
o r i g i n a l a r t i c l e

An Evaluation of Food as a Potential Source for Clostridium difficile
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objective. To determine whether Clostridium difficile is present in the food of hospitalized patients and to estimate the risk of subsequent
colonization associated with C. difficile in food.

methods. This was a prospective cohort study of inpatients at a university-affiliated tertiary care center, May 9, 2011–July 12, 2012.
Enrolled patients submitted a portion of food from each meal. Patient stool specimens and/or rectal swabs were collected at enrollment, every
3 days thereafter, and at discharge, and were cultured for C. difficile. Clinical data were reviewed for evidence of infection due to C. difficile.
A stochastic, discrete event model was developed to predict exposure to C. difficile from food, and the estimated number of new colonization
events from food exposures per 1,000 admissions was determined.

results. A total of 149 patients were enrolled and 910 food specimens were obtained. Two food specimens from 2 patients were positive for
C. difficile (0.2% of food samples; 1.3% of patients). Neither of the 2 patients was colonized at baseline with C. difficile. Discharge colonization
status was available for 1 of the 2 patients and was negative. Neither was diagnosed with C. difficile infection while hospitalized or during the year
before or after study enrollment. Stochastic modeling indicated contaminated hospital food would be responsible for less than 1 newly colonized
patient per 1,000 hospital admissions.

conclusions. The recovery of C. difficile from the food of hospitalized patients was rare. Modeling suggests hospital food is unlikely to be a
source of C. difficile acquisition.

Infect Control Hosp Epidemiol 2016;37:1401–1407

Clostridium difficile infection (CDI) is the most common
healthcare-associated infection in the United States and is
associated with significant patient morbidity, mortality, and
high attributable acute care hospital costs.1–3 Given the
continued high incidence and severity of clinical outcomes
associated with CDI, measures to prevent CDI are an area of
ongoing interest. Current strategies for CDI prevention are
focused on interrupting the cycle of transmission from
individuals with CDI; however, it is important to evaluate
other potential modes for C. difficile acquisition.

Although CDI is primarily associated with healthcare facil-
ities, the precise source of C. difficile exposure is unknown.
Recent studies have found that only 15%–25% of CDI cases
could be attributed to ward-based or patient-to-patient trans-
mission, indicating that there may be other sources of C. difficile
acquisition in the hospital.4,5 A potential reservoir and source
for C. difficile acquisition is the food of hospitalized patients.
C. difficile has been isolated from retail foods worldwide,
including groundmeats, poultry, and vegetables.6–17 The spores

of C. difficile are heat-resistant and thus may have the potential
to survive cooking temperatures.10 Given the presence of
C. difficile in food and its heat-resistant qualities, it is theoreti-
cally possible that hospitalized patients could be exposed to
C. difficile from their food. We conducted a prospective cohort
study with the objectives of determining whether C. difficile was
present in the food of hospitalized patients and of estimating the
risk of colonization associated with the presence of C. difficile in
the food of hospitalized patients.

methods

Setting

This prospective cohort study was conducted at Barnes-Jewish
Hospital (BJH), a 1,250-bed tertiary care center in St. Louis,
MO, from May 9, 2011, through July 12, 2012, in conjunction
with a study of C. difficile colonization in hospitalized
patients.18,19 The study was approved by the Washington
University Human Research Protection Office.
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Subjects

Subjects at least 18 years old admitted to the medical and
surgical wards with a projected length of stay (LOS) of at least
3 days and no diarrhea were invited to participate; all provided
written, informed consent.

Data Sources and Statistical Analyses

Data collected included demographic characteristics, comor-
bidities, and CDI diagnoses from 1 year prior to enrollment to
1 year after enrollment. Data sources included patient
interviews, medical chart review, and Medical Informatics
queries. Data analyses were descriptive. SPSS, version 21
(IBM), was used. The model was implemented in NetLogo,
version 5.1. R (R Foundation for Statistical Computing) was
used for model parameterization and output analysis.

