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ABSTRACT

The transition from defined benefit to defined contribution (DC) pension
schemes has increased the interest in target annuitization funds that aim to fund
a minimum level of retirement income. Prior literature has studied the opti-
mal investment strategies for DC funds that provide minimum guarantees, but
far less attention has been given to portfolio insurance strategies for DC pen-
sion funds focusing on retirement income targets. We evaluate the performance
of option-based and constant proportion portfolio insurance strategies for a
DC fund that targets a minimum level of inflation-protected annuity income
at retirement. We show how the portfolio allocation to an equity fund varies
depending on the member’s age upon joining the fund, displaying a downward
trend through time for members joining the fund before ages in the mid-30s.
We demonstrate how both portfolio insurance strategies provide strong pro-
tection against downside equity risk in financing a minimum level of retirement
income. The option-based strategy generally leads to higher accumulated sav-
ings at retirement, whereas the constant proportion strategy provides better
downside risk protection robust to equity market jumps/volatilities.

KEYWORDS

Portfolio insurance strategies, defined contribution, pension risk management,
target annuitization fund.

JEL codes: G11, G22, G23, D14, D15, C63.

1. INTRODUCTION

Occupational pension plans play an important role in the multi-pillar frame-
work for pension systems of the World Bank (Holzmann et al., 2008). With
employment-based pension shifting from defined benefit (DB) to defined
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contribution (DC) plans, there has been increased interest in investment strate-
gies for these DC plans. Unlike a DB plan, a DC plan does not guarantee
a lifelong income stream, resulting in fund members bearing investment and
longevity risk. While in theory the accumulated savings in the DC plan can be
converted into a life annuity at retirement, in practice voluntary annuitization
is virtually non-existent worldwide (see Brown, 2009, for a review). DC fund
managers aim to maximize retirement fund values given a level of risk, with-
out directly considering the link between the pre-retirement accumulation and
post-retirement income needs.

This shift to current DC plans has led to considerations of the need to
provide sustainable income flows as an investment objective (Blake et al.,
2008; Financial System Inquiry, 2014). In particular, the accumulated sav-
ings in the DC fund at retirement should aim to finance a desired level of
consumption during retirement. An investment product that has this aim is
the “target annuitization fund” (Impavido et al., 2012). The target is proba-
bilistic, so that the fund manager has no obligation to guarantee the targeted
annuity value, and there is no guarantee liability. This is compatible with the
DC nature of the plan. These investment products are attracting increasing
attention as they offer a link between investment accumulation and retirement
income (Impavido et al., 2012).

The optimal investment strategies for DC pension plans in which the fund
manager maximizes the utility from retirement savings in excess of minimum
guarantees have been considered (see, e.g., Boulier et al., 2001; Cairns et al.,
2006). In the target annuitization fund, the guarantee is usually expressed
in terms of a life annuity to be bought at retirement. Extensions have also
been considered, for example, additional sources of risks (see, e.g., Battocchio
and Menoncin, 2004; Han and Hung, 2012), alternative asset price dynam-
ics (see, e.g., Guan and Liang, 2014), and different utility functions (see, e.g.,
Blake et al., 2013, 2014). Another popular DC pension investment strategy is
lifecycle investment, which involves a switch from mostly risky assets when
plan participants are young, to more safe assets as they approach retirement,
through a predetermined glide path (see Viceira, 2009, for a review). These
strategies provide some protection against equity market downturn closer
to retirement, although a minimum guarantee is not explicitly embedded,
differing from target annuitization strategies.

In contrast, portfolio insurance strategies aim to limit downside risk and to
participate on the upside. It is relevant for pension fund managers who pro-
vide minimum guarantees (Leland, 1980) and is optimal for investors with
particular risk preferences (see, e.g., Black and Perold, 1992; Bernard and
Kwak, 2016). These strategies have potential application to target annuitiza-
tion funds. Portfolio insurance strategies have been applied to DC pension
plans. For example, Blake et al. (2001) compare a number of asset alloca-
tion strategies that include a constant proportion portfolio insurance (CPPI)
strategy against a DB benchmark. Pézier and Scheller (2011) apply a CPPI
strategy for performance sharing rules between pension fund sponsors and
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fund members. Temocin et al. (2018) compare the CPPI strategies with dif-
ferent floors in a DC pension plan with discrete-time trading. As well as CPPI,
option-based portfolio insurance (OBPI) is a portfolio insurance strategy rel-
evant to funds providing guarantees. Despite the long-investment horizon of
pension plans, prior research that applies portfolio insurance strategies to a
pension fund often assumes a constant interest rate. In addition, the floor val-
ues are usually based on pre-retirement contributions rather than a minimum
income level in retirement.

A number of studies have compared OBPI and CPPI in non-DC-pension-
fund settings. Bertrand and Prigent (2005) compare the OBPI and CPPI
strategies by deriving the probability distributions of the payoffs. They find nei-
ther of the two strategies dominate the other using the criterion of first-order
stochastic dominance. Zagst and Kraus (2011) draw a similar conclusion using
the stochastic dominance criteria up to the third order. Using the Omega per-
formance measure that considers the entire return distribution, Bertrand and
Prigent (2011) show that the CPPI strategy usually performs better than the
OBPI. The practical implementation of portfolio insurance strategies is sub-
ject to trading restrictions. Balder et al. (2009) introduce a discrete-time CPPI
strategy that prohibits short selling of the risky asset. Pézier and Scheller (2013)
show that under more realistic conditions of discrete-time trading and asset
prices having jumps, CPPI strategies are superior to OBPI strategies in terms
of certainty equivalent return in the hyperbolic absolute risk aversion utility
framework.

We develop and apply both OBPI and CPPI strategies for a DC pension
fund where the fund aims to provide an amount at retirement sufficient to pro-
vide an annuity-based target with a high level of confidence. We tailor our
methods for the DC pension fund setting by considering the impact of contin-
uing contributions (as opposed to a one-off lump sum contribution) into the
fund and linking the floor value of the portfolio insurance to a minimum tar-
get for an adequate retirement income. We also include a stochastic interest
rate which is more realistic for the long-investment horizon of a pension fund.
We compare the two strategies by evaluating the distributions of accumulated
wealth at retirement and, in particular, the performance of downside risk pro-
tection under differing assumptions. We consider a range of entry ages into the
fund.

Both strategies are implemented in discrete time. Using simulations, we
show how the portfolio value weights in equity, bonds and cash vary with the
member’s age when joining the fund. The weights in the equity fund show a
downward (upward) trend for members joining the fund before (after) mid-
30s. This difference mainly reflects the amount of future contributions for older
aged cohorts, which are equivalent to an investment in safe assets. The portfo-
lio value weights are volatile, reflecting the impact of the volatility of the equity
fund on the portfolio insurance strategies.

We contribute to the literature that compares OBPI and CPPI strategies to
a DC pension fund. We show that the CPPI strategy provides better downside
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risk protection for an annuity income-based retirement target confirming and
extending the results that support the superiority of the CPPI strategy (see, e.g.,
Bertrand and Prigent, 2011; Pézier and Scheller, 2013).We show that the degree
of downside protection for the CPPI strategy remains superior when jumps are
included in the equity price, when the equity market has higher volatility, or
when contributions to the DC fund are lower. We also quantify the impact on
fund members when equity market volatility is high for multiple decades. In
this case, the OBPI strategy provides better downside protection. We show the
circumstances when the OBPI strategy produces higher average portfolio fund
values at retirement.

The rest of the paper is organized as follows. Section 2 introduces the
model framework. Section 3 covers the asset allocation strategies for the port-
folio insurance strategies including theoretical results underlying the numerical
simulations. Section 4 outlines the assumptions used in the numerical imple-
mentation. Results comparing the portfolio insurance strategies using simu-
lations for a range of entry ages and assumptions are presented in Section 5.
Section 6 concludes.

2. FINANCIAL MARKET AND FUND DYNAMICS

This section introduces the investment assets and their dynamics and the
dynamics of the fund value. We develop a theoretical model in continuous time
in real, or inflation-adjusted, terms and later apply the model in a discrete-time
simulation study. In our analysis, to avoid complexity, we do not incorporate
mortality or other exits from the fund.

2.1. The financial market

To develop the theoretical basis for our analysis, we consider a complete and
frictionless financial market. The market is continuously open, has no transac-
tion costs, borrowing constraint, taxes or margin requirements, and is assumed
to preclude any arbitrage opportunities. There are three securities available
for investment in the market. A money-market account or cash fund, a zero-
coupon bond which is traded as a constant-maturity bond fund and a risky
equity asset traded as an equity fund with dividends reinvested.

Risks are governed by two independent Brownian motions Zr(t) and ZS(t),
where t≥ 0, defined on a complete probability space (�,F , P). � denotes the
sample space. The filtration F = {Ft}t≥0 represents the information structure
generated by the Brownian motions, and P denotes the real-world probability
measure.

The fund manager can invest in three assets as follows. All variables are
expressed in real terms. An assumption of real interest rates simplifies the the-
oretical derivation. In practice, the existence of inflation-index bonds such as
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Treasury Inflation-Protected Securities issued by the US government, together
with our annual rebalancing time period makes it reasonable to use real interest
rates.

1. A cash fund whose priceMt evolves according to

dMt

Mt
= rtdt,

where rt is the real interest rate, along with the discount process defined as

D(t)= e− ∫ t
0 rudu = 1

Mt
.

