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Abstract. The equilibrium and stability properties of ideal magnetohydrodynamics
(MHD) of compressible flow in a gravitational field with a translational symmetry
are investigated. Variational principles for the steady-state equations are formulated.
The MHD equilibrium equations are obtained as critical points of a conserved
Lyapunov functional. This functional consists of the sum of the total energy, the
mass, the circulation along field lines (cross helicity), the momentum, and the
magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear
second-order partial differential equation (PDE) associated with hydrodynamic
Bernoulli law. The PDE can be an elliptic or a parabolic equation depending
on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability
conditions under translational symmetric perturbations are established for the
equilibrium states.

1. Introduction
The study of magnetohydrodynamics (MHD) – elec-
trically conducting fluids in the presence of a magnetic
field – is an important part of modern fluid mechanics.
The field of MHD was initiated in 1950 by Alfvén (1950),
who established the basics of MHD, and developed by
Alfvén and Falthammar (1963). The principles of MHD
were described in detail in many textbooks of general
content (e.g. Cowling 1957; Shercliff 1965; Hughes and
Young 1966). MHD flows play a considerable role in
many applied and fundamental studies. First, MHD
flows of fluids in channels are the basis for different in-
dustrial technologies. Examples include electromagnetic
flow measurements of conducting fluids (Shercliff 1962;
Hofmann 2003), electromagnetic pumps used in metal-
lurgy and systems of liquid-metal cooling for nuclear
reactors (Branover and Unger 1993), and MHD power
generators – the devices for direct conversion of thermal
energy to electricity (Rosa 1968; Mitchner and Kruger
1973).

The investigation of MHD equilibria is one of the
most important problems in MHD and arises in a num-
ber of fields including thermonuclear fusion reactors,
astrophysics and solar physics. At present, there are
many difficulties surrounding the description of fully
three-dimensional configurations and so it is necessary
to consider configurations with additional symmetry.
Symmetric configurations of plasmas with steady mass
flow occur both in laboratory experiments (generally
axial symmetric) and in a great variety of astrophysical
situations. In many astrophysical situations such as
stellar and extra-galactic winds or collimated outflows,

axial symmetry is important, while in solar physics
translational symmetry is common in models of arcades
and coronal loops.

MHD flows are common phenomena in modern ex-

perimental devices for confinement of fusion plasma,
such as tokamaks. The plasma flows in tokamaks are

developed in the regimes with additional heating, for
example, as a result of unbalanced neutral beam in-
jections (Suckewer et al. 1979; Asakura et al. 1993)
or ion cyclotron resonance frequency heating (Eriksson
et al. 1997; Rice et al. 1998). Theoretical studies of
flowing plasmas were considered for the first time in

Chandrasekhar (1956), Frieman and Rotenberg (1960)
and Grad (1960). After the formalism of the magnetic
flux function had been introduced by Shafranov (1957)
for static equilibria, Woltjer (1959a,b) was the first to
apply this formalism to the dynamic problem, deriving
some integrals of the system. His most complicated
case was an axisymmetric configuration with constant
entropy. More general equations of state were treated
by Hamieri (1983). A systematic review of the equations
of MHD equilibria in the three different coordinates
(Cartesian, cylindrical and spherical coordinates) can be
found in the series of papers by Tsinganos (1981, 1982a,
b, c), whereas the relativistic case is treated in Lovelace
et al. (1986) and Bogovalov (1994). Unified treatments
in a general curvilinear coordinate system were given by
Edenstrasser (1980a, b) for the static case and by Agim
and Tataronis (1985) for the case of equilibria with flow.
Exact equilibria for MHD equations were obtained in
Del Zanna and Chiuderi (1996), Vlahakis and Tsinganos
(1998, 1999) and Cheviakov and Bogoyavlenskij (2004).
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In a series of papers (Throumoulopoulos and Pantis
1989, 1996; Throumoulopoulos and Tasso 1997, 1999,
2001; Tasso and Throumoulopoulos 1998; Simintzis et
al. 2001; Throumoulopoulos et al. 2003, 2009), the MHD
equilibrium of ideal plasmas with incompressible flows
and translational as well as axial symmetry were invest-
igated. The main conclusions of these papers are as fol-
lows. (a) If the equilibrium flows of cylindrical plasmas
with arbitrary cross-sectional shapes are purely poloidal,
they should be incompressible. (b) Exact equilibria were
constructed for constant poloidal flow Mach numbers
for both cylindrical and axisymmetric configurations.
(c) For the physically appealing class of cylindrical
equilibria with isothermal magnetic surfaces, their cross-
sections must be circular at large, while no restriction
is imposed on the magnetic surfaces of axisymmetric
equilibria, apart from the vicinity of the magnetic axis
where they should be circular.

The effect of flows on stability properties of plasma
configuration is not completely understood. Numerous
experimental observations show that the plasma flows
in tokamaks can improve the overall plasma confine-
ment by stabilizing kink and resistive wall modes and
suppressing turbulence (Taylor et al. 1995; Garofalo
et al. 1999; Takechi et al. 2007). A stability analysis
of MHD configurations with flows constitutes a very
challenging mathematical problem. The linear stabil-
ity analysis of such systems was first carried out in
Frieman and Rotenberg (1960). The effects of poloidal
and toroidal flows on tokamak plasma equilibria were
examined by McClements and Hole (2010) in the MHD
limit. Explicit sufficient conditions for the linear and
nonlinear stability of equilibrium solutions of a variety
of fluid and plasma problems in one, two and three
dimensions were established by Holm et al. (1985).
In their analysis, they used the development of the Lya-
punov technique for Hamiltonian systems due to Arnold
(1966). Stability analyses were performed on a general
class of vortex flows with density inhomogeneity and
magnetic fields (Fung 1984). Ideal MHD theory and its
applications to magnetic fusion systems were reviewed
and the equilibrium behavior of the currently toroidal
magnetic fusion concepts and stability of such equilibria
were investigated (Freidberg 1982). Lyapunov stability
conditions for ideal MHD plasmas with mass flow in
axisymmetric toroidal geometry (Almaguer et al. 1988)
and in cylindrical geometry with arbitrary cross-section
(Khater and Moawad 2003) were determined in the
Eulerian representation. Exact equilibria of nonlinear
two-dimensional cases (Khater and Moawad 2009a,b)
and stability analysis of a barotropic compressible flow
in the plane (Moawad 2012) were constructed.

