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Abstract. For a locally compact group G, we study the distality of the action of
automorphisms T of G on SubG, the compact space of closed subgroups of G endowed
with the Chabauty topology. For a certain class of discrete groups G, we show that T acts
distally on SubG if and only if Tn is the identity map for some n ∈ N. As an application,
we get that for a T-invariant lattice � in a simply connected nilpotent Lie group G, T
acts distally on SubG if and only if it acts distally on Sub� . This also holds for any closed
T-invariant co-compact subgroup � in G. For a lattice � in a simply connected solvable
Lie group, we study conditions under which its automorphisms act distally on Sub� . We
construct an example highlighting the difference between the behaviour of automorphisms
on a lattice in a solvable Lie group and that in a nilpotent Lie group. We also characterise
automorphisms of a lattice � in a connected semisimple Lie group which act distally on
Sub� . For torsion-free compactly generated nilpotent (metrisable) groups G, we obtain
the following characterisation: T acts distally on SubG if and only if T is contained in a
compact subgroup of Aut(G). Using these results, we characterise the class of such groups
G which act distally on SubG. We also show that any compactly generated distal group G
is Lie projective.

2010 Mathematics Subject Classification. Primary 37B05; Secondary 22E25, 22E40,
22D45

1. Introduction. Distal actions were introduced by David Hilbert to study the
dynamics of non-ergodic actions on compact spaces (cf. Moore [23]). Let X be a
(Hausdorff) topological space. A semigroup S of homeomorphisms of X is said to act
distally on X if for every pair of distinct elements x, y ∈ X , the closure of {(T(x), T(y)) |
T ∈S} does not intersect the diagonal {(d, d) | d ∈ X }. Let Homeo(X) denote the set of
homeomorphisms of X . The map T ∈ Homeo(X) is said to be distal if the group {Tn}n∈Z

acts distally on X . If X is compact, then T is distal if and only if the semigroup {Tn}n∈N

acts distally (cf. [8]). Let G be a locally compact (Hausdorff) group with the identity e and
let T ∈ Aut(G). Then T is distal if and only if e /∈ {Tn(x) | n ∈ Z} whenever x �= e.

Distal actions on compact spaces have been studied extensively by Ellis [13], who
obtained a characterisation, and Furstenberg [14], who has a deep structure theorem for
distal maps on compact metric spaces. Distal actions by automorphisms on Lie groups
and locally compact groups have been studied by many mathematicians (see Abels [1, 2],
Jaworski-Raja [19], Raja-Shah [26, 27], Reid [28], Shah [30] and the references cited
therein).
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A locally compact (Hausdorff) group G is said to be distal if the conjugacy action
of G on G is distal. Equivalently, e /∈ {gxg−1 | g ∈ G}, for every x �= e. All discrete groups,
compact groups and nilpotent groups are distal. It is well known that a connected locally
compact group G is distal if and only if it has polynomial growth; and such a G is a compact
extension of a connected solvable normal subgroup (see [29] and [20]). In [28], Reid has
shown that any compactly generated totally disconnected distal group is Lie projective. We
extend this to all compactly generated locally compact distal groups (see Theorem 2.1).

For a locally compact group G, let SubG denote the space of all closed subgroups of G
equipped with the Chabauty topology (cf. [11]). Then SubG is compact. It is metrisable if G
is so (cf. [7]). Note that SubG has been identified for certain groups G; for example, SubR is
isomorphic to [0,∞], SubZ is isomorphic to {0} ∪ {1/n | n ∈ N} and SubR2 is isomorphic
to S4. For the study of various aspects of SubG for different groups G, we refer the reader
to Abert et al. [4], Baik and Clavier [5, 6], Bridson et al. [10], Pourezza and Hubbard [24]
and the references cited therein.

There is a natural action of Aut(G), the group of automorphisms of G, on SubG as
follows:

Aut(G)× SubG → SubG, H �→ T(H), T ∈ Aut(G),H ∈ SubG.

Each T ∈ Aut(G) defines a homeomorphism of SubG and the corresponding map from
Aut(G)→ Homeo(SubG) is a group homomorphism.

For automorphisms T of connected Lie groups G, Shah and Yadav in [32] have
studied and characterised the distality of the T-action on SubG under certain conditions
on T or on G; for example, T is unipotent or the largest connected central subgroup of G
is torsion-free. Our main aim is to study the distality of this action for some disconnected
metrisable groups G, namely, a certain class of discrete groups, compact groups and
compactly generated nilpotent groups.

A discrete (closed) subgroup � in a locally compact group G is said to be a lattice in G
if G/H carries a finite G-invariant measure. We refer the reader to [25] for generalities on
lattices. Note that a lattice � in a simply connected nilpotent group G is a finitely generated
discrete nilpotent co-compact subgroup and any automorphism T of � extends to a unique
automorphism of G (cf. [25], Theorem 2.11 and Corollary 1 following it). Note also that
Sub� is much smaller than SubG; for example, SubZn is countable, while SubRn is not. We
are motivated by the following question: Whether it is enough to study the T-action on
Sub� to determine the distality of the T-action on SubG. We show that it is in fact enough
to assume the distality of the T-action on Subc

� , the set of cyclic subgroups of �, to show
that Tn = Id, the identity map on G and, hence, it acts distally on SubG (more generally, see
Corollary 3.9). We also get a suitable generalisation of this for a closed co-compact Lie sub-
group � in G (see Corollary 4.5). For a lattice � in a simply connected solvable group G, if
T ∈ Aut(G) and T(�)= �, the distality of the action of T on Sub� implies that Tn|� = Id,
but T need not act distally on SubG (more generally, see Theorem 3.10 and Example 3.11).
We also get a characterisation for automorphisms of a lattice � in a connected semisimple
Lie group which act distally on Sub� (see Theorem 3.16). For locally compact com-
pactly generated nilpotent (metrisable) groups G such that G0 is torsion-free, we get that
T ∈ Aut(G) acts distally on SubG if and only if T is contained in a compact subgroup
of Aut(G) (see Theorem 4.4). This also holds for any compact totally disconnected
metrisable group (see Proposition 4.3). We also characterise metrisable locally compact
compactly generated nilpotent groups G whose inner automorphisms act distally on SubG

(see Theorem 4.6); this is an analogue of Corollary 4.5 of [32].
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Some of the results about the actions of automorphisms on SubG are proved under
weaker assumptions such as either T acts distally on Suba

G, the set of closed abelian
subgroups of G, or on a smaller class Subc

G, the set of closed cyclic subgroups of G. In
[10], Bridson, de la Harpe and Kleptsyn describe the structure of Suba

H and various other
subspaces of Suba

H, for the three-dimensional Heisenberg group H, and they also study and
describe the action of Aut(G) on some of these spaces in detail. Baik and Clavier have iden-
tified Suba

G for G = PSL(2,C) in [6] and, they also give a description of the space which
is the closure of Subc

G in SubG, where G is either PSL(2,R) or PSL(2,C) (cf. [5, 6]). We
give conditions on discrete groups G under which Subc

G is closed in SubG and study the
distality of the action of automorphisms of G on Subc

G. We also prove certain results for the
automorphisms in the class (NC) introduced in [32], which contains those that act distally
on Suba

G or on the closure of Subc
G.

Throughout, let G be a locally compact (Hausdorff) group with the identity e. For a
subgroup H of G, let H0 denote the connected component of the identity e in H , [H,H]
denote the commutator subgroup of H , Z(H) denote the centre of H and let ZG(H) denote
the centraliser of H in G. For B ⊂ G, let B denote the closure of B in G. If B is a group, so
is B. For any T ∈ Aut(G), T0 is the identity map of G.

2. Compactly generated distal groups. Recall that a locally compact group G is
distal if the conjugation action of G on G is distal, i.e. for every x ∈ G such that x �= e,
the closure of {gxg−1 | g ∈ G} does not contain the identity e. Compact groups, nilpotent
groups and discrete groups are all distal. A locally compact group is said to be Lie pro-
jective if it has compact normal subgroups Kα , such that

⋂
α Kα = {e} and G/Kα is a Lie

group for each α. Note that any connected, more generally any almost connected locally
compact group is Lie projective (G is almost connected if G/G0 is compact).

It is shown by Willis in [34] that any compactly generated totally disconnected locally
compact nilpotent group is Lie projective. This was extended by Reid to all compactly
generated totally disconnected locally compact distal groups (cf. [28], Corollary 1.9). We
generalise this to all locally compact groups as follows.

THEOREM 2.1. Any compactly generated locally compact distal group is Lie projec-
tive.