Specimen Collection

Stool or rectal swab specimens were collected from patients upon
study enrollment, every 3 days, and at discharge. Rectal swab
samples (ESwab; Becton, Dickinson) were obtained from patients
unable to provide a stool specimen within 48 hours of admission
or 24 hours of a postadmission specimen collection time.20–22

Each patient was provided with a cooler and 4 sterile
specimen cups labeled breakfast, lunch, supper, or snack.
Patients were instructed to place a piece of food from every-
thing they ate into the corresponding container. If they did not
eat a particular meal, no food was collected. As patients placed
all components of their meal into the same container, there
were multiple types of food per container.

Food specimens were transported to the laboratory and
frozen at −30°C. Prior to culture, food specimens were thawed
and the food types were documented. The food specimen was
combined with 10mL of sterile water and homogenized for
approximately 1 minute.

Microbiological Analysis

Next, 1mL of food homogenate was added to cycloserine-
cefoxitin mannitol broth with taurocholate, lysozyme, and
cysteine (CCMB-TAL; Anaerobe Systems), and the broth was
subcultured to pre-reduced blood agar (Becton, Dickinson) as
previously described.20 C. difficile in food was quantified by
weighing initial specimens, processing via heat shock, plating
onto a pre-reduced blood agar plate, then streaking for isola-
tion. Colonies per gram of food were calculated. Additionally,
food was diluted in CCMB-TAL broth in a series of five 10-fold
dilutions to approximate the burden of C. difficile. C. difficile
negative and positive controls were included with every set of
cultures to monitor for contamination. Ribotyping was
performed on all C. difficile isolates as previously described.23

Stool and rectal swabs were cultured for C. difficile using
CCMB-TAL according to methods previously published.20

Isolates were evaluated for the presence of tcdA, tcdB, and

binary toxin genes (cdtA/cdtB) by multiplex polymerase chain
reaction as previously described.18 Isolates were also
characterized by polymerase chain reaction ribotyping for
strain comparison.23

Model Overview

To estimate the risk of C. difficile acquisition associated with
exposure to C. difficile-contaminated food during a hospital
stay, we developed a stochastic, individual-based model that
simulated the flow of patients admitted to BJH, antimicrobial
exposures, number of meals eaten per day, and concentration
of C. difficile in food (Figure 1). A formal description of the
model, code, and parameters is available at http://www.
lanzaslab.org/research/cdifficile#food. The hospital model
simulated the 171 BJH general medicine hospital ward beds.
Each patient was followed from admission to discharge.
On admission, each patient was assigned a LOS. LOS depended
on whether the patient received antibiotic treatment based on
the distribution of LOS from 11,046 admissions from these
wards to several distributions using maximum likelihood
methods.24 On the basis of these data, antibiotic use was used
as a marker for longer LOS. Antibiotic use was also a marker
for susceptibility to C. difficile colonization. The log-normal
distribution, which provided the best fit, was used to para-
meterize LOS (Table 1).
The number of meals consumed by a patient daily and the

probability that a meal was contaminated were based on this
study’s results (Table 1). A Poisson log-normal distribution
was used to simulate the number of spores per contaminated
meal. This distribution is often used to describe microbial
counts.25 The parameters of the distribution were chosen to
generate a mean number of spores of approximately 10
colony-forming units/gm because this was the limit of detec-
tion of the culture methods. Data from a clinical trial in which
healthy adults received escalating doses of nontoxigenic
C. difficile spores were used to estimate the probability of
C. difficile colonization upon dose exposure.26 We used logistic
regression to model the data from study subjects in cohort

Probability of meal 
contamination 

Concentration of spores in 
a contaminated meal 

Cumulative dose during 
hospital stay *

Length of hospital stay

Antibiotic use

Number of consumed 
meals 

Risk of colonization 

figure 1. Exposure assessment in study of Clostridium difficile in
the food of hospitalized patients. *Cumulative dose calculated by
total number of spores present in all contaminated meals eaten in a
hospital stay.
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4 who received 5 days of pretreatment with oral vancomycin
before receiving a daily dose of 1 × 104, 1 × 106, or 1 × 108

spores for 14 days. Because of the repeated measurements on
the same subjects, the binary correlated data were analyzed by
means of the generalized estimating equation27 as imple-
mented in package geepack in R.28

