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Abstract

Proposed is a wideband, low profile, fully flexible, and all-textile-based slotted triangular
antenna loaded with a 2 × 2 textile-inspired artificial magnetic conductor to be worn on
the wrist. The integrated antenna design is designed to cover the frequency band from
3.1 to 6.5 GHz. The integrated design has two main resonances, where the first one is at
3.5 GHz, which can serve the WiMAX communication standard, while the second is at
5.8 GHz, which can serve the Industrial, Scientific and Medical (ISM)-band. The incorporated
textile materials are composed of the conductive and dielectric fabrics that are realized by
ShieldIt and Felt, respectively. When simulated against the human model wrist, the integrated
antenna design displayed a realized gain of 6.71 dBi and radiation efficiency of 79.1%, at 3.5
GHz. Furthermore, at 5.8 GHz, it displayed a realized gain of 7.82 dBi and total efficiency per-
formances of 66.1%. Moreover, it accomplished very low SAR levels within the antenna fre-
quency band. Averaged over 1 g of tissue, it exhibited maximum SAR levels of 3.28 × 10−6 and
9.37 × 10−7W/kg at 3.5 and 5.8 GHz, respectively. For the bent scenarios, the integrated
antenna design displayed robustness when bent at an angle of 20 and 40°. Finally, measure-
ment results are illustrated and analyzed. Based on the presented results, the suggested all-tex-
tile integrated antenna design might be designated for integration with the wristband to
monitor the user health conditions through many possible frequency channels.

Introduction

Wearable devices have tremendously grown over the years due to the limitless on-body and off-
body applications demanding such technology [1]. For instance, army, sports, saving lives duties,
and smart wearable devices are some of the applications necessitating wearable technology. The
wrist is considered the most attractive human part to monitor the human health, as various vital
signs can be measured at it, such as the blood pressure and pulse rate. Using the wearable device,
wireless transmission of such information to a physician for analysis and evaluation is valid. In
that way, physicians can take quick decisions to save human lives.

Wearable devices require antennas of certain characteristics. For instance, being of small
size for appealing purposes, flexible to a certain degree to accommodate the user orientation
and posture, high in gain and efficiency, exhibiting directional radiation pattern to reduce back
radiations absorbed by the human body, and thus, displaying low specific absorption rate
(SAR). According to the published literature, monopole and patch antenna types are suitable
for wearable antennas, where they have utilized substrate materials as dielectric textiles [2–20],
ultra-thin polyimides [21–23], and composite materials [24, 25] to attain flexibility.

In specific applications point of view, the need for health monitoring applications has
pushed the research for using multi-band frequency channels using the same antenna [26].
To satisfy this trend, different wearable antennas were presented using different design
approaches to attain multi-band and wideband resonances [27–35]. Through the design of
these antennas, they were required to have a small effect on the human body by demonstrating
low SAR. SAR measures the amount of power radiated and absorbed by the human body. It is
worth to mention that the Federal Communications Commission (FCC) and International
Electrotechnical Commission (IEC) have set two renowned standards of 1.6W/kg, averaged
over 1 g tissue, and 2W/kg, averaged over 10 g tissue, respectively, where all wearable antennas
should abide to.

For achieving a directional radiation pattern leading to enhancements in gain and reduc-
tions in SAR levels, the wearable antenna is backed with a reflector referred to as an artificial
magnetic conductor (AMC), often termed electromagnetic band gap (EBG) structures [2–5,
21]. Additionally, metasurfaces [6] and substrate-integrated waveguide cavities [7] were uti-
lized as backing structures for shielding purposes. Furthermore, reported in [8–20] and [24,
25] are simple ground planes incorporated to decouple the antenna from the human body.
Nevertheless, ground planes, recognized as perfect electric conductors, suffer from the
out-of-phase reflection feature, which leads to a sudden drop in the total efficiency and storage
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of energy in the antenna near-field region [36]. Another conven-
tional method is to increase the air-gap separation in-between the
wearable antenna and the human body [22, 23]. Despite its suc-
cess, it leads to an increase in the overall form factor; therefore,
the tradeoff of performance against size.