Proof. Let G be a compactly generated locally compact distal group. By Corollary
3.4 of [26], G/G0 is distal. Since G/G0 is also compactly generated, by Corollary 1.9
of [28], there exists a neighbourhood basis of the identity consisting of compact open
normal subgroups in G/G0, and hence there exist open normal subgroups Hα in G, such
that Hα/G0 is compact and

⋂
α Hα = G0. Let α be fixed. Note that the maximal compact

normal subgroup K of Hα is characteristic in Hα and hence normal in G. Let H = KG0.
Then H is normal in G, K is the maximal compact normal subgroup of H and H/K is
a Lie group. As Hα is Lie projective, we have that H is an open normal subgroup of G.
Therefore, G/H is discrete, and it is finitely generated, since G is compactly generated.
Let x1, . . . , xn ∈ G be such that their images in G/H generate G/H . Let L be the subgroup
generated by x1, . . . , xn in G. Then L is countable. Since the conjugation action of L on
K is distal, K has compact normal subgroups Kβ such that Kβ is L-invariant and K/Kβ
is a Lie group for each β, and

⋂
β Kβ = {e} (cf. [18], Theorem 2.6 and Corollary 2.7).

Let β be fixed. Since G0 normalises K, by Theorem 1′ of [17], the action of G0 (by inner
automorphisms) on K is the same as the conjugation action of K0 on K. Therefore, every
normal subgroup of K is normalised by G0. In particular, Kβ is normal in H = KG0. Since
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L also normalises Kβ and LH = G, we get that Kβ is normal in G. As K/Kβ and H/K are
Lie groups, so is H/Kβ . Moreover, G/H is discrete. Therefore, G/Kβ is a Lie group. Since
this is true for every β and since

⋂
β Kβ = {e}, G is Lie projective.

Note that in Theorem 2.1, both the conditions that the group is compactly generated
and distal are necessary. Willis in [34] has given an example of a locally compact nilpo-
tent (distal) group which is not Lie projective. For a compactly generated locally compact
group which is not distal, one can take G = Z � (T2)Z, where T2 is the (compact) two-
dimensional torus, and the action of 1 ∈ Z on (T2)Z is given by the shift action. Here, G is
compactly generated and locally compact, but it is not distal as the shift action on (T2)Z is
ergodic. It is easy to see that G is not Lie projective.

A locally compact group G is said to be �-Lie projective for a subgroup �⊂ Aut(G),
if it admits compact open normal�-invariant subgroups {Kα} such that G/Kα is a Lie group
for each α and

⋂
α Kα = {e}. Note that�-Lie projective groups were introduced in [27] and

they are obviously Lie projective. G is said to be T-Lie projective for some T ∈ Aut(G) if
it is {Tn}n∈Z-Lie projective. A group G is �-Lie projective for a finitely generated group
� of Aut(G) if and only if �� G is Lie projective, where � is endowed with the discrete
topology. Similarly, G is T-Lie projective for some T ∈ Aut(G) if and only if Z �T G is
Lie projective, where the action of n ∈ Z on G is given by the action of Tn on G, and Z is
endowed with the discrete topology.

We say that a locally compact group � acts (continuously) on G by automorphisms,
if there exists a group homomorphism ψ :�→ Aut(G) such that the corresponding map
�× G → G given by (λ, g) �→ψ(λ)(g), λ ∈�, g ∈ G, is continuous.

For a compact group G, if T ∈ Aut(G) is distal, it follows from Lemma 2.5 of [27],
that G is T-Lie projective. As any compactly generated nilpotent group is a generalised FC
group (cf. [22]), the following useful corollary follows easily from Corollary 3.7 of [27]
and Theorem 2.1.

COROLLARY 2.2. Let G be a compactly generated locally compact distal group. If
� is a compactly generated nilpotent group which acts distally on G by automorphisms,
then G is �-Lie projective. In particular, if T ∈ Aut(G) acts distally on G, then G is T-Lie
projective; i.e. Z �T G is Lie projective.

The next corollary will be useful, it is well known and it can be easily deduced from
Theorem 2 of [21] and Lemma 3.1 of [12]. Since nilpotent groups are distal, one can also
use Theorem 2.1 instead of Theorem 2 of [21] to prove it.

COROLLARY 2.3. Any locally compact compactly generated nilpotent group admits a
unique maximal compact subgroup.

The following group theoretic result, which may be known, will be useful in proving
Theorem 4.6. It implies for a special case of compactly generated G below that the unique
maximal compact subgroup centralises G0. In particular, it implies that G0 is central in any
compact nilpotent group G.

PROPOSITION 2.4. Let G be a locally compact nilpotent group. Then any compact
subgroup of G centralises G0.

Proof. Let K be a compact subgroup of G. Since G0 is normal and K is compact,
we get that KG0 is a closed subgroup. Also, it is compactly generated since G0 is so. By
Corollary 2.3, KG0 has a unique maximal compact subgroup. To prove the assertion, we
may replace G by KG0 and also assume that K is the unique maximal compact subgroup
of G, and show that it centralises G0.
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As K is a unique maximal compact subgroup, it is characteristic in G, and hence it is
normal in G. For g ∈ G, let inn(g) denote the inner automorphism of G by the element g,
i.e. inn(g)(x)= gxg−1, x ∈ G. As G0 is connected, inn(g)|K ∈ [Aut(K)]0 for all g ∈ G0. By
Theorem 1′ of [17], [Aut(K)]0 = [Inn(K)]0 = {inn(k) | k ∈ K0}. That is, given g ∈ G0, there
exists k ∈ K0 such that inn(g)|K = inn(k)|K . To show that G0 centralises K, it is enough to
show that K0 is central in K. Now we may assume that G is a compact nilpotent group and
show that G0 is central in G. Since G is compact, it is Lie projective, hence it is enough
to prove this for a compact nilpotent Lie group G. As G0 is compact and nilpotent, it is
abelian (cf. [17], Lemma 2.2). Moreover, G/G0 is finite.

We prove by induction on the length l(G) of the central series of the compact nilpo-
tent Lie group G that G0 is central in G. If l(G)= 1, then G is abelian. Suppose for
some k ∈ N, the above statement holds for all such G with l(G)≤ k. Now let G be such
that l(G)= k + 1. Let Z(G) be the centre of G. Then l(G/Z(G))= k. By the induction
hypothesis, (G/Z(G))0 is central in G/Z(G). Let x ∈ G, g ∈ G0 and let xg = xgx−1g−1.
Since (G0Z(G))/Z(G)= (G/Z(G))0, from the preceding assertion we have that xg ∈ Z(G).
Since G/G0 is finite, we get that xn ∈ G0 for some n ∈ N. Since xg ∈ Z(G), we get that xn

g =
xgnx−1g−n = xngx−ng−1 = e as G0 is abelian. Therefore, x centralises gn. Since this holds
for all g ∈ G0, which is connected and abelian, we get that x centralises G0. Since this is true
for all x ∈ G, we have that G0 is central in G. Now the proof is complete by induction.

3. Distal actions of automorphisms on SubG for discrete groups G and appli-
cations to lattices. Let G be a locally compact (metrisable) group. A sub-basis of
the Chabauty topology on SubG is given by the sets O1(K)= {A ∈ SubG | A ∩ K = ∅},
O2(U)= {A ∈ SubG | A ∩ U �= ∅}, where K is a compact and U is an open subset of G. As
observed earlier, SubG is compact and metrisable. For details on the Chabauty topology,
see [10] and [24].

We first state a criterion for convergence of sequences in SubG (cf. [7]).

LEMMA 3.1. Let G be a locally compact first countable (metrisable) group. A
sequence {Hn} converges to H in SubG if and only if the following hold:

(i) For any h ∈ H, there exists a sequence {hn} with hn ∈ Hn, n ∈ N, such that hn → h.
(ii) For any unbounded sequence {nk} ⊂ N, if {hnk }k∈N is such that hnk ∈ Hnk , k ∈ N,

and hnk → h, then h ∈ H.

We define Subc
G as the space of all closed cyclic subgroups of G. In general, Subc

G
need not be closed in SubG; for example, Subc

R is dense in SubR and SubR = Subc
R ∪ {R}.

We will show that for a certain class of groups G, which include discrete finitely generated
nilpotent groups, Subc

G is closed. We first state a useful lemma about the limits of sequences
in a discrete group. We give a short proof for the sake of completeness.

LEMMA 3.2. Let G be a discrete group. If {Hn} ⊂ SubG is such that Hn → H in SubG,
then H = lim inf Hn.