In the present paper, we study the equilibrium and
stability of an ideal plasma with compressible mass flow
in the presence of a gravitational field. The paper is
organized as follows.

In Sec. 2, we review the governing and steady-state
equations of ideal compressible MHD flows. In Sec. 3,

we investigate the constants of motion for the MHD
system introduced in Sec. 2. We formulate variational
principles and associate the steady-state MHD equations
with critical points of a nonlinear conserved Lyapunov
functional. In Sec. 4, we establish sufficient conditions of
linearized stability for plasma equilibria given in Sec. 2.
In Sec. 5, we establish a nonlinear stability criterion for
plasma equilibria given in Sec. 2. In Sec. 6, we investigate
physical interpretations for our obtained results. Finally,
we summarize the results in Sec. 7.

2. The governing and steady-state equations
The ideal MHD plasma flows are governed by the
following set of equations, written in standard notations
and convenient units: the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

the entropy equation

∂s

∂t
+ v · ∇s = 0, (2)

the momentum equation

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ J ∧ B − ρ∇Ω, (3)

Faraday’s law

∂B

∂t
= −∇ ∧ E, (4)

the divergence-free Gauss law

∇ · B = 0, (5)

and the ideal Ohm’s law

E + v ∧ B = 0, (6)

with the thermodynamics relations

p = ρ2eρ(ρ, s), T = es(ρ, s), (7)

where ρ, t, v, p, Ω, s, e(ρ, s),B,E, J and T stands as usual
for the mass density, time, fluid velocity, gas pres-
sure, gravitational potential, specific entropy, specific
internal energy, magnetic field induction, electric field,
electric current density and temperature, respectively.
The system under consideration is a compressible MHD
plasma in a cylindrical domain D with boundary ∂D and
arbitrary cross-sectional shape. The plasma pressure and
temperature are determined as functions of ρ and s from
a prescribed equation of state for the specific internal
energy via the first law of thermodynamics:

de =
∂e

∂ρ
dρ+

∂e

∂s
ds =

p

ρ2
dρ+ Tds. (8)

The boundary conditions are taken to be

n · v = 0, n · B = 0 on ∂D, (9)

where n is the outward unit vector normal to ∂D.
The divergence-free field B can be expressed as

B = ∇ ∧ (ψez) + Bzez , (10)
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where ψ = ψ(x, y, t) is the scalar magnetic potential,
Bz is the z-component of the magnetic field and ez is
the unit vector in the z-direction. Since B · ∇ψ = 0, the
magnetic surface is characterized by ψ(x, y, t) = const.
The electric current density is given by

J =
1

μ0
∇ ∧ B =

1

μ0
(∇Bz ∧ ez − ∇2ψez), (11)

where μ0 is the permeability of free space. In what
follows, for simplicity, we take the permeability of free
space to be the unity. This is possible in the cgs units.
In the steady state (∂/∂t = 0), equations (1)–(4) become

∇ · (ρv) = 0, (12)

v · ∇s = 0, (13)

ρ(v · ∇)v = −∇p+ J ∧ B − ρ∇Ω, (14)

∇ ∧ E = 0. (15)

In this case, the velocity field v can be expressed as

ρv = ∇ ∧ (φez) + ρvzez , (16)

where φ = φ(x, y) is the stream function of the flow
and vz is the z-component of the velocity field. Since
v · ∇φ = 0, the flow surface is characterized by φ(x, y) =
const.
The scalar product of Ohm’s law (6) by B yields

B · E = 0. (17)

From (15), the electric field can be expressed as E =
−∇Θ. Hence, Ohm’s law is projected along ez yielding

ez · (∇φ ∧ ez) ∧ (∇ψ ∧ ez) = 0. (18)

Equations (17) and (18) imply that φ = φ(ψ) and Θ =
Θ(ψ). Hence, (13) implies that s = s(ψ). Two additional
surface quantities are found from the component of (6)
perpendicular to a magnetic surface:

vz − φ′

ρ
Bz = Θ′, (19)

and from the component of the momentum conservation
(14) along ez:

φ′vz − Bz = χ(ψ). (20)

The prime denotes differentiation with respect to ψ.
Solving the set of (19) and (20) for Bz and vz , one
obtains

Bz =
ρ(φ′Θ′ − χ)

ρ− φ′2 , (21)

vz =
ρΘ′ − φ′χ

ρ− φ′2 . (22)

Using (10), (16) and (19), one can get the following
relation between the velocity and magnetic field:

v =
φ′

ρ
B +Θ′ez . (23)

From (10) and (11), (14) takes the form

ρ(v · ∇)v = ρT∇s− ρ∇h− ∇ψ ∧ ∇Bz

− ∇2ψ∇ψ − Bz∇Bz − ρ∇Ω, (24)

where we have used the following relation of the specific
enthalpy h:

h = e+
p

ρ
. (25)

Using (16) and the vector identity

(v · ∇)v = ∇
(
v2

2

)
− v ∧ (∇ ∧ v), (26)

equation (24) becomes

ρ∇
(
v2

2

)
− (∇φ ∧ ez) ∧ ∇ ∧

(
∇φ
ρ

∧ ez

)

