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ABSTRACT

The hierarchical credibility model was introduced, and extended, in the 70s and
early 80s. It deals with the estimation of parameters that characterize the nodes
of a tree structure. That model is limited, however, by the fact that its parame-
ters are assumed fixed over time. This causes the model’s parameter estimates to
track the parameters poorly when the latter are subject to variation over time.
This paper seeks to remove this limitation by assuming the parameters in ques-
tion to follow a process akin to a random walk over time, producing an evolu-
tionary hierarchical model. The specific form of the model is compatible with
the use of theKalman filter for parameter estimation and forecasting. The appli-
cation of theKalman filter is conceptually straightforward, but the tree structure
of the model parameters can be extensive, and some effort is required to retain
organization of the updating algorithm. This is achieved by suitable manipu-
lation of the graph associated with the tree. The graph matrix then appears in
the matrix calculations inherent in the Kalman filter. A numerical example is
included to illustrate the application of the filter to the model.
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1. INTRODUCTION

A hierarchical credibility model was introduced by Jewell (1975), and general-
ized by Taylor (1979). It is discussed further in Bühlmann and Jewell (1987).
One of the applications mentioned in Taylor (1979) was workers compensation
pricing, that, in certain jurisdictions, must be carried out for individual occu-
pational categories that are arranged in a tree structure. Commercial insurance
(fire, business interruption, etc.) is sometimes priced according to the same oc-
cupational structure. The tree structure was illustrated in Section 3 of Taylor
(1979), and will be illustrated again in Section 2.1 of this paper.
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A similar example, possibly workers compensation but possibly some other
class, would be concerned with the devolution of an organization’s total pre-
mium to its cost centres, sub-centres, sub-sub-centres, etc. Commonly, the orga-
nization’s insurer will quote just a total premium, and the organization will be
left to conduct the devolution (see e.g., Comcare, 2017).

A further example might be provided by a consumer price index. Typically,
such indexes are constructed by reference to a basket of goods frommajor cate-
gories (e.g., food, clothing, health, etc.), sub-categories, sub-sub-categories, etc.
(see e.g., Australian Bureau of Statistics, 2011).

Bühlmann and Gisler (2006, Chapter 6) gave alternative applications to
group accident insurance and industrial fire insurance, respectively.

The theoretical aspects of the subject were developed further by Sundt (1979,
1980), who placed a regression structure on observations at each level of the
hierarchy, thereby generalizing the single-level regression credibility model of
Hachemeister (1975). Norberg (1986) provided empirical Bayes estimators of
the parameters of this model.

Alternative applications of hierarchical credibility models were suggested by
Hesselager (1991), who applied them to loss reserving for a variety of claim
types, and Ohlsson (2008), who applied them to motor pricing, though the hi-
erarchy in each of these cases was relatively shallow.

Belhadj et al. (2009) presented three existing main sets of estimators of the
variance components in the hierarchical credibility model literature using uni-
fied notations. They also studied their properties and compared their perfor-
mance in numerical evaluation. These three sets of estimators include: itera-
tive pseudo-estimators in Goovaerts and Hoogstad (1987) and Goovaerts et al.
(1990), and two estimators that are somewhat more simply obtained by using
known weights upon computing the estimator of a heterogeneity parameter in
Ohlsson (2005) and Bühlmann and Gisler (2005).

Antonio et al. (2010) provided a multi-level analysis of intercompany claim
counts. They developed hierarchical Poisson models that extend Jewell’s hier-
archical credibility model by incorporating risk factors in terms of explanatory
variables. This aims to establish the connection between hierarchical credibility
and multi-level statistics.

Piselis (2011) incorporated quantiles into the classical hierarchical credibil-
ity model of Jewell (1975) to provide the hierarchical credibility estimation of
quantiles.

Ebrahimzadeh et al. (2013) developed a three-level credibility model for
claims that incorporates common effects to allow for three sources of depen-
dence: across portfolios, across individuals and across time within individuals.
A general hierarchical credibility model is then derived for h levels of common
effects.

All of these models are static. That is to say, their parameters are assumed
fixed over the period of the data, or, to the extent that they involve random
parameters, the distributions of those are assumed fixed.

Situations arise in which there is good cause to believe that parameters do
not remain fixed over time. In the above case of workers compensation premium
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FIGURE 1: Diagrammatic representation of a graph. (Color online)

devolution, to take just one example, cost centres may respond to their devolved
premiums by the successful implementation of mitigating risk controls, with re-
sultant reduction in risk parameters.

In order to accommodate this sort of situation, it is necessary to formulate
an evolutionary form of hierarchical model, in that the hierarchy itself remains
unchanged over time, but the risk parameters associated with it are allowed to
vary.

In this paper, this variation will take the form of a random walk, so that
the evolutionary model is compatible with the Kalman filter. Full detail of this
will appear in Sections 3 (model structure) and 4 (parameter estimates and
forecasts).

Prior to this, Section 2 reviews the hierarchical framework itself and, later,
Section 5 gives a numerical example of the credibility estimation at work.

2. HIERARCHICAL FRAMEWORK AND NOTATION

2.1. Graph theory

Subsequent sections will use some aspects of graph theory, and so a few funda-
mentals of the theory are reproduced below. These can be found, for example in
Bondy and Murty (2008), Chen (1971) and Drmota (2009).

A graph H is an ordered pair (V (H), E(H)) consisting of a set V (H) of
vertices, or nodes, and a set E (H), disjoint from V (H), of edges, together with
an incidence function �(H) that associates with each edge of H an unordered
pair of (not necessarily distinct) nodes ofH. If e is an edge and u and v are nodes
such that �(H)(e) = {u, v}, then e is said to join u and v, and the nodes u and
v are called the ends of e.

A graph is typically envisaged as a diagram such as Figure 1, in which the
numbered circles represent the nodes and the lines joining them the edges.
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FIGURE 2: Diagrammatic representation of a tree. (Color online)

Let v1, v2, . . . , vn be a finite sequence of nodes, and let e12, e23, . . . , en−1,n be
a sequence of edges such that each ei,i+1, i = 1, 2, . . . , n − 1 joins vi and vi+1.
Then v1, v2, . . . , vn is called a path between v1 and vn. A path consisting of n−1
edges will be said to be of length n− 1. For example, nodes 1,2,3,5,6 in Figure 1
form a path.

A tree is a graph in that any two nodes are connected by exactly one path. The
graph in Figure 1 is not a tree because, for example, nodes 1 and 3 are connected
by two paths, namely {1, 3} and {1, 2, 3}. However, Figure 2 illustrates a tree.

A rooted tree is a tree in that one of the nodes is designated the root. In a
rooted tree, a node that is connected to it on the path to the root is called the
parent of that node. Every node except the root has a unique parent. A node of
which v is the parent is a child of node v.

A child of a child of any node is a descendant of that node. By recursion, a
child of any descendant of a node is itself a descendant of that node. Similarly,
a parent of a parent of any node is an antecedent of that node. By recursion, a
parent of any antecedent of a node is itself an antecedent of that node.

A childless node of the tree is called a leaf.
For example, if node 1 is chosen as a root in Figure 2, the tree there becomes

a rooted tree. Node 3 becomes a parent of 4 and 5, and 4 and 5 are children of
3. Node 6 becomes a descendant of 3, and 3 an antecedent of 6. The leaves of
the tree are 2, 4 and 6.

2.2. Hierarchical framework

Any tree may be considered as a hierarchy. Define the root of the tree to be level
0 of the hierarchy. Then, define level i of the hierarchy to consist of those nodes
that are the children of nodes at level i − 1, i = 1, 2, . . ..

