequence (gn)n ∈ N with gn ↑ g and gn ∈ irr(fn) ∪ {0} for each
n ∈ N. Since by assumption irr(D) ⊂ D, (gn)n ∈ N lies in D ⊂ A and so g ∈ A.

Part (e) immediately follows from Corollary 3.6 by taking the intersection of all
monotone C∗-subalgebras in S that contain A. For (f), it suffices to find a separable,
monotone subalgebra in S that contains A. To this end, define increasing Q-vector
sublattices Dn ⊂ C(K) and subalgebras Bn ⊂ C(K) as follows: let B0 ∈ S be a separable
subalgebra containing A and let D0 ⊂ B0 be a countable dense Q-vector sublattice
containing 1K . For n ∈ N0, then define Bn+1 to be a separable C∗-algebra in S containing
the C∗-algebra generated by irr(Dn) and Bn and let Dn+1 ⊂ Bn be a countable dense
Q-vector sublattice containing Dn and irr(Dn). Then B := ⋃

n ∈ N
Bn lies in S and

D := ⋃
n ∈ N

Dn is a countable dense vector sublattice of B satisfying irr(D) ⊂ D. Since
B is therefore separable, contains A, and is monotone by (d), AS

mon ⊂ B is separable.

Remark 3.11. Let p : (K , G) → (L, G) be a factor map of flows on locally connected
spaces. Then the family S of G-invariant C∗-subalgebras of C(K) satisfies the condition
in Proposition 3.10(e) and so we can consider the monotone G-invariant hull of AL =
Tp(C(L)) in S, which we denote by Tp(C(L))Gmon. This subalgebra corresponds to a
monotone factor map q : (K , G) → (Lmon, G) of (K , G) and p factorizes over q:

(K , G)
q ��

p

��
(Lmon, G)

p̂ �� (L, G).

Moreover, since (Lmon, G) corresponds to the monotone hull of Tp(C(L)), it is the
smallest monotone factor of (K , S) over which p factorizes. It is not difficult to see that
(Lmon, G) is therefore isomorphic to the quotient of (K , G) by the G-invariant equivalence
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relation

Rc(p) :=
{
(x, y) ∈ K × K

∣∣∣∣ x and y are in the same
connected component of p−1(p(x))

}

that was apparently first considered in [MW76, Definition 2.2] and is closed by [MW76,
Proposition 2.3] or the more general [HJ19, Proposition 2.3]. We note for the next section
that for separable G, Proposition 3.10(f) implies that Lmon is metrizable if and only if L

is. Combined with Theorem 3.7, this means that if (L, G) is an equicontinuous metrizable
factor of (K , G), then so is (Lmon, G).

4. Equicontinuous factors
Given a quotient map p : X → Y of topological spaces, it is generally very difficult to
relate geometric properties of X to those of Y . The Hahn–Mazurkiewicz theorem illustrates
how hopeless the situation is in general: it shows that every non-empty, connected, locally
connected, compact metric space is the quotient of the unit interval. Considering that
this includes, in particular, all compact, connected manifolds, it is clear that additional
properties of p are needed in order to relate the geometric structure of X to that of Y . The
following theorem shows that monotonicity is such a property.

THEOREM 4.1. [CGM12, Theorem 1.1] Let f : (X, x0) → (Y , y0) be a quotient map
of pointed topological spaces, where X is locally path-connected and Y is semilocally
simply-connected. If each fiber f −1(y) is connected, then the induced homomorphism
f∗ : π1(X, x0) → π1(Y , y0) of the fundamental groups is surjective.

Combining this with the previous discussion, we obtain our main representation result
for equicontinuous factors.

THEOREM 4.2. Let (K , G) be a flow such that K is locally path-connected with finite
first Betti number b1(K), G is abelian, and K is metrizable or G is separable. If all
G-invariant functions f ∈ C(K) are constant, then every equicontinuous factor of (K , G)

is isomorphic to a minimal flow on some compact abelian Lie group of dimension less than
b1(K)/b0(K).

More precisely, for every equicontinuous factor (L, G) of (K , G), there are a finite
abelian group F of order |F | � b0(K) and an m � b1(K)/b0(K) such that (L, G) is
isomorphic to a minimal action of G on F × Tm via rotations.

Proof. We assume that (M , G) is a monotone equicontinuous factor of (K , G), which will
imply the claim for every other equicontinuous factor. Denote by ϑ : (K , G) → (M , G)

the corresponding factor map and note that (M , G) is minimal since an equicontinuous
system is minimal if and only if every continuous G-invariant continuous function on
it is constant; see Remark 2.2. Since G is abelian and acts equicontinuously on M , the
Ellis group E(M , G) is a compact abelian group and it is well known that a minimal
equicontinuous flow (M , G) with an abelian group G is isomorphic to the minimal action
(E(M , G), G) of G on the Ellis group E(M , G) via rotations (see [Aus88, Theorem 3.6]).
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Since E(M , G) ∼= M is the quotient of a locally connected space, it follows by Lemma 3.1
that E(M , G) is locally connected too.