+ ∇vz ∧ ∇φ− ρvz∇vz = ρT∇s− ρ∇h− ∇ψ ∧ ∇Bz

− ∇2ψ∇ψ − Bz∇Bz − ρ∇Ω. (27)

Using the vector identity

∇ ∧ (a ∧ b) = a∇ · b + (b · ∇)a − b∇ · a − (a · ∇)b, (28)

equation (27) becomes

(φ′∇vz − ∇Bz) ∧ ∇ψ + ρ∇
(
v2

2
+ h+ Ω

)

− ρvz∇vz + Bz∇Bz =

[
φ′∇ ·

(
∇φ
ρ

)

− ∇2ψ + ρTs′] ∇ψ. (29)

Using (20) into (29), we have

ρ∇
(
v2

2
+ h+ Ω

)
− ρvz∇vz + Bz∇Bz

=

[
φ′∇ ·

(
∇φ
ρ

)
− ∇2ψ + ρTs′

]
∇ψ. (30)

Using (19) and (20) in the last term of the left-hand side
of (30), we get

ρ∇
(
v2

2
− vzΘ

′ + h+ Ω

)
=

[
φ′∇ ·

(
∇φ
ρ

)
− ∇2ψ

− ρvzΘ
′′ + Bzχ

′ − vzBzφ
′′ + ρTs′] ∇ψ. (31)

The components of (31) along B and perpendicular to
a magnetic surface yield

v2

2
− vzΘ

′ + h+ Ω = G(ψ), (32)

φ′∇ ·
(

∇φ
ρ

)
− ∇2ψ − ρvzΘ

′′ + Bzχ
′ − vzBzφ

′′ + ρTs′

= ρG′(ψ), (33)

where G(ψ) is an arbitrary function of ψ. Equation
(32) represents the hydrodynamic Bernoulli law and
(33) represents a generalized Grad–Shafranov equation
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in which it is a generalization to the known Grad–
Shafranov equation in the static equilibrium (Lüst and
Schlüter 1957; Grad and Rubin 1958).

3. Constants of motion and variational
formulations

A Hamiltonian system referred to as a conservative
system describes a motion involving constraints and
forces which have a potential. It is a mathematical form-
alism developed by Hamilton to describe the evolution
equations of a physical system. The advantage of this
description is that it gives important insight about the
dynamics, even if the initial-value problem cannot be
solved analytically. The equations of motion can be
expressed in Hamiltonian form as

dF

dt
(u) =

∂F

∂t
(u) + {F,H}(u), (34)

where H is the Hamiltonian, F is any functional of a set
of dynamical variables u, and {, } is Poisson bracket.
The constants of motion for the Hamiltonian system
(34) are conserved functionals C , so that

dC

dt
=
∂C

∂t
+ {C,H} = 0. (35)

The conserved quantity C , Casimir functional, corres-
ponds to the symmetry under Lagrangian relabeling
of fluid particles. The Hamiltonian viewpoint of fluid
mechanical systems with finite and infinite number of
degrees of freedom was described by Morrison (1998),
where the action principle for the ideal compressible
fluid was described in terms of Lagrangian or mater-
ial variables. Also, the Casimir’s energy method was
discussed and a variant of it that depends upon the
notion of dynamical accessibility was described. An
analytical approach based on Hamiltonian field theory
was introduced in Morrison and Hazeltine (1984). It
was shown that the nonlinear ideal reduced MHD
system in both high-beta and low-beta versions can be
expressed in Hamiltonian form (Morrison and Hazeltine
1984). The original idea that MHD in Eulerian variables
is a Hamiltonian system in coordinates that are not
canonical, and thus can be written in terms of a nonca-
nonical Poisson bracket, was introduced in Morrison and
Greene (1980,1982). Also, an extended discussion of such
brackets was given in Morrison (1982). A procedure for
obtaining Casimir invariants from noncanonical Poisson
brackets was described by Andreussi et al. (2010) and
earlier a practical use of such a procedure was given in
Andreussi and Pegoraro (2008).

Requiring that a solution ue be a constrained min-
imum of the Hamiltonian, δ(H + C)[ue] =: δ�[ue] = 0,
gives an equilibrium solution. The solutions ue is then
said to be formally stable if δ2�[ue] is definite. This is
related to δW energy principles, which extremize the
potential energy.

Variational principle based on minimizing the po-
tential energy (the sum of the magnetic and internal
energies) subject to constancy of the topological invari-
ants of the ideal magnetostatic equations was formu-
lated by Kruskal and Kulsrud (1958) for characterizing
the equilibrium and stability properties of static ideal
plasmas in toroidal geometry. The linear stability of
these static equilibria was investigated by Bernstein et
al. (1958) by using the energy principle. The linear
stability of stationary MHD equilibria with mass flow
was investigated by Frieman and Rotenberg (1960),
where the energy principle method was extended to
that purpose. Constrained energy variational principles
in the Eulerian representation were applied to charac-
terize axisymmetric MHD equilibria as critical points
of conserved quantities for astrophysical plasmas in
Chandrasekhar and Predergast (1956), Chandrasekhar
(1957), Chandrasekhar and Woltjer (1958) and Woltjer
(1959c).
The ideal MHD equations introduced in Sec. 2 conserve
the Hamiltonian

H =

∫
D

[
1

2

(
ρv2 + B2

)
+ ρe(ρ, s) + ρΩ

]
dτ, (36)

where dτ = dxdydz and B = |B|.
Consider now the functional

� =

∫
D

[
1

2

(
ρv2 + B2

)
+ ρe(ρ, s) + ρΩ + ρF1

+ ρvzF2 + BzF3 + (v · B)F4] dτ. (37)

The functional � is a conserved quantity and it rep-
resents the invariants for ideal MHD in the cylindrical
case. The fifth, sixth, seventh and eighth parts of �
represent the mass, momentum, magnetic helicity and
cross-helicity, respectively. The first variation of � is
given by