The real interest rate rt follows an Ornstein-Uhlenbeck process

drt = κ(r− rt)dt+ σrdZr(t), (2.1)

where r describes the long-run mean of the real interest rate, κ describes the
degree of mean reversion, and σr is the real interest rate volatility.

2. An inflation-indexed zero-coupon bond that matures at a specified time of
retirement T (T > t) and, given a constant market price of real interest rate
risk, λr, has price given by

P(t,T)= α(t,T)e−β(t,T)rt ,

where

α(t,T)= exp
{(

r− σrλr

κ
− σ 2

r

2κ2

) [
β(t,T)−T + t

]
− σ 2

r

4κ

(
β(t,T)

)2}
,

β(t,T)= 1
κ

(
1− e−κ(T−t)) .

The stochastic process for the zero-coupon bond price, under the Pmeasure,
is therefore given by

dP(t,T)
P(t,T)

= [rt − β(t,T)σrλr] dt− σrβ(t,T)dZr(t). (2.2)

Because it is unrealistic to assume the existence of zero-coupon bonds
with any maturity (Boulier et al., 2001), investment is in a constant-
maturity bond fund, with a constant maturity (T), whose price PT

t evolves
according to

dPT
t

PT
t

= (rt − σTλr) dt− σTdZr(t),

https://doi.org/10.1017/asb.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.24


878 M. XU, M. SHERRIS AND A.W. SHAO

where T is the constant maturity of the bond, and

σT = 1− e−κT

κ
σr.

The original zero-coupon bond price dynamics (2.2) can be obtained
through a linear combination of the cash fund and the bond fund

dP(t,T)
P(t,T)

=
(
1− σrβ(t,T)

σT

)
dMt

Mt
+ σrβ(t,T)

σT

dPT
t

PT
t

. (2.3)

3. An equity fund (with dividend reinvested) whose price St satisfies the
following stochastic differential equation:

dSt
St

= (rt + σSλS + σSrλr) dt+ σSdZS(t)+ σSrdZr(t), (2.4)

where
√

σ 2
S + σ 2

Sr is the equity fund’s volatility and λS is the market price of
equity fund risk associated with dZS(t). Equation (2.4) can be rewritten as

dSt
St

= (rt + σλ) dt+ σdZ(t),

where σ 2 = σ 2
S + σ 2

Sr, σλ = σSλS + σSrλr, and σSr/σ captures the correlation
between Zr(t) and Z(t), so σSr can be negative.

2.2. Fund value dynamics

We denote by WM(t), WT (t), WS(t) the wealth invested in the cash fund, the
constant-maturity bond fund, and the equity fund, respectively for a given
group of individuals with the same entry age to the fund. In the DC pen-
sion fund, we also assume a real, continuous, and deterministic contribution
amount, c(t), is contributed to the fund from entry to the retirement time.

The fund value at time t, Xt, is equal to

Xt =WM(t)+WT (t)+WS(t).

The fund value satisfies the following stochastic differential equation:

dXt = rtXtdt+WT (t) [−σTλrdt+ σTdZr(t)]

+WS(t)
[(

σSλS + σSrλr
)
dt+ σSdZS(t)+ σSrdZr(t)

]+ c(t)dt.
(2.5)

Xt is not a self-financing process in that the change of its value is not entirely
driven by the gains or losses of investment returns due to the continuous con-
tribution to the fund. We will add in the present value of future contributions

https://doi.org/10.1017/asb.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.24


PORTFOLIO INSURANCE STRATEGIES 879

as an asset of the fund so that the total of the investments of the fund plus the
present value of future contributions is a self-financing portfolio.

The present value of the (inflation-indexed) future contributions is denoted
by Lt with value given by

Lt =
∫ T

t
c(u)P(t, u)du.

Using Itô’s formula, Lt can be replicated with the constant-maturity bond fund
and the cash fund as follows:

WL
T (t)=

∫ T

t
c(u)P(t, u)

σrβ(t, u)
σT

du, (2.6)

WL
M(t)=Lt −WL

T (t). (2.7)

The self-financing portfolio, which includes the future contributions, is denoted
by Yt =Xt +Lt, and satisfies

dYt = rtYtdt+WY
T (t) [−σTλrdt+ σTdZr(t)]

+WY
S (t)

[(
σSλS + σSrλr

)
dt+ σSdZS(t)+ σSrdZr(t)

]
,

(2.8)

where

WY
S (t)=WS(t), WY

T (t)=WT (t)+WL
T (t), WY

M(t)=WM(t)+WL
M(t).

(2.9)

Yt satisfies the self-financing condition

Y0 =X0 +
∫ T

0
c(t)P(0, t)dt, YT =XT ,

where X0 is the initial amount of assets in the fund.
The important aspect of this formulation is that the equity assets in the fund

and in the self-financing portfolio are the same, with adjustments made to the
constant-maturity bond and cash holdings to incorporate the present value of
future contributions.

3. PORTFOLIO INSURANCE STRATEGIES

To assess the portfolio insurance strategies, we derive and analyze the asset
allocation strategies based on the OBPI and CPPI for the self-financing port-
folio Yt. We then derive the value of the assets in the fund using Equation (2.9)
to adjust for the present value of fund contributions to give the wealth man-
agement processes, WM(t), WT (t), and WS(t) for the target annuitization
fund.
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3.1. Target

The investment target is based on the present value of an inflation-indexed
annuity with annual payments providing a minimum level of desirable post-
retirement consumption. We denote by AT the target annuitization level at the
time of retirement, T , where AT can be written as the value of a series of zero-
coupon bonds, such that

AT = g
J∑
j=0

P(T ,T + j),

where g is the annual retirement income in today’s dollars, and J represents
the annuity term. We do not include mortality since we assume individuals
self-insure their longevity risk reflecting what happens in practice in many
countries with DC plans where there is a low level of annuitization at retire-
ment. Similarly, at any time, t, prior to retirement T , the target annuitization
level is the present value of AT , or

At = g
J∑
j=0

P(t,T + j).

3.2. OBPI strategy

The fund is invested with the specific aim to provide the fund members with
the target annuitization level as a minimum at their retirement. An investment
strategy to achieve this aim is to hold a portfolio consisting of the investment
in the equity fund and options to exchange the amount in the equity fund for
the target annuity value at the time of retirement. This strategy is similar to
a protective put that can insure against unwanted losses. Clearly such options
do not trade but they provide the basis for option replication of the target
annuitization level and hence the investment strategy for the fund.

The price of the exchange option and the corresponding hedging portfolio
can be derived in our market setup.We will use this to determine the investment
strategy.

3.2.1. Pricing the minimum target annuitization option
We assume that a single option is based on an annuity income value of g

n , so
that n options are required to finance the annuity income of g, and each option
has a time 0 price of Q0. The initial value of the self replicating portfolio, Y0, is
then given by

YOBPI
0 = n(S0 +Q0), n> 0. (3.1)

The value of the investment portfolio at retirement, for a specified group of
individuals with the same entry age entering the fund at time 0, is given by

https://doi.org/10.1017/asb.2020.24 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.24


PORTFOLIO INSURANCE STRATEGIES 881

XOBPI
T =YOBPI

T = nST + (
AT − nST

)+ = n

⎡⎣ST +
⎛⎝g
n

J∑
j=0

P(T ,T + j)− ST

⎞⎠+⎤⎦,
where ( · )+ =max (0, ·).

We will specify contribution levels which, along with an initial amount
of fund assets contributed at time 0, will fund the target annuitization level.
There will be a minimum level of initial assets contributed to meet the target
annuitization level. The option price at time 0 has a lower bound given by the
following equation:

Q0 = Ẽ

⎡⎣D(T)
D(0)

⎛⎝g
n

J∑
j=0

P(T ,T + j)− ST

⎞⎠+⎤⎦

≥ Ẽ

⎡⎣D(T)
D(0)

⎛⎝g
n

J∑
j=0

P(T ,T + j)− ST

⎞⎠⎤⎦
= g
n

J∑
j=0

P(0,T + j)− S0 = g
n
A0 − S0,

where Ẽ is the expectation operator under the risk-neutral probability measure
P̃ with the cash fundM as numéraire. From this, we see that the initial amount
of assets, contributed by the fund members entering at time 0, will need to be
such that Y0 ≥ gA0 in order to provide sufficient funds to finance the minimum
target benefit.

At any time t prior to time T , the value of the portfolio is given by

YOBPI
t = n (St +Qt) , (3.2)

where Qt is the value of a single option at time t. Using the risk-neutral pricing
formula, the value of the option at time t is given by

Qt = Ẽt

⎡⎣D(T)
D(t)

ST

⎛⎝g
n

J∑
j=0

P(T ,T + j)
ST

− 1

⎞⎠+⎤⎦ .