Proof. By Lemma 3.1 (i), we get that for every h ∈ H , there exist hn ∈ Hn, n ∈ N, such
that hn → h. Since G is discrete, we get that hn = h for all large n. Therefore, h ∈ lim inf Hn,
and hence H ⊂ lim inf Hn. Conversely, suppose h ∈ lim inf Hn. Then there exists k ∈ N such
that h ∈ Hn, for all n ≥ k. Now by Lemma 3.1 (ii), we get that h ∈ H . Hence

H =
∞⋃

k=1

∞⋂
n=k

Hn = lim inf Hn.
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As any discrete subgroup of a connected solvable Lie group is finitely generated
(cf. [25], Corollary 3.9), the following will be useful for results on lattices of a connected
solvable Lie group (see Theorem 3.10).

LEMMA 3.3. Let G be a discrete finitely generated group such that all its subgroups
are also finitely generated. Then Subc

G is closed.

Proof. Let {Hn} be a sequence in Subc
G such that Hn → H . By Lemma 3.2,

H = ⋃∞
k=1 Gk , where Gk = ⋂∞

n=k Hn. From the hypothesis, H is finitely generated. Let
{x1, . . . , xm} be the set of generators for H . Since H is an increasing union of cyclic groups
Gk , there exists n0 ∈ N such that x1, . . . , xm ∈ Gn0 . Therefore H = Gn0 , and hence H is
cyclic.

A locally compact group G is said to be strongly root compact if for every compact
subset C of G, there exists a compact subset C0 of G with the property that for every
n ∈ N, the finite sequences {x1, . . . , xn} of G with xn = e, satisfying CxiCxj ∩ Cxi+j �= ∅
for all i + j ≤ n, are contained in C0 (see [15], Definition 3.1.10). All compact groups and
compactly generated nilpotent groups are strongly root compact (cf. [15], Theorem 3.1.17).

For any g ∈ G, let Rg = {x ∈ G | xn = g for some n ∈ N}, the set of roots of g in G. If
G is strongly root compact, then by Theorem 3.1.13 of [15], Rg is relatively compact for
every g ∈ G.

LEMMA 3.4. Let G be a discrete group. If for every g ∈ G, the set Rg of roots of g is
finite, then Subc

G is closed. In particular, if G is strongly root compact, then Subc
G is closed.

Proof. For a discrete group G, suppose Rg is finite for every g ∈ G. Let {Hn} be
a sequence in Subc

G such that Hn → H . By Lemma 3.2, we get H = lim inf Hn. Let
Gk = ⋂∞

n=k Hn, k ∈ N. Then for all k ∈ N, Gk ⊂ Gk+1 ⊂ Hk+1, Gk ⊂ H and each Gk is
cyclic. If H = {e}, then there is nothing to prove. Suppose Gk is finite for all k ∈ N.
Since H = ⋃∞

k=1 Gk , it consists of finite-order elements. Hence H ⊂ Re which is finite,
so H is finite. Therefore, H = Gk for some k, and hence H is cyclic. Now suppose there
exists m ∈ N such that Gm is infinite. Replacing {Hn} by {Hn+m}, we may assume that G1

is infinite, and hence that Gk is an infinite cyclic group, k ∈ N.
Let xk be a generator of Gk , k ∈ N. As Gk ⊂ Gk+1, k ∈ N, replacing xk+1 by its inverse

if necessary, we get that there exists lk ∈ N such that xk = xlk
k+1. Hence x1 = xnk

k for all
k ≥ 2, where nk = l1 · · · lk−1. From the hypothesis, Rx1 is finite, and hence {xk}k∈N is finite.
As each xk generates an infinite cyclic group Gk and Gk ⊂ Gk+1, k ∈ N, there exists n0 ∈ N

such that Gk = Gk+1 for all k ≥ n0, and hence H = Gn0 = ⋂∞
n=n0

Hn. Therefore, H is cyclic.
This proves that Subc

G is closed.
Now suppose G is a strongly root compact discrete group. By Theorem 3.1.13 of [15],

Rg is relatively compact, and hence, finite for every g ∈ G. Now it follows from the first
statement that Subc

G is closed.

The class (NC) of automorphisms is defined in [32]. An automorphism T of a locally
compact metrisable group G belongs to class (NC) if given any closed cyclic subgroup
A of G, Tnk (A) �→ {e} for any unbounded sequence {nk} ⊂ Z. For x ∈ G, let Gx denote the
cyclic group generated by x in G. Then either Gx is closed (and hence discrete) or Gx is
compact.

Note that if T acts distally on Suba
G, then T ∈ (NC). It is easy to see that Tn ∈ (NC)

for some n ∈ Z \ {0} if and only if Tn ∈ (NC) for all n ∈ Z. We now state and prove an
elementary result about the class (NC) for the discrete quotient groups.
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LEMMA 3.5. Let G be a locally compact first countable (metrisable) group, T ∈
Aut(G) and let H be an open normal T-invariant subgroup of G. Let T : G/H → G/H
be the automorphism of G/H corresponding to T. For any x ∈ G, let x̄ denote the element
xH ∈ G/H. Suppose T ∈ (NC). If x ∈ G \ H is such that Gx̄ is infinite, then T

nk
(Gx̄) �→ {ē},

for any unbounded sequence {nk} ⊂ Z. In particular, if G/H is torsion-free, then T ∈ (NC).

Proof. As H is open in G, it is also closed and G/H is a discrete group. Let x ∈ G
be such that Gx̄ is infinite. If possible, suppose there exists an unbounded sequence
{nk} ⊂ Z such that Tnk (Gx̄)→ {ē}. Let Gx be the group generated by x ∈ G. Since Gx̄

is closed, discrete and infinite, we have that Gx is also closed, discrete and infinite. As
SubG is compact, we may choose a subsequence of {nk}, and denote it by {nk} again,
such that Tnk (Gx)→ L for some L ∈ SubG. Since T ∈ (NC), L �= {e}. Let g ∈ L \ {e}, then
Tnk (xmk )→ g, for some {mk} ⊂ Z. Now Tnk (x̄mk )→ ḡ. As Tnk (Gx̄)→ {ē}, we have that
g ∈ H , and hence Tnk (x̄mk )= ē for all large k, since G/H is discrete. This implies that x̄ has
finite order, which leads to a contradiction. Therefore, T

nk
(Gx̄) �→ {ē}. If G/H is torsion-

free, every non-trivial element of G/H generates a discrete infinite group, and hence the
last assertion follows easily.

For a locally compact group G and T ∈ Aut(G), let M(T)= {x ∈ G |
{Tn(x)}n∈Z is relatively compact}. It is a T-invariant subgroup of G. The following
basic lemma about automorphisms of strongly root compact groups in the class (NC) will
be very useful.

LEMMA 3.6. Let G be a locally compact first countable (metrisable) strongly root
compact group. Let T ∈ Aut(G) be such that T ∈ (NC). Then {x ∈ G | Gx is closed} ⊂
M(T).

Proof. Let x ∈ G be such that Gx is closed and let Ox = {Tn(x)}n∈Z. Since G is
locally compact and metrisable, and Ox is separable, it is second countable, and hence
Ox ⊂ ⋃

n∈N Vn, for some open relatively compact sets Vn, and we may also assume that
Vn ⊂ Vn+1 for all n ∈ N. For some n ∈ N, if Ox ⊂ Vn, then Ox ⊂ Vn and hence Ox is compact.

If possible, suppose Ox �⊂ Vn, n ∈ N. There exists kn ∈ Z such that |kn| ≥ n and Tkn(x) �∈
Vn, n ∈ N. As Gx ∈ SubG and the latter is compact, passing to a subsequence if necessary,
we get that Tkn(Gx)→ H in SubG for some closed subgroup H in G. Since T ∈ (NC),
it implies that H �= {e}. Let a ∈ H be such that a �= e. By Lemma 3.1 (i), there exists a
sequence {mn} ⊂ Z such that Tkn(xmn)→ a, and hence {Tkn(xmn)} is relatively compact.
Replacing a by a−1 if necessary, and passing to a subsequence, we may assume that
{mn} ⊂ N. As G is strongly root compact, by Theorem 3.1.13 of [15], we get that {Tkn(x)}
is relatively compact and hence, it has a limit point (say), b. Then b ∈ Ox. As Vn is increas-
ing, we get that for every m ∈ N, {Tkn(x)}n≥m ⊂ G \ Vm which is closed. It follows that
b �∈ Vm for every m ∈ N, and hence b �∈ ⋃

m∈N Vm; this leads to a contradiction since b ∈ Ox.
Therefore, Ox ⊂ Vn for some n ∈ N and hence Ox is compact and x ∈ M(T). This proves
the assertion.

In a discrete group, every element generates a discrete (closed) cyclic group. The next
corollary follows easily from the proof of Lemma 3.6 as a sequence in a discrete group
converges if and only if it is eventually constant and, discrete compact sets are finite.