δ� =

∫
D

[
(ρv + F4B) · δv + (B + F4v) · δB + ρF2δvz

+F3δBz +

(
v2

2
+ h+ Ω + vzF2 + F1

)
δρ

+
[
ρF ′

1 + ρvzF
′
2 + BzF

′
3 + (v · B)F ′

4 + ρTs′] δψ
]
dτ,

(38)

where we assume that there is no perturbation for the
gravitational potential. By standard manipulations using
(10) and (16) and the Gauss divergence theorem, (38) is
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converted into

δ� =

∫
D

{
(ρvz + F4Bz + ρF2)δvz + (Bz + F4vz + F3) δBz

+

(
v2

2
+ h+ Ω + vzF2 + F1 − 1

ρ2
|∇φ|2

− F4

ρ2
∇ψ · ∇φ

)
δρ+

[
ρF ′

1 + ρvzF
′
2 + BzF

′
3

+ (v · B)F ′
4 + ρTs′ − ∇2ψ − ∇ ·

(
F4∇φ
ρ

)]
δψ

+
1

ρ
(∇φ+ F4∇ψ) · ∇δφ

}
dτ

+

∫
∂D

δψn ·
(
F4

ρ
∇φ+ ∇ψ

)
dS. (39)

The surface integral in (39) vanishes with the boundary
condition

δψ = 0 on ∂D. (40)

The boundary condition (40) is consistent with the
second condition of (9), which implies that ψ = const.
on ∂D.
The first variation in (39) vanishes at the stationary
solution, provided

ρvz + F4Bz + ρF2 = 0, (41a)

Bz + F4vz + F3 = 0, (41b)

v2

2
+ h+ Ω + vzF2 + F1 − 1

ρ2
|∇φ|2 − F4

ρ2
∇ψ · ∇φ = 0,

(41c)

ρF ′
1 + ρvzF

′
2 + BzF

′
3 + (v · B)F ′

4 + ρTs′

− ∇2ψ − ∇ ·
(
F4∇φ
ρ

)
= 0, (41d)

∇φ+ F4∇ψ = 0. (41e)

Taking the cross product of (41e) by ez and using (41a),
we find that the velocity and magnetic field are related
by

v = −F4

ρ
B − F2ez . (42)

The cross product of (41e) by ∇ψ implies that the stream
function is a surface quantity, φ = φ(ψ), and F4 = −φ′.
Hence, (42) coincides with (23) by taking F2 = −Θ′. The
substitution of (41e) in (41c) yields the Bernoulli law:

v2

2
+ h+ Ω + vzF2 = −F1, (43)

which coincides with (32) by taking F1 = −G.
Now, we show that the critical point conditions for
�, (41a)–(41e), imply the equilibrium relations of the
steady-state equations of an ideal MHD system in Sec.
2 (12)–(15). Relation (42) between the velocity and

magnetic field at equilibrium gives immediately

∇ · (ρv) = −∇ · (F4B + ρF2ez) = 0, (44)

v · ∇s = 0, (45)

∇ ∧ (v ∧ B) = −∇ ∧ (F2ez ∧ B) = −∇ ∧ (F2∇ψ) = 0, (46)

which satisfy the continuity equation, the entropy equa-
tion and Faraday’s law ((12), (13) and (15) in Sec. 2).
Since v ·B = ∇φ · ∇ψ/ρ+ vzBz , then (41d) takes the form

ρF ′
1+ρvzF

′
2+BzF

′
3+vzBzF

′
4+ρTs

′−∇2ψ−F4∇·
(

∇φ
ρ

)
=0,

(47)
which coincides with (33) by using F1 = −G, F2 =
−Θ′, F3 = χ and F4 = −φ′. This shows that (41d) rep-
resents the component of the momentum (14) perpen-
dicular to a magnetic surface. Also, scalar multiplication
of (42) by ∇vz yields

ρv · ∇vz = −F4B · ∇vz = −ez · [∇(F4vz) ∧ ∇ψ], (48)

which by using (41b) gives

ρv · ∇vz = ez · [∇ (F3 + Bz) ∧ ∇ψ] = ez · (∇Bz ∧ ∇ψ)

= ez · (J ∧ B). (49)

Equation (49) represents the z-component of (14).
Moreover, (41a), (41b) and (43) coincide with (19),
(20) and (32), respectively. Therefore, the critical point
conditions (41a)–(41e) of the functional � in (37) imply
the equilibrium relations for the ideal MHD equations.

4. Linear stability criterion
In this section, we formulate variational principles and
establish sufficient conditions for the linearized stability
of MHD equilibria given in Sec. 2.

The Hamiltonian function for any Hamiltonian sys-
tem linearized about equilibrium is one-half the second
variation, i.e. 1

2
δ2�. Consequently, the quadratic form

δ2� is preserved in time by the dynamics of the linear-
ized flow. Moreover, if δ2� is definite in sign, then it
provides a conserved norm for measuring deviation from
equilibrium of an initial disturbance under the linearized
dynamics. Thus, the conditions on the equilibrium flow
for δ2� to be definite are sufficient conditions for
linearized Lyapunov stability (see Holm et al. 1985
and Spies 1980 and references therein for additional
discussions of Lyapunov methods in plasma physics).
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The second variation of the functional � gives

δ2� =

∫
D

{ρ|δv|2 + 2v · δvδρ+ 2F4δB · δv

+ 2F ′
4δψ(B · δv + v · δB) + |δB|2 + 2F2δρδvz

+ 2ρF ′
2δψδvz + 2F ′

3δψδBz + 2(F ′
1 + vzF

′
2

+ s′ ∂h

∂s
)δψδρ+

∂h

∂ρ
(δρ)2 + (ρF ′′

1 + ρvzF
′′
2

+BzF
′′
3 + v · BF ′′

4 + ρs′2 ∂
2e

∂s2
+ ρTs′′)(δψ)2}dτ.