We use the change-of-numéraire technique (Geman et al., 1995), changing the
numéraire from cash fund M to equity fund S, to find the option price, Qt.
Denoting the risk-neutral measure for the equity fund numéraire by P̃

(S), the
Radon-Nikodym derivative defining the measure P̃(S) is given by

dP̃(S)

dP̃
= STM0

S0MT
= exp

(
σSZ̃S(T)− 1

2
σ 2
ST + σSrZ̃r(T)− 1

2
σ 2
SrT

)
.
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The multidimensional Girsanov theorem implies that under P̃(S),

Z̃(S)
S (t)= Z̃S(t)− σSt and Z̃(S)

r (t)= Z̃r(t)− σSrt

are standard Brownian motions and that Z̃(S)
S and Z̃(S)

r are independent.
Therefore, the option price under the risk-neutral measure P̃(S) is given by

Qt = g
n
StẼ

(S)
t

⎡⎣⎛⎝ J∑
j=0

P(S)(T ,T + j)− n
g

⎞⎠+⎤⎦, (3.3)

where Ẽ
(S)
t denotes the conditional expectation operator given Ft under the

probability measure P̃
(S), and P(S)(T ,T + j) is the price of the zero-coupon

bond denominated in S. Then, P(S)(t,T) is a martingale under the measure
P̃
(S), with

dP(S)(t,T)
P(S)(t,T)

= −σSdZ̃
(S)
S (t)− (σrβ(t,T)+ σSr) dZ̃(S)

r (t).

Since Z̃(S)
S (t) and Z̃(S)

r (t) are independent, we can define a new Brownian motion
Z̃(S)
P such that

dP(S)(t,T)
P(S)(t,T)

=
√

σ 2
S + (σrβ(t,T)+ σSr)

2dZ̃(S)
P (t)≡ σP(t,T)dZ̃

(S)
P (t).

So for each s≤ t,

P(S)(t,T)=P(S)(s,T) exp
[∫ t

s
σP(u,T)dZ̃

(S)
P (u)− 1

2

∫ t

s
σ 2
P(u,T)du

]
. (3.4)

Since σP(t,T) is a deterministic function of time t, substituting Equation (3.4)
into Equation (3.3) gives

Qt = g
n
StẼ

(S)
t

[(
J∑
j=0

P(S)(t,T + j) exp

{
εt,T

√∫ T

t
σ 2
P(u,T + j)du

− 1
2

∫ T

t
σ 2
P(u,T + j)du

}
− n
g

)+]
,

(3.5)

where εt,T is a random variable that follows a standard normal distribution
under the measure P̃(S) for any t ∈ [0,T ].

Lemma 3.1. The value of the option at time t is given by

Qt = g
n
St

J∑
j=0

Ẽ
(S)
t

[(
P(S)(T ,T + j)−K (S)

j (t)
)+]

, (3.6)
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where K (S)
j (t) is an appropriate strike price given by

K (S)
j (t)=P(S)(t,T + j) exp

⎡⎣ε∗
t,T

√∫ T

t
σ 2
P(u,T + j)du− 1

2

∫ T

t
σ 2
P(u,T + j)du

⎤⎦,
(3.7)

where ε∗
t,T satisfies the following equation:

J∑
j=0

P(S)(t,T + j) exp

⎡⎣ε∗
t,T

√∫ T

t
σ 2
P(u,T + j)du− 1

2

∫ T

t
σ 2
P(u,T + j)du

⎤⎦= n
g
.

(3.8)

Proof. See Appendix A.1. �

Theorem 3.2. Based on Lemma 3.1, the value of the option at time t is given by

Qt = g
n
St

J∑
j=0

[
P(S)(t,T + j)N(−d2,t)−K (S)

j (t)N(−d1,t)
]
, (3.9)

where N( · ) represents the cumulative distribution function of the standard
normal distribution,

d1,t = 1√∫ T
t σ 2

P(u,T + j)du

(
ln

K (S)
j (t)

P(S)(t,T + j)
+ 1

2

∫ T

t
σ 2
P(u,T + j)du

)
, (3.10)

and

d2,t = d1,t −
√∫ T

t
σ 2
P(u,T + j)du. (3.11)

Proof. The proof follows the derivation of the Black-Scholes formula for
European call options. �

Remark 3.3. By comparing Equation (3.10) with Equation (3.7), d1,t ≡ ε∗
t,T, so d1,t

does not depend on j.

With an analytical expression for the option value under the financial
model, we can determine the investment strategy of the target annuitization
fund.
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3.2.2. Option replicating portfolio
The portfolio consists of an investment in the equity fund, and a corresponding
hedging portfolio to hedge a short position in the option whose value is given
by Equation (3.9).

To do this, it is easier to find the hedging portfolio when the numéraire is
the equity fund so we divide Equation (3.9) by St

Qt

St
= g
n

J∑
j=0

[
P(S)(t,T + j)N(−d2,t)−K (S)

j (t)N(−d1,t)
]
. (3.12)

If we take a hold
g
n
N(−d2,t) units of a zero-coupon bond that matures at time

T + j ( j= 0, · · · , J) and short
g
n

∑J
j=0 K

(S)
j (t)N(−d1,t) in the equity fund at each

time t, we see that the value of this portfolio agrees with Equation (3.12).
Hence, this is equivalent to a short position in the option.

Theorem 3.4. The hedging portfolio in Equation (3.12) is self-financing.

Proof. See Appendix A.2 for an outline. �
Purchasing n units of the equity fund in addition to this hedging portfolio

gives the investment strategy for the fund in terms of Yt. Therefore, for the
self-financing portfolio Yt, the wealth invested in the equity fund is

WY , OBPI
S (t)= nSt − gSt

J∑
j=0

K (S)
j (t)N(−d1,t), (3.13)

and the wealth invested in the zero-coupon bond that matures at time T + j is

WY, OBPI
P(t,T+j) (t)= gP(t,T + j)N(−d2,t). (3.14)

To convert our investment strategy into the constant-maturity bond fund with
a constant maturity T , the zero-coupon bonds with these terms of maturity
need to be replicated using the cash fund and the bond fund according to
Equation (2.3).

The wealth invested in the cash fund becomes

WY , OBPI
M (t)= g

J∑
j=0

P(t,T + j)N(−d2,t)
(
1− σrβ(t,T + j)

σT

)
. (3.15)

The wealth invested in the bond fund with constant maturity T is then

WY , OBPI
T

(t)= g
J∑
j=0

P(t,T + j)N(−d2,t)σrβ(t,T + j)
σT

. (3.16)
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The self-financing portfolioYt is given by: (1) a hedging portfolio that hedges a
short position in the option and (2) n units of the equity fund. Since the target
annuitization fund incorporates the value of future contributions, Yt has to
be adjusted for the value of future contributions to determine the investment
strategy for the fund assets. That is, Equations (3.13), (3.15) and (3.16) need to
be adjusted for the portfolio that represents the value of future contributions.

Doing this, we obtain that, for the portfolio Xt, the wealth invested in the
equity fund, bond fund, and cash fund are, respectively, given by

WOBPI
S (t)= nSt − gSt

J∑
j=0

K (S)
j (t)N(−d1,t),

WOBPI
T (t)= g

J∑
j=0

P(t,T + j)N(−d2,t)σrβ(t,T + j)
σT

−WL
T (t),

WOBPI
M (t)= g

J∑
j=0

P(t,T + j)N(−d2,t)
(
1− σrβ(t,T + j)

σT

)
−WL

M(t).

3.3. CPPI strategy

The CPPI strategy is implemented by determining the amount allocated to the
risky asset as the product of a cushion, Ct, and a multiplier, m (Black and
Jones, 1987). The cushion is the portfolio fund value minus the minimum tar-
get annuitization level in our case. Hence, the exposure to the equity fund at
time t is given by

Et =mCt =m(YCPPI
t −At). (3.17)

If the assets less the cushion are invested in a portfolio that replicates At, then
the dynamics of the self-financing portfolio fund value at time t are given by

dYCPPI
t = (YCPPI

t − Et)dAt

At
+ EtdStSt

.

The replicating portfolio for the CPPI strategy closely tracks the minimum tar-
get annuitization level (Black and Perold, 1992) and is constructed by holding
g units of a zero-coupon bond that matures at time T + j ( j= 0, · · · , J). Since
the bond fund has a constant term to maturity, the zero-coupon bonds with
different terms of maturity are replicated using the cash fund and the bond
fund.

In summary, for the self-financing portfolio (Yt), the wealth invested in the
cash fund is given by

WY , CPPI
M (t)= g

At

(
YCPPI
t − Et

) J∑
j=0

P(t,T + j)
(
1− σrβ(t,T + j)

σT

)
, (3.18)
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TABLE 1

PARAMETER VALUES FOR THE NUMERICAL IMPLEMENTATION OF PORTFOLIO INSURANCE
STRATEGIES.

Parameter Value

Real interest rate: drt = κ(r− rt)dt+ σrdZr(t)
κ 0.631
r 0.012
σr 0.026

Bond fund return process:
dPT

t

PT
t

= (rt − σTλr)dt− σTdZr(t)

T 20
λr −0.209

Equity fund return process:
dSt
St

= (rt + σSλS + σSrλr)dt+ σSdZS(t)+ σSrdZr(t)

σS 0.157
σSr −0.020
λS 0.319

and the wealth invested in the constant-maturity bond fund is given by

WY , CPPI
T

(t)= g
At

(
YCPPI
t − Et

) J∑
j=0

P(t,T + j)
σrβ(t,T + j)

σT
. (3.19)

For the actual investments in the fund portfolio (Xt), the wealth invested in
each asset is found using Equations (3.18), (3.19) and the relationships given in
Equation (2.9).

4. MODEL IMPLEMENTATION ASSUMPTIONS

In order to implement the theory in the previous section, we need to make
assumptions as to dynamics of the asset returns in real terms, the level of tar-
get annuitization, the ages of individuals in the fund, initial values and future
contributions, and the frequency of rebalancing.