A tree, and its associated hierarchy, are called perfectly height balanced if
all paths from root to leaf are of the same length (Choudum and Raman, 2009;
Cha, 2012), i.e., all leaves are at the same level of the hierarchy, as illustrated in

https://doi.org/10.1017/asb.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.31


EVOLUTIONARY HIERARCHICAL CREDIBILITY 343

Root 

Leaves 

FIGURE 3: Illustration of a perfectly height balanced tree. (Color online)

FIGURE 4: Extension of imperfectly to perfectly height-balanced tree. (Color online)

Figure 3. The hierarchy has levels 0,1,. . . ,q if the number of edges separating
root and leaf is q. This will be referred to as a q -hierarchy.

This paper will be concerned with only perfectly height balanced trees, but
noting that any tree that is not of this type can be extended to perfect height
balance, as illustrated in Figure 4, where the original tree consists of just the
solid edges, and its extension includes the dashed one.

Informally, a q –hierarchy may be constructed as follows. A single node, the
root, exists at level 0. For consistency with subsequent development, label it i0.

Suppose the root has c children, and label them 1, 2, . . . , c. These constitute
level 1 of the hierarchy. Denote the generic child at level 1 by i1, and so the
generic node at level 1 of the hierarchy by i0i1.

Now, suppose that this node has c(i0i1) children. Level 2 of the hierarchy
consists of such children, considered over all i1 = 1, 2, . . . , c. Denote the generic
child of node i0i1 at level 2 by i2, and so the generic node at level 2 of the hier-
archy by i0i1i2. Continue the recursion to obtain a q -hierarchy.
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FIGURE 5: Illustration of a q –hierarchy. (Color online)

More formally, let the nodes at levelm(= 0, 1, . . . , q) of a q –hierarchy be de-
noted i0i1 . . . im−1im, im = 1, 2, etc., where, for fixed i0, i1, . . . , im−1, these nodes
(finite in number) are children of node i0i1 . . . im−1. Evidently, node i0 is the root,
and as there is only one of these, i0 = 1 .

Figure 5 illustrates a q –hierarchy with this nodal notation attached.
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Let the hierarchy illustrated in Figure 5 be denoted by H . Let Hm denote
the sub-hierarchy consisting of the nodes at levels m − 1 and m, together with
the edges between them.

2.3. Adjacency matrix of the hierarchy

The hierarchy H may be represented by its adjacency matrix �(H) . If all the
nodes of H are placed in a specific order, �(H) is an adjacency matrix whose
(i, j) element is unity if the j -th node is a child of the i -th node, and is zero
otherwise.

If the nodes are placed in dictionary order (i.e.,
1,11,12,. . .,111,112,. . .,121,122, etc.), then the matrix is a block super-
diagonal matrix, with q blocks on the super-diagonal, and with the m -th block
the sub-matrix �(Hm), as follows:

� (H) =

⎡
⎢⎢⎢⎢⎢⎣
0 � (H0)

0 0

. . . 0

. . .
...

...
...

0 0

. . . �
(Hq−1

)
· · · 0

⎤
⎥⎥⎥⎥⎥⎦ . (2.1)

The first row of �(Hm) contains the sub-matrix of the sub-hierarchy consisting
of i0i1 . . . im1 and its children, the second row sub-matrix of the sub-hierarchy
consisting of i0i1 . . . im2 and its children, etc.

It is evident, therefore, that the diagonal block �(Hm) is itself a block super-
diagonal matrix of the form

� (Hm) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 uTc(i0i1...im−11)
0

0 0 uTc(i0i1...im−12)

... 0

· · ·

. . . uTc(i0i1...im−1c(i0i1...im−1))

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (2.2)

where un is an n -dimensional column vector with all components equal to unity,
the upper T indicates matrix transposition, and c(i0i1 . . . im−1) is the number of
children of node i0i1 . . . im−1 .

It follows that the full matrix �(H) is also a block super-diagonal matrix in
which every block takes the form uTn for some n .

Elements of �(H) or �(Hm) represent edges in their respective matrices, and
will be labelled by the source and target nodes of those edges. Thus, for example,
�(H)i0i1...im, j0 j1... jn will denote the element in the i0i1 . . . im –th row and j0 j1 . . . jn
–th column, that records the incidence of an edge from the i0i1 . . . im node to the
j0 j1 . . . jn node.

https://doi.org/10.1017/asb.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.31


346 G. TAYLOR

It is evident from the properties of a tree that an edge exists between two
given nodes if and only if target is a child of the source, i.e.,

�(H)i0i1...im, j0 j1... jn = δm+1,nδi0i1...im, j0 j1... jm , (2.3)

where δpq is the usual Kronecker delta, and δi0i1...im, j0 j1... jm is the multi-
dimensional Kronecker delta:

δi0i1...im, j0 j1... jm =
m∏
k=0

δik, jk. (2.4)

It also follows from (2.3) that

�(Hm)i0i1...im, j0 j1... jm+1
= δi0i1...im, j0 j1... jm . (2.5)

2.4. Multi-step matrix connections

The sub-matrix �(Hm) identifies all edges of the form imim+1 . One may also
construct an adjacency matrix �(Hm:n),m < n for all the edges imim+1 . . . in for
fixed m, n . Note that �(Hm) ≡ �(Hm:m+1) .

The following proposition is self-evident for a hierarchy.

Proposition 2.1. For m < n, the (i0i1 . . . im, j0 j1 . . . jn) -element of �(Hm:n) is

[� (Hm:n)]i0i1...im, j0 j1... jn = δi0i1...im, j0 j1... jm . (2.6)

Lemma 2.2. For any m, n, p wi th m < p < n,

� (Hm:n) = �
(Hm:p

)
�

(Hp:n
)
. (2.7)

The proof, along with others in this paper, is banished to Appendix A.

Corollary 2.3. For any m, n wi th m < n,

� (Hm:n) = � (Hm) � (Hm+1) . . . � (Hn−1) .

Write (2.1) in the form

[� (H)]mn = δm+1,n� (Hm:m+1) , m, n = 0, 1, . . . , q, (2.8)

where, in this case, the subscripts label the blocks of �(H) .
The following lemma shows that the multi-step matrices �(Hm:n) may be

generated by taking powers of �(H) .

Lemma 2.4. For p = 1, 2, . . . , q,

[� p (H)]mn = δm+p,n�
(Hm:m+p

)
, m, n = 0, 1, . . . , q. (2.9)
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Also,

�q+1 (H) = 0. (2.10)

Thus, for p = 1, 2, . . . , q − 1,

� p (H) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 �
(H0:p

)
0 · · · 0

0 · · · 0 0 �
(H1:1+p

) · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · �
(Hq−p:q

)
0 · · · 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.11)

Lemma 2.5. The following identity holds:

[I − � (H)]−1 =
q∑
p=0

� p (H) , (2.12)

where the block structure of this matrix is

[I − � (H)]−1
mn =

q∑
p=0

δm+p,n�
(Hm:m+p

)
, (2.13)

with the convention that �(Hm:m) = I .

3. EVOLUTIONARY HIERARCHICAL MODEL

A q — hierarchical model will be created by placing a parameter vector β at
each node of the q —hierarchy illustrated in Figure 5, and a set of observations
at each leaf, as in Figure 6. The observations at level q are random variables y
conditioned by the parameter vectors at that level, and each parameter vector
at each level q > 0 is a random drawing from a distribution conditioned by the
parameter vector at its parent node.

Let βi0i1...im be the parameter vector associated with the i0i1 . . . im node. Let
β(m) denote the vector of all parameters at level m, obtained by stacking the
vectors βi0i1...im , thus,

β(m) =

⎡
⎢⎣

βi0i1...im−11
βi0i1...im−12

...

⎤
⎥⎦ .
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FIGURE 6: Illustration of a q -hierarchical model. (Color online)
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Further, let β denote the vector of all parameters:

β =

⎡
⎢⎢⎣

β(0)
β(1)
...