(50)

Let (δv1, δv2) and (δB1, δB2) be the (x, y) components of
δv and δB, respectively, the second variation (50) can be
rearranged into matrix quadratic from as follows:

δ2� =

∫
D

(
δv1 δv2 δvz δB1 δB2 δBz δρ δψ

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ 0 0 F4 0 0 v1 F ′
4B1

0 ρ 0 0 F4 0 v2 F ′
4B2

0 0 ρ 0 0 F4 g1 g2

F4 0 0 1 0 0 0 F ′
4v1

0 F4 0 0 1 0 0 F ′
4v2

0 0 F4 0 0 1 0 g3

v1 v2 g1 0 0 0 ∂h
∂ρ

g4

F ′
4B1 F ′

4B2 g2 F ′
4v1 F ′

4v2 g3 g4 g5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δv1
δv2
δvz
δB1

δB2

δBz
δρ

δψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
dτ, (51)

where

g1 = vz + F2, g2 = BzF
′
4 + ρF ′

2,

g3 = vzF
′
4 + F ′

3, g4 = F ′
1 + vzF

′
2 + s′ ∂h

∂s
,

g5 = ρF ′′
1 + ρvzF

′′
2 + BzF

′′
3 + v · BF ′′

4

+ ρs′2 ∂
2e

∂s2
+ ρTs′′. (52)

The purely algebraic quadratic form is positive definite
if and only if each of its subdeterminants along the
principal diagonal (principal minors) is positive definite.
The eight principal minors of the symmetric 8×8 matrix

in (51) are

μ1 = ρ, μ2 = ρ2, μ3 = ρ3, μ4 = ρ2
(
ρ− F2

4

)
,

μ5 = ρ
(
ρ− F2

4

)2
, μ6 =

(
ρ− F2

4

)3
,

μ7 =
(
ρ− F2

4

)2
[(
ρ− F2

4

) ∂h
∂ρ

− v21 − v22 − g2
1

]
,

μ8 = αμ7 + G∗
[
(v1Y − v2X)2 + (v1Z − g1X)2

+ (v2Z − g1Y )2 + 2G∗g4(v1X + v2Y + g1Z)

−G∗2
g2

4 − G∗ ∂h

∂ρ
(X2 + Y 2 + Z2)

]
,

where

α= g5 − g2
3 − F ′2

4 (v21 + v22), G∗ = ρ− F2
4 ,

X = F ′
4 (B1 − v1F4) , Y = F ′

4 (B2 − v2F4) ,

Z = g2 − F4g3. (53)

The term (v1Y − v2X)2 in μ8 vanishes by using relation
(42), then we get

μ8 = αμ7 + G∗
[
(v1Z − g1X)2 + (v2Z − g1Y )2

+ 2G∗g4(v1X + v2Y + g1Z) − G∗2
g2

4

−G∗ ∂h

∂ρ
(X2 + Y 2 + Z2)

]
. (54)

The subdeterminants from μ1 to μ6 are positive definite
if ρ − F2

4 > 0; hence, the sufficient conditions for linear
stability are

ρ > F2
4 , (55a)

(
ρ− F2

4

) ∂h
∂ρ

> v21 + v22 + g2
1 , (55b)

μ8 > 0. (55c)

5. Nonlinear stability criterion
In this section, we establish nonlinear stability condi-
tions for the MHD equilibria given in Sec. 2. We use
the stability algorithm introduced in Holm et al. (1985)
in the sense of the Lyapunov definition of nonlinear
stability which states that in terms of a norm || ||, an
equilibrium point ue of a dynamical system is said to
be nonlinearly stable if for every ε > 0 there is a δ > 0
such that if ||u(0) − ue|| < δ, then ||u(t) − ue|| < ε for
t > 0 (t is the time).

Briefly, we list the nonlinear stability algorithm of
Holm et al. (1985).
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5.1. Stability algorithm

(a) Choose a Banach space � of fields u and write the
equations of motion on � as

∂u

∂t
= X(u), (56)

for a nonlinear operator X mapping a domain in � to
�.

(b) Find a conserved functional H for (56), usually
representing the total energy; that is find a map H :
� −→ � (the real numbers) such that dH(u)/dt = 0 for
a continuously differentiable solution u of (56).

(c) Find a family of constants of motion for (56).
That is, find a collection of functionals C on U such
that dC(u)/dt = 0 for any continuously differentiable
solution u of (56).

(d) Relate an equilibrium solution ue of (56) to the
constant of motion C by requiring that � := H + C

have a critical point at u.
(e) Find quadratic forms (convexity estimates) Q1 and

Q2 on � such that

Q1(Δu) � H(ue + Δu) −H(ue) − DH(ue) · Δu, (57a)

Q2(Δu) � C(ue + Δu) − C(ue) − DC(ue) · Δu, (57b)

for all Δu = u− ue in �. Then, require that

Q1(Δu) + Q2(Δu) > 0, for all Δu 	= 0 in �. (58)

(f) If steps from (a) to (e) have been carried out, then
for any solution u of (56) the following a priori estimate
on Δu holds:

Q1(Δu) + Q2(Δu) � �(u(0)) − �(ue). (59)

(g) Set ||Δu(t)||2 = Q1(Δu)+Q2(Δu), so ||Δu(t)|| defines
a norm on � and the functional � is continuous in this
norm at ue, then ue is nonlinearly stable.