4.1. Financial market assumptions

We base our financial market assumptions, shown in Table 1, on Brennan and
Xia (2002)1. The real interest rate at time 0 is set at 2.5% and S0 is set at $1000.
We use simulation with 100,000 paths for these return processes to determine
the investment strategies under different investment scenarios for both OBPI
and CPPI strategies.
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TABLE 2

THE PROBABILITY THAT A 65-YEAR-OLD INDIVIDUAL WILL LIVE BEYOND AGE 100 USING THE
LATEST AVAILABLE LIFE TABLES. THE YEAR IN THE BRACKETS DENOTES THE YEAR OF THE LIFE

TABLE.

Australia (2016) Japan (2017) UK (2016) USA (2017)

Male 1.6% 1.6% 1.1% 1.8%
Female 3.4% 6.8% 2.4% 3.7%

Source: Human Mortality Database.

TABLE 3

THE TARGET ANNUITIZATION LEVEL AT TIME 0, AND THE MEAN AND STANDARD DEVIATION (STD)
OF THE TARGET ANNUITIZATION LEVEL AT RETIREMENT AGE 65 FOR DIFFERENT COHORTS.

AT ($000)

Age at time 0 A0 ($000) Mean Std

25 275.28 619.25 21.00
30 303.87 619.57 20.84
35 335.43 619.17 21.13
40 370.27 619.33 20.87
45 408.73 619.66 20.89
50 451.18 619.00 20.86
55 498.04 619.51 21.00
60 549.78 619.01 20.88

4.2. Target annuitization level

We use a target fund balance at retirement providing a level of minimum
income during retirement. There is currently no consensus on a minimum
standard of retirement living (Binswanger and Schunk, 2012), so we use the
retirement standard published by the Association of SuperAnnuation Funds of
Australia as a guide. It is estimated that a single person needs $24,250 ($23,754)
per annum at around 65 (85) to maintain a modest lifestyle (Association of
Superannuation Funds of Australia, 2017). Based on this, we set the target
fund balance such that it is expected to provide the member with an annuity of
$24,000 (in real term) every year for 35 years.

Since we do not incorporate mortality and assume an individual will self-
insure their longevity, the 35-year horizon is selected to cover the period from
ages 65 to 100, so that there is only a small probability of outliving the annuity
income. Table 2 shows that the probabilities of living beyond 100 for 65-year-
old individuals are mostly below 4% in major developed countries.

We consider eight different cohorts with 40, 35, · · · , 10, 5 years of pre-
retirement investment horizons representing ages at entry 25-60 assuming a
retirement age of 65. Table 3 shows that initial value of the target level
of annuitization, A0, along with the mean and standard deviation of target
annuitization levels at retirement at age 65. These are similar for different entry
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cohorts since the level of annuity income assumed is the same for individuals
regardless of entry age and the term structure of interest rates is mostly flat.

4.3. Assets and contributions

We assume that the portfolio is rebalanced annually and that contributions
are made at the beginning of each year from entry to retirement. The value of
future contributions on an annual basis is given by

Lt =
T∑
u=t

c(u)P(t, u),

andWL
T
(t) given by (2.6) becomes

WL
T (t)=

T∑
u=t

c(u)P(t, u)
σrβ(t, u)

σT
.

We use the portfolio value weights derived from continuous rebalancing to
derive the budget constraint of YOBPI

t under annual rebalancing. For the CPPI
strategy, we follow Balder et al. (2009) to prohibit the short selling of the equity
fund, so Equation (3.17) becomes

Et =m(YCPPI
t+1 −At)+.

The budget constraint is given by

YCPPI
t+1 = Et St+1

St
+ (YCPPI

t − Et)At+1

At
.

For the OBPI strategy, the initial investment in the equity fund is determined
by multiplying the number of options, n, by the equity fund price, S0. n is
obtained by solving Equations (3.1) and (3.9) simultaneously. For the CPPI
strategy, the amount invested in the equity fund at time 0 equals the product
of the multiplier, m, and the cushion amount, Ct, which are both independent
of S0.

In terms of the multiplier in the CPPI strategy, we are interested in cases
when m> 1, that is, when the payoff function is convex. When m= 1, CPPI
reduces to buy-and-hold strategies.

We assume that the contribution is made on an annual basis and that it
increases by 2.5% per annum to reflect labor productivity growth.2 Table 4
shows the initial level of contribution assumed, c(0) which, together with the
annual growth rate of 2.5%, gives the present value of future contributions
shown in the third column. We select contribution levels sufficient to fund the
target benefit at age 25 with a reasonable increase with age at entry.

The fourth column shows the assumed buffer above the target annuitization
level at time 0, which determines the initial fund value required along with the
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TABLE 4

THE ASSUMPTION ABOUT INITIAL VALUES, INCLUDING INITIAL CONTRIBUTION AND INITIAL FUND
BALANCE, USED IN THE BASE CASE.

c(0) L0 Y0 −A0 A0 Y0 X0 =Y0 −L0

Age at time 0 ($000) ($000) ($000) ($000) ($000) ($000) L0/X0

25 7 308.04 33 275.28 308.28 0.24 1261.68
30 8 303.92 33 303.87 336.87 32.95 9.22
35 9 289.17 33 335.43 368.43 79.26 3.65
40 10 264.22 33 370.27 403.27 139.05 1.90
45 11 229.48 33 408.73 441.73 212.25 1.08
50 12 185.34 33 451.18 484.18 298.84 0.62
55 13 132.18 33 498.04 531.04 398.86 0.33
60 14 70.37 33 549.78 582.78 512.41 0.14

TABLE 5

PROPORTION OF INCOME REPLACED BY THE TARGET ANNUITIZATION LEVEL.

Last contri- Before-tax Taxable Personal After-tax
Age at c(0) butiona incomeb incomec income taxd income Replacement
time 0 ($000) ($000) ($000) ($000) ($000) ($000) ratee (%)

25 7 18.3 152.8 134.5 39.9 94.5 25.4
30 8 18.5 154.4 135.8 40.5 95.4 25.2
35 9 18.4 153.5 135.1 40.2 94.9 25.3
40 10 18.1 150.7 132.6 39.2 93.4 25.7
45 11 17.6 146.5 129.0 37.8 91.2 26.3
50 12 17.0 141.3 124.3 36.0 88.4 27.2
55 13 16.2 135.3 119.1 33.9 85.1 28.2
60 14 15.5 128.8 113.3 31.7 81.6 29.4

a Assume an annual growth rate of 2.5% and ignore any tax on contributions.
b This is before-tax income just before retirement (e.g., at age 64) assuming that the contribution rate

is 12%, which is the minimum contribution rate in Australia from 2025 onwards.
c Taxable income is before-tax income less the pension contribution. The tax rate is based on the

individual income tax rates in Australia, including the 2% Medicare levy.
d The replacement rate is calculated as the target annuitization level (which is $24,000) over the after-

tax income just before retirement.

value of future contributions. The assumed buffer above the target affects the
extent to which the fund can invest in the risky asset. We set the initial buffer
to be equal across cohorts. We will consider the impact of a lower buffer on the
investment strategies (Section 5.3).

The resulting initial fund balance is shown in the seventh column. It
increases with age, which reflects an assumption that older aged individuals
entering the fund will have accumulated retirement savings from earlier ages to
provide this level of initial contribution into the fund.

Table 5 shows that between 25% and 30% of pre-retirement labor income
can be replaced by the target annuitization level based on the individual income
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TABLE 6

NUMBER OF OPTIONS TO BE REPLICATED AND THE VALUE OF A SINGLE OPTION AT TIME 0.

Age at time 0

25 30 35 40 45 50 55 60

n 152.6 170.5 192.3 219.4 253.9 299.1 361.5 455.2
Q0 ($) 1020.01 975.92 915.85 837.90 739.82 618.57 469.10 280.14

tax rates and the occupational pension contribution rate in Australia. The
replacement rates are similar to the public pension replacement rate of male
total average earnings in Australia (Harmer, 2008). The modest replacement
rates of the target annuitization level are in line with the aim of supporting a
minimum standard of living.

4.4. Option prices

Given S0, Y0, and r0, we can solve for the number of options to be replicated
and the option price at time 0. Table 6 summarizes the results. The value of the
option declines as the investment horizon decreases, reflecting the decay in the
time value of the option. As a result, the amount invested in the equity fund
increases, and n increases for the shorter investment horizons.

5. COMPARISON OF INVESTMENT STRATEGIES

5.1. Portfolio value weights

This section compares the investment strategies using the portfolio value
weights in each asset for the OBPI and CPPI strategies. For members join-
ing the fund at age 25 (30), the pension fund balance in the first 10 (5) years is
relatively low, so the portfolio value weights in the equity fund tend to be large
positive figures and those in the bond fund tend to be large negative figures.
In addition, the portfolio value weights are very sensitive to the fund balances.
We therefore focus on the results in the last 30 years before retirement for these
two cohorts. For the remaining cohorts, the results are shown for the whole
pre-retirement period.

Figure 1 shows the average portfolio value weights in the equity fund for
members joining the pension fund at different ages for the portfolio insur-
ance strategies. If the member joins the fund at a relatively young age, the
proportion invested in the equity fund decreases as the fund member grows
older. This pattern is similar to the lifecycle investment strategy in that the
portfolio mix becomes more conservative as members get older. Unlike tradi-
tional lifecycle investment strategies where the portfolio mix is changed in a
predetermined way, the portfolio insurance strategies respond dynamically to
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FIGURE 1: Average portfolio value weights in the equity fund: (left panel) OBPI; (right panel) CPPI
with m= 1.6.

investment opportunities. This leads to a higher level of downside risk pro-
tection in a bear market and a better upside performance in a bull market
compared to the standard lifecycle investment strategy.