The model was iterated 5,000 times to assure output
convergence. Each iteration simulated the patients’ admissions
to the wards for 1 year. In each iteration, model inputs
described as probability distributions were sampled and fed to
the model. The model outcomes were the number of patients
exposed to C. difficile through food and the number of colo-
nization events due to food exposure per 1,000 admissions.

results

Enrollment and Demographic Characteristics

A total of 149 patients were enrolled, and food specimens from
910 meals were obtained and cultured for C. difficile. Patient
characteristics are in Table 2. Most patients had healthcare
exposures within the previous 90 days (136 [91%]), but only
2 patients had a history of CDI within the previous year
(none within 60 days prior to enrollment).

Food Cultures

Toxigenic C. difficile was recovered from 2 food specimens
from 2 separate patients, representing 0.2% of food cultures
and 1.3% of patients (Table 3). The food items that tested
positive were a gelatin dessert (ribotype 001) and a sample
consisting of vegetables/bread/grains (ribotype 027). The
concentration of C. difficile spores recovered from the positive
food samples was less than or equal to 10 colony-forming
units/mL. C. difficile was successfully recovered from all posi-
tive controls, and there was no growth in any of the negative
controls.

C. difficile Colonization and CDI

Neither of the 2 patients exposed to C. difficile in food was
colonized at baseline with C. difficile. A discharge stool speci-
men was available for 1 of the 2 patients and was negative.
Neither was diagnosed with CDI during their hospitalization
or during the year before or after study enrollment. No
patients in the study developed CDI within a year of discharge.

Exposure Modeling

A summary of the functions and probability distributions for
the exposure model are detailed in Table 1. On 44.1% of days,
no meals were eaten; on 17.5% of days 1 meal was eaten; on
26.4% of days 2 meals were eaten; on 11.2% of days 3 meals
were eaten; and on 0.8% of days 4 meals were eaten. Reasons
for missing meals were variable but included instructions to
take nothing by mouth in preparation for an upcoming pro-
cedure(s) or lack of appetite. The mean number of patients
who were exposed to C. difficile through food was 12.70 per
1,000 admissions (95% CI, 12.542–12.858). The minimum
and maximum simulated values were 2.34 and 25.85 exposed
patients per 1,000 admissions, respectively (Figure 2). The
mean number of predicted colonization events was 0.609 per
1,000 admissions (95% CI, 0.600–0.618), and the median
number was 0.57. The minimum and maximum simulated
colonization events were 0.04 and 1.73 per 1,000 admissions,
respectively (Figure 2).
Both the predicted number of exposed and the predicted

number of colonized patients were highly influenced by the
probability of meal contamination (Figure 3). A 0.1% increase
in the probability of meal contamination resulted in an
increase of 5.5 exposures and 0.26 colonization events per
1,000 admissions (Figure 3). Overall, the simulated number of
spores in contaminated food was low, reflecting the low counts
recovered from hospital food. As a result, on average fewer
than 5% of the patients exposed to C. difficile became colo-
nized. Antibiotic prescription probability had a marginal effect

table 1. Summary of Functions and Probability Distributions for the Exposure Model

Description Functions and probability distributions

Antibiotic prescription probability Uniform (0.3, 0.7)
Distribution of length of stay for patients who do not receive antibiotic Log-normal (0.84, 0.77)
Distribution of length of stay for patients who receive antibiotic Log-normal (1.54, 0.87)
N of meals (X) received by a patient daily P(X= 0)= 0.441, P(X= 1)= 0.175, P(X= 2)

= 0.264, P(X= 3)= 0.112, P(X= 4)= 0.008
Probability that a meal is contaminated with Clostridium difficile spores Uniform (0.0005, 0.0035)
Distribution of the number of spores found on a contaminated meal Poisson-lognormal (2, 0.8)
Relationship between cumulative dose in a hospital stay and probability of colonization e�3:073 + 0:539 log ðdose + 1Þ