COROLLARY 3.7. Let G be a discrete group such that the set Rg of roots of g is finite
for every g ∈ G. Let T ∈ Aut(G) be such that T ∈ (NC). Then G = M(T). That is, for every
x ∈ G, the T-orbit of x, {Tn(x)}n∈Z is finite.
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For any discrete group, all automorphisms are distal. For strongly root compact
discrete groups G, or more generally for discrete groups G in which the set of roots of
every element is finite, the following proposition shows that only finite-order automor-
phisms of G act distally on SubG. Note that for such groups G, Subc

G is closed by Lemma
3.4. The proposition holds in particular for discrete finitely generated nilpotent groups as
they are strongly root compact (cf. [15]).

PROPOSITION 3.8. Let G be a discrete finitely generated group and let T ∈ Aut(G).
Suppose the set Rg of roots of g is finite for every g ∈ G. Then the following are equivalent:

1. T ∈ (NC).
2. T acts distally on Subc

G.
3. T acts distally on SubG.
4. Tn = Id, where Id is the identity map.

In particular, if G is strongly root compact, then (1–4) above are equivalent.

Proof. 4 =⇒ 3 =⇒ 2 =⇒ 1 is obvious. It is enough to show that 1 =⇒ 4. Suppose
T ∈ (NC). Then by Corollary 3.7, G = M(T). Now as G is discrete, for every x ∈ G, the
T-orbit of x, {Tn(x)}n∈Z is finite, and hence Tm(x)= x for some m ∈ N. As G is finitely
generated, there exist x1, . . . , xl ∈ G which generate G. Let n1, . . . , nl ∈ N be such that
Tni(xi)= xi, 1 ≤ i ≤ l. Let n = lcm(n1, . . . , nl). Then Tn(x)= x for all x ∈ G, i.e. Tn = Id.

If G is strongly root compact, then by Theorem 3.1.13 of [15], Rg is finite for every
g ∈ G, and (1–4) are equivalent from above.

Proposition 3.8, in particular, implies that if T ∈ GL(n,Z), (n ≥ 2), does not have finite
order, then T does not act distally on SubZn ; for example, T is any non-trivial strictly upper
triangular matrix in GL(n,Z)with all its diagonal entries equal to 1. In fact, since GL(n,Z)

is virtually torsion-free by Selberg’s Lemma, there exists a subgroup (say) L of finite index
in GL(n,Z) which is torsion-free, and hence every non-trivial T ∈ L does not acts distally
on SubZn . As an application of the proposition, we get the following corollary which relates
the behaviour of an automorphism of a lattice � in a simply connected nilpotent group G
in terms of the distality of its action on Sub� and on SubG. Note that any automorphism
of such a � extends to a unique automorphism of G (cf. [25]). Note also that such a � is
finitely generated and strongly root compact, and hence by Lemma 3.4, Subc

� is closed.

COROLLARY 3.9. Let G be a connected simply connected nilpotent Lie group and
let � be a lattice in G. Let T ∈ Aut(G) be such that T(�)= �. Then the following are
equivalent:

(1) T |� ∈ (NC).
(2) T acts distally on Suba

� .
(3) T acts distally on Sub� .
(4) T ∈ (NC).
(5) T acts distally on Suba

G.
(6) T acts distally on SubG.
(7) T acts distally on Subc

� .
(8) Tn = Id, where Id is the identity map.

Proof. (8) =⇒ (6) =⇒ (5) =⇒ (4) =⇒ (1) and (6) =⇒ (3) =⇒ (2) =⇒
(7) =⇒ (1) are obvious. It is enough to show that (1) =⇒ (8). Since � is a lattice in
a simply connected nilpotent group G, it is finitely generated, nilpotent and discrete.
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Therefore, � is strongly root compact and by Proposition 3.8, Tn|� = (T |�)n = Id. By
Theorem 2.11 of [25] and Corollary 1 following it, Tn = Id.

Example 3.11 shows that Corollary 3.9 does not hold for lattices in a general connected
simply connected solvable Lie group and it also illustrates that the following theorem is the
best possible result for lattices � in a connected simply connected solvable Lie group. Note
that such a lattice � is torsion-free and every subgroup of it is finitely generated, and hence
by Lemma 3.3, Subc

� is closed. The theorem can be viewed as a generalisation of Corollary
3.9 as any automorphism of a lattice in a simply connected nilpotent group G extends
uniquely to that of G. Example 3.11 also shows that not all the statements in the following
theorem are equivalent.

THEOREM 3.10. Let G be a connected simply connected solvable Lie group. Let N
be the nilradical of G, the largest connected nilpotent normal subgroup of G. Suppose G
admits a lattice � and an automorphism T ∈ Aut(G) such that T(�)= �. Then (1–2) are
equivalent as well as (3–6) are equivalent.

(1) T |� ∈ (NC).
(2) Tn|�′ = (T |�′)n = Id for some n ∈ N, where �′ is a normal subgroup of finite index

in � containing � ∩ N, and Id is the identity map on �′.
(3) T acts distally on Subc

� .
(4) T acts distally on Suba

� .
(5) T acts distally on Sub� .
(6) Tn|� = (T |�)n = Id, for some n ∈ N.

Proof. Suppose (2) holds. Let S = Tn and let m be the index of �′ in �. Let x ∈ �.
Then xm ∈ �′ and S(xm)= xm and, xm �= e as G is torsion-free. It follows that any limit
point H of {Si(Gx)} contains a subgroup generated by xm. Therefore, S|� ∈ (NC), and hence
T |� ∈ (NC) and (1) holds.

Now suppose (1) holds, i.e. T |� ∈ (NC). As G is connected, solvable and simply
connected, [G,G] is a closed connected nilpotent normal subgroup. Also, the nilradical
N is simply connected, T(N)= N , [G,G] ⊂ N and G/N is abelian. Moreover, � ∩ N (resp.
(�N)/N) is a lattice in N (resp. in G/N) (cf. [25], Corollary 3.5). Since T keeps � ∩ N
invariant and T acts distally on Subc

�∩N , by Corollary 3.9, Tn1 = Id on � ∩ N for some
n1 ∈ N. Note that (�N)/N is a lattice in G/N which is simply connected and abelian. Note
also that �/(� ∩ N) is isomorphic to (�N)/N , therefore it is finitely generated, abelian
and torsion-free. By Lemma 3.5, we get that T ∈ (NC), where T ∈ Aut(�/(� ∩ N)) is
the automorphism corresponding to T . By Proposition 3.8, T

n2 = Id on �/(� ∩ N) for
some n2 ∈ N. Let n = lcm(n1, n2) and let S = Tn. Then S|�∩N = Id and S acts trivially on
�/(� ∩ N). Now suppose x ∈ � is such that S(xj) �= xj for all j ∈ N. Then S(x)= xy for
some non-trivial y ∈ � ∩ N . As � ∩ N is torsion-free, by Lemma 3.12 of [32], we get that
S �∈ (NC). Hence T �∈ (NC), which contradicts the hypothesis. Therefore, for every x ∈ �,
there exists j which depends on x such that S(xj)= xj. As � is finitely generated, there
exist x1, . . . , xk which are generators for �. Let ji be such that S(xji

i )= xji
i , 1 ≤ i ≤ k. Let

m = lcm(j1, . . . , jk) and let �′ be the subgroup of � generated by {xj1
1 , . . . , xjk

k } ∪ (� ∩ N).
Since �/�′ is a finitely generated abelian group consisting of elements of finite order, it
is finite. Therefore, �′ is a subgroup of finite index in �. Also, �′ is normal in �, since
[�, �] ⊂ � ∩ N ⊂ �′. As S|�∩N = Id, we get that S|�′ = Id. As S = Tn, it follows that (2)
holds.
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It is easy to see that (6) =⇒ (5) =⇒ (4) =⇒ (3). It is enough to show that (3) =⇒
(6). Suppose (3) holds, i.e. T acts distally on Subc

� . Since (3) =⇒ (1), we have that (2)
holds, i.e. there exists a normal subgroup �′ of finite index in � containing � ∩ N and
n ∈ N such that Tn|�′ = Id, where N is the nilradical of G. As in the proof above, we can
choose �′ and n such that Tn acts trivially on �/(� ∩ N).