If the member joins the fund after the mid-30s, the portfolio value weights in
the equity fund are lower and show an upward trend with age. The difference
in portfolio value weight between different cohorts reflects the older cohorts
having lower amounts of future contributions. For younger cohorts, when they
join the fund, the self-financing portfolio (Y0) is dominated by the safe assets
composed of future contributions (the last column of Table 4). This allows
fund managers to invest heavily in the risky asset before turning 40. The safe
assets gradually decline as members get older, and the proportion invested in
the equity fund increases. Compared to the younger cohorts, older cohorts’
initial fund values are significantly higher (second last column of Table 4), so
the present value of future contributions remains a small proportion of the self-
financing portfolio. As a result, the portfolio value weights in the equity fund
for the fund balance (Xt) follow the trend of the self-financing portfolio (Yt).

The right panel of Figure 2 shows that on average, the proportion of the
self-financing portfolio invested in the equity fund increases over time. This
is due to the nature of the portfolio insurance strategies, where the greater the
portfolio fund value over the target, the higher the portfolio value weight in the
risky asset. At time 0, Y0 has a buffer over A0 to allow investment in the equity
fund and to allow the possibility of achieving a higher value than the target level
of annuitization. The buffer will generally grow wider, since Yt typically grows
faster than At. This leads to a higher average proportion of wealth allocated to
the equity fund at older ages.

Figure 1 also shows that the two portfolio insurance strategies generate
different trends in portfolio value weight for the younger cohorts after they
turn 50. The weight in the equity fund slightly increases using the CPPI strat-
egy, while that of the OBPI strategy remains relatively flat. This reflects the
CPPI’s better downside protection than the OBPI. The downside protection
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FIGURE 2: Average portfolio value weights in the equity fund using the OBPI strategy: (left panel) the target
annuitization fund Xt; (right panel) the self-financing portfolio Yt.
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FIGURE 3: The shortfall probability: (left panel) members join the fund at age 25; (right panel) members join
the fund at age 30. The shortfall probability is given by P(XT <AT ).

can be measured using the shortfall probability and average shortfall amount.
The shortfall probability is defined as the probability that the fund value is
below the target annuitization level, that is, P(Xt <At). The average shortfall
is given by

E [Xt −At|Xt <At],

where E is the expectation operator under the real-world probability mea-
sure P.

Figures 3 and 4 show the shortfall probability and the average shortfall
amount (taking the absolute dollar amount), respectively, for the youngest two
cohorts. In the first several years after joining the fund, the shortfall probabil-
ities are close to one because these two cohorts have initial fund balances far
below the targets (Table 4). Consequently, the shortfall probability is very high
because the fund balances are not high enough to achieve the target. As the
fund receives contributions and investment returns, both strategies give lower
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FIGURE 4: The absolute value of average shortfall amount: (left panel) members join the fund at age 25;
(right panel) members join the fund at age 30. Average shortfall amount is given by E [XT −AT |XT <AT ].
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FIGURE 5: Average portfolio value weights in the bond fund: (left panel) the OBPI strategy and (right panel)
the CPPI strategy with m= 1.6.

chances and severities of a shortfall. As the fund members approach retire-
ment, both the shortfall probability and the average shortfall amount decrease
significantly faster for the CPPI strategy.

The average portfolio value weights in the bond fund and cash fund are
shown in Figures 5 and 6, respectively. The portfolio value weights in the bond
fund move almost in the opposite direction to those in the equity fund, show-
ing an upward trend for the younger cohorts and a downward trend for the
older cohorts. The average portfolio value weights in the cash fund show less
variation across the different cohorts.

To understand the differences between the portfolio insurance strategies
better, we investigate the sample paths of the asset weights for fund members
who are 25 at time 0.We choose the youngest cohort since they have the longest
investment horizon. Once again, we focus on the results from age 35 onwards,
for the portfolio value weights in early years are volatile due to the low fund
balance. Figure 7 shows sample paths and the 95% confidence intervals for
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FIGURE 6: Average portfolio value weights in the cash fund: (left panel) the OBPI strategy and (right panel)
the CPPI strategy with m= 1.6.
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FIGURE 7: Some simulated sample paths (blue lines with markers), mean and 95% confidence intervals of
portfolio value weights in the equity fund: (left panel) the OBPI strategy; (right panel) the CPPI strategy with

m= 1.6. The member joins the fund at age 25.

the portfolio value weights in the equity fund. Although the average weights
decrease over age, they have wide confidence bounds reflecting equity fund
volatility. For the CPPI strategy, the 95% confidence intervals become signifi-
cantly wider as the multiplier increases. Figure 8 shows these for multipliers of
1.2 and 2.0.

5.2. Comparison of retirement payoffs

To further evaluate and compare the effectiveness of the portfolio insurance
strategies, we examine the portfolio fund values at retirement. Table 7 sum-
marizes the mean, median, 95% confidence intervals, shortfall probability, and
average shortfall amount of the portfolio fund values at retirement. The short-
fall reflects the annual rebalancing assumption, as no shortfall would occur
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FIGURE 8: Some simulated sample paths (lines with markers), mean, and 95% confidence intervals of
portfolio value weights in the equity fund: (left panel) the CPPI strategy with m= 1.2; (right panel) the CPPI

strategy with m= 2. The member joins the fund at age 25.

under the assumption of continuous rebalancing. In practice, it would be pos-
sible to rebalance the portfolio more frequently (e.g., monthly or weekly), but
this would incur higher transaction costs. We do not explicitly consider trans-
action costs in the study, but it is worth noting that the transaction costs could
be very substantial (Boyle and Vorst, 1992). As a consequence, the shortfall
probability would not necessarily decrease if the rebalancing frequency was
increased.

It is noticeable that the average shortfall amount remains less than 3% of
the target annuitization level across different cohorts, demonstrating the effec-
tiveness of the strategy in meeting the target. Comparing the two strategies
within each single cohort, the CPPI strategy provides a better downside risk
protection as indicated by significantly lower shortfall probabilities. For the
younger cohorts, the average shortfall amount is comparable between the two
strategies, though. For the older cohorts, the size of the sample used to cal-
culate the average shortfall amount is very small due to the extremely low
shortfall probabilities. As a result, we refrain from comparing these numbers
with the OBPI strategy. In terms of the fund balance at retirement, the OBPI
strategy usually gives a higher average amount.

Increasing the value of the CPPI multiplier improves the average payoff at
the cost of weaker downside protection. The median payoff is hardly affected
by the multiplier. In terms of the inter-cohort differences, the older the cohort,
the lower the payoff level. This is due to the lower present values of future
contributions for older cohorts even though they contribute higher initial fund
balances. The older cohorts experience higher chance of falling short of the
target under the OBPI strategy, whereas the CPPI strategy shows the oppo-
site pattern. The probability that the fund balance falls short of the target
annuitization level decreases over time due to the contributions to the fund.
To remove the impact of contributions, we investigate the shortfall probability
of the portfolio Y , which includes the present value of future contributions.
Figure 9 shows that the shortfall probability of the portfolio Y increases over
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TABLE 7

MEAN, MEDIAN, 95% CONFIDENCE INTERVALS (CI), SHORTFALL PROBABILITY, AND AVERAGE
SHORTFALL AMOUNT OF THE PORTFOLIO FUND VALUES AT RETIREMENT.

Mean Median 95% CI Shortfall Average shortfall
($000) ($000) ($000) probability ($000) ( AT )