Now we apply the above procedure to the MHD
equilibria considered in Sec. 2. All the steps (a)–(d) have
been carried out in Secs. 2 and 3, where the conserved
functional H in step (b) was taken to be the Hamiltonian
in (36), and the collection of a family of constants of
motion in step (c) is

C =

∫
D

[ρF1 + ρvzF2 + BzF3 + (v · B)F4] dτ. (60)

What remains is to apply steps (e)–(g). For stationary
solutions (ρe, ψeve,Be) , we have

Ĥ : =H(ρe + Δρ, ψe + Δψ, ve + Δv,Be + ΔB)

−H(ρe, ψe, ve,Be) − DH(ρe, ψe, ve,Be)

· (Δρ,Δψ,Δv,ΔB) =

∫
D

{
1

2

[
(ρe + Δρ)(Δv)2

+ 2ve · ΔvΔρ+ (ΔB)2
]
+ ρe

[
e(ρe + Δρ, se + Δs)

− e(ρe, se) −
(
∂e

∂ρ
(ρe, se)Δρ+ Ts′Δψ

)]

+ [e(ρe + Δρ, se + Δs) − e(ρe, se)] Δρ

}
dτ, (61)

where se = se(ψe) and Δs = s′(ψe)Δψ, and Δ(·) refers
to perturbations. Using the two dimensional Taylor’s
expansion with remainder in Lagrange’s form, we have

Ĥ =
1

2

∫
D

{
(ρe + Δρ)(Δv)2 + 2ve · ΔvΔρ+ (ΔB)2

+ ρe

[
∂2e

∂ρ2
(ϕ1, χ1)(Δρ)

2 + 2s′(χ1)
∂2e

∂s∂ρ
(ϕ1, χ1)ΔρΔψ

+

(
Ts′′ + s′2 ∂

2e

∂s2

)
(ϕ1, χ1)(Δψ)2

]

+ 2
∂e

∂ρ
(ϕ2, χ2)(Δρ)

2 + 2s′(χ2)
∂e

∂s
(ϕ2, χ2)ΔρΔψ

}
dτ,

(62)

where ρe < ϕ1, ϕ2 < ρe + Δρ, ψe < χ1, χ2 < ψe + Δψ.
From this analysis, we take the quadratic functional Q1

in step (e) to be

Q1 =
1

2

∫
D

[
ρmin(Δv)2 + 2ve · ΔvΔρ+ (ΔB)2

+ a(Δρ)2 + 2bΔρΔψ + cρe(Δψ)2
]
dτ, (63)

where ρmin, a, b and c are the minimum values of ρ,
∂h/∂ρ, ∂h/∂ψ = s′∂h/∂s and ∂2e/∂ψ2 = Ts′′+s′2∂2e/∂s2,
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respectively. Next, consider the functional

Ĉ : =C(ρe + Δρ, ψe + Δψ, ve + Δv,Be + ΔB)

−C(ρe, ψe, ve,Be) − DC(ρe, ψe, ve,Be)

· (Δρ,Δψ,Δv,ΔB) =

∫
D

{
(ρe + Δρ)F1(ψe + Δψ)

+ (ρe + Δρ)(vz(e) + Δvz)F2(ψe + Δψ) + (Bz(e)

+ ΔBz)F3(ψe + Δψ) + (ve + Δv) · (Be + ΔB)F4(ψe

+ Δψ) − [F1(ψe) + vz(e)F2(ψe)]Δρ− ρeF1(ψe)

− ρe(vz(e) + Δvz(e))F2(ψe) − (Bz(e) + ΔBz)F3(ψe)

− (ve · Be + ve · ΔB + Be · Δv)F4(ψe)

− ρe[F
′
1(ψe) + vz(e)F

′
2(ψe) + Bz(e)F

′
3(ψe)

+ (ve · Be)F
′
4(ψe)]Δψ

}
dτ. (64)

Using the following notation:

F̂i = Fi(ψe + Δψ) − Fi(ψe) − F ′
i (ψe)Δψ, (65a)

F∗
i = Fi(ψe + Δψ) − Fi(ψe), (65b)

where i = 1, 2, 3, 4; thus (64) becomes

Ĉ =

∫
D

[
ρeF̂1 + ρevz(e)F̂2 + Bz(e)F̂3 + (ve · Be)F̂4

+F∗
1Δρ+ F∗

2 (ρeΔvz + vz(e)Δρ) + F∗
3ΔBz

+F∗
4 (ve · ΔB + Be · Δv) + F2(ψe + Δψ)ΔρΔvz

+F4(ψe + Δψ)Δv · ΔB
]
dτ. (66)

Using the one-dimensional Taylor’s expansion with re-
mainder in Lagrange’s form, we have

F̂i =
1

2
F ′′
i (ξi)(Δψ)2, ξi = ψe + θiΔψ, 0 < θi < 1,

(67a)

F∗
i = F ′

i (ζi)Δψ, ζi = ψe + λiΔψ, 0 < λi < 1, (67b)

where i = 1, 2, 3, 4. Therefore, (66) reads

Ĉ =

∫
D

{
1

2

[
ρeF

′′
1 (ξ1) + ρevz(e)F

′′
2 (ξ2) + Bz(e)F

′′
3 (ξ3)

+ (ve · Be)F
′′
4 (ξ4)

]
(Δψ)2 + F ′

1(ζ1)ΔρΔψ

+F ′
2(ζ2)(ρeΔvz + vz(e)Δρ)Δψ + F ′

3(ζ3)ΔBzΔψ

+F ′
4(ζ4)(ve · ΔB + Be · Δv)Δψ + F2(ψe + Δψ)ΔρΔvz

+F4(ψe + Δψ)Δv · ΔB

}
dτ. (68)