It is challenging to attain a wideband wearable antenna that is
high in gain and radiation efficiency, as well as possesses a high
degree of flexibility. For instance, in [5] and [37–39], conformable
wearable antennas that achieved high gain and radiation efficiency
performance parameters were proposed. However, they did not
possess a wideband resonance specification.

As such, proposed in this paper is an all-textile slotted triangu-
lar monopole antenna that is backed by an all-textile 2 × 2 AMC
array structure, which is referred to throughout the paper as the
integrated design. The integrated design is wideband, compact
in size, highly conformable, demonstrates high gain, and exhibits
low SAR levels when operating at close distances from the human
body. Compared to all reported work in literature, the wideband
along with the compactness, high gain, and flexibility is one
major contribution. Also, the whole integrated textile antenna is
another contribution which makes the antenna suitable for
many applications. Finally, the paper presents a comparison
between textile and other materials. With such form factor and
performance, the integrated design can be integrated into wrist-
bands to monitor the user’s vital signs; thus, it serves as a good
candidate for WiMAX and medical applications. Conducted in
section “The flat all-textile integrated design performance against
the human wrist” is the flat simulated and tested results, along
with analysis, against the specific anthropomorphic mannequin
(SAM) human model and user’s wrist. Moreover, presented is a
study on the pros of realizing an all-textile design over an
all-polyimide-based design. Finally, highlighted in section “The
bent all-textile integrated design performance against the
human wrist” is the bent integrated antenna design performance
over the SAM and a subject’s wrist.

The flat all-textile integrated design performance against
the human wrist

The all-textile integrated design comprises a slotted-triangular
co-planar waveguide (CPW) fed antenna loaded with a 2 × 2
AMC array arrangement. The full methodology of how the design
was achieved, including the effects of the incorporated slots, is
found in [21]. It is worth noting that a 2 × 2 array size was specif-
ically selected to maintain the low profile feature of the overall inte-
grated design. The added value in the proposed work than [21] is
that the proposed one is all-textile based to integrate with a wrist-
band worn by athletes for monitoring the user’s health conditions,
such as blood pressure and pulse rate, at the wrist. Such valuable
information is then transmitted wirelessly to a physician for diag-
nosing the vital signs. Moreover, the all-textile proposed work
attained wideband resonance, whereas that in [21] was dual-band.
Finally, by realizing an all-textile design, the proposed design is
highly flexible, which is desired for wearable applications.

Figure 1(a) illustrates the top view of the monopole antenna
and Fig. 1(b) displays the top view of the 2 × 2 AMC array struc-
ture. Moreover, depicted in Fig. 1(c) are the fabricated prototypes
of each structure, which are highly compact in comparison with a
one-pound coin. However, techniques such as designing the
antenna based on the composite right/left-handed transmission
line methodology [14, 18, 40], as well as the fractal design concept
[27], could further reduce the antenna size. The patch and ground

structures are realized using the conductive textile ShieldIt Super
[41]. It possesses a thickness of 0.17 mm and an estimated con-
ductivity of 1.18 × 105 S/m. The antenna and AMC substrates
are made of Felt [42], with the difference being in the thicknesses.
For the monopole antenna, the substrate thickness is 1.5 mm,
while that for the AMC is 3 mm. Felt has a relative permittivity
and loss tangent of 1.2 and 0.044, respectively. When integrated,
both structures are separated by 3 mm, which, practically, is rea-
lized by foam.

Since the motivation behind the proposed work is to design an
all-textile wearable antenna for human wrist applications, the
integrated design performance was assessed at 3 mm from the
SAM human hand phantom, as illustrated in Fig. 2. Such a sep-
aration was intentionally left for the wristband on which the
design will be integrated onto. The SAM can be found in the
Computer Simulation Technology (CST) software tool libraries.
It consists of a liquid, enclosed by a shell, which emulates a
human tissue. It possesses a relative permittivity, conductivity,
and mass density of 37.005, 2.0249 S/m, and 1090 kg/m3, respect-
ively. The benefit of utilizing the SAM hand phantom, in the
simulations, is that it is time-efficient in determining the SAR
levels. At such setup, the all-textile integrated design was evalu-
ated in terms of its performance parameters.