25 years old at time 0
XOBPI
T 2225 1323 (586, 9393) 0.092 −17.88 −0.029

XCPPI
T (m= 1.2) 1301 956 (646, 4125) 0.000 − −

XCPPI
T (m= 1.6) 2008 1024 (630, 9588) 0.000 − −

XCPPI
T (m= 2.0) 3403 1030 (618, 20,502) 0.00010 −14.38 −0.023

30 years old at time 0
XOBPI
T 1799 1, 124 (584, 6967) 0.106 −17.48 −0.028

XCPPI
T (m= 1.2) 1086 871 (641, 2841) 0.000 − −

XCPPI
T (m= 1.6) 1487 915 (627, 5912) 0.000 − −

XCPPI
T (m= 2.0) 2210 919 (616, 11,704) 0.00009 −13.59 −0.022

35 years old at time 0
XOBPI
T 1478 973 (583, 5252) 0.121 −17.02 −0.027

XCPPI
T (m= 1.2) 940 809 (635, 2043) 0.000 − −

XCPPI
T (m= 1.6) 1164 838 (624, 3732) 0.000 − −

XCPPI
T (m= 2.0) 1536 841 (614, 6711) 0.00006 −12.76 −0.021

40 years old at time 0
XOBPI
T 1231 850 (580, 3946) 0.138 −16.74 −0.027

XCPPI
T (m= 1.2) 839 762 (630, 1517) 0.000 − −

XCPPI
T (m= 1.6) 962 780 (621, 2439) 0.000 − −

XCPPI
T (m= 2.0) 1150 783 (613, 3995) 0.00006 −11.57 −0.019

45 years old at time 0
XOBPI
T 1045 760 (578, 2933) 0.156 −17.01 −0.027

XCPPI
T (m= 1.2) 771 728 (627, 1170) 0.000 − −

XCPPI
T (m= 1.6) 835 739 (619, 1639) 0.000 − −

XCPPI
T (m= 2.0) 925 741 (612, 2376) 0.00004 −11.38 −0.019

50 years old at time 0
XOBPI
T 905 701 (576, 2192) 0.175 −16.35 −0.026

XCPPI
T (m= 1.2) 724 702 (623, 953) 0.000 − −

XCPPI
T (m= 1.6) 755 708 (617, 1178) 0.000 − −

XCPPI
T (m= 2.0) 796 710 (611, 1510) 0.00004 −10.27 −0.017

55 years old at time 0
XOBPI
T 798 672 (575, 1615) 0.190 −16.19 −0.026

XCPPI
T (m= 1.2) 691 682 (619, 815) 0.000 − −

XCPPI
T (m= 1.6) 705 686 (615, 909) 0.000 − −

XCPPI
T (m= 2.0) 721 687 (610, 1038) 0.00002 −6.63 −0.010

60 years old at time 0
XOBPI
T 718 660 (575, 1153) 0.200 −16.37 −0.026

XCPPI
T (m= 1.2) 668 666 (616, 732) 0.000 − −

XCPPI
T (m= 1.6) 672 668 (613, 759) 0.000 − −

XCPPI
T (m= 2.0) 677 669 (610, 794) 0.00001 −2.78 −0.005
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FIGURE 9: The shortfall probability of the portfolio Y : (left panel) OBPI; (right panel) CPPI with m= 2.0.
The shortfall probability is given by P(Yt <At).

FIGURE 10: Comparison of OBPI and CPPI payoffs. The member joins the fund at age 25 and the CPPI
multiplier (m) is 1.6. The dashed horizontal line through 1 on the y-axis represents the target annuitization

level.

time for both strategies. It, however, increases at a faster rate for older cohorts
using the OBPI strategy, whereas under the CPPI strategy, each cohort experi-
ences similar rate of increase. As the result, the two strategies leads to different
patterns of the shortfall probability by cohort.

Figure 10 shows a payoff diagram to compare the portfolio insurance
strategies. To facilitate the measurement against the target, both the payoff
(y-axis) and the equity fund price (x-axis) are denominated in the target annu-
itization level, AT . A payoff below one means that the target is not met. The
figure reinforces the results in Table 7. The OBPI strategy generally performs
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better unless the equity fund performs poorly. In addition, the OBPI strat-
egy has more outcomes below the target annuitization level, consistent with
the result that the OBPI strategy has a much higher shortfall probability than
the CPPI (Table 7). These results hold for a lower value of the multiplier
(Figure 11(a)), and a shorter investment horizon (Figure 11(c)). If the multiplier
increases (Figure 11(b)), however, the payoff of the CPPI strategy is no longer
dominated by that of the OBPI strategy, and it also has a wider distribution.

5.3. Alternative assumptions

We have shown that CPPI performs better than OBPI in downside risk pro-
tection and that the average shortfall amount is less than 3% of the target
annuitization level at retirement for both strategies across different cohorts.We
will consider alternative assumptions and their impact on both strategies. In
particular, we investigate the extent to which the shortfall probability and the
average shortfall amount changes if (1) the equity fund price is more volatile,
(2) the equity fund price features jumps, or (3) the initial fund balance, X0, is
lower. We focus on the equity volatility since the portfolio value weights on the
equity fund are the main focus of our analysis.

5.3.1. Equity fund volatility
The US stock market experienced noticeably high volatility during the Great
Depression (1929–1939), October 1987, and the financial crisis in 2008. While
the high levels of volatility in 1987 and 2008 were short-lived, the one during
the Great Depression was prolonged (Schwert, 2011). Since the pension fund
investment is long-term horizon, we consider the impact of a stock volatility
of the Great Depression and set σS to 30%, which is similar to the standard
deviation of the US stock market over that period (Schwert, 2011).

Figure 12 shows that the CPPI strategy is far more sensitive to the change
in the equity fund volatility. Compared to Figure 10, the payoffs of the CPPI
strategy are more widespread, resulting in more outcomes below the target
level. By contrast, there are no significant changes to the payoffs of the OBPI
strategy.

Table 8 also shows that the shortfall probability and average shortfall
amount, measuring the downside protection provided, are less robust for the
CPPI strategy compared to the OBPI except for the CPPI strategy with a
close-to-one multiplier. For members joining the fund at age 25, the short-
fall probability of the CPPI strategy grows from nearly zero to more than
20% while that of the OBPI strategy increases by approximately 80%. These
increases are small at the older entry ages but still significant. Overall, the aver-
age shortfall amount remains a small proportion of the target annuitization
level at retirement. Except for the cases where the CPPI multiplier is large and
the exposure to the high volatility spans a few decades, the average shortfall
amount conditional on its occurrence is less than 5% of the target.
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FIGURE 11: Comparison of OBPI and CPPI payoffs in selected scenarios: (a) the CPPI multiplier is close
to 1; (b) the CPPI multiplier is relatively large; (c) the investment horizon is relatively short. The dashed

horizontal line through 1 on the y-axis represents the target annuitization level.
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FIGURE 12: Comparison of OBPI and CPPI payoffs when σS = 0.3. The member joins the fund at age 25
and the CPPI multiplier (m) is 1.6. The dashed horizontal line through 1 on the y-axis represents the target

annuitization level.

5.3.2. Jumps in the equity fund prices
We use the Merton jump-diffusion process (Merton, 1976) to model the equity
fund price that features jumps. For simplicity, we assume the fund manager
who implements the OBPI strategy does not recognize jumps and continues
to follow the investment strategies derived from the baseline scenario (i.e., no
jumps in the equity fund price).

The equity fund price dynamics are given by

dSt
St

= (
rt + σSλS + σSrλr − λjE(V )

)
dt+ σSddZS(t)+ σSrdZr(t)+V dqt, (5.1)

where
√

σ 2
Sd + σ 2

Sr represents the volatility of the diffusion component. λj is the
intensity of the Poisson process qt that models the jump events. The size of the
jump is represented by V , where

ln (1+V )∼N (μV , σ 2
V ), E(V )= exp

(
μV + 1

2
σ 2
V

)
− 1.

The Poisson process qt, the jump size V , and the Brownian motions ZS(t) and
Zr(t) are assumed to be independent.

The connection between the volatility in the jump-diffusion model (5.1) and
that in the diffusion model (2.4) is

σ 2
S = σ 2

Sd
+ (σ 2

V + μ2
V )λj. (5.2)
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TABLE 8

THE SHORTFALL PROBABILITY AND AVERAGE SHORTFALL AMOUNT BY DIFFERENT VOLATILITY
LEVELS OF THE EQUITY FUND. THE CPPI STRATEGY WITH m= 1.2 SHOWS ZERO SHORTFALL

PROBABILITIES.

Shortfall Average shortfall

probability ($000) (AT )

σS 0.157 0.30 0.157 0.30 0.157 0.30

25 years old at time 0
XOBPI
T 0.092 0.152 −17.88 −22.56 −0.029 −0.036

XCPPI
T (m= 1.6) 0.000 0.013 − −36.66 − −0.059

XCPPI
T (m= 2.0) 0.00010 0.244 −14.38 −61.46 −0.023 −0.099

30 years old at time 0
XOBPI
T 0.106 0.166 −17.48 −22.54 −0.028 −0.036

XCPPI
T (m= 1.6) 0.000 0.011 − −27.23 − −0.044

XCPPI
T (m= 2.0) 0.00009 0.217 −13.59 −52.63 −0.022 −0.085

35 years old at time 0
XOBPI
T 0.121 0.181 −17.02 −22.21 −0.027 −0.036

XCPPI
T (m= 1.6) 0.000 0.010 − −18.59 − −0.030

XCPPI
T (m= 2.0) 0.00006 0.189 −12.76 −42.72 −0.021 −0.069

40 years old at time 0
XOBPI
T 0.138 0.199 −16.74 −22.05 −0.027 −0.036

XCPPI
T (m= 1.6) 0.000 0.008 − −14.92 − −0.024

XCPPI
T (m= 2.0) 0.00006 0.160 −11.57 −33.18 −0.019 −0.054

45 years old at time 0
XOBPI
T 0.156 0.213 −17.01 −21.98 −0.027 −0.035

XCPPI
T (m= 1.6) 0.000 0.007 − −10.59 − −0.017

XCPPI
T (m= 2.0) 0.00004 0.131 −11.38 −24.72 −0.019 −0.040

50 years old at time 0
XOBPI
T 0.175 0.228 −16.35 −21.81 −0.026 −0.035

XCPPI
T (m= 1.6) 0.000 0.005 − −6.00 − −0.010

XCPPI
T (m= 2.0) 0.00004 0.100 −10.27 −16.41 −0.017 −0.026

55 years old at time 0
XOBPI
T 0.190 0.241 −16.19 −21.62 −0.026 −0.035

XCPPI
T (m= 1.6) 0.000 0.003 − −3.42 − −0.005

XCPPI
T (m= 2.0) 0.00002 0.068 −6.63 −9.78 −0.010 −0.016

60 years old at time 0
XOBPI
T 0.200 0.248 −16.37 −21.43 −0.026 −0.035

XCPPI
T (m= 1.6) 0.000 0.002 − −1.66 − −0.003

XCPPI
T (m= 2.0) 0.00001 0.035 −2.78 −5.15 −0.005 −0.008

The parameter values used in the baseline analysis follow the calibration results
in Brennan and Xia (2002). The parameter values in the jump-diffusion model
are based on the calibration results in Wu (2003) who uses a similar dataset of
comparable sampling period to estimate the parameters (Table 9). We make a
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TABLE 9

COMPARISON OF DATA USED IN BRENNAN AND XIA (2002) AND WU (2003).