For finite-amplitude perturbations ψmin � ξi, ζi, χi �
ψmax and ρmin � ϕj � ρmax, where i = 1, 2, 3, 4, we

take the quadratic functional Q2 in step (e) to be

Q2 =

∫
D

[1

2
k(Δψ)2 + F ′

1(ζ1)ΔρΔψ + F ′
2(ζ2)(ρeΔvz

+ vz(e)Δρ)Δψ + F ′
3(ζ3)ΔBzΔψ + F ′

4(ζ4)(ve · ΔB

+ Be · Δv)Δψ + F2(χ3)ΔρΔvz

+F4(χ4)Δv · ΔB
]
dτ, (69)

where k is the minimum value of Λ := ρeF
′′
1 (ξ1) +

ρevz(e)F
′′
2 (ξ2) + Bz(e)F

′′
3 (ξ3) + (ve · Be)F

′′
4 (ξ4), and hence

(Q1 + Q2)(Δρ,Δψ,Δv,ΔB) =
1

2

∫
D

[
ρmin(Δv)2 + 2ve

· ΔvΔρ+ (ΔB)2 + a(Δρ)2 + (k + cρe)(Δψ)2

+ 2[F ′
1(ζ1) + vz(e)F

′
2(ζ2) + b]ΔρΔψ

+ 2
[
ρeF

′
2(ζ2)Δvz + F ′

3(ζ3)ΔBz

+F ′
4(ζ4)(ve · ΔB + Be · Δv)

]
Δψ + 2F2(χ3)ΔρΔvz

+ 2F4(χ4)Δv · ΔB
]
dτ. (70)

Equation (70) can be rearranged into matrix quadratic
form as in (51), with the replacement of ρ, ∂h/∂ρ, g4

and g5 by ρmin, a, F
′
1(ζ1) + vz(e)F

′
2(ζ2) + b and k + cρe,

respectively. Consequently, condition (58) holds if

ρmin > F2
4 , (71a)

a
(
ρmin − F2

4

)
> v21 + v22 + g2

1 , (71b)

μ8 > 0. (71c)

Thus, the a priori estimate (59), in step (f), holds. Finally,
to achieve step (g) we define the following norm:

||(Δρ,Δψ,Δv,ΔB)||2 = (Q1 + Q2)(Δρ,Δψ,Δv,ΔB). (72)

Then we have the following nonlinear stability criterion.

5.2. Nonlinear stability criterion

Let (ρe, ψe, ve,Be) be an equilibrium solution of the
system (1)–(6). Suppose the following.
(i) Equations (41a)–(41e) are satisfied for some twice
continuously differentiable functions F1(ψ), F2(ψ), F3(ψ)
and F4(ψ).
(ii) For 0 < ρmin � ρ(x, y) � ρmax < ∞, the functions
F1(ψ), F2(ψ), F3(ψ) and f(ψ) = F ′′

1 +vzF
′′
2 +BzF

′′
3 +ωzF

′′
4
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satisfy

−∞ < a �
∂h

∂ρ
�

(
∂h

∂ρ

)
max

< ∞, (73a)

−∞ < b �
∂h

∂ψ
�

(
∂h

∂ψ

)
max

< ∞, (73b)

−∞ < c �
∂2e

∂ψ2
�

(
∂2e

∂ψ2

)
max

< ∞, (73c)

−∞ < k � Λ � Λmax < ∞. (73d)

(iii) For −∞ < ψmin � ψ(x, y) � ψmax < ∞,

ρmin > F2
4 (ψ), (74a)

a
(
ρmin − F2

4 (ψ)
)
> v21 + v22 + g2

1 , (74b)

μ8 > 0. (74c)

then (ρe, ψe, ve,Be) is nonlinearly stable relative to the
norm (72).

6. Physical interpretations
In what follows, we explain physical interpretations of
the stability criteria obtained in Secs. 4 and 5. On
the basis of the definition VAp ≡ Bp/

√
ρ for the pol-

oidal Alfvén velocity VAp associated with the poloidal
magnetic field Bp ≡ ∇ψ ∧ ez , we have v2Ap = B2

p/(ρ)
(where vAp ≡ |VAp| is the Alfvén speed). Hence, by
using (42), we find that the square of the poloidal
velocity v2p = F2

4 v
2
Ap/ρ, where vp is the magnitude of

the poloidal velocity vp, (vp = ∇φ/ρ ∧ ez). Thus, by the
definition of the square of the Alfvén Mach number
M2

A ≡ v2p/v
2
Ap = F2

4/ρ of the poloidal flow, condition

(55a) can be written as M2
A < 1, which requires the

equilibrium flow to be sub-Alfvénic. This is also required
by condition (74a) of the nonlinear stability criterion
because M2

A � F2
4/ρmin < 1. From condition (55b) we

note that the specific enthalpy exceeds with increasing
the fluid density. This is physically reasonable because
the specific enthalpy is related to the sound speed by the
relation c2s = ρ∂h/∂ρ. Condition (55b) can be written as

0 < M2
A +

v2p + g2
1

c2s
< 1, (75)

where c2s is the square of the sound speed. From in-
equality (75) we find that v2p < c2s , which requires the

equilibrium flow to be subsonic. Also, we have v2p <

c2s = ρ∂h/∂ρ = p/ρ. This is physically reasonable from
the fact that the pressure increases as the density of the
fluid increases. The algebraic condition (55c) places a
constraint on the fields v and B. From inequality (75), we
note that M2

A < 1, which coincides with condition (55a).
Therefore, condition (55b) includes condition (55a) and

the linear stability criterion, in Sec. 4, is reduced to

(
ρ− F2

4

) ∂h
∂ρ

> v21 + v22 + g2
1 , (76a)

μ8 > 0, (76b)

which are equivalent to

M2
A +

v2p + g2
1

c2s
< 1, (77a)

μ8 > 0. (77b)

Conditions (76a) and (76b) or (77a) and (77b) are
sufficient for the linear stability of ideal gravitating
MHD flows. Condition (74b) of the nonlinear stability
criterion can be rewritten in the form