Depicted in Fig. 3 enclosure is the arrangement for measuring
the all-textile flat integrated design fabricated prototype reflection
coefficient over a subject’s wrist. Rohde & Schwarz ZVB20 Vector
Network Analyzer (VNA) was incorporated for conducting the
measurement. As observed, the integrated design is mounted
over a wristband to imitate the scenario targeted. The simulated
(solid black) and measured (dotted red) reflection coefficients
are benchmarked against one another in Fig. 3. Courtesy of the
thick textile-based AMC material, and with respect to the −6
dB threshold, the integrated design displayed a simulated wide-
band resonance ranging from 3.2 to 6.8 GHz (−6 dB impedance
bandwidth of 3.6 GHz), whereas the measured result achieved a
wider bandwidth ranging from 2.8 to 7 GHz (with a –6 dB band-
width of 4.2 GHz).

The slight discrepancies between both sets of results could be
attributed to the fact that fabrication was done manually, where
the thin slots are not as accurate as the simulated design. Such nar-
row separations are very subtle and greatly manipulate the results.
This is also the case for the fabricated dual-band AMC, where it is
clear that the fabricated square patches are not as accurate as the
simulated ones. Finally, the simulation environment does not
take into consideration the presence of the different subjects and
objects that are in the measurement environment.

Thanks to the AMC array arrangement, the integrated antenna
design possessed the patch-like unidirectional radiation pattern,
which is highly desirable for wearable applications. In other
words, the back radiations, which were toward the human body,
were minimized and reflected in the opposite direction with
respect to the human body. This justifies the high gain values
achieved within the wideband spectrum, as observed in Fig. 4.
Observing the left Y-axis scale of Fig. 4, the realized gain varied
from 5 to 8.3 dBi; however, with a reduction to 3.5 dBi at 4.8
GHz. Moreover, perceiving the right Y-axis scale of Fig. 4, the
radiation efficiency varied from 58 to 81%; though, with a reduc-
tion to 50% at 4.8 GHz. The reductions exhibited at 4.8 GHz are
acceptable for textile wearable antennas and are close and better
than the average of [25]. Moreover, the gain at 4.8 GHz is 4 dBi,
which differs from the realized gain that takes into consideration
the matching losses.
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Focusing on the two main resonant frequencies of 3.5 and 5.8
GHz of the Industrial, Scientific, and Medical (ISM)-band, the
integrated antenna design attained a peak realized gain of 6.71
and 7.82 dBi, respectively. Furthermore, it achieved good radiation
efficiencies of 79.1 and 66.1%, respectively. Hence, it can be con-
cluded that the antenna is robust against human hand loading,
since it maintained its wide-band resonance, along with high
gain and radiation efficiency performances.

For the sake of comparison, and to show the good achieved
characteristics of the designed textile antenna, presented in this
section, as well, is a study on the advantage of utilizing textile
materials over polyimide materials. The antenna substrate

materials included the 1.5 mm-thick Felt and 0.1 mm-thick
Rogers ULTRALAM 3850. Moreover, the AMC substrate materi-
als included the 3 mm-thick Felt and 1.52 mm-thick RO3003.
Such materials were specifically chosen to match those incorpo-
rated in [21].