Dataset Sampling period

Center for Research in Security Prices
Brennan and Xia (2002) value-weighted stock index returns Jan 1970-Dec 1995
Wu (2003) S&P 500 index July 1962-Dec 1997

TABLE 10

PARAMETER VALUES OF THE JUMP-DIFFUSION MODEL.

Parameter Value√
σ 2
Sd + σ 2

Sr 0.1439†

σSd 0.1427
σSr −0.020‡

λj 0.4478
μV −0.0432
σV 0.0879
aThe estimation result in Wu (2003) is 0.1285.
The adjustment is made to satisfy Equation (5.2).
bThe parameter σSr takes the same value as in the
diffusion model (2.4).

minor adjustment to σSd such that Equation (5.2) is satisfied. Table 10 shows
the values of the parameter in the jump-diffusion model (5.1).

Adding jumps to the equity fund price makes little change to the payoffs
of both strategies except for making them sightly more spread (Figure 13).
In addition, Table 11 shows that the jumps do not significantly weaken the
downside protection provided by the OBPI strategy and the CPPI strategy
with relatively small multipliers. For the CPPI strategy with m= 2.0, adding
jumps dramatically increases the shortfall probabilities for all cohorts, but the
probabilities remain much lower than the corresponding OBPI strategy. The
impact of jumps on average shortfall shows mixed results for different cohorts.
Younger cohorts tend to experience larger shortfall amounts compared to the
baseline scenario, while the older cohorts tend to experience the opposite. The
mixed effect of jumps on the average shortfall amount should be interpreted
with caution as it might be due to the sample size. In the baseline scenario,
the shortfall probabilities are extremely low, so the sample size used to calcu-
late the average shortfall is very small, whereas the sample sizes become much
larger when jumps are added.

5.3.3. Initial fund contributions
The initial fund balance was determined so that the value of the self-financing
portfolio, Y0, was $33,000 above the target. We now decrease the buffer above
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FIGURE 13: Comparison of OBPI and CPPI payoffs when the equity fund price has jumps. The member
joins the fund at age 25 and the CPPI multiplier (m) is (left panel) 1.6 and (right panel) 2.0. The dashed

horizontal line through 1 on the y-axis represents the target annuitization level.

FIGURE 14: Comparison of payoffs between different levels of initial fund balances: (left panel) base case;
(right panel) lower initial fund balance. The member joins the fund at age 40 and the CPPI multiplier (m)

is 1.6. The dashed horizontal line through 1 on the y-axis represents the target annuitization level.

the target to $10,000. The resulting initial fund balance (X0) for each cohort
is shown in Table 12. Note that for members joining the fund at age 25, the
present value of future contributions is about $32,760 above the target, A0.
Setting the buffer above the target at $10,000 makes the initial fund balance
negative. We therefore set the initial fund balance for the youngest cohort to
zero.

Figure 14 compares the payoffs for members joining the fund at age 40. We
choose an older cohort because their balances at retirement are more severely
affected by lower initial balances. A lower initial fund balance limits the fund’s
ability to participate in the equity market, so both strategies take less advantage
of better equity fund performance to improve the payoff. Figure 14 shows that
the impact is stronger for the CPPI strategy. The OBPI strategy is more robust
to a lower amount of initial contribution to the fund.
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TABLE 11

THE SHORTFALL PROBABILITY AND AVERAGE SHORTFALL AMOUNT BY DIFFERENT EQUITY FUND
PRICE (St) DYNAMICS. THE CPPI STRATEGY WITH m= 1.2 AND 1.6 SHOWS ZERO SHORTFALL

PROBABILITIES.

Shortfall Average shortfall

probability ($000) (AT )

St Baseline w/jumps Baseline w/jumps Baseline w/jumps

25 years old at time 0
XOBPI
T 0.092 0.113 −17.88 −19.26 −0.029 −0.031

XCPPI
T (m= 2.0) 0.00010 0.00184 −14.38 −25.40 −0.023 −0.041

30 years old at time 0
XOBPI
T 0.106 0.129 −17.48 −19.15 −0.028 −0.031

XCPPI
T (m= 2.0) 0.00009 0.00164 −13.59 −18.84 −0.022 −0.030

35 years old at time 0
XOBPI
T 0.121 0.143 −17.02 −18.58 −0.027 −0.030

XCPPI
T (m= 2.0) 0.00006 0.00133 −12.76 −11.70 −0.021 −0.019

40 years old at time 0
XOBPI
T 0.138 0.159 −16.74 −18.48 −0.027 −0.030

XCPPI
T (m= 2.0) 0.00006 0.00114 −11.57 −7.76 −0.019 −0.012

45 years old at time 0
XOBPI
T 0.156 0.177 −17.01 −18.27 −0.027 −0.029

XCPPI
T (m= 2.0) 0.00004 0.00092 −11.38 −6.75 −0.019 −0.011

50 years old at time 0
XOBPI
T 0.175 0.192 −16.35 −17.92 −0.026 −0.029

XCPPI
T (m= 2.0) 0.00004 0.00073 −10.27 −5.48 −0.017 −0.009

55 years old at time 0
XOBPI
T 0.190 0.203 −16.19 −18.11 −0.026 −0.029

XCPPI
T (m= 2.0) 0.00002 0.00051 −6.63 −3.97 −0.010 −0.006

60 years old at time 0
XOBPI
T 0.200 0.209 −16.37 −17.75 −0.026 −0.029

XCPPI
T (m= 2.0) 0.00001 0.00024 −2.78 −2.39 −0.005 −0.004

TABLE 12

INITIAL FUND BALANCE ($000) FOR EACH COHORT.

25 30 35 40 45 50 55 60

0.00 9.95 56.26 116.05 189.25 275.84 375.86 489.41

Table 13 compares the shortfall probability and the average shortfall
amount. The impact on the youngest cohort is minimal since their initial fund
balance is reduced by $240 only compared to the base case. For the other
cohorts, the CPPI remains superior in providing downside risk protection,
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TABLE 13

THE SHORTFALL PROBABILITY AND AVERAGE SHORTFALL AMOUNT BY DIFFERENT INITIAL FUND
BALANCES (X0). THE INITIAL FUND BALANCE FOR THE ORIGINAL ASSUMPTIONS IS SHOWN IN

TABLE 4, AND THE ONE FOR THE ‘LOWER’ CASE IS SHOWN IN TABLE 12. THE CPPI STRATEGY WITH
m= 1.2 AND 1.6 SHOWS ZERO SHORTFALL PROBABILITIES.

Shortfall Average shortfall

probability ($000) (AT )

X0 Original Lower Original Lower Original Lower

25 years old at time 0
XOBPI
T 0.092 0.092 −17.88 −17.85 −0.029 −0.029

XCPPI
T (m= 2.0) 0.00010 0.00010 −14.38 −14.27 −0.023 −0.023

30 years old at time 0
XOBPI
T 0.106 0.178 −17.48 −13.27 −0.028 −0.021

XCPPI
T (m= 2.0) 0.00009 0.00009 −13.59 −4.12 −0.022 −0.007

35 years old at time 0
XOBPI
T 0.121 0.195 −17.02 −12.81 −0.027 −0.021

XCPPI
T (m= 2.0) 0.00006 0.00006 −12.76 −3.87 −0.021 −0.006

40 years old at time 0
XOBPI
T 0.138 0.216 −16.74 −12.36 −0.027 −0.020

XCPPI
T (m= 2.0) 0.00006 0.00006 −11.57 −3.51 −0.019 −0.006

45 years old at time 0
XOBPI
T 0.156 0.230 −17.01 −11.86 −0.027 −0.019

XCPPI
T (m= 2.0) 0.00004 0.00004 −11.38 −3.45 −0.019 −0.006

50 years old at time 0
XOBPI
T 0.175 0.246 −16.35 −11.52 −0.026 −0.019

XCPPI
T (m= 2.0) 0.00004 0.00004 −10.27 −3.11 −0.017 −0.005

55 years old at time 0
XOBPI
T 0.190 0.257 −16.19 −11.07 −0.026 −0.018

XCPPI
T (m= 2.0) 0.00002 0.00002 −6.63 −2.01 −0.010 −0.003

60 years old at time 0
XOBPI
T 0.200 0.261 −16.37 −10.43 −0.026 −0.017

XCPPI
T (m= 2.0) 0.00001 0.00001 −2.78 −0.84 −0.005 −0.001

whereas there are noticeable increases in the shortfall probability for the OBPI
strategy.