Let S = Tn. Then we show that S|� = Id. If possible, suppose x ∈ � is such that
S(x) �= x. As xm ∈ �′, for some m ∈ N, we get that S(xm)= xm. Let k be the smallest posi-
tive integer such that S(xk)= xk . Then k ≥ 2. Now S(xl)= xlyl for some yl ∈ � ∩ N , yl �= e
and Si(xl)= xlyi

l for all for 1 ≤ l ≤ k − 1, i ∈ N. Since G is torsion-free, {Sij(xl)} has no
limit point if ij → ∞ and 1 ≤ l ≤ k − 1. Now it is easy to show that Si(Gx)→ Gxk in Subc

� ,
as i → ∞, where Gx (resp. Gxk ) is the cyclic group generated by x (resp. xk) in �. As
S(Gxk )= Gxk and k ≥ 2, it implies that S does not act distally on Subc

� . Since S = Tn, we
get that T does not act distally on Subc

� . This contradicts (3). Therefore, S|� = Id, and
hence (6) holds.

The following is an example of a connected simply connected solvable Lie group
G which admits a non-trivial automorphism T and a lattice �1 such that T |�1 = Id and
T �∈ (NC). This is unlike the case of simply connected nilpotent groups (see Corollary 3.9).
The example also shows that there exists a lattice �2 in G such that T |�2 ∈ (NC) but it does
not act distally on Subc

�2
.

EXAMPLE 3.11. Let G = R � R2 where the group operation is given by (s, x)(t, y)=
(s + t, e2iπ tx + y), s, t ∈ R and x, y ∈ R2. Then G is a connected simply connected solvable
Lie group. Let T be an inner automorphism by some g ∈ Z2 \ {0}, i.e. T(t, y)= (t, y +
e2iπ tg − g), for all (t, y) as above. Let �1 = Z × Z2, where Z is a lattice in R and Z2 is a
lattice in the normal subgroup R2. Then �1 is a lattice in G and T |�1 = Id. Also, T |R2 = Id
and the action on G/R2 corresponding to T is also trivial. Now choose an irrational number
t in R. Then T(t)= (t, e2iπ tg − g), and hence T(mt) �= mt for all m ∈ Z, i.e. T does not fix
any non-trivial element in the discrete cyclic group Gt generated by t in R. As R2 has no
non-trivial compact subgroup, it is easy to show that Tn(Gt)→ {(0, 0)} in SubG as n → ∞.
Therefore, T �∈ (NC) (this also follows from Lemma 3.12 of [32]).

Now choose �2 = 1
2 Z � Z2 and T is the inner automorphism by g as above, where

g ∈ �1 ∩ Z2 \ {0}. Then �2 is a T-invariant lattice in G, �1 ⊂ �2 and T |�1 = Id. For any
x ∈ �2, x2 ∈ �1. Therefore, it is easy to see that T |�2 ∈ (NC). For t = 1

2 ∈ �2 ∩ R, T(t)=
(t,−2g). As g �= 0, it is easy to check that Tn(Gt)→ Z = �1 ∩ R as n → ∞, where Gt is
the cyclic group generated by t in �2. As �1 ∩ R is cyclic and T(�1 ∩ R)= �1 ∩ R �= Gt,
T does not act distally on Subc

�2
.

Now we study the action of automorphisms of a lattice � in a connected semisimple
Lie group on Sub� . We first give an example of an automorphism T of SL(2,Z), which
does not belong to (NC), and hence it does not act distally on Suba

SL(2,Z).

EXAMPLE 3.12. Let T = inn(g), the inner automorphism of SL(2,Z), where

g =
⎡
⎣1 1

0 1

⎤
⎦ . For x =

⎡
⎣1 0

1 1

⎤
⎦

and, for {nk} and {lk} in Z,
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Tnk (xlk )= gnk xlk g−nk =
⎡
⎣1 + nklk −n2

k lk

lk 1 − nklk

⎤
⎦ .

If nk → ∞ and lk �= 0, at least one of the entries of Tnk (xlk ) goes to ∞, and hence {Tnk (xlk )}
does not converge in SL(2,Z). This implies that for the cyclic group Gx generated by x in
SL(2,Z), since {Tnk (Gx)} converges for some unbounded sequence {nk} ⊂ N, we have that
Tnk (Gx)→ {e}. Therefore, T �∈ (NC), and hence T does not act distally on Suba

SL(2,Z).

The question arises for a lattice � in G, if the action of automorphisms of � on Sub�
for a connected semisimple group G behave in the same way or differently from the case
when G is a simply connected nilpotent Lie group. Theorem 3.16 shows that an almost
similar result as above holds in this case too.

We first state and prove some lemmas to use later. The following lemma may be known
but we give a proof for the sake of completeness. An element g ∈ GL(n,R) is said to be net
if the multiplicative group generated by the eigenvalues of g in C \ {0} is torsion-free. Note
that g is net if and only if gs is net, where gs is the semisimple part of g in its multiplicative
Jordan decomposition. A subgroup of GL(n,R) is said to be net if all its elements are net
(see 17.1 in [9]).

LEMMA 3.13. Let G be a connected semisimple Lie group and let � be a lattice in G.
Then there exists a normal subgroup �′ of finite index in � such that Rg := {x ∈ �′ | xn =
g for some n ∈ Z} is finite for all g ∈ �′. Moreover, the torsion elements in �′ form a finite
central subgroup in G.

Proof. For the centre Z(G) of G, G/Z(G) is a linear subgroup of GL(n,R), for some
n ∈ N. Let π : G → G/Z(G) be the natural projection. Since � is a lattice in G, it is finitely
generated. Hence π(�) is finitely generated, and by Corollary 17.7 of [9], π(�) has a
subgroup of finite index (say) �1 such that it is net. Let �′ = π−1(�1)∩ �. Then �′ is a
subgroup of finite index in �.

For x ∈ �, let x̄ = π(x) and let Gx (resp. Gx̄) be the cyclic group generated by x in �
(resp. x̄ in π(�)). Then for any x ∈ �′, the Zariski closure G̃x̄ of Gx̄ is connected (see the
proof of Proposition 17.2 in [9]).

Let g ∈ �′. First suppose that g ∈ Z(G). Then π(Rg) is the group of torsion elements
in �1. Since �1 is net, it is torsion-free, and hence π(Rg)= {ē}. Therefore, Rg ⊂ Z(G). As
Z(G) is compactly generated and abelian, Rg is finite. This implies in particular that the
set of torsion elements in �′ is a subgroup of Z(G), and hence it is finite since Z(G) is
compactly generated and abelian.

Now suppose g �∈ Z(G) and let x ∈ Rg. Then ḡ, x̄ ∈ �1 are non-trivial and Gḡ is a
subgroup of finite index in Gx̄, and since each of them have connected Zariski closure,
we get that G̃ḡ = G̃x̄. That is, x̄ ∈ G̃ḡ. Let Hg = π−1(�1 ∩ G̃ḡ). Since G̃ḡ is connected and
abelian and since Z(G) is finitely generated and central in G, we get that Hg is a finitely gen-
erated nilpotent group. From above, we have that Rg ⊂ Hg. Since Hg is finitely generated
and nilpotent, it is strongly root compact and by Theorem 3.1.13 of [15], Rg is finite.

Replacing �′ by a smaller subgroup of finite index if necessary, we may assume that
�′ is normal.

Now we can deduce the following.

LEMMA 3.14. Let � be a lattice in a connected semisimple Lie group G. Then Subc
�

is closed.

https://doi.org/10.1017/S0017089520000221 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089520000221


354 RAJDIP PALIT AND RIDDHI SHAH

Proof. By Lemma 3.13, there exists a normal subgroup �′ of finite index in � such
that for every g ∈ �′, the set Rg of roots of g in �′ is finite. By Lemma 3.4, we get that
Subc

�′ is closed. If � = �′, then Subc
� = Subc

�′ and it is closed. Now suppose �′ is proper
subgroup of �.

Let {Hn}n∈N be a sequence in Subc
� such that Hn → H in Sub� . We need to show that

H is cyclic. Let H ′
n = Hn ∩ �′, n ∈ N and let H ′ = H ∩ �′. Then H ′

n ∈ Subc
�′ and it follows

by Lemma 3.2 that H ′
n → H ′. From above, we have that H ′ is cyclic. Since H�′/�′ is finite

and isomorphic to H/(H ∩ �′), we have that H ′ = H ∩ �′ is a normal subgroup of finite
index in H , and hence H is finitely generated. Let {h1, . . . , hm} be a set of generators in
H . Then there exists k ∈ N such that for 1 ≤ i ≤ m, hi ∈ ⋂∞

n=k Hn ⊂ Hk . Therefore, H ⊂ Hk

and hence H is cyclic.

The following lemma should be known; we give a short proof for the sake of
completeness. Recall that for a group H , Z(H) denotes the centre of H .

LEMMA 3.15. Let G be a connected semisimple Lie group, � be a lattice in G and let
�′ be a subgroup of finite index in �. Then Z(�)∩ �′ is a subgroup of finite index in Z(�′).