Displayed in Fig. 5 is the reflection coefficient of the proposed
all-textile design benchmarked against that of the polyimide-
based design when evaluated nearby the SAM human hand phan-
tom. As perceived, the all-textile design achieved wideband
resonance, with respect to the –6 dB threshold, ranging from
3.2 to 6.8 GHz, courtesy of the thick textile-based AMC material.
This feature was lost when evaluating the all-polyimide-based

Fig. 1. The textile-integrated design separate structures 2D layout top view: (a) Monopole antenna (L = 36mm, W = 18 mm, L1 = 6.5 mm, W1 = 3.14 mm, A = 20°); (b)
AMC array (S = 45.3 mm, P = 20.3 mm); (c) Fabricated all-textile prototype, demonstrating compactness against a one pound coin.

Fig. 2. The integrated design flat layout against the SAM
human hand model.

Fig. 3. Comparison between the simulated and mea-
sured flat integrated design reflection coefficients
against the human wrist, with an inset of the setup
for measuring the fabricated prototype reflection
coefficient.
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design. This is considered the first advantage of utilizing textile
materials over non-textile materials.

The second advantage is the high gain associated with the pro-
posed all-textile-based design over the polyimide-based one.
Putting emphasis on the two main resonant frequencies of 3.5
and 5.8 GHz, portrayed in Fig. 6 are the 3D gain radiation pattern
of the all-polyimide design. As shown, the design exhibited gain
values of 1.36 and 3.07 dBi at 3.5 and 5.8 GHz, respectively.
Those values are lower than the proposed all-textile design,
observed in Fig. 7, of 6.71 and 7.82 dBi at 3.5 and 5.8 GHz,
respectively. This phenomenon was reported in [43], where it
was described that textile antennas attain high gain due to the
fact that the dielectric textiles dielectric constants are lower than
polyimide ones. As such, the surface wave losses and spatial
waves are minimized and improved, respectively.

From another point of view, SAR is calculated by defining the
conductivity of the human tissue (σ), near-field electric field (E),
and mass density of the human tissue (ρ) as stated in (1).

SAR = s|E|2
r

. (1)

Thus, the all-textile flat integrated antenna design SAR levels,
averaged over 1 g of tissue, at 3.5 and 5.8 GHz are highlighted in
Fig. 8. A transmittal power level of 100mW was input to the

antenna to guarantee fair and accurate benchmarking with the lit-
erature. The achieved peak SAR levels, averaged over 1 g of tissue,
of 3.28 × 10−6 and 9.37 × 10−7W/kg are considerably lesser than
the threshold of 1.6W/kg. Hence, in the flat circumstance, the all-
textile integrated antenna design complies with the American
standard and is safe to the human body. It is worth mentioning
that the SAR value, averaged over 1 g of tissue, is lower at the higher
band than at the lower band because the human body conductivity
is higher at 5.8 GHz than at 3.5 GHz, as reported in [40] and [44].
Furthermore, due to the close separation with the human body, this
in turn affected the antenna radiation efficiency, which decreased at
the higher band than at the lower band, as was depicted in Fig. 4.

The bent all-textile integrated design performance against
the human wrist

Due to the fact that the integrated design is all-textile, it is essen-
tial to evaluate its performance under bending scenarios. Hence,
depicted in Fig. 9 is the all-textile bent integrated design over
the SAM human hand phantom. The design was bent over angles
of 20 and 40° along the X-axis. At such an arrangement, the all-
textile integrated design was evaluated in terms of its performance
parameters; for instance, the reflection coefficient, the 3D gain
radiation pattern, and the SAR levels. Portrayed in the inset of
Fig. 10 is the setup for measuring the all-textile bent integrated
design fabricated prototype reflection coefficient over a subject’s

Fig. 4. The flat integrated antenna design simulated rea-
lized gain and radiation efficiency against the human
wrist within the wideband spectrum.

Fig. 5. Comparison with respect to the simulated inte-
grated design reflection coefficients between the all-
textile and polyimide-based designs.
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wrist. As observed, the integrated design is mounted over a wrist-
band to imitate the scenario targeted.

Compared in Fig. 10 are the simulated (solid black and dashed
blue for 20 and 40° bents, respectively) and measured (dotted red)
reflection coefficients. Whether bent at 20 or 40°, the integrated
design achieved a wide-band resonance; however, the measured
outcome was wider than was its simulated counterpart.