1 + e�3:073 + 0:539 log ðdose + 1Þ

NOTE. The parameters needed to characterize the probability distributions are indicated between brackets. For the uniform distribution (a,b): a is
the minimum value and b is the maximum value. For the log-normal and Poisson-lognormal distributions (µ, σ): µ is the log mean and σ is the
log standard deviation.
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on the number of predicted exposed and colonized patients
compared with probability of meal contamination (Figure 3).

discussion

In this study of C. difficile in the food of hospitalized patients,
recovery of toxigenic C. difficile was rare, with only 0.2% of
food specimens testing positive for C. difficile with a low
estimated concentration (≤10 colony-forming units/mL).
Stated differently, 1.5% of patients ingested food from which
C. difficile was recovered. On the basis of this finding,

theoretically hundreds of hospitalized patients could be
exposed to C. difficile from food and develop CDI every year at
BJH, which in 2014 alone had more than 53,300 inpatient
admissions. Thus, our objective was to model the likelihood of
C. difficile acquisition from food in the hospital setting. Using a
similar modeling framework based on BJH data, we previously
predicted that on average there were approximately 100 new
colonization events per 1,000 admissions.29 In this study, we
found that at less than 1 new colonization event per 1,000
admissions, C. difficile acquisition linked to contaminated food
was likely uncommon. The results of the modeling indicate

figure 2. Histograms for the simulated number of patients
exposed to Clostridium difficile in food and colonization events due
to exposure to C. difficile spores in food. Counts are the number of
exposed and colonized patients in each histogram bar.

table 2. Characteristics of 149 Patients in Study of Clostridium
difficile in the Food of Hospitalized Patients

Variable Value

Age, median (range), y 55 (23–90)
Length of stay, median (range), d 4.0 (0.4–292)
Female sex 80 (54)
Nonwhite race 43 (29)
Healthcare worker 20 (13)
Lives with a healthcare worker 19 (13)
Spends ≥2 hours/week visiting a healthcare facility 16 (11)
Admitted to medicine service 145 (97)
Admitted from

Home 99 (66)
Healthcare facility 50 (34)

Reason for admission
Infection 45 (30)
Exacerbation of chronic condition 54 (36)
Elective surgery 2 (1)
New medical or surgical problem 48 (32)

Any healthcare exposures in previous 90 days 136 (91)
Diabetes mellitus 58 (39)
Congestive heart failure 27 (18)
Liver disease 28 (19)
Chronic renal insufficiency 17 (11)
Chronic lung disease 25 (17)
Human immunodeficiency virus 3 (2)
Solid organ transplant 8 (5)
Stem cell transplant 0
Solid malignant tumor 24 (16)
Hematologic malignant tumor 2 (1)
Other immunocompromised 20 (13)
Inflammatory bowel disease 5 (3)
Surgery in previous 90 days 15 (10)
Upper endoscopy performed during

hospitalization
9 (6)

Lower endoscopy performed during
hospitalization

8 (5)

History of CDI in the year before enrollment 2 (1)
CDI diagnosis within 1 year after enrollment 0
Colonized with C. difficile on admission 34 (23)
Colonized with C. difficile on dischargea 35/141 (25)

NOTE. Data are no. (%) of patients unless otherwise indicated. CDI,
C. difficile infection.
aDischarge colonization status was unknown for 8 patients (5%).

table 3. Types of Food Positive for Clostridium difficile, by Food
Type, for 910 Meals

Food item Total C. difficile, n (%)

Meat 308 0
Poultry 142 0
Fruit 179 0
Vegetables 455 1 (<1)a

Nuts 1 0
Dairy/eggs 210 0
Bread/grains 376 1 (<1)a

Otherb 200 1 (1)c

NOTE. Percentages are percent of positive samples / all food items of
that type. As patients placed all components of their meal into the
same container, there were multiple types of food per container.
aThe positive specimens for vegetables and bread/grains were
combined in a single specimen cup.
bFor example, veggie burger, sauce/gravy, pudding, jelly, fish, cake.
cGelatin dessert.
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that acquisition of C. difficile from food is likely a rare event at
BJH and that the food of hospitalized patients was not a
significant source of new C. difficile colonization.