β(q)

⎤
⎥⎥⎦ .

Further, yi0i1...iq denotes the vector of observations yi0i1...iq j , and y denotes
the vector obtained by stacking the yi0i1...iq in dictionary order with respect to
node.

The above model is described in more formal terms as follows:

Model 3.1 (static). Consider a q -hierarchy H, supplemented by parameters
and observations that satisfy the following conditions:

a. A parameter vector βi0i1...im is associated with node i0i1 . . . im of the
hierarchy.

b. The parameter βi0 at the root of the tree is fixed.
c. Form = 0, 1, . . . , q− 1, the parameter vector βi0i1...imim+1 is a random draw-

ing from some distribution determined by βi0i1...im .
d. At each of the hierarchy’s terminal nodes i0i1 . . . iq there exists a sample

of observations yi0i1...iq j , j = 1, 2, . . . drawn from some distribution deter-
mined by βi0i1...iq .

e. The random parameters and observations are subject to the following de-
pendency structure:
1. β(m) = W(m−1)β(m−1) + ζ(m),m = 1, . . . q;
2. y = Xβ(q) + ε;
where X is a design matrix, W(m−1) is some matrix compatible with the di-
mensions of β(m−1) and β(m), and ζ(m), ε are random vectors, with ε inde-
pendent of the ζ(m), and
3. E[ζ ] = 0, E[ε] = 0;
4. Var [ζ ] = �,Var [ε] = H;
where ζ is the vector obtained by stacking the ζ(m) .

The matricesW(m),m = 0, 1, . . . , q−1 describe the way in which the param-
eter values are transmitted from one level of the hierarchy to the next, and will
be referred to as transmission matrices.

This is a reasonably conventional hierarchical regression model. It is, in fact,
essentially the same as the model of Sundt (1980), except that the latter places
observations in a regression structure at each node of the hierarchy.

It is, however, a static model in the sense that, although the parameters are
random, each is obtained by means of a single drawing from its distribution.
The main purpose of the paper is to consider the situation in that observations
are made at a sequence of epochs, with parameters evolving from one epoch to
the next.

https://doi.org/10.1017/asb.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.31


350 G. TAYLOR

In recognition of the passage of time, all random quantities, and some non-
random ones, are superscripted with a t, indicating time, e.g., β t

i0i1...im is the value
assumed by the parameter vector βi0i1...im at time t . An evolutionary model is
then created by retaining all features of Model 3.1, and adding further structure
according to that parameters evolve over time. The model, written out in full, is
as follows:

Model 3.2 (evolutionary). Consider a q -hierarchy H, supplemented by pa-
rameters and observations that satisfy the following conditions. At each time
t = 0, 1, . . .:

a. A parameter vector βt
i0i1...im is associated with node i0i1 . . . im of the

hierarchy.
b. Form = 0, 1, . . . , q− 1, the parameter vector β t

i0i1...imim+1
is a random draw-

ing from some distribution determined by β t
i0i1...im .

c. At each of the hierarchy’s terminal nodes i0i1 . . . iq there exists a sample
of observations yti0i1...iq j , j = 1, 2, . . . drawn from some distribution deter-
mined by β t

i0i1...iq .
d. The observations are subject to the following dependency on parameters:

1. yt = Xtβ t
(q) + εt,

where Xt is a design matrix, εt is a random vector, and
2. E[εt] = 0,Var [εt] = Ht.

The parameter vector β t evolves over time as follows: Define γ t
(0) = β t

(0) and
γ t

(m) = β t
(m) − W(m−1)β

t
(m−1), m = 1, . . . , q . We assume that,

e. The parameter vector β0 at t = 0 is random with known E[β0],Var [β0] .
f. The parameters γ t

(m) evolve according to:
3. γ t

(m) = γ t−1
(m) + ζ t(m),m = 0, . . . q; t = 1, 2, . . .,

where ζ t(m) is a random vector, and
4. E[ζ t] = 0, Var [ζ t] = �t,
and where ζ t is the vector obtained by stacking the ζ t(m) and all ζ t, εt, t =
0, 1, 2, . . . are mutually independent.

Remark. The formulation in (f)(3) of the model is one in which each param-
eter evolves according to a random walk. There is no empirical evidence for this
assumption. The long-term effect of the assumption will be for the parameters to
drift apart indefinitely. A different model, such as mean-reverting could prevent
that, though neither is there empirical evidence for this in all cases. This paper
prefers the simpler random walk form, but with a caution over the model perfor-
mance in prediction many steps ahead.

An alternative form of assumption (3) is

β t
(m) − β t−1

(m) = W(m−1)

[
β t

(m−1) − β t−1
(m−1)

]
+ ζ t(m).
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It is also possible to construct mappings between the vectors β t and γ t . By
definition of γ t

(m),

β t = γ t + Vβ t, (3.1)

where V is the block matrix whose transpose is (transposition denoted by an
upper T )

VT =

⎡
⎢⎢⎢⎢⎢⎣
0 WT

(0)

0 0

. . . 0

. . .
...

...
...

0 0

. . . WT
(q−1)

· · · 0

⎤
⎥⎥⎥⎥⎥⎦ . (3.2)

This matrix can be recognized as having the same block form as the tree
matrix �(H) in (2.1). Lemmas 2.3 and 2.4 may be extended to the matrix VT,
the proofs running quite parallel to the proofs of those earlier lemmas.

Lemma 3.3. For p = 1, 2, . . . , q,

[Vp]nm = δm+p,nW(m:m+p), m, n = 0, 1, . . . , q,

where W(m:m+p) = W(m+p−1)W(m+p−2) . . .W(m) .
Also,

Vq+1 = 0.

Lemma 3.4. The following identity holds:

[I − V]−1 =
q∑
p=0

Vp,

where the block structure of this matrix is

[I − V]−1
nm =

q∑
p=0

δm+p,nW(m:m+p),

with the convention that W(m:m) = I .

By (3.1), the mappings between β t and γ t are

γ t = (I − V) β t, β t = (I − V)−1γ t, (3.3)

where V and (I − V)−1 are given by (3.2) and Lemma 3.4, respectively.
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It will be helpful to re-formulateModel 3.2 entirely in terms of γ rather than
β . To do so, note that, by (3.3) and Lemma 3.4,

β t
(q) = [

W(0:q) W(1:q) · · · W(q:q)

]
γ t = W(∗:q)γ

t,

the matrix here being the last row of blocks in the block matrix (I − V)−1

Therefore, re-write relation (d)(1) in the form

yt = Utγ t + εt, (3.4)

where
Ut = XtW(∗:q) = [

Xt W(0:q) XtW(1:q) · · · XtW(q:q)

]
. (3.5)

4. KALMAN FILTER FORECAST

4.1. Kalman filter

The Kalman filter was introduced by Kalman (1960). A description is found in
Harvey (1989). Consider the following model.

Model 4.1. Suppose that:

a. The observation vector yt is given by (3.4), called the observation equation
or measurement equation.

b. Parameter evolution is given by relation (f)(3) of Model 3.2, called the sys-
tem equation or transition equation.

c. The parameter vector γ 0 at t = 0 is random with known E[γ 0],Var [γ 0] .
d. εt ∼ N(0, Ht), ζ t ∼ N(0, �t), with all ζ t, εt, t = 0, 1, 2, . . . are mutually

independent.

The model treated by Harvey is more general than this in two respects. First,
the observation equation admits a deterministic drift vector. Second, the system
equation admits both a deterministic drift vector and a linear transformation
the parameter vector at each epoch. This additional generality is not required
for present purposes.

The Kalman filter is a MinimumMean Square Error (MMSE) Bayesian es-
timator. In the case of Model 4.1, involving normal errors in both observation
and system equations, it also provides maximum a posteriori (MAP) estimators
for the parameters of this model at each epoch, conditioned on past data, i.e.,
they maximize the likelihood of the Bayesian posterior distribution.