Furthermore, there are some frequency shifts that might be as a
consequence of conducting fabrication manually, as well as the
absence of the factors, that affect the measurement enviornment,
in the simulation environment. The design displayed a simulated
−6 dB impedance bandwidth ranging from 3.2 to 6.5 GHz
(impedance bandwidth of 3.3 GHz). Whereas the attained mea-
sured −6 dB impedance bandwidth ranged from 2 to 6.5 GHz

Fig. 7. The flat all-textile integrated design, placed
on the SAM human hand phantom, 3D gain radi-
ation pattern at: (a) 3.5 GHz; (b) 5.8 GHz.

Fig. 8. The flat integrated antenna design SAR levels at: (a) 3.5
GHz; (b) 5.8 GHz.

Fig. 6. The polyimide-based integrated design, placed
on the SAM human hand phantom, 3D gain radiation
pattern at: (a) 3.5 GHz; (b) 5.8 GHz.
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(impedance bandwidth of 4.5 GHz). As perceived, the bent case
displayed a wider impedance bandwidth than the flat case,
which could be due to the fact that the antenna was bent along
the X-axis, which is the axis at which the antenna is excited.

Hence, the currents are highly disturbed and their paths are modi-
fied leading to different electrical lengths.

Portrayed in Fig. 11 are the all-textile bent, at an angle of 20°,
integrated antenna design 3D gain radiation patterns at the two

Fig. 9. The integrated design bent layout against the
SAM human hand model.

Fig. 10. Comparison between the simulated and mea-
sured bent integrated design reflection coefficients
against the human wrist, with an inset of the setup
for measuring the fabricated prototype reflection
coefficient.

Fig. 11. The bent, at an angle of 20°, integrated antenna
design 3D gain radiation pattern, against the SAM
human hand phantom, at: (a) 3.5 GHz; (b) 5.8 GHz.
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main resonant frequencies. The integrated design maintained its
patch-like unidirectional pattern, courtesy of the reflecting AMC
array structure. The antenna radiates in the boresight direction,
which is along the positive Z-axis, as depicted in Fig. 11. This
indicates that maximum power radiated is opposite to the
human hand. At 3.5 and 5.8 GHz, the bent integrated antenna
design attained peak realized gain of 2.77 and 3.55 dBi, as high-
lighted in Figs. 11(a) and 11(b), respectively. In addition, it

Fig. 13. Comparison between the integrated antenna
design, placed over the SAM human hand phantom, nor-
malized gain radiation pattern polar plots at 3.5 and 5.8
GHz when: (a) Flat in the E-plane, (b) Flat in the H-plane,
(c) Bent, at an angle of 20°, in the E-plane, (d) Bent, at
an angle of 20°, in the H-plane.

Table 1. The bent integrated antenna design peak SAR levels at 3.5 and 5.8 GHz

Antenna
Frequency

(GHz)

Input
power
(mW)

SAR (W/kg)
averaged over 1 g

of tissue

Bent
integrated
design

3.5 100 3.34 × 10−6

5.8 9.43 × 10−7

Fig. 12. The bent, at an angle of 20°, integrated design
simulated realized gain and radiation efficiency against
the human wrist.
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achieved good radiation efficiencies of 78.74 and 64.43%,
respectively.

Observing the left Y-axis scale of Fig. 12, the realized gain var-
ied from 0.5 to 3.6 dBi; however, with a reduction to −0.4 dBi at
4.85 GHz. Moreover, perceiving the right Y-axis scale of Fig. 12,
the radiation efficiency varied from 58 to 81%; though, with a
reduction to 48.5% at 4.85 GHz. The reductions exhibited at
4.85 GHz are acceptable for bent textile wearable antennas.
Moreover, the gain at 4.85 GHz is −0.1 dBi, which differs from
the realized gain that takes into consideration the matching losses.
Therefore, the integrated antenna design is robust against bending
scenarios over the human wrist.