Most previously published studies of C. difficile in food have
focused on retail meat products, with prevalence rates reported
in Europe and Canada ranging from 2.7% in chicken and
4.3%–20% in beef/pork, and with rates in US studies greater
than 40% (ground meats).8,10–12 The presence of C. difficile in
foods of non-animal origin (eg, fruits, vegetables, grains) has
not been fully explored, with a Scottish study indicating that
7.5% of salads and a French study reporting 2.9% of raw
vegetables were contaminated with C. difficile.6–8 These pre-
vious studies were based on singular food types, rather than a
mixture of foods that constitute a meal that a patient might eat.
In our study, we included all food that the patient would be
consuming during that meal, which would better represent a
hospitalized patient’s actual C. difficile exposure.

Although we were able to recover C. difficile from the food of
hospitalized patients, this does not equate directly to C. difficile
being a foodborne pathogen in the healthcare setting.
The source of contamination is not known; contamination
may have occurred at the food source (farm, factory), food
handler, food transporter, and/or from the patient handling

the food. The results of our study are consistent with those of
Rodriguez et al,13 who found C. difficile in less than 1% of food
samples collected from the kitchens of a Belgian nursing home.
C. difficile was isolated from only one meal sample composed
of pork sausage, mustard sauce, and carrot salad.13 Together,
our study and the Rodriquez study suggest that C. difficile is
present in hospital foods but at lower rates compared with
retail foods. The reason for this discrepancy is unclear.
Although C. difficile spores can survive cooking temperatures,
it is possible that soaking, washing, and/or cooking food
reduces the C. difficile burden and may have accounted for this
difference.10

This study had limitations: it was a single-center study, and
results may not be generalizable to all institutions. Regarding
specimen collection, patients placed food into containers for
culture, potentially introducing variability. However, this
provided a practical method of obtaining food samples that
were actually consumed by the patient. There are no data
available to indicate whether or not C. difficile is evenly
distributed in food. Thus the amount of food included in each
food culture may have impacted our findings, especially in the
setting of a low contamination burden. In previously
published studies the amount of food cultured varies widely,

figure 3. Scatterplots between the hospital-level variables (antibiotic prescription and meal contamination probability) and model
outcomes (number of exposed and colonized patients per 1,000 admissions). The points indicate individual simulations (total number of
simulations= 5,000) and the line indicates the linear trend between variables.
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from 1 g samples to complete pieces of meat.14,17 Previous
studies were limited to specific food types; however, this study
focused on the variety of foods that a patient ingests per meal,
providing a more realistic estimate of a patient’s entire meal.

A strength of our study was the collection of food that was
actually consumed, rather than a single food type. In the stu-
dies of retail food products, the food would have likely been
washed and/or cooked prior to consumption; therefore the
prevalence of C. difficile detected may not represent what
individuals would have consumed. Additional strengths
include the collection of clinical data to examine CDI in the
year after enrollment and culture of food specimens along with
the culture of stool specimens throughout the patients’
hospitalizations. This allowed us to link C. difficile food con-
tamination with acquisition. Our laboratory standards were
rigorous, and we included both positive and negative controls
to ensure against laboratory contamination.

C. difficile is a ubiquitous organism, and only a minority of
new C. difficile acquisitions in the hospital have been linked to
another patient with CDI.4,5,30,31 Therefore, understanding all
potential sources of C. difficile exposure in the hospital is
necessary to inform prevention measures for CDI. Our find-
ings indicate that food is unlikely to be a significant source of
C. difficile acquisition in hospitalized patients. Towards the
goal of CDI prevention, future studies aimed at understanding
modes of C. difficile transmission and acquisition are
necessary.
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