Let γ t|s and Pt|s denote the MAP estimators of γ t,Var [γ t − γ t|s ] given
data {y0, y1, . . . , ys} . The filter comprises the following procedure for each
t = 1, 2, . . .:

1. Commence with estimate γ t|t−1 and covariance matrix Pt|t−1 of the same
dimension.

2. Calculate Ft = UtPt|t−1(Ut)T + Ht .
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3. Calculate Kt = Pt|t−1(Ut)T(Ft)−1, called the Kalman gain matrix.
4. Update the matrix Pt|t−1 as follows:

Pt+1|t = Pt|t−1 − Pt|t−1(Ut)T(
Ft)−1

UtPt|t−1 + �t.

5. Update the estimate γ t|t−1 as follows: γ t|t = γ t|t−1 + Kt(yt −Utγ t|t−1) .
6. Further update γ t|t as follows: γ t+1|t = γ t|t .

This procedure updates γ t|t−1, Pt|t−1 to γ t|t, γ t+1|t, Pt+1|t . The procedure is
initiated by setting γ 1|0 = E[γ 0], P1|0 = Var [γ 0] . Note that the estimators
γ t|t, γ t+1|t are linear in the data {y0, y1, . . . , ys} .

The update of the parameter vector estimate in step (5) takes the form of a
linear combination of the existing estimate and the innovations vector, where
the Kalman gain matrix serves as a weight applied to the latter. Steps (2) and
(3) compute the gain matrix that is intimately related to the variation of the
parmater vector over time, as is evident from step (4).

The entire algorithm specified by the Kalman filter, steps (1) to (6), is con-
veniently summarized in diagrammatic form by Figure 7.

The only difference between Models 3.2 and 4.1 is that the latter speci-
fies normal distributions for observations and parameter variation over time,
whereas the former does not. The Kalman filter is often applied in the absence
of these distributional assumptions, but then its estimators are not generally
MAP.

The advantage of the assumptions in the present case is that they ensure
normal posterior distributions, whence MAP estimators are also MMSE un-
biased linear Bayes, that is to say the same as credibility estimators. In other
words, application of the Kalman filter will produce a credibility estimator at
each epoch.

It is possible to express the Kalman updating formula from step (5) in forms
more readily recognized as credibility forecasts:

γ t|t = Ktyt + (
I − KtUt) γ t|t−1, (4.1)

yt|t = Utγ t|t = Ztyt + (
I − Zt

)
yt|t−1. (4.2)

where yt|t denotes E[yt|y0, y1, . . . , yt] = E[Utγ t|y0, y1, . . . , yt] and the credi-
bility matrix is

Zt = UtKt = UtPt|t−1
(
Ut

)T[
UtPt|t−1

(
Ut

)T + Ht
]−1

= UtPt|t−1
(
Ut

)T[
Ht

]−1
{
I +UtPt|t−1

(
Ut

)T[
Ht

]−1
}−1

,

(4.3)

on substitution of steps (2) and (3) of the filter in the penultimate step.
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START

Initialize parameter vector and 
covariance matrix at |  and |  

Steps (2) and (3): Calculate Kalman 
gain matrix  

Step (4): Update covariance matrix 
|  to |  

Step (5): Update parameter estimate vector 
|  to | , using Kalman gain matrix  

Step (6): Update parameter estimate 
vector |  to | = |  

Replace  
by + 1 

FIGURE 7: Diagrammatic representation of the Kalman filter. (Color online)

Similarly, the factor KtUt in (4.1) may be re-expressed:

KtUt = Pt|t−1
(
Ut

)T[
UtPt|t−1

(
Ut

)T + Ht
]−1

Ut = Pt|t−1
(
Ut

)T[
Ht

]−1{
I +UtPt|t−1

(
Ut

)T[
Ht

]−1
}−1

Ut = Pt|t−1
(
Ut

)T[
Ht

]−1
Ut{

I + Pt|t−1
(
Ut

)T[
Ht

]−1
Ut

}−1
,

(4.4)

where the final step is justified by Proposition 4.2, immediately below.
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Proposition 4.2. If A, B be m× n and n ×m matrices, respectively, then

AB(I + AB)−1 = A(I + BA)−1B = (I + AB)−1AB,

provided that the inverse matrices in these expressions exist.

It is also possible to express Pt+1|t briefly, using the definition of Kt and
applying Proposition 4.2:

Pt+1|t = Pt|t−1 − KtUtPt|t−1 + �t

= Pt|t−1

{
I − (

Ut
)T[

Ht
]−1

Ut
{
I + Pt|t−1

(
Ut

)T[
Ht

]−1
Ut

}−1
Pt|t−1

}
+ �t

= Pt|t−1
[
I − Rt

(
I + Rt

)−1
]

+ �t

= Pt|t−1
(
I + Rt

)−1 + �t,

(4.5)
where

Rt = (
Ut)T[

Ht]−1
UtPt|t−1. (4.6)

This form presents the updating of Pt|t−1 as a “scaling down” by a factor of
(I + Rt) for the passage of time, and then the addition of one period’s additional
parameter variance of �t .

4.2. Decomposition of time-variation in parameter estimates

Consider the change in parameter estimate from yt|t−1 to yt|t in (4.2):

yt|t − yt|t−1 = Zt
(
yt − yt|t−1) , (4.7)

with Zt defined by (4.3), to which Pt|t−1 is seen to be a contributor.
Recall from Section 4.1 that Pt|t−1 is an estimate of

Var [γ t − γ t|t−1|y0, y1, . . . , yt−1], and that, by step (4) of the Kalman filter, it
may be expressed in the form

Pt|t−1 = Qt|t−1 + �t−1, (4.8)

where

Qt|t−1 = Pt−1|t−2 − Pt−1|t−2(Ut−1)T(
Ft−1)−1

Ut−1Pt−1|t−2.

By condition (f)(4) of Model 3.2, �t−1 is the component of covariance intro-
duced into (4.8) by the variation of parameters over time. If this were set to zero,
then (4.8) would reduce to simply Pt|t−1 = Qt|t−1 and, in this sense, Qt|t−1 may
be viewed as that component of Pt|t−1 other than introduced by the variation
of parameters over time, i.e., variation within the hierarchy.

It is of interest decompose (4.7) into these two components, as is done in
Lemma 4.3.
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Lemma 4.3. Define

ZtH = UtQt|t−1(Ut)T[
Ht]−1

{
I +UtQt|t−1(Ut)T[

Ht]−1
}−1

, (4.9)

ZtT = Ut�t−1(Ut)T[
Ht]−1

{
I +Ut�t−1(Ut)T[

Ht]−1
}−1

. (4.10)

Then, with Zt defined by (4.3),

Zt = ZtH
{
I + ZtT

[
I − ZtT

]−1 [
I − ZtH

]}−1

+ ZtT
{
I + ZtH

[
I − ZtH

]−1 [
I − ZtT

]}−1
. (4.11)

Remark 4.4. ZtH = 0 when Qt|t−1 = 0, and ZtT = 0 when �t−1 = 0 . Thus,
Zt = ZtT when Q

t|t−1 = 0, and Zt = ZtH when �t−1 = 0 . In this sense, ZtH may
be interpreted as the credibility matrix associated with parameter variation within
the hierarchy at time t, and ZtT as the credibility matrix associated with parameter
variation between times t − 1 and t .

Remark 4.5. There are algebraic forms of the decomposition in Lemma 4.3 alter-
native to (4.11). However, that relation is preferred here since it takes the form
Zt = ZtH ×multi plier + ZtT ×multi plier .