Furthermore, displayed in Fig. 13 is a comparison between the
normalized gain radiation patterns in polar plots representation at
both resonant frequencies and in the principal planes (X-Z and
Y-Z planes). Figures 13(a) and 13(b) display such a comparison
for the flat scenario in the X-Z plane and Y-Z plane, respectively.
On the other hand, Figs 13(c) and 13(d) illustrate such a

comparison for the bent scenario, at an angle of 20°, in the X-Z
plane and Y-Z plane, respectively. As observed, the antenna radi-
ates in the θ = 0° direction, which is normal to the user’s hand. It
is noticed that the main lobe direction is tilted to approximately
20° for the 5.8 GHz resonance in the X-Z plane, whether in the
flat or bent scenarios. Yet, it is still acceptable since that direction
is opposite to the human hand. Besides the good gain and radi-
ation efficiency performances, the proposed all-textile integrated
design displayed a high front-to-back ratio of 22 dB, as depicted
in Figs 13(a) and 13(c), representing the X-Z plane. While in
the Y-Z plane, it is 20 and 18 dB, in the flat (Fig. 13(b)) and
bent (Fig. 13(d)) cases, respectively.

With a power level of 100 mW, the all-textile bent integrated
antenna design SAR levels are tabulated in Table 1. At 3.5 and
5.8 GHz, it exhibited maximum SAR levels of 3.34×10−6 and
9.43×10−7W/kg, averaged over 1 g of tissue, respectively. Similar
to the flat case, it is worth noting that the SAR value, averaged
over 1 g of tissue, is lower at the higher band than at the lower

Table 2. Comparison between the characteristics and performances of the all-textile antenna and recent published antennas against the human body

Antenna

Resonant
frequency
(GHz)

Antenna electrical size (in terms
of λ0)/type/material/dielectric
constant/dielectric thickness

(mm)

Reflector physical size (mm2)/
type/material/dielectric

constant/dielectric thickness
(mm)

Realized gain
(dBi)/radiation
efficiency (%)

Input power (mW)/Max.
SAR (W/kg) averaged
over 1 g of tissue

Proposed 3.5/5.8 0.696 × 0.348 at 5.8 GHz/
Monopole/Felt (Textile)/1.2/1.5

45.3 × 45.3/AMC/Felt (Textile)/
1.2/3

3.5 GHz: 6.71/79.1
5.8 GHz: 7.82/66.1

100/
3.5 GHz: 3.28 × 10−6

5.8 GHz: 9.37 × 10−7

[2] 2.45 0.327 × 0.261 at 2.45 GHz/
Monopole/Felt (Textile)/1.2/2

81 × 81/EBG/Felt (Textile)/1.2/2 NA/NA NA/0.554

[3] 2.45/5.8 0.619 × 0.754 at 5.8 GHz/CPW
Monopole/Felt (Textile)/1.22/2

75 × 50/AMC/Felt (Textile)/1.22/2 2.45 GHz: NA/42
5.8 GHz: NA/51

NA/
2.45 GHz: 0.86
5.8 GHz: 0.174

[4] 5.8 0.522 × 0.657 at 5.8 GHz/CPW
Monopole/Pellon (Textile)/1.08/
1.8

102 × 68/AMC/Pellon (Textile)/
1.08/1.8

7.89/NA 1000/0.56

[5] 2.45 0.245 × 0.163 at 2.45 GHz/
Microstrip Monopole/Denim
(Textile)/1.7/0.7

46 × 46/EBG/Denim (Textile)/1.7/
0.7

NA/NA 100/0.0368

[6] 5.5 0.77 × 0.513 at 5.5 GHz/Probe-fed
PIFA/Felt (Textile)/1.2/2

42 × 28/Metasurface/Felt
(Textile)/1.2/2

NA/NA 500/0.3262

[8] 5.5 0.843 × 0.66 at 5.5 GHz/Probe-fed
PIFA/Felt (Textile)/1.2/2

46 × 36/Ground Plane 5/64.2 500/0.9307

[9] 0.915/1.575 0.482 × 0.482 at 0.915 GHz/
Probe-fed Patch/Felt (Textile)/
1.2/5