Proof. First suppose that G has no compact factors; that is, the maximal compact con-
nected normal subgroup of G is trivial. By Corollary 5.18 of [25], Z(�′)⊂ Z(G), the centre
of G. Hence Z(�′)⊂ Z(�). Now suppose G has a non-trivial compact factor. Let K be the
largest compact connected normal subgroup of G. If G = K, then � and �′ are finite and
the assertion follows trivially. Suppose G is not compact. Then G/K is semisimple and it
has no compact factors. Let ψ : G → G/K be the natural projection. Then ψ(�) and ψ(�′)
are lattices in G/K. From above, we have thatψ(Z(�′))⊂ Z(ψ(�′))⊂ Z(G/K). Therefore,
xgx−1g−1 ∈ K for all g ∈ G and x ∈ Z(�′). Fix x ∈ Z(�′) and let g ∈ �.

We first assume that �′ is normal in �. As Z(�′) is normal in �, xgx−1g−1 ∈ Z(�′)∩ K;
this is a finite abelian group. Let m be the order of Z(�′)∩ K. Since Z(�′) is abelian, we
get that (xgx−1g−1)m = xmgx−mg−1 = e. Therefore, xm ∈ Z(�).

Note that the centre of any connected semisimple Lie group is compactly generated.
Therefore, the centre of any lattice in G is compactly generated as its image in G/K is
central in G/K, where K as above is compact. Since Z(�′) is compactly generated and
abelian and xm ∈ Z(�) for every x ∈ Z(�′), we have that Z(�′)/(Z(�)∩ �′) is finite.

Now suppose �′ is not normal in �, there exists a normal subgroup �′′ of finite index
in � such that �′′ ⊂ �′. From the above discussion, we have that Z(�′′)/(Z(�)∩ �′′) and
Z(�′′)/(Z(�′)∩ �′′) are finite. Since Z(�′)/(Z(�′)∩ �′′) is also finite, it is easy to deduce
that Z(�′)/(Z(�)∩ �′) is finite.

Using the above lemmas, we can prove the following result which was suggested by
an anonymous referee along with a sketch of a proof.

THEOREM 3.16. Let G be a connected semisimple Lie group and let � be a lattice
in G. Let T ∈ Aut(�). Then the following statements are equivalent:

(1) T ∈ (NC).
(2) T acts distally on Subc

� .
(3) T acts distally on Sub� .
(4) Tn = Id for some n ∈ N.
(5) Tn|�′ = Id for some n ∈ N, where �′ is a subgroup of finite index in �.

If T = S|� for some S ∈ Aut(G), then (1–5) are equivalent to each of the following
statements:
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(6) S acts distally on SubG.
(7) S is contained in a compact subgroup of Aut(G).

Moreover, if G has no compact factors, then (1–7) are equivalent to the following:

(8) Sn = Id for some n ∈ N.

Proof. (4) =⇒ (3) =⇒ (2) =⇒ (1) and (4) =⇒ (5) are obvious. Now suppose
(5) holds. We show that (4) holds. Passing to a smaller subgroup of finite index if necessary,
we may assume that �′ is normal in � and that it is T-invariant.

Since �/�′ is finite, replacing n by a larger number if necessary, we may assume that
Tn|�′ = Id and Tn acts trivially on �/�′. Without loss of any generality, we replace T by
Tn and assume that T |�′ is trivial and T acts trivially on �/�′. We want to show that some
power of T is the identity map.

Let x ∈ �. Then T(x)= xy for some y ∈ �′. For any g ∈ �′, we have xygy−1x−1 =
T(xgx−1)= xgx−1, and hence ygy−1 = g. Therefore, y ∈ Z(�′), the centre of �′. By Lemma
3.15, Z(�)∩ �′ is a subgroup of finite index in Z(�′). Let m be the order of Z(�′)/(Z(�)
∩ �′) and let k be the order of �/�′. Then ym ∈ Z(�) and we get that Tm(x)= xym ∈ xZ(�)
and hence Tm(xk)= xkykm. As xk ∈ �′, we have that Tm(xk)= xk , and hence ykm = e.
Therefore, Tkm(x)= x. Thus Tkm = Id and (4) holds.

Now we show that (1) =⇒ (5). Suppose T ∈ (NC). Let �′ be a normal subgroup of
finite index in � as in Lemma 3.13. That is, the set Rg of roots of g in �′ is finite for
every g ∈ �′. Without loss of any generality, we may assume that �′ is T-invariant and
T |�′ ∈ (NC). Note that �′, being a subgroup of finite index in �, is a lattice in G. Hence �′
is finitely generated, and we get from Proposition 3.8 that Tn|�′ = Id for some n ∈ N and
(5) holds. That is, (1–5) are equivalent.

Let S ∈ Aut(G) and let S|� = T . Then (7) =⇒ (6) (see Lemma 2.4 in [32] and the
discussion before the lemma, or see Theorem 4.1 of [32], or Lemma 4.2). Note that (6) =⇒
(3) is obvious. Now we prove that (4) =⇒ (7). Suppose Tn = Id for some n ∈ N. Since G
is semisimple, some power of S is an inner automorphism of G. To prove (7), we may
assume that S itself is an inner automorphism of G. Let s ∈ G be such that S = inn(s). Now
s�s−1 = � and from (4), we get that sl centralises � for some l ∈ N. Replacing S by Sl,
we may assume that s ∈ ZG(�), the centraliser of � in G. Let K be the largest compact
connected normal subgroup of G which is the product of all compact factors of G.

If K is trivial, then by Theorem 5.18 of [25], ZG(�)= Z(G), and hence S = Id. That is,
if G has no compact factors, then (8) holds, and hence (7) also holds in this case. (Note that
(4) =⇒ (8) also follows directly from the Borel Density Theorem if G has no compact
factors.)

If G is compact, then Aut(G) is compact as Inn(G) is a subgroup of finite index in
Aut(G), hence (7) holds. Now suppose G is not compact. Then G = KG1 (almost direct
product), where G1 is a closed connected normal subgroup which is the product of all
non-compact (simple) factors of G. Now s = kh = hk for some k ∈ K and h ∈ G1. Let
ψ : G → G/K be the natural projection. Then ψ(�) is a lattice in G/K. As G/K has no
compact factors and as ψ(s) centralises ψ(�), we get as above that ψ(s) ∈ Z(G/K), and
since ψ(s)=ψ(h), hgh−1g−1 ∈ K for all g ∈ G. Since h ∈ G1, which is normal in G, we
get that hgh−1g−1 ∈ G1 ∩ K which is a finite (central) subgroup of G. As G is connected,
the preceding assertion implies that hgh−1g−1 = e for all g ∈ G, and hence h ∈ Z(G). Now
s = kh ∈ KZ(G) and inn(s)= inn(k). As k ∈ K, we get that inn(s), and hence S is contained
in a compact subgroup of Aut(G). Therefore, (7) holds.
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Note that Example 3.11 shows that a connected simply connected solvable Lie group
can admit an automorphism T and T-invariant lattices �1 and �2 such that �1 is a subgroup
of finite index in �2 and T |�1 = Id but Tn|�2 �= Id for any n ∈ N. This is unlike the case of
lattices in a connected semisimple Lie group as shown by (5) =⇒ (4) in Theorem 3.16.

It would be interesting to study the distality of the actions of automorphisms of � on
Sub� for a lattice � in a general connected Lie group.

4. Distal actions of automorphisms on SubG for certain compact groups and
nilpotent groups. In this section, for certain locally compact metrisable groups G and
T ∈ Aut(G), we characterise the distality of the T-action on SubG in terms of the compact-
ness of the closure of the group generated by T in Aut(G). It is shown in [32] that if Aut(G)
is endowed with the modified compact-open topology, then the map Aut(G)× SubG →
SubG defined by (T,H) �→ T(H), T ∈ Aut(G), H ∈ SubG, is continuous, i.e. Aut(G) acts
continuously on SubG by homeomorphisms (cf. [32], Lemma 2.4). For compact groups
G, the modified compact-open topology is the same as the compact-open topology on
Aut(G). For any connected Lie group G with the Lie algebra G, for a T ∈ Aut(G), there
is a unique Lie algebra automorphism d T in GL(G). Note that Aut(G) is isomorphic
to a closed subgroup of GL(G) (isomorphism is given by the map T �→ d T). Therefore,
Aut(G) is a Lie group whose topology is the same as the compact-open topology as well as
the modified compact-open topology, (cf. [3, 16]). In general, if Aut(G) is endowed with
the compact-open topology, then Aut(G) is a topological semigroup and the natural map
Aut(G)× G → G is continuous (see [33] for more details on topologies on Aut(G)).