4.3. Application to hierarchical forecast

4.3.1. General case. As already noted in Section 4.1, Model 4.1 to which the
Kalman filter applies includes the hierarchical model 3.2 as a special case with
Ut taking the form (3.5). one obtains a one-step-ahead forecast as

yt+1|t = Ut+1γ t+1|t = Ut+1γ t|t = Ut+1 [
Ktyt + (

I − KtUt) γ t|t−1] , (4.12)

where (3.4) has been used, then step (6) of the Kalman filter, followed by (4.1).
The estimates γ t|t, t = 1, 2, . . . are obtained by repeated use of the Kalman

loop set out in Section 4.1, after initiation as also set out there.
This is a straightforward procedure, consisting mainly of the matrix manip-

ulation appearing in the loop. However, there is a commonly occurring special
case, for that certain parts of the calculation simplify. These are discussed in the
following sub-section.

4.3.2. Parameter estimation. As noted in condition (e) of Model 3.2, the ini-
tiating parameters E[β0],Var [β0] are assumed known. In addition, the model’s
covariance matrices �t, relating to parameter variation over time, and Ht, re-
lating to noise in observations, are assumed known.

Estimates of these will be required for implementation of the model. It is an
unfortunate fact that, in practical situations, data for parameter estimation will
often be unavailable. This will be particularly the case when:
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• the hierarchical filter is being implemented, and the relevant data have not
previously been collected;

• the filter is in operation, and data have been collected, but over too short a
duration for reliable parameter estimates to be made;

• the hierarchy has been subjected to structural changes over time, e.g., nodes
shifted from one parent to another, preventing the collection of data within
a framework that is time-consistent.

In these cases, informed guess work may be required.
However, in the event that the required data are available, estimation might

be carried out in accordance with Durbin and Koopman (2012), where maxi-
mum likelihood estimation of the structural parameters �t and Ht is discussed
at some length (Chapter 7).

Durbin and Koopman (2012, Chapter 5) also consider initiation of the filter
with the selection of values for E[β0],Var [β0] . They cite Rosenberg (1973), De
Jong (1991) and Koopman and Durbin (2003). The first of these uses maximum
likelihood estimation, whereas the other two assume estimate E[β0] on the basis
of indefinitely large V[β0] .

4.3.3. Special case. Consider the case in which the design matrix Xt = I, the
process covariance matrix Ht is diagonal, and

W(m) = [� (Hm)]T, (4.13)

i.e., by (2.2), [
W(m)

]
i0i1...im+1, j0 j1... jm

= δi0i1...im, j0 j1... jm . (4.14)

The choice of design matrix implies, by conditions (d)(1) and (2) of Model
3.2, that E[yt] = β t

(q), i.e., the parameters to be estimated are simply means
of the observations. As an example, β t

(m) might represent the vector of claim
frequencies at level m, each of these claim frequencies is an evolving random
perturbation of the frequency at its parent node, and the observations yt are
themselves claim frequencies, and therefore unbiased with respect to the mean
claim frequency at level q .

The choice of design matrix also implies, by (3.5),

Ut = W(∗:q) = [
W(0:q) W(1:q) · · · W(q:q)

]
. (4.15)

Substitution of (4.14) in the definition of γ t
(m) in Model 3.2 yields

[
γ t

(m)

]
i0i1...im

= [
β t

(m)

]
i0i1...im

− [
β t

(m)

]
i0i1...im−1

,

which is, for fixed t, just the perturbation of a β parameter at a node from the β

at its parent node. By condition (f)(3) of the same model, the perturbations are
assumed to follow a stationary process.
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In this case, the matrix (Ut)T[Ht]−1Ut that appears in (4.4) and (4.6) simpli-
fies considerably. Denote this matrix by At . Since Ht is assumed diagonal, let
hti0i1...im denote the diagonal entry relating to the i0i1 . . . im node.

By (4.15),

At = (
W(∗:q)

)T[
Ht]−1

W(∗:q), (4.16)

which is a block matrix with (m, n) block

At[mn] = (
W(m:q)

)T[
Ht]−1

W(n:q) = �
(H(m:q)

) [
Ht]−1[

�
(H(n:q)

)]T
, (4.17)

by Corollary 2.3 and (4.13).

Lemma 4.6. For m ≤ n, the (i0i1 . . . im, j0 j1 . . . jn) -element of the matrix At[mn]
is

At[mn]i0i1...im, j0 j1... jn = δi0i1...im, j0 j1... jm

∑
kn+1...kq

h−1
j0 j1... jnkn+1...kq .

By (4.16), the matrix At is symmetric, and so matrix blocks At[mn],m > n can be
found as At[mn] = [At[nm]]

T . The lemma demonstrates that each block At[mn], and
therefore the entire matrix At, may be generate just by taking defined sums of
reciprocals of the process covariance matrix Ht .

These results can be useful in the application of the Kalman filter to the
current special case. Substitution of (4.15) and (4.16) in (4.6), and then in (4.5),
yields the following alternative form of that last relation:

Pt+1|t = Pt|t−1(I + AtPt|t−1)−1 + �t, (4.18)

with At obtained by means of Lemma 4.6.

5. NUMERICAL EXAMPLE

A numerical example is now given in which, for manageability of presentation
of the results, the hierarchy size is small, specifically q = 2, with only 10 terminal
nodes. It is emphasized that, in practice, the dimension of the problem may be
scaled up without difficulty.

The hierarchy considered is as follows:

Level 0: Single node 1.
Level 1: Nodes 11,12,13.
Level 2: Nodes 111,112,121,122,123,124,131,132,133,134.

The special case of Section 4.3.3, in which Xt = I,W(m) = [�(Hm)]T, is
illustrated. It is assumed that covariance matrices �t, Ht are diagonal.

It is also assumed that the observations yt consist of observed claim fre-
quencies per exposure Et

i0i1...iq , and that Var [yti0i1...iq ] = E[yti0i1...iq ]/E
t
i0i1...iq =
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TABLE 1

PARAMETERS FOR NUMERICAL EXAMPLE.

Initial Values (β0 )
Parameter

Node Mean Variance Variance (�t )

1 0.070 0.00005 0.00005
11 0.025 0.00003 0.00001
12 0.100 0.00030 0.00005
13 0.150 0.00070 0.00015
111 0.010 0.00002 0.00001
112 0.035 0.00015 0.00002
121 0.050 0.00040 0.00004
122 0.080 0.00090 0.00010
123 0.100 0.00150 0.00015
124 0.120 0.00250 0.00025
131 0.135 0.00300 0.00030
132 0.155 0.00400 0.00040
133 0.180 0.00500 0.00050
134 0.200 0.00650 0.00070

β t
i0i1...iq/E

t
i0i1...iq . These are the diagonal elements of Ht, and they are estimated

by β
t|t−1
i0i1...iq/E

t
i0i1...iq for inclusion in step (2) of the Kalman filter.

This is a (rather small-scale) example of the case of pricing by occupational
group, mentioned in Section 1. Here, level 0 represents the total risk pool under
some form of insurance, say workers compensation. The nodes at level 1 rep-
resent major occupational groups (Agriculture, Manufacturing, Clerical, etc.),
and the nodes at level 2 occupational sub-groups (under Manufacturing: Food
Product Manufacturing, Wood Product Manufacturing, etc.).

The observed claim frequencies at the leaves are the empirical frequencies in
respect of the occupational sub-groups. The objective is to apply the model to
estimate the frequency parameters for the sub-groups.

Although the assumptions Xt = I,W(m) = [�(Hm)]T are restrictive, they ap-
ply quite naturally to the practical situation. Hence, even under these restrictive
assumptions, the model solves a realistic problem of substance.

The parameters associated with each node are set out in Table 1, and fabri-
cated claim data in Table 2.