First, assume M and hence E(M , G) to be metrizable. It then follows from the classifi-
cation of locally connected, second-countable, compact abelian groups that E(M , G) ∼=
F × TI for a finite group F and an (at most countable) set I ; see [HM13, Theorem
8.34] and [HM13, Theorem 8.46]. We again denote the induced map from K to F × TI

by ϑ . Since ϑ is monotone by Theorem 3.7, K and F × TI have the same number of
connected components and so F is of order b0(K). Since G acts minimally on F × TI

via the isomorphism E(M , G) ∼= F × TI , it follows that G acts transitively on F and
hence on the connected components of K . Therefore, if we fix the connected component
K0 := ϑ−1({0} × TI ), then b1(K) = b0(K)b1(K0).

Next, we show that I is finite by using Theorem 4.1 to show that |I | � b1(K)/b0(K),
though we need to be careful since TI is semilocally simply connected if and only if
I is finite. We therefore proceed by considering monotone finite-dimensional quotients:
for k ∈ N with k � |I |, let i1, . . . , ik ∈ I be pairwise different and denote by pk : TI →
Tk the canonical projection induced by the isomorphism Tk ∼= T{i1,...,ik}. Moreover,
let ϑ0 : K0 → TI be the map canonically induced by ϑ . Then pn ◦ ϑ0 : K0 → Tk is
monotone by Proposition 3.4(b), being the composition of monotone maps. Since Tk

is semilocally simply connected, Theorem 4.1 shows that pk ◦ ϑ0 induces a surjective
morphism (pk ◦ ϑ0)∗ : π1(K0) → π1(Tn). Since π1(Tn) ∼= Zk is abelian, this morphism
factorizes through the abelianization of π1(K0), which is canonically isomorphic to
H1(K0) by the Hurewicz theorem. If we denote by η : H1(K0) → π1(Tk) the induced
surjective group homomorphism, then

k = rank(π1(T
k)) = rank(η(H1(K0))) � rank(H1(K0)) = b1(K0) = b1(K)/b0(K).

Since k ∈ N was arbitrary with k � |I |, this shows that |I | � b1(K)/b0(K).
Now we show that (M , G) is necessarily metrizable, which we only need to check for

the maximal equicontinuous factor (Keq, G). By Example 2.1, Keq is metrizable if and
only if the subalgebra

Aeq = {f ∈ C(K) | {T n
ϕ f | n ∈ N} is equicontinuous}

is separable. If K is metrizable, this is the case for every C∗-subalgebra of C(K), so
assume instead that G is separable. If Aeq is not separable, Proposition 3.10(f) and
Remark 3.11 yield a sequence (Aj )j ∈ N of strictly increasing, separable, monotone,
G-invariant C∗-subalgebras of Aeq which induces the following commutative diagram of
factor maps.

(K , G)

ϑ

��
(Keq, G)

ρj

��

ρj−1

����
���

���
��

· · · rj+1 �� (Lj , G)
rj �� (Lj−1, G)

rj−1 �� · · ·
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Since each of the systems (Lj , G) is metrizable and the factor maps ρj ◦ ϑ are monotone,
the above discussion applies and we can therefore replace the diagram with the following.

(K , ϕ)

ϑ

��
(E(Keq, G), G)

ρj

��

ρj−1

����
���

���
���

��

· · · rj+1 �� (Fj × Tmj , G)
rj �� (Fj−1 × Tmj−1 , G)

rj−1 �� · · ·

where mj ∈ {1, . . . , b1(K)/b0(K)} and Fj is a finite abelian group for each j ∈ N.
Since each of the systems (Fj × Tmj , G) is minimal and G acts via rotations, each rj

is a surjective group homomorphism and so Lemma 4.3 below implies that mj−1 � mj .
Moreover, since ρj−1 ◦ ϑ is monotone by the choice of Aj−1, it follows that ρj−1 is
monotone for each j ∈ N. But, if ρj−1 = rj ◦ ρj is monotone, it also follows that rj is
monotone for each j ∈ N.

Since mj � b1(K)/b0(K) for each j ∈ N, there can be only finitely many j such that
mj < mj+1. In particular, there is a J ∈ N such that mj = mj+1 for each j > J . However,
if mj = mj+1, then Aj = Aj+1: a surjective group homomorphism on F × Tmj+1 must
have finite kernel by Lemma 4.3 and can therefore only be monotone if its kernel is trivial,
i.e., if it is an isomorphism. This contradicts the strict inclusion Aj � Aj+1 and shows
that Aeq must be separable. Hence, Keq is metrizable.