For a metric space X , a subset 	 of Homeo(X) is said to be equicontinuous at x ∈ X
if given ε > 0, there exists δ > 0 such that φ(Bδ(x))⊂ Bε(φ(x)), φ ∈	, where Br(x) is
the ball of radius r centred at x in X for r> 0. 	 is said to be equicontinuous on X if
	 is equicontinuous at every x ∈ X . If G is a locally compact first countable (metrisable)
group with the identity e, then G has a left invariant metric, and hence any 	⊂ Aut(G) is
equicontinuous at x if and only if it is equicontinuous at e. Therefore, 	 is equicontinuous
on G if and only if given any neighbourhood U of e, there exists a neighbourhood V of e
such that φ(U)⊂ V for all φ ∈	.

By Arzela–Ascoli Theorem (see, e.g., [33], Theorem 9.24), 	⊂ Aut(G) is relatively
compact in Aut(G) (with respect to the compact-open topology) if it is equicontinuous
at e and {φ(x) | φ ∈	}, the 	-orbit of x is relatively compact in G, for every x ∈ G. The
converse also holds since G is locally compact and 	 is compact, the action of 	 on G is
uniformly continuous. The following useful version of Arzela–Ascoli Theorem for locally
compact metrisable groups easily follows from above.

LEMMA 4.1. [Arzela–Ascoli Theorem] If G is a locally compact first countable
(metrisable) group. Let Aut(G) be the group of automorphisms of G endowed with the
compact-open topology. Let 	 be a subset of Aut(G). Then 	 is compact in Aut(G) if and
only if the following hold:

(1) {φ(x) | φ ∈	} is relatively compact in G, for every x ∈ G.
(2) 	 is equicontinuous at e.

The following lemma will be useful.

LEMMA 4.2. Let G be a locally compact first countable (metrisable) group. Let
H ⊂ Aut(G) be a subgroup. If H is relatively compact with respect to the compact-open
topology, then H is a compact group and H acts distally on SubG.
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Proof. Note that Aut(G) is a topological semigroup with respect to the compact-
open topology (see, e.g., Lemma 9.5 of [33]). Therefore, H is a compact semigroup and
hence H is a compact group in Aut(G) with respect to the compact-open topology (see,
e.g., Theorem 30.6 of [33]). Note that on H , the compact-open topology and the modified
compact-open topology coincide. It follows from Lemma 2.4 of [32] that the natural map
H × SubG → SubG, defined by the action of automorphisms of G on SubG, is continuous.
As H is compact, it follows that H , and hence H acts distally on SubG.

As observed in the proof of Lemma 4.2, it follows that a subgroup H of Aut(G) is
compact with respect to the compact-open topology, if and only if it is compact with respect
to the modified compact-open topology. Moreover, a subgroup H , which is compact (in the
compact-open topology), is a compact topological group. Henceforth, Aut(G) is endowed
with the compact-open topology, and for compact subgroups of Aut(G), we will not specify
the topology.

For a totally disconnected locally compact group G, T ∈ Aut(G) is distal if and
only if G has arbitrarily small compact open T-invariant subgroups (this follows from
Proposition 2.1 of [19] together with the ‘Note added in proof’ in [19]). Moreover if G
is metrisable, then the above implies that, T is distal if and only if {Tn}n∈Z is equicontin-
uous (at e). We now get the following characterisation for compact totally disconnected
groups.

PROPOSITION 4.3. Let G be a compact totally disconnected first countable
(metrisable) group and let T ∈ Aut(G). Then the following are equivalent:

(1) T acts distally on G.
(2) T acts distally on SubG.
(3) T is contained in a compact subgroup of Aut(G).

Proof. Here, (3) =⇒ (2) follows from Lemma 4.2. As G is totally disconnected,
(2) =⇒ (1) follows from Theorem 3.6 of [32]. It is enough to show that (1) =⇒ (3).
Suppose T acts distally on G. Let	T = {Tn}n∈Z. By Proposition 2.1 of [19],	T is equicon-
tinuous (at e). Also, since G is compact, the 	T -orbit of x is relatively compact for every
x ∈ G. By Lemma 4.1, 	T has compact closure in Aut(G). Hence 	T is a compact group
(see, e.g., Theorem 30.6 of [33]).

Note that Proposition 4.3 also holds for a non-compact totally disconnected (additive)
group G = Qn

p, (n ∈ N), a p-adic vector space, and T ∈ GL(n,Qp) (where p is a prime).
This follows from Lemma 2.1 of [31] and Lemma 4.2 above together with the fact that
GL(n,Qp) is a (metrisable) topological group and its topology is the same as the (modified)
compact-open topology.

The following generalises Theorem 4.1 of [32] in the case of connected nilpotent Lie
groups to all compactly generated nilpotent groups. Note that in any connected nilpotent
group G, the unique maximal compact subgroup K is connected, abelian and central in
G (as G is Lie projective) and its torsion group is dense in K. Therefore, such a G is
torsion-free if and only if it is a simply connected nilpotent Lie group (equivalently, it
has no non-trivial compact subgroup). Any compactly generated nilpotent Lie group is
torsion-free if and only if its maximal compact subgroup is trivial.

THEOREM 4.4. Let G be a locally compact metrisable compactly generated nilpotent
group such that G0 is torsion-free and let T ∈ Aut(G). Then the following are equivalent.

(1) T acts distally on SubG.
(2) The closure of the group generated by T in Aut(G) is a compact group.
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Moreover, if G as above is a Lie group (with not necessarily finitely many connected
components), then the following are equivalent and they are also equivalent to statements
(1–2) above.

(3) T ∈ (NC).
(4) T acts distally on Suba

G.

Proof. Let 	T = {Tn}n∈Z. If 	T is compact, then it is a compact group (cf. [33],
Theorem 30.6). Now using Lemma 4.2, we get that (2) =⇒ (1). We know that (1) =⇒
(4) =⇒ (3). Suppose T ∈ (NC). Since G is strongly root compact, by Lemma 3.6,
{x ∈ G | Gx is closed} ⊂ M(T). Since G is compactly generated and nilpotent, it has a
unique maximal compact group K such that G/K is a compactly generated torsion-free
Lie group and all its cyclic subgroups are discrete. Now if x �∈ K, we get that Gx is closed,
and hence x ∈ M(T). As K is T-invariant, we have K ⊂ M(T), and hence G = M(T). This
implies that 	T satisfies the condition (1) of Lemma 4.1.

As G0 is a simply connected nilpotent Lie group, by Theorem 4.1 of [32], we get that
T |G0 generates a relatively compact group in Aut(G0). This implies that {(T |G0)n}n∈Z is
equicontinuous on G0.

Suppose G is a Lie group. As G0 is open, the preceding assertion implies that
	T is equicontinuous at e and 	T satisfies the condition (2) of Lemma 4.1. Therefore,
(3) =⇒ (2), and hence (1–4) are equivalent for a Lie group G.

Suppose G is not a Lie group and suppose (1) holds. Then T ∈ (NC) and 	T satisfies
the condition (1) of Lemma 4.1 as shown above. As T acts distally on SubG, by Theorem
3.6 of [32], T is distal. As G is compactly generated and nilpotent, it is distal and by
Corollary 2.2, G is T-Lie projective. Therefore, there exist compact open T-invariant
normal subgroups Kn such that G/Kn is a Lie group, Kn ⊂ Kn+1, n ∈ N, and

⋂
n Kn = {e}.

As G0 has no non-trivial compact subgroup, Gn := G0 × Kn are open T-invariant sub-
groups of G such that T(G0)= G0 and T(Kn)= Kn, n ∈ N. We know from above that
{(T |G0)n}n∈Z is equicontinuous on G0. Let {Wm}m∈N be a neighbourhood basis of the iden-
tity e in G0 such that Tk(Wm+1)⊂ Wm for all k ∈ Z and m ∈ N. Then {Kn × Wm | m, n ∈ N}
is a neighbourhood basis of the identity e in G. As Kn are T-invariant, it follows that 	T is
equicontinuous at e and it satisfies the condition (2) of Lemma 4.1. Hence	T is a compact
group in Aut(G) and (2) holds.

Note that if � is a locally compact compactly generated nilpotent group without any
non-trivial compact subgroup, then � embeds in a connected simply connected nilpotent
Lie group G as a closed co-compact subgroup and any automorphism of � extends to
a unique automorphism of G (cf. [25]). Note also that any closed subgroup of a simply
connected nilpotent group is compactly generated. We now have the following corollary
which can be viewed as an extension of Corollary 3.9.