In the latter case, it is assumed, for simplicity, that exposures do not change
over time. With the exception of the three shaded rows, the entries in the table
have been generated as random perturbations of the initial values. The three
exceptional cases adjust this randomness as follows:

• Node 121: upward trend of 0.015 per period added;
• Node 124: flat reduction of 0.040 made in each period;
• Node 132: downward trend of 0.020 per period added;
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TABLE 2

CLAIM DATA FOR NUMERICAL EXAMPLE.

Observed Claim Frequency at t =
Exposure

Node (Et
i0 i1 ...iq ) 1 2 3

111 40 0.007 0.013 0.007
112 35 0.030 0.038 0.043
121 300 0.062 0.094 0.097
122 100 0.081 0.088 0.079
123 500 0.120 0.064 0.136
124 100 0.093 0.053 0.081
131 301 0.150 0.143 0.132
132 50 0.172 0.136 0.093
133 25 0.111 0.188 0.094
134 20 0.248 0.171 0.195
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FIGURE 8: Credibility matrix Zt at t = 1. (Color online)

Figure 8 displays diagrammatically the credibilitymatrix Zt, defined by (4.3).
Figures 9 and 10 display its decomposition into hierarchy and time components,
given in (4.11). Appendix B contains the numerical detail.

It is seen that Zt is dominated by its diagonal elements, i.e., the parameter
estimate associated with any specific node is dominated by the observations at
that node.

However, small contributions to credibility are made by off-diagonal ele-
ments. These are seen to be concentrated in the diagonal blocks that relate to
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FIGURE 9: Hierarchy component of credibility matrix Zt (ZtH ×multi plier ) at t = 1. (Color online)
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FIGURE 10: Time component of credibility matrix Zt (ZtT ×multi plier ) at t = 1. (Color online)

the three nodes 11,12,13 at level 1 of the hierarchy. That is, the parameter es-
timate associated with any specific node may be influenced in a minor way by
observations at other nodes with the same parent.
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FIGURE 11: Credibility matrix Zt at t = 3. (Color online)

It may also be noticed that the hierarchy component of credibility is domi-
nant at t = 1, though this relation is reversed at later epochs (detail not given
here).

Figure 11 illustrates the credibility matrix Zt at t = 3, for comparison with
the case t = 1 in Figure 8. Full numerical detail of all cases t = 1, 2, 3 is given
in Appendix B.

Two features are evident from a comparison of this matrix with its coun-
terpart at t = 1 (Figure 8). First, the larger diagonal elements of Zt (nodes
12, 13) decrease between t = 1 and t = 3, whereas the smaller ones (node 11)
increase. These effects occur because the sub-matrix of Pt+1|t relating to nodes
12, 13 decreases with increasing t, whereas the sub-matrix relating to node 11
increases.

The second observable effect is that some of the off-diagonal elements of Zt

increase with t . This indicates that the extent to that the estimated frequency
of a given terminal node is affected by its sibling nodes increases with the accu-
mulation of information at those nodes.

Figure 12 displays the parameter estimates at all nodes, from the vec-
tors β t|t−1, as they evolve from the initial values at t = 0, through t =
1, 2, 3 .

Observed and estimated claim frequencies are plotted for a selection of ter-
minal nodes in Figures 13–17. Each of the figures plots the observed frequencies
at t = 1, 2, 3, the prior frequency (estimate at t = 0 ), and the updated estimates
at t = 1, 2, 3 according to (4.1). a confidence envelope is placed around the
estimates.
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Node

0 1 2 3

1 0.070 0.0703 0.0644 0.0743
(0.0071) (0.0096) (0.0109) (0.0118)

11 0.025 0.0251 0.0197 0.0295
(0.0089) (0.0113) (0.0125) (0.0131)

12 0.100 0.1034 0.0951 0.1185
(0.0187) (0.0166) (0.0171) (0.0175)

13 0.150 0.1520 0.1446 0.1413
(0.0274) (0.0263) (0.0278) (0.0289)

111 0.010 0.0100 0.0048 0.0144
(0.0100) (0.0125) (0.0138) (0.0146)

112 0.035 0.0342 0.0302 0.0406
(0.0152) (0.0158) (0.0159) (0.0156)

121 0.050 0.0580 0.0650 0.0912
(0.0274) (0.0189) (0.0174) (0.0167)

122 0.080 0.0824 0.0767 0.0941
(0.0354) (0.0288) (0.0267) (0.0254)

123 0.100 0.1198 0.0680 0.1331
(0.0430) (0.0164) (0.0164) (0.0161)

124 0.120 0.0968 0.0640 0.0835
(0.0534) (0.0257) (0.0239) (0.0233)

131 0.135 0.1491 0.1429 0.1363
(0.0612) (0.0257) (0.0255) (0.0257)

132 0.155 0.1679 0.1486 0.1245
(0.0689) (0.0422) (0.0380) (0.0364)

133 0.180 0.1428 0.1545 0.1268
(0.0758) (0.0549) (0.0502) (0.0445)

134 0.200 0.2258 0.1972 0.1960
(0.0851) (0.0643) (0.0557) (0.0495)

Es�mated claim frequency and standard
error (in parenthesis) for t=

 

FIGURE 12: Evolving parameter estimates.
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FIGURE 13: Estimation for node 121. (Color online)
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FIGURE 14: Estimation for node 123. (Color online)

Brief comments on the results are as follows:

• Node 121. High exposure, upward trend in claim frequency parameter. The
estimates move upward over time.
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FIGURE 15: Estimation for node 124. (Color online)

• Node 123. High exposure, no trend in claim frequency parameter. Estimates
follow experience closely.

• Node 124. Moderate exposure, no trend in claim frequency parameter,
but prior over-estimated. Estimates lower than prior, in sympathy with
experience.

• Node 133. Low exposure, downward trend in claim frequency parameter. Ex-
perience erratic, but on average lower than prior. Estimates display broadly
declining trend.

• Node 134. Low exposure, no trend in claim frequency parameter. No trend
in estimates.

6. CONCLUSION

An evolutionary hierarchical model has been formulated (Section 3), and esti-
mates of it parameters constructed (Section 4). The parameter estimates yield
forecasts of future observations.

The parameter estimates are obtained by application of the Kalman filter to
the specific circumstance of the model. These estimates therefore update from
one epoch to the next as further data are observed.

The application of the Kalman filter is conceptually straightforward, but
the tree structure of the model parameters can be extensive, and some effort
is required to retain organization of the updating algorithm. This is achieved
by suitable manipulation of the adjacency matrix associated with the tree, as
discussed in Section 2. That matrix can then be recruited to play its role in the
matrix calculations inherent in the Kalman filter.
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FIGURE 16: Estimation for node 133. (Color online)
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FIGURE 17: Estimation for node 134. (Color online)

It is also found that, in certain special cases, the book-keeping provided by
these matrices can be highly simplified (Section 4.3.2).

The estimation and forecast algorithms provided in Section 4 consist es-
sentially of a sequence of matrix calculations, and are simply implemented. In
the case of the small-scale numerical example of Section 5, they were, in fact,
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implemented in Excel, though the exercise would have been less laborious if
implemented by means of a genuine programming language such as R or C.
Practicality would demand this in life-size problems.

The numerical example yields results that are intuitively explicable and rea-
sonable. Section 1 mentions several contexts in that the evolutionary hierarchi-
cal model might be applicable. The results of the numerical example provide
encouragement that the model would lead to reasonable parameter estimates
and forecasts in those circumstances.