Lowering the initial contributions also decreases the absolute value of the
average shortfall, especially for the CPPI strategy. This is due to its impact on
the downside deviation, which is defined as√

E

[
(XT −AT )2|XT <AT

]
. (5.3)
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TABLE 14

THE STANDARD DEVIATION AND THE DOWNSIDE DEVIATION (GIVEN IN EQUATION (5.3)) BY
DIFFERENT INITIAL FUND BALANCES (X0). THE INITIAL FUND BALANCE FOR THE ‘ORIGINAL’ IS

SHOWN IN TABLE 4, AND THE ONE FOR THE ‘LOWER’ CASE IS SHOWN IN TABLE 12. THE CPPI
STRATEGY WITH m= 1.2 AND 1.6 SHOWS ZERO SHORTFALL PROBABILITIES AND THE SAME

PERCENTAGE CHANGES IN THE STANDARD DEVIATION AS m= 2.0.

Standard deviation Downside deviation

Original Lower Difference Original Lower Difference

X0 ($000) ($000) (%) ($000) ($000) (%)

25 years old at time 0
XOBPI
T 3195 3183 −0.4 26.10 26.07 −0.1

XCPPI
T (m= 2.0) 14, 050 13, 946 −0.7 17.79 17.66 −0.7

30 years old at time 0
XOBPI
T 2299 1295 −43.7 25.48 21.40 -16.0

XCPPI
T (m= 2.0) 6666 2020 −69.7 16.75 5.07 −69.7

35 years old at time 0
XOBPI
T 1649 936 −43.3 24.83 21.05 −15.2

XCPPI
T (m= 2.0) 3177 963 −69.7 14.15 4.29 −69.7

40 years old at time 0
XOBPI
T 1173 668 −43.0 24.71 20.39 −17.5

XCPPI
T (m= 2.0) 1563 474 −69.7 12.83 3.89 −69.7

45 years old at time 0
XOBPI
T 814 463 −43.2 25.31 19.77 −21.9

XCPPI
T (m= 2.0) 745 226 −69.7 12.32 3.73 −69.7

50 years old at time 0
XOBPI
T 546 307 −43.8 24.40 19.48 −20.2

XCPPI
T (m= 2.0) 340 103 −69.7 11.07 3.36 −69.7

55 years old at time 0
XOBPI
T 341 186 −45.3 24.16 19.02 −21.3

XCPPI
T (m= 2.0) 157 48 −69.7 7.45 2.26 −69.7

60 years old at time 0
XOBPI
T 184 95 −48.6 24.13 18.25 −24.4

XCPPI
T (m= 2.0) 73 22 −69.7 2.78 0.84 −69.8

Reducing the initial fund balance decreases the standard deviations of the
fund balances at retirement for both strategies because the fund manager
invests a lower proportion of wealth in the equity fund. And the reduction
in the initial fund balance has a larger impact on the downside deviation for
the CPPI strategy.

Table 14 shows that the downside deviation of the CPPI strategy decreases
by a far larger amount. As a result, when a shortfall occurs, the shortfall
amount tends to be smaller, and the decrement is larger for the CPPI strategy.
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6. CONCLUSIONS

The design of current DC pension funds usually has insufficient integration
between the accumulation and retirement phases. This has been an issue since
the accumulated wealth may not be able to provide retirees with a sustainable
income level. Target annuitization funds aim to provide fund members with
an amount of retirement benefits that can finance a desired post-retirement
consumption within a confidence interval. They are a possible solution to con-
necting the accumulation and retirement phases in the DC pension plans and
have attracted increasing attention. Portfolio insurance strategies are suitable
investment strategies to manage the target annuitization fund because they pro-
vide investors with the potential to limit downside risk and to participate on the
upside.

We have analyzed and compared the performance of OBPI and CPPI
strategies for a target annuitization fund. We derive theoretical results for
both and implement using simulations. Both strategies have similar patterns
for the average portfolio value weights in an equity fund. For members joining
the fund before ages in the mid-30s, the portfolio value weights in the equity
fund tend to decrease as they get older, but the weights are volatile due to
the equity market volatility. For members joining the fund at older ages, the
average portfolio value weights in the equity fund increase as they grow older.
The difference reflects that the younger cohorts have larger values of future
contributions, which are a form of safe asset.

In terms of downside risk protection, the average shortfall amount as a
proportion of the target annuitization level at retirement is minimal for both
strategies and robust to a shorter accumulation period and lower contribution
levels to the fund. A higher equity market volatility can significantly increase
the shortfall amount if the CPPI multiplier is large and the exposure to the high
volatility lasts for a long time period.

Our analysis shows the CPPI strategy performs significantly better in reduc-
ing the likelihood of shortfall. The OBPI strategy typically gives a higher
portfolio fund value at retirement. Although its ability to provide downside
risk protection is robust to changing equity market volatility/dynamics and the
amount of initial fund contributions, the degree of protection is usually lower
than the CPPI strategy.

Both strategies have desirable outcomes for a DC pension fund aiming
to provide a minimum level of retirement income to its members on reach-
ing retirement age. Our analysis provides a basis for a fund to determine
which strategy would suit its member profiles and also how to implement these
strategies.
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NOTES

1. We adjust the dynamics to obtain the equity’s price dynamics in real terms by dividing the
nominal price by the price index. Since Brennan and Xia (2002) show that the correlation coeffi-
cient between the stock price and inflation is close to zero, adjusting their parameter estimation
provides a reasonable basis for our analysis.

2. The average labor productivity growth rate in the USA was 2.3% from 1947 to 2007 and
2.7% from 2001 to 2007, although that from 2007 to 2016 declined to 1.1% (Bureau of Labor
Statistics, U.S. Department of Labor, 2017).
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APPENDIX A. PROOFS IN THE OBPI STRATEGY

A.1. Proof of Lemma 3.1

Jamshidian (1989) proves that pricing an option on a portfolio is equivalent to pricing a
portfolio of options with appropriate strike prices, as long as the prices of the portfolio com-
ponents are all strictly decreasing or increasing with the same state variable. In the present
case, each component is a zero-coupon bond (denominated in the equity fund S), which is a
monotonic function of εt,T . It is therefore possible to find an ε∗

t,T such that

J∑
j=0

P(S)(t,T + j) exp

⎡⎣ε∗
t,T

√∫ T

t
σ 2
P(u,T + j)du− 1

2

∫ T

t
σ 2
P(u,T + j)du

⎤⎦= n
g
.

Let K (S)
j (t) be the price of the zero-coupon bond (denominated in the equity fund S) that

corresponds to ε∗
t,T , that is

K (S)
j (t)=P(S)(t,T + j) exp

⎡⎣ε∗
t,T

√∫ T

t
σ 2
P(u,T + j)du− 1

2

∫ T

t
σ 2
P(u,T + j)du

⎤⎦ .
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Following the relationship between εt,T and bond prices, it can be shown that⎛⎝ J∑
j=0

P(S)(T ,T + j)− n
g

⎞⎠+
=

J∑
j=0

(
P(S)(T ,T + j)−K (S)

j (t)
)+

,

which implies that

Qt = g
n
St

J∑
j=0

Ẽ
(S)
t

[(
P(S)(T ,T + j)−K (S)

j (t)
)+]

.

A.2. Proof of Theorem 3.4

The differential of the portfolio is given by

d
(
Qt

St

)
= g
n

J∑
j=0

[
N(−d2,t)dP(S)(t,T + j)+P(S)(t,T + j)dN(−d2,t)

+ dP(S)(t,T + j)dN(−d2,t)−K (S)
j (t)dN(−d1,t)

−N(−d1,t)dK (S)
j (t)− dK (S)

j (t)dN(−d1,t)
]
.

(A.1)

In order for the portfolio to be self-financing, the change of portfolio value needs to be
entirely due to capital gains. In the following, we will first show that

J∑
j=0

[
N(−d1,t)dK (S)

j (t)+ dK (S)
j (t)dN(−d1,t)

]
= 0 (A.2)

and then show that for j= 0, · · · , J

P(S)(t,T + j)dN(−d2,t)+ dP(S)(t,T + j)dN(−d2,t)−K (S)
j (t)dN(−d1,t)= 0, (A.3)

to prove the portfolio is self-financing.
To show Equation (A.2), we use the results of Remark 3.3 and Equation (3.8). In

particular, the terms N(−d1,t) and dN(−d1,t) do not depend on j due to Remark 3.3, and

J∑
j=0

dK (S)
j (t)= d

⎛⎝ J∑
j=0

K (S)
j (t)

⎞⎠= d
(
n
g

)
= 0,

due to Equation (3.8). Therefore, the left-hand side of Equation (A.2) is given by

N(−d1,t)
J∑
j=0

dK (S)
j (t)+ dN(−d1,t)

J∑
j=0

dK (S)
j (t)= 0.

To show Equation (A.3), we perform the following steps.

• Use the Itô’s formula to derive dN(−d1,t), dN(−d2,t), and dP(S)(t,T + j)dN(−d2,t).
• Substitute the derivatives back to the left-hand side of Equation (A.3). The left-hand side

consists of functions of dt and d(d1,t) only.
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• Calculate the coefficients of dt and d(d1,t). Both turn out to be zero.

Hence, the left-hand side of Equation (A.3) is equal to the right-hand side. Substitute
Equations (A.2) and (A.3) back to Equation (A.1). The differential of the portfolio becomes

d
(
Qt

St

)
= g
n

J∑
j=0

[
N(−d2,t)dP(S)(t,T + j)

]
.

On the other hand, the capital gains differential associated with this portfolio, denominated
in units of equity fund, is

g
n

J∑
j=0

[
N(−d2,t)dP(S)(t,T + j)

]
.

Therefore, the change of value in the portfolio is entirely due to capital gains. This proves
Theorem 3.4 that the portfolio is self-financing.
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