0 <
F2

4

ρmax
+
v2p + g2

1

c2s
<
ρmin

ρmax
, (78)

which implies F2
4 < ρmin. Therefore, condition (74a) of

the nonlinear stability criterion can be omitted because
it is contained into condition (74b). Conditions (74b)
and (74c) are more stringent than conditions (76b) and
(76c) of the linear stability criterion.
Returning to the generalized Grad–Shafranov equation
(47), in which it can be written in the form(

1 − F2
4

ρ

)
∇2ψ − F4∇

(
F4

ρ

)
· ∇ψ

= (ρF ′
1 + ρvzF

′
2 + BzF

′
3 + vzBzF

′
4 + ρTs′). (79)

Equation (79) is a nonlinear second-order PDE of mixed
type (Heinemann and Olbert 1978; Lovelace et al. 1986).
It requires the specification of the five arbitrary functions
F1, F2, F3, F4 and s. Somewhat less general forms of
(79) have been derived and discussed previously in the
axisymmetric case (Zehrfeld and Green 1972; Blandford
and Payne 1982; Lovelace et al. 1986; Contopoulos
and Lovelace 1994; McClements and Thyagaraja 2001).
Equation (79) is an elliptic or hyperbolic equation de-
pending on whether the discriminant D ≡ A2

xy − AxxAyy
is negative or positive, where Axx, Axy and Ayy represent
the coefficients of ∂2ψ/∂x2, ∂2ψ/(∂x∂y) and ∂2ψ/∂y2. In
general, with vp increasing from zero, (79) is elliptic,
hyperbolic, elliptic and ultimately hyperbolic at high
flow speeds (Zehrfeld and Green 1972; Heinemann and
Olbert 1978; Contopoulos and Lovelace 1994). The four
flow regimes are separated by three critical points. Two
of these critical points correspond to the flow speed
equal to the speeds of slow and fast magnetosonic waves,
vfms, vsms ≡ [1/2(c2s + v2A ± [(c2s + v2A)

2 − 4c2s v
2
Ap]

1/2)]1/2,
respectively, and one critical point is the speed of the
cusp of the slow-mode wave front propagation, vc ≡
csvAp/(c

2
s + v2A)

1/2 (see e.g. Whitham 1974; Miyamoto
1976). Both fast and slow magnetosonic waves have been
recently discovered in the solar corona in Chandrasekhar
and Woltjer (1958), Woltjer (1959c), Zehrfeld and Green
(1972), Whitham (1974), Miyamoto (1976), Heinemann
and Olbert (1978), Spies (1980), Blandford and Payne
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(1982), Contopoulos and Lovelace (1994), McClements
and Thyagaraja (2001), Nakariakov et al. (2000), Na-
kariakov and Verwichte (2005) and Verwichte et al.
(2006a,b), which created an observational foundation for
the novel technique for the coronal plasma diagnostics,
coronal seismology. The different four regimes of (79)
are the following:

(a) elliptic for v2p < v2c ,

(b) hyperbolic for v2c < v2p < v2sms,

(c) elliptic for v2sms < v2p < v2fms,

(d) hyperbolic for v2fms < v2p .

The condition (77a) requires the equilibrium flow to be
in the first elliptic regime. This can be pointed out by
putting condition (77a) in the form

v2p

v2Ap
+
v2p + g2

1

c2s
< 1, (80)

that is

v2p < v2c =
c2s v

2
Ap

c2s + v2A
<

c2s v
2
Ap

c2s + v2Ap
. (81)

Thus, the poloidal speed of the flow is less than the speed
of the cusp of the slow-mode wave front propagation.

7. Summary
In this paper, we have described the equilibrium prop-
erties and stability of an ideal MHD plasma with com-
pressible mass flow in the presence of a gravitational
field. In the unperturbed steady case, it has been shown
that the equilibrium states satisfy a nonlinear PDE
associated with a hydrodynamic Bernoulli law. If either
the z-component of the velocity field or the z-component
of the magnetic field is a function of the magnetic flux,
then only incompressible equilibrium flows are possible.
Variational principles for the above equilibrium states
have been formulated where the equilibrium solutions
are associated with critical points of a nonlinear con-
served Lyapunov functional �. Sufficient conditions for
the linear and nonlinear stability of these equilibria
under translational symmetric perturbations have been
established. They are interpreted, in the linear stability
case, by using the general fact for Hamiltonian systems
that the second variation of the nonlinear Lyapunov
functional � is conserved by the linearized dynamics
around the relative equilibrium state for which � has
a critical point. In the nonlinear stability case, they are
established in the sense of norm based on the Lyapunov
definition of nonlinear stability.

The obtained conditions require the equilibrium flow
to be sub-Alfvénic and subsonic in a rotating frame de-
termined on each flux surface. According to Guazzotto
et al. (2004), there are no sub-Alfvénic roots for the
Bernoulli equation as it is solved for the flow density.

That is, the poloidal flow must be reduced in order
for sub-Alfvénic roots to exist. When the roots are
found, they may be corresponding to subsonic, transonic
and supersonic flows. The flow domain is divided into
two regions. The inner region has subsonic flow and
the outer region has super-Alfvénic flow. There is a
discontinuity on a transonic surface where the poloidal
flow varies from subsonic to supersonic speed (Betti and
Freidberg 2000). It should be pointed out that subsonic
property is a sufficient condition for the stability of
flow, as we explained in Sec. 5. Condition (61) is an
ellipticity condition for the equilibrium flow. As occurs in
fluid dynamics with transonic flow, weak solutions may
develop when the Grad–Bernoulli–Shafranov system for
the ideal MHD flows leaves the first elliptic regime. The
sufficient stability conditions obtained here require the
equilibrium flow to be in the first elliptic regime for the
Grad–Bernoulli–Shafranov system.
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