It should be noted that the model assumes normality of all distributions,
both of observations and of random parameters. It would be possible, of course,
and perhaps necessary in some contexts, to weaken this assumption. The use
of conjugate pairs of distributions might enable the estimators to be extended
although retaining their linear forms, but this speculation has been left for a
future investigation.
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APPENDIX A

Proof of Lemma 2.2. Substitute Proposition 2.1 into the right side of (2.7):

[
�

(Hm:p
)
�

(Hp:n
)]
i0i1 ...im, j0 j1 ... jn

= ∑
k0k1 ...kp

[
�

(Hm:p
)]
i0i1 ...im,k0k1 ...kp

[
�

(Hp:n
)]
k0k1 ...kp , j0 j1... jn

= ∑
k0k1 ...kp

δi0i1 ...im,k0k1 ...kmδk0k1 ...kp , j0 j1 ... jp

= ∑
k0k1 ...kp

δi0i1 ...im,k0k1 ...kmδk0k1 ...km, j0 j1... jmδkmkm+1 ...kp , jm jm+1... jp ,

where (2.6) has been used in the second step.
Now for any given jm jm+1 . . . jp, there is a single kmkm+1 . . . kp for which

δkmkm+1 ...kp , jm jm+1... jp = 1. For all other kmkm+1 . . . kp, δkmkm+1 ...kp , jm jm+1... jp = 0. Hence,
the last relation reduces to[

�
(Hm:p

)
�

(Hp:n
)]
i0i1...im, j0 j1 ... jn

= ∑
k0k1 ...km

δi0i1 ...im,k0k1 ...kmδk0k1 ...km, j0 j1... jm

= δi0i1 ...im, j0 j1... jm = �(Hm:n)i0i1 ...im, j0 j1... jn by (2.6).

Proof of Lemma 2.4. By (2.8), the lemma is true for p = 1 . For larger values of p, pro-
ceed by induction. Assume that the lemma is true for p with 1 ≤ p < q . Then

[
� p+1 (H)

]
mn

=
q∑
k=0

[� (H)]mk[�
p (H)]kn =

q∑
k=0

δm+1,k� (Hm:m+1) δk+p,n�
(Hk:k+p

)

[by the induction hypothesis (2.9)]

=
q∑
k=0

δm+1,k� (Hm:m+1) � (Hk:n)

= � (Hm:k) � (Hk:n) = � (Hm:n) ,

by (2.7).
To prove (2.10), note that, for the case p = q, the term δk+p,n in the above development

would require that k = n − q . Since n ≤ q, this can only produce non-negative k in the case
n = q, k = 0 . But then the term δm+1,k would require thatm = −1 which cannot occur. Thus,
the summation representing [�q+1(H)]mn is vacuous, proving (2.10).

Proof of Lemma 2.5. The proof is a straightforward demonstration that

[I − � (H)] [I − � (H)]−1 = I, (A.1)

when (2.12) holds.
Note that, by (2.8),

[I − � (H)]mn = δmn I − δm+1,n� (Hm:m+1) . (A.2)
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By substitution of (2.12) and (A.2),[
[I − � (H)] [I − � (H)]−1]

mn

=
q∑
k=0

{
[δmkI − δm+1,k� (Hm:m+1)]

q∑
p=0

δk+p,n�
(Hk:k+p

)}

=
q∑
p=0

δm+p,n�
(Hm:m+p

) − � (Hm:m+1)
q∑
k=0

q∑
p=0

δm+1,kδk+p,n�
(Hk:k+p

)
= � (Hm:n) − � (Hm:m+1)

n∑
k=0

δm+1,k� (Hk:n)

= � (Hm:n) − � (Hm:m+1) � (Hm+1:n) = 0 [providedthat m < n]

(A.3)

= � (Hm:n) − � (Hm:n) = 0, (A.4)

by Proposition 2.1.
For the case = n, �(Hm+1:n) = 0, and so (A.3) becomes[

[I − � (H)] [I − � (H)]−1]
mm

= � (Hm:m) = I. (A.5)

For the case m > n, all members of (A.3) are zero, and so it becomes[
[I − � (H)] [I − � (H)]−1]

mm
= � (Hm:m) = I. (A.6)

Finally, (A.4)–(A.6) amount to (A.1).

Proof of Lemma 4.3. To compute the required components of Zt, first substitute (4.8)
into (4.3):

Zt = UtQt|t−1
(
Ut

)T[
Ht

]−1
{
I +UtQt|t−1

(
Ut

)T[
Ht

]−1 +Ut�t−1
(
Ut

)T[
Ht

]−1
}−1

+ Qt|t−1, �t−1, (A.7)

where a, b is defined as being equal to the previous member of the equation but with the roles
of a, b reversed, i.e., a symmetrization operator.

For brevity, adopt the temporary notation:

A= UtQt|t−1
(
Ut

)T[
Ht

]−1
, (A.8)

B = Ut�t−1
(
Ut

)T[
Ht

]−1
, (A.9)

so that (A.7) may be expressed as

Zt = A[I + A+ B]−1 + A, B = A(I + A)−1[I + B(I + A)−1]−1 + A, B. (A.10)

Now note that, by (4.9) and (4.10),

Zt
H = A(I + A)−1, (A.11)

Zt
T = B(I + B)−1, (A.12)

from which
I − Zt

H = (I + A)−1, (A.13)

I − Zt
T = (I + B)−1, (A.14)
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Zt
H

(
I − Zt

H

)−1 = A, (A.15)

Zt
T

(
I − Zt

T

)−1 = B. (A.16)

Substitution of (A.13)–(A.16) into (A.10) yields the lemma.

Proof of Lemma 4.6. By (4.17), and recognizing the assumed diagonal property of Ht,

At[mn]i0i1...im, j0 j1 ... jn

= ∑
k0k1 ...kq

[[
�

(H(m:q)

)]
i0i1 ...im,k0k1 ...kq

h−1
k0k1 ...kq

[
�

(H(n:q)

)]
j0 j1 ... jn ,k0k1 ...kq

]
= ∑

k0k1 ...kq

[
δi0i1...im,k0k1 ...kmh

−1
k0k1 ...kq

δ j0 j1... jn ,k0k1 ...kn

]

= δi0i1 ...im, j0 j1 ... jm

∑
kn+1...kq

[
h−1
i0i1 ...im jm+1... jn kn+1...kq

]
,

where the second step has made use of . The lemma then follows.

APPENDIX B

The following figures evaluate the credibility matrix Zt, defined by (4.3), and its decomposi-
tion given in (4.9)–(4.11). Partitions are inserted in each table to identify the diagonal block
matrices that relate to the three nodes 11,12,13 at level 1 of the hierarchy. A row total for a par-
ticular node indicates the total credibility of all observations on the estimated frequency for
that node. Figures B6 and B7 give the credibility matrix Zt for t = 2 and t = 3 corresponding
to t = 1 in Figure B1.

Node Row
111 112 121 122 123 124 131 132 133 134 total

111 0.049 0.076 0.030 0.009 0.014 0.008 0.008 0.005 0.003 0.002 0.204
112 0.031 0.237 0.025 0.008 0.012 0.006 0.007 0.004 0.002 0.002 0.335
121 0.006 0.012 0.654 0.033 0.053 0.028 0.002 0.001 0.001 0.001 0.790
122 0.008 0.016 0.150 0.421 0.072 0.039 0.003 0.002 0.001 0.001 0.712
123 0.000 0.000 0.003 0.001 0.988 0.001 0.000 0.000 0.000 0.000 0.994
124 0.002 0.003 0.029 0.009 0.014 0.885 0.001 0.000 0.000 0.000 0.943
131 0.001 0.002 0.001 0.000 0.001 0.000 0.956 0.005 0.003 0.002 0.970
132 0.004 0.009 0.006 0.002 0.003 0.002 0.044 0.739 0.016 0.011 0.837
133 0.007 0.014 0.009 0.003 0.005 0.002 0.069 0.039 0.580 0.018 0.746
134 0.007 0.015 0.010 0.003 0.005 0.003 0.075 0.042 0.026 0.539 0.725

Matrix entry for node

 

FIGURE B1: Total credibility matrix Zt at t = 1. (Color online)

https://doi.org/10.1017/asb.2017.31 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.31