Now suppose that (L, G) is an arbitrary equicontinuous factor of (K , G) and let
(Keq, G) be the maximal equicontinuous factor of (K , G). Then, as in the monotone
case, it follows that (L, G) ∼= (E(L, G), G) and since the factor map (Keq, G) → (L, G)

induces a surjective group homomorphism r : E(Keq, G) → E(L, G), the claim follows
from the monotone case via Lemma 4.3.

LEMMA 4.3. Let m ∈ N, F be a finite abelian group, and r : F × Tm → H be a
continuous, surjective group homomorphism onto a compact group H . Then H ∼= F ′ × Tn

for some finite abelian group F ′ of order |F ′| � |F | and n � m. Moreover, n = m if and
only if the kernel of r is finite.

Proof. If G is a Lie group and K ⊂ G is a closed normal subgroup, then G/K carries a
canonical differentiable structure turning G/K into a Lie group and π : G → G/K into a
submersion; see [Lee12, Theorems 21.17 and 21.26]. Therefore, H ∼= F × Tm/ ker(r) is a
Lie group of dimension less than m. Being the quotient of F × Tm, H is a compact abelian
Lie group and it is well known (see [Sep07, Theorem 5.2]) that this implies that H ∼=
F ′ × Tn for some finite abelian group F ′ and n ∈ N, proving the first statement. If n =
m, r : F × Tm → F ′ × Tn is a submersion between manifolds of equal dimension and it
thus follows from the inverse function theorem that it is in fact a local diffeomorphism.
Therefore, the kernel of r is discrete and, since F × Tm is compact, the kernel of r must
be finite. Conversely, if ker(r) is finite, r is a local diffeomorphism and so n = m.
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Many spaces satisfy the conditions of Theorem 4.2, including compact manifolds and
finite CW complexes, since by the Seifert–van Kampen theorem their first Betti number
is finite. In particular, we obtain the following generalization of [HJ19, Theorem 3.1] to
quotients of connected, simply connected Lie groups by discrete, cocompact subgroups.
Important examples for such spaces are given by nilmanifolds; see [HK18, Ch. 10].

COROLLARY 4.4. Let H be a connected, simply connected Lie group, � ⊂ H a discrete,
cocompact subgroup, G an abelian group, and (H/�, G) a dynamical system on
H/� such that every G-invariant function f ∈ C(H/�, G) is constant. Then every
equicontinuous factor of (H/�, G) is isomorphic to a minimal action of G on some torus
Tm, m � rank(�/[�, �]), via rotations.

Proof. The canonical map H → H/� is the universal cover of H/� and its kernel is
thus isomorphic to the fundamental group of H/�, i.e., π1(H/�) ∼= �. Since, H being
connected, b0(H/�) = 1 and

b1(H/�) = rank(H1(H/�)) = rank(π1(H/�)ab) = rank(�ab) = rank(�/[�, �]),

the claim follows by Theorem 4.2.

Note that the action of G on H/� itself is not assumed to be via rotations. If H is
compact and G acts via rotations, the statement can be proved much more directly.

In the special case H = Rn and � = Zn, one obtains the following consequence.

COROLLARY 4.5. Let (Tn, G) be a flow such that G is abelian and all G-invariant
functions f ∈ C(Tn) are constant. Then every equicontinuous factor of (Tn, G) is
isomorphic to a minimal action of G on some torus Tm, m � n, via rotations.

Note, however, that in the case of the two-torus, Theorem 3.8 of Hauser and
Jäger [HJ19, Theorem 3.8] is a lot more general: they showed that each monotone,
minimal quotient of a strongly effective flow on T2 is isomorphic to a flow on T2, T, or a
point. They required neither that the acting group G be abelian nor that the factor under
consideration be equicontinuous.

If b1(K) = 0, we also obtain the following for the maximal distal factor of a minimal
homeomorphism.

COROLLARY 4.6. Let ϕ : K → K be a minimal homeomorphism on a locally
path-connected space with b1(K) = 0. Then the maximal distal factor of (K , ϕ) is trivial.

Proof. The maximal equicontinuous factor and maximal distal factor of (K , ϕ) are trivial
as a consequence of Theorem 4.2 and the Furstenberg structure theorem for distal minimal
flows.

In particular, there are no minimal distal transformations on such a space K . This
includes simply connected spaces such as Sn for n � 2 (cf. [Aus88, Theorem 7.16])
but also spaces for which π1(K) or H1(K) are torsion groups, e.g., RPn for n > 1 as
H1(RPn) ∼= Z/2 for n > 1. Note that a very similar result to Corollary 4.6 using Čech
cohomology exists in [KR69, Theorem 3.5].
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Given a homeomorphism ϕ : K → K such that the Koopman operator Tϕ on C(K)

has one-dimensional fixed space, its point spectrum σp(Tϕ) is a subgroup of the torus T.
As noted in Example 2.1(c), the maximal equicontinuous factor of (K , ϕ) is very closely
related to the spectral theory of Tϕ . For Theorem 4.2, this relationship has the following
consequence.