158 × 158/Ground Plane 0.915 GHz:
−10.96/6.39
1.575 GHz: 8.26/
72.61

1000/0.915 GHz: 0.175
1.575 GHz: 0.0252

[10] 2.45/5.5 0.653 × 0.653 at 2.45 GHz/
Probe-fed Patch/Textile/1.4/3

80 × 80/Ground Plane 2.45 GHz: 0.24/
91.9
5.5 GHz: 4.51
(avg.)/86.3 (avg.)

NA/2.45 GHz: 0.2
5.5 GHz: 0.16 (avg.)

[11] 0.433/2.45 0.202 × 0.115 at 0.433 GHz/
Probe-fed PIFA/Felt (Textile)/1.3/
6

140 × 80/Ground Plane NA NA

[21] 3.5/5.8 0.42 × 0.21 at 3.5 GHz/CPW
Monopole/Rogers Ultralam 3850/
2.9/0.1

86 × 86/AMC/RO3003/3/1.52 3.5 GHz: 9.373/
83.5
5.8 GHz: 6.634/
91.1

100/
3.5 GHz: 0.0683
5.8 GHz: 0.333

[25] UWB 1.547 × 1.295 at 5.8 GHz/
Probe-fed Microstrip Patch/
PDMS/2.7/3

80 × 67/Ground Plane 4.53 (avg.)/27
(avg.)

500/5 GHz: 0.147
7 GHz: 0.174
9 GHz: 0.09 (all avg.
over 10 g of tissue)
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band because the human body conductivity is higher at 5.8 GHz
than at the lower resonant frequency, as reported in [40] and [44].
In addition, due to the close separation with the human body, this
in turn affected the antenna radiation efficiency, which decreased
at the higher band than at the lower band, as was demonstrated in
Fig. 12. Hence, it is concluded that the antenna is robust against
bending conditions and there are no health issues to be afraid of.

Finally, tabulated in Table 2 is a comparison between the all-
textile proposed design and recent published antennas when eval-
uated within the vicinity of the human body. Comparison factors
include the radiator electrical size and type, de-coupling structure
size and type, substrate material, relative permittivity, thickness,
realized gain, radiation efficiency, and SAR levels, averaged over
1 g of tissue. As tabulated, the proposed radiator electrical size
is smaller than [3, 4] and [25], at 5.8 GHz. Furthermore, the sug-
gested de-coupling structure is compact than all references besides
[6]. Finally, the proposed integrated antenna design displayed the
lowest SAR levels, averaged over 1 g of tissue, in comparison with
the benchmarked references.

Conclusion

A wideband integrated wearable antenna consisting of a compact
slotted triangular monopole antenna, of an overall form factor of
36 mm × 18mm (electrical size of 0.42 λ0 × 0.21 λ0 at 3.5 GHz),
with a 3 mm-thick 2 × 2 textile AMC, of a physical size of 45.3
mm × 45.3 mm, was presented. Since the motivation was to design
an integrated antenna for combination with a wristband for mon-
itoring the human health conditions at the wrist, the design is all
textile-based. Flat and bent simulations and measurements were
conducted within the vicinity of the human wrist, precisely at a
separation of 3 mm for the wristband. The integrated design
achieved wideband resonance, where the emphasis was on the
two main resonant frequencies of 3.5 and 5.8 GHz. The integrated
design achieved acceptable high gain and radiation efficiency
levels at both resonant frequencies. Furthermore, it is safe to the
human wrist, according to the achieved SAR levels, averaged
over 1 g of tissue, at both resonant frequencies. By displaying a
wideband resonance, exhibiting high gain and radiation efficiency,
as well as maintaining a high degree of flexibility, it is safe to say
that the proposed all-textile integrated antenna design is greatly
suggested for wearable WiMAX and medical applications.
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