372 G. TAYLOR

Node Row
111 112 121 122 123 124 131 132 133 134 total

111 0.017 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.039
112 0.009 0.173 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.183
121 0.000 0.000 0.618 0.030 0.050 0.026 0.000 0.000 0.000 0.000 0.725
122 0.000 0.000 0.135 0.388 0.068 0.036 0.000 0.000 0.000 0.000 0.627
123 0.000 0.000 0.003 0.001 0.987 0.001 0.000 0.000 0.000 0.000 0.992
124 0.000 0.000 0.028 0.008 0.014 0.873 0.000 0.000 0.000 0.000 0.923
131 0.000 0.000 0.000 0.000 0.000 0.000 0.950 0.004 0.003 0.002 0.959
132 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.715 0.014 0.010 0.782
133 0.000 0.000 0.000 0.000 0.000 0.000 0.064 0.035 0.551 0.016 0.666
134 0.000 0.000 0.000 0.000 0.000 0.000 0.069 0.038 0.023 0.508 0.639

Matrix entry for node

FIGURE B2: Credibility matrix ZtH at t = 1. (Color online)

Node Row
111 112 121 122 123 124 131 132 133 134 total

111 0.029 0.055 0.055 0.013 0.120 0.034 0.046 0.011 0.005 0.003 0.371
112 0.023 0.081 0.053 0.012 0.117 0.033 0.045 0.011 0.005 0.003 0.384
121 0.010 0.025 0.217 0.026 0.241 0.068 0.028 0.006 0.003 0.002 0.627
122 0.011 0.026 0.115 0.089 0.253 0.072 0.029 0.007 0.003 0.002 0.608
123 0.001 0.003 0.014 0.003 0.914 0.009 0.004 0.001 0.000 0.000 0.951
124 0.007 0.016 0.072 0.017 0.158 0.461 0.018 0.004 0.002 0.001 0.756
131 0.004 0.011 0.014 0.003 0.030 0.009 0.734 0.021 0.009 0.006 0.841
132 0.010 0.024 0.031 0.007 0.068 0.019 0.203 0.247 0.021 0.014 0.645
133 0.011 0.026 0.034 0.008 0.075 0.021 0.226 0.053 0.135 0.016 0.605
134 0.011 0.027 0.035 0.008 0.076 0.021 0.228 0.053 0.024 0.120 0.602

Matrix entry for node

FIGURE B3: Credibility matrix ZtT at t = 1. (Color online)
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Node Row
111 112 121 122 123 124 131 132 133 134 total

111 0.015 0.020 -0.001 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.032
112 0.004 0.159 -0.006 -0.002 -0.003 -0.001 -0.002 -0.001 -0.001 0.000 0.149
121 -0.015 -0.030 0.547 0.017 0.027 0.014 -0.006 -0.003 -0.002 -0.001 0.548
122 -0.013 -0.026 0.094 0.362 0.045 0.024 -0.005 -0.003 -0.002 -0.001 0.475
123 -0.020 -0.040 -0.039 -0.012 0.869 -0.010 -0.008 -0.004 -0.003 -0.002 0.731
124 -0.018 -0.038 -0.016 -0.005 -0.008 0.785 -0.007 -0.004 -0.003 -0.002 0.685
131 -0.019 -0.039 -0.026 -0.008 -0.013 -0.007 0.835 -0.010 -0.006 -0.004 0.704
132 -0.016 -0.032 -0.022 -0.007 -0.010 -0.006 0.015 0.651 0.005 0.004 0.584
133 -0.013 -0.028 -0.019 -0.006 -0.009 -0.005 0.037 0.021 0.513 0.009 0.502
134 -0.013 -0.026 -0.018 -0.005 -0.009 -0.005 0.043 0.024 0.015 0.475 0.481

Matrix entry for node

 

FIGURE B4: Hierarchy component of credibility matrix Zt (ZtH ×multi plier ) at t = 1. (Color online)

Node Row
111 112 121 122 123 124 131 132 133 134 total

111 0.033 0.056 0.031 0.009 0.015 0.008 0.009 0.005 0.003 0.002 0.172
112 0.027 0.078 0.030 0.009 0.015 0.008 0.009 0.005 0.003 0.002 0.186
121 0.020 0.042 0.108 0.016 0.026 0.014 0.008 0.005 0.003 0.002 0.243
122 0.021 0.042 0.056 0.059 0.027 0.014 0.008 0.005 0.003 0.002 0.237
123 0.020 0.041 0.042 0.013 0.119 0.011 0.008 0.004 0.003 0.002 0.263
124 0.020 0.041 0.045 0.014 0.022 0.099 0.008 0.004 0.003 0.002 0.258
131 0.020 0.040 0.027 0.008 0.013 0.007 0.120 0.015 0.009 0.007 0.266
132 0.020 0.041 0.028 0.008 0.013 0.007 0.029 0.088 0.010 0.007 0.253
133 0.020 0.042 0.028 0.009 0.014 0.007 0.032 0.018 0.067 0.008 0.244
134 0.020 0.042 0.028 0.009 0.014 0.007 0.032 0.018 0.011 0.064 0.244

Matrix entry for node

FIGURE B5: Time component of credibility matrix Zt (ZtT ×multi plier ) at t = 1. (Color online)
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Node Row
111 112 121 122 123 124 131 132 133 134 total

111 0.068 0.097 0.046 0.013 0.107 0.024 0.035 0.009 0.004 0.004 0.407
112 0.040 0.242 0.037 0.010 0.093 0.021 0.030 0.007 0.003 0.003 0.487
121 0.009 0.018 0.473 0.024 0.154 0.037 0.015 0.003 0.001 0.001 0.736
122 0.011 0.022 0.106 0.336 0.171 0.044 0.017 0.004 0.002 0.001 0.713
123 0.001 0.003 0.009 0.002 0.923 0.006 0.003 0.001 0.000 0.000 0.949
124 0.005 0.010 0.037 0.010 0.103 0.642 0.010 0.002 0.001 0.001 0.820
131 0.004 0.008 0.009 0.002 0.029 0.006 0.764 0.013 0.005 0.005 0.845
132 0.008 0.016 0.016 0.004 0.048 0.010 0.107 0.510 0.012 0.011 0.742
133 0.011 0.022 0.020 0.005 0.057 0.012 0.134 0.036 0.380 0.016 0.692
134 0.010 0.020 0.017 0.005 0.049 0.010 0.117 0.032 0.016 0.456 0.732

Matrix entry for node

FIGURE B6: Total credibility matrix Zt at t = 2. (Color online)

Node Row
111 112 121 122 123 124 131 132 133 134 total

111 0.088 0.127 0.054 0.014 0.101 0.029 0.034 0.010 0.006 0.005 0.469
112 0.044 0.289 0.042 0.011 0.088 0.024 0.029 0.008 0.005 0.004 0.543
121 0.011 0.024 0.441 0.023 0.171 0.045 0.016 0.004 0.002 0.002 0.739
122 0.013 0.028 0.105 0.309 0.187 0.051 0.017 0.004 0.003 0.002 0.719
123 0.001 0.001 0.005 0.001 0.961 0.003 0.001 0.000 0.000 0.000 0.975
124 0.005 0.013 0.043 0.011 0.109 0.631 0.010 0.002 0.001 0.001 0.828
131 0.005 0.011 0.011 0.003 0.031 0.007 0.737 0.017 0.009 0.008 0.838
132 0.009 0.022 0.019 0.005 0.050 0.012 0.119 0.470 0.019 0.015 0.741
133 0.010 0.023 0.019 0.005 0.047 0.012 0.118 0.034 0.472 0.017 0.757
134 0.010 0.022 0.018 0.005 0.046 0.011 0.113 0.032 0.020 0.486 0.761

Matrix entry for node

FIGURE B7: Total credibility matrix Zt at t = 3. (Color online)
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