COROLLARY 4.7. Let ϕ : K → K be a homeomorphism on a locally path-connected,
compact space with finite first Betti number b1(K) and suppose that dim fix(Tϕ) = 1.
Then the point spectrum σp(Tϕ) of the Koopman operator Tϕ on C(K) is a subgroup of T
generated by at most b1(K) elements.

Proof. Let (M , ψ) be the maximal equicontinuous factor of (K , ϕ). By the discussion in
Example 2.1, the point spectrum of Tϕ on C(K) is the same as that of Tψ on C(M), so
we only need to consider the system (M , ψ). By Theorem 4.2, (M , ψ) is isomorphic to
a minimal rotation (F × Tn, a) for an abelian group F of order |F | � b0(K), a torus Tn

of dimension n � b1(K)/b0(K), and an a ∈ F × Tn. If we denote by La : C(F × Tn) →
C(F × Tn) the Koopman operator corresponding to this rotation, then

σp(La) = F̂ × Tn(a) = {χ(a) | χ ∈ F̂ × Tn},

where F̂ × Tn denotes the Pontryagin dual of F × Tn (see [EFHN15, Proposition 14.24]).
Since

F̂ × Tn ∼= F̂ × T̂n ∼= F × Zn,

the claim follows from the inequalities |F | � b0(K) and n � b1(K)/b0(K).

Understanding the rank of point spectra is a question that goes back to Kolmogorov, see
[Lin75, p. 300], and in fact the same bound in terms of Betti numbers has been previously
established for more special systems in the context of classical mechanics, see [AA68,
Theorem A 16.2].

Remark 4.8. Theorem 4.2 imposes constraints on the maximal equicontinuous factor if
it is minimal. In the case of K = Tn, these constraints are sharp: every torus Tm of
dimension m � n can be realized as the maximal equicontinuous factor of an invertible
system (Tn, ϕ). To see this, let (Tm, ϕa) be a minimal rotation with a ∈ Tm and let
ψ : Tn−m → Tn−m be the map which is, after the identification Tn−m ∼= [0, 1)n−m,
given by

[0, 1)n−m → [0, 1)n−m, (x1, . . . , xn−m) �→ (x2
1 , . . . , x2

n−m).

Then (Tm, ϕa) is the maximal equicontinuous factor of (Tn, ϕa × ψ).
A natural question now is whether the constraints on the maximal equicontinuous factor

listed in Theorem 4.2 are sharp in general. The answer is negative: consider the wedge
sum K := ∨n

i=1 T. Then K is connected, locally connected, and b1(K) = n. However, if
k > 1, there cannot be any monotone surjective map ρ : K → Tk since Tk is the disjoint
union of uncountably many connected non-singleton sets whereas K is not.
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In light of this example, one might look for other topological constraints on the maximal
equicontinuous factor, and the covering dimension dim(K) of K presents itself as a
possible candidate. Unfortunately, monotonicity by itself cannot yield such a bound: as
observed by Hurewicz in [Hur30], every compact metric space embeds into a monotone
image of S3. In particular, S3 has monotone quotients of infinite dimension. Therefore,
one cannot, in general, conclude that if p : K → L is a monotone quotient map, then
dim(L) � dim(K). Positive results exist for factors of distal minimal flows for which this
estimate does hold, as shown in [Ree77, Theorem 1.1]. Without additional assumptions,
general results only exist in low dimensions: if p : K → L is a monotone quotient map
of compact spaces and K is a two-manifold, then dim(L) � dim(K); see [Zem77]. In
higher dimensions, though, one cannot hope for dimension inequalities for factors without
additional structural assumptions.

Remark 4.9. As mentioned in the introduction, the maximal equicontinuous factor of
a distal minimal flow on a compact manifold is isomorphic to a compact abelian Lie
group if the acting group is abelian, otherwise it is merely isomorphic to a flow on
a homogeneous space of some compact Lie group. One could therefore ask whether
Theorem 4.2 generalizes to non-abelian groups G in an analogous way. Unfortunately,
the proof given above hinges on the fact that the dimension of a compact abelian Lie
group H is precisely b1(H)/b0(H) and is thus encoded in the first two homology groups,
which is false for general compact Lie groups. However, an interesting question for
further investigation is whether, instead of the maximal equicontinuous factor, there is
a generalization of Theorem 4.2 to the maximal compact abelian group factor of a system
(see [GGY18]).
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