COROLLARY 4.5. Let G be a connected simply connected nilpotent Lie group. Let
� be a closed co-compact subgroup of G. Let T ∈ Aut(G) be such that T(�)= �. Then
(1 − 6) of Corollary 3.9 are equivalent and they are also equivalent to the following: T is
contained in a compact subgroup of Aut(G).

Proof. Note that it is enough to show that if T |� ∈ (NC), then T is contained in a com-
pact subgroup of Aut(G). Let T |� ∈ (NC). By Theorem 4.4, T |� is contained in a compact
subgroup of Aut(�). Here, exp : G → G is a homeomorphism with log as its inverse. Let
d T : G → G be the Lie algebra automorphism corresponding to T . Since � is co-compact,
it follows that log(�) generates G as a vector space and we also have that {d Tn(g)}n∈Z
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is relatively compact for all g ∈ log(�), and hence it is relatively compact for all g ∈ G.
This implies that d T is contained in a compact subgroup of GL(G). As Aut(G) is a closed
subgroup of GL(G), T is contained in a compact subgroup of Aut(G).

Note that the action of G on SubG is the same as the action of Inn(G) on SubG, where
Inn(G) is the group of inner automorphisms of G. For subgroups H1 and H2 of G, let
[H1,H2] denote the subgroup generated by {h1h2h−1

1 h−1
2 | h1 ∈ H1, h2 ∈ H2}. Recall that

for a subgroup H of G, ZG(H) denotes the centraliser of H in G. The following theorem is
an analogue of Corollary 4.5 of [32] in the case of certain disconnected nilpotent groups.

THEOREM 4.6. Let G be a locally compact metrisable compactly generated nilpo-
tent group and let K be the unique maximal compact (normal) subgroup of G. Then the
following are equivalent:

(1) Every inner automorphism of G acts distally on SubG.
(2) G acts distally on SubG.
(3) Inn(G) is a compact subgroup of Aut(G).
(4) G/K is abelian and G = ZG(G0).

In case G is a torsion-free Lie group, then (1–4) are equivalent to the following:

(5) G is abelian.

Proof. Here (3) =⇒ (2) follows from Lemma 4.2. It is obvious that (2) =⇒ (1). We
now show that (1) =⇒ (4). Suppose (1) holds. Since K is the unique maximal compact
subgroup of G, K is normal in G and G/K is a compactly generated nilpotent Lie group
without any non-trivial compact subgroup. By Lemma 3.1 of [32], every inner automor-
phism of G/K acts distally on SubG/K . To prove that G/K is abelian, we may assume that G
is a Lie group without any non-trivial compact subgroup and show that it is abelian. If pos-
sible, suppose G is not abelian. Let Z = Z(G), the centre of G. Then Z �= G, and since
G is nilpotent, there exists a closed subgroup Z1 = {g ∈ G | xgx−1g−1 ∈ Z for all x ∈ G}
such that Z1 � Z � {e}. Let y ∈ Z1 be such that y �∈ Z. Then there exists x ∈ G such that
xyx−1 = yz for some non-trivial z ∈ Z. Now inn(x)(y)= yz, and inn(x) acts trivially on Z
which has no non-trivial compact subgroup. Let Gy be the subgroup generated by y in Z1.
Here, xynx−1 = ynzn and since G is torsion-free, we have that no non-trivial element of Gy

is stabilised by inn(x). By Lemma 3.12 of [32], inn(x) �∈ (NC). In particular, inn(x) does
not act distally on SubG. This contradicts the statement in (1), and hence G is abelian. This
implies the first assertion in (4).

If G is a torsion-free Lie group, we have that K is trivial since the set of torsion
elements is dense in K. Hence, the above shows that for such a G, (1) =⇒ (5) and also
(4) =⇒ (5). Since (5) =⇒ (4) and (5) =⇒ (3), all the statements (1 − 5) are equivalent
for such a torsion-free Lie group G.

Now we show that G = ZG(G0); that is, we show that G0 is central in G. If G0 is
trivial, then G = ZG(G0). Now suppose G0 �= {e}. We know from Proposition 2.4 that K
centralises G0.

Suppose G is a Lie group. We know that C = K ∩ G0 is the maximal compact subgroup
of G0, C is connected and central in G0, and by Proposition 2.4, C is central in KG0.

We first show that C is central in G. Since C is characteristic in G0, C is normal in G.
As G/K is abelian and G0 is normal, we have that [G,G0] ⊂ K ∩ G0 = C. Suppose C is
not central in G and suppose x ∈ G does not centralise C. Then x �∈ KG0. As G/K has no
non-trivial compact subgroup, xK generates a discrete infinite subgroup in G/K, and hence
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the cyclic group Gx generated by x in G is discrete and infinite. From above, [Gx,C] �= {e}.
Let C0 = C and Ck = [Gx,Ck−1], k ∈ N. Here, C1 �= {e}, Ck ⊂ Ck−1 ⊂ C, xCkx−1 = Ck and
Ck is a compact subgroup of C, k ∈ N. Since C is connected, we get that C1, and hence
each Ck is connected. Moreover, inn(x) acts trivially on Ck−1/Ck , k ∈ N. As G is nilpotent,
Cl �= {e} and Cl+1 = {e} for some l ∈ N.

Since C is a connected abelian Lie group, the above implies that the action of inn(x)
on C is unipotent (i.e. the eigenvalues of Ad(x) on the Lie algebra of C are all equal to
1). As inn(x) acts distally on SubC , by Proposition 4.2 of [32], we get that inn(x) acts
trivially on C, (one can also directly argue as in Step 1 of the proof of Proposition 4.2 of
[32] to conclude that inn(x)|C = Id). This leads to a contradiction, and hence we get that x
centralises C. Since this holds for all x ∈ G, we get that G = ZG(C).

Now suppose G0 �= C. By Corollary 4.5 of [32], G0 = Rn × C for some n ∈ N.
Suppose G �= ZG(G0). There exists x ∈ G which does not centralise G0. Then x �∈ KG0 as
KG0 centralises G0. Note that as G/K is abelian, we have that [G,G0] ⊂ C and xgx−1 ∈ gC
for all g ∈ Rn. Therefore, inn(x) acts trivially on G0/C, and hence the action of inn(x) on
G0 is unipotent. By Proposition 4.2 of [32], inn(x) acts trivially on G0 (one can also directly
conclude this by arguing as in the latter part of Step 2 of the proof of Proposition 4.2 of
[32]). This leads to a contradiction, and hence x ∈ ZG(G0). Since this holds for all x ∈ G,
we have that G = ZG(G0).

Now suppose G is not a Lie group. Since G is nilpotent, it is distal, and since it is
compactly generated, locally compact and metrisable, by Theorem 2.1, G is a projective
limit of Lie groups G/Kn, where Kn ⊂ K, n ∈ N and

⋂
n Kn = {e}. By Lemma 3.1 of [32],

every inner automorphism of G/Kn also acts distally on SubG/Kn , n ∈ N. As (G/Kn)
0 =

G0Kn/Kn is a Lie group, we get from above that G/Kn = ZG/Kn(G
0Kn/Kn). This implies

that [G,G0] ⊂ Kn for all n, and hence [G,G0] ⊂ ⋂
n Kn = {e}. Therefore, G = ZG(G0). This

completes the proof of (1) =⇒ (4).
Now suppose (4) holds. We show that (3) holds. Since G/K is abelian, for every g ∈ G,

the Inn(G)-orbit of g is contained in gK. Therefore, (1) of Lemma 4.1 is satisfied for
	= Inn(G). Now we show that Inn(G) is equicontinuous at e. By Theorem 2.1, G is Lie
projective, and hence has compact normal subgroups Kn such that G/Kn is a Lie group,
n ∈ N, and

⋂
n Kn = {e}. Therefore, G0Kn is open in G. Let {Un}n∈N be a neighbourhood

basis of the identity e in G0. Since K centralises G0, KnUn = UnKn, n ∈ N, and {KnUn}n∈N

is a neighbourhood basis of the identity e in G. As G = ZG(G0), we have that for all x ∈ G,
xKnUnx−1 = KnUn, n ∈ N. Therefore, Inn(G) is equicontinuous at e and by Lemma 4.1,
Inn(G) is relatively compact in Aut(G), and hence it is a compact group and (3) holds.
Therefore, (1–4) are equivalent.

Note that in Theorem 4.6, (5) is not equivalent to (1–4) in general. There exist metris-
able compact non-abelian totally disconnected nilpotent groups G; for example, take G to
be a subgroup of strictly upper triangular matrices in SL(3,Zp), where Zp is the ring of
p-dic integers in Qp for a prime p. For such a G, the inner automorphisms act distally on
SubG, and hence Theorem 4.6 (1–4) obviously hold for G due to Proposition 4.3.
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