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The instability characteristic of a viscoelastic jet in a co-flowing gas stream is studied
comprehensively. The important role of the non-uniform basic velocity in the instability
analysis of viscoelastic jets is clarified, which first induces an unrelaxed elastic tension,
and then produces a coupling term between the elastic tension and perturbation velocity.
The elastic tension promotes the instability of the jet, while the coupling term exhibits
a stabilizing effect, which is essentially related to the nonlinear constitutive relation of
viscoelastic fluids and the non-uniform basic velocity. The competition between these two
factors leads to the non-monotonic effect of fluid elasticity on the disturbance growth
rate, which can be divided into two different regimes characterized by the Weissenberg
number with values smaller or larger than unity. In different regimes, the structure of the
eigenspectrum is also significantly different. Furthermore, three instability mechanisms
are identified using the energy budget analysis, corresponding to the predominance of the
surface tension, elastic tension and shear and pressure of the external gas, respectively. By
analysing the variations of the growth rate and phase speed of the disturbances, the general
features of viscoelastic jet instability are obtained. Finally, the transitions of instability
modes in parameter spaces are investigated theoretically and the transition boundaries
among them are provided. This study provides guidance for understanding the underlying
mechanism of instability of a viscoelastic jet surrounded by a co-flowing gas stream and
the transition criterion of different instability modes.
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1. Introduction

The controllable production of microdroplets and microfibres from thin liquid jets is
of great interest in various scientific and engineering applications, such as medicine,
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pharmaceuticals, material science, chemistry, food, agriculture, textile, etc. (Gañán-Calvo
et al. 2013). Capillary flows have been used to produce micro-jets effectively (Barrero &
Loscertales 2007), where the interfaces of different fluid jets can be smoothly stretched
to of the order of microns or less under the action of an external force field. As type of
capillary flow, based on the flow focusing (FF) technique was proposed by Gañán-Calvo
(1998), where a steady microscopic liquid jet is formed under the driving of an external
high-speed co-flowing gas stream. FF has the advantage of producing a micron-level
monodisperse spray, and has become a popular method of producing sub-millimetre jets
through hydrodynamic means (Montanero & Gañán-Calvo 2020).

The research on the phenomenon of a liquid jet breaking into droplets has a history
of more than a century since the pioneering work of Rayleigh (1878), where a temporal
instability analysis of an inviscid liquid cylinder flowing with a uniform velocity was
performed. The influence of the surrounding gas was neglected and surface tension was the
only destabilizing factor. When the jet velocity is relatively small, Rayleigh’s results are
consistent with experiments, while for higher jet velocities, Rayleigh’s results deviate from
experiments. Weber (1931) found that the liquid viscosity has stabilizing effects, reducing
the breakup rate and increasing the droplet size. Chandrasekhar (1961) proved that the
mechanism of Rayleigh jet instability is capillary pinching. In the Rayleigh instability
theory, the predicted droplet sizes are of the same order as the jet diameter. However, this
theory cannot be applied to the atomization phenomenon which is the breakup of a liquid
jet into droplets much smaller than the jet diameter. To explain the atomization process,
Taylor (1962) took the gas density into account. He considered the limiting case of an
infinitely thick jet and extremely small gas-to-liquid density ratio. Lin & Chen (1998)
investigated the role of interfacial shear in the onset of instability of a cylindrical viscous
liquid jet in a viscous gas surrounded by a coaxial circular pipe. They reported that the
mechanism of the jet atomization is the shear and pressure fluctuation at the interface.

The instability and mode transition in FF have attracted more and more attention
(Herrada et al. 2010; Guerrero et al. 2020; Mu et al. 2021). Rosell-Llompart &
Gañán-Calvo (2008) distinguished two flow regimes in FF, which depend on the
interaction between the liquid jet and the co-flowing gas stream (e.g. the Weber number
We). For 1 < We < 20, it is ‘capillary FF’, while for We > 20, it turns into ‘turbulent FF’.
Gordillo, Pérez-Saborid & Gañán-Calvo (2001) performed a linear temporal instability
analysis of an inviscid jet and the co-flowing gas stream surrounding the jet, where the
influences of the basic-velocity profiles of the liquid and gas are considered by solving the
Navier–Stokes equations with the slenderness approximation. Their analysis in the case
of a uniform liquid velocity profile recovered the classical Rayleigh inviscid result for
well-developed and very thin gas boundary layers, but more importantly, the consideration
of realistic liquid velocity profiles (i.e. non-uniform velocity profiles) revealed new
families of modes which are essential to explain atomization experiments at large enough
Weber numbers, and do not appear in the classical stability analysis of inviscid parallel
streams.

It should be emphasized that many practical applications involve non-Newtonian
viscoelastic jets, such as inkjet printing, micro/nano-fibre manufacture, spinning and
electrospinning of polymeric solutions (Eggers & Villermaux 2008; Basaran, Gao & Bhat
2013; Alsharif, Uddin & Afzaal 2015; Li et al. 2019). The introduction of fluid elasticity
can fundamentally modify the Newtonian flow dynamics. For example, the elasticity of
fluid in high molecular polymer solutions may alter the linear amplification of disturbances
in shear flows, shift the onset of laminar-to-turbulence transition and reduce drag in the
turbulent flow regime (Page & Zaki 2016). In past decades, the instability of viscoelastic
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jets has received widespread attention (Montanero & Gañán-Calvo 2008; Ponce-Torres
et al. 2016; Ye, Yang & Fu 2016; Eggers, Herrada & Snoeijer 2020). However, in contrast to
the large body of literature available on the study of Newtonian liquid jets, the theoretical
work on the instability of viscoelastic jets is relatively limited due to the mathematical
complexity in dealing with nonlinear rheological constitutive equations. Incipient research
(e.g. Middleman 1965; Kroesser & Middleman 1969) that directly applied the linear
stability theory to predict the axisymmetric breakup of viscoelastic jets did not achieve the
same success as that with Newtonian fluid jets (Goldin et al. 1969; Gordon, Yerushalmi &
Shinnar 1973). The linearized instability analysis predicted that a viscoelastic jet exhibits
more rapid growth of axisymmetric wave disturbances than its Newtonian counterpart,
implying that elasticity is a purely destabilizing factor for all unstable disturbances (Goldin
et al. 1969; Liu & Liu 2006, 2008). This result does not agree with most experiments
because viscoelastic jets generally take a longer time to break up into droplets than
Newtonian ones (Gordon et al. 1973; Eggers & Villermaux 2008). In order to resolve this
discrepancy between theoretical analysis and experimental observations, Goren & Gottlieb
(1982) proposed that the liquid may be subject to an unrelaxed axial tension due to its prior
history. Under the assumption that the stress relaxation time constant is sufficiently large,
Goren & Gottlieb (1982) showed that the unrelaxed axial elastic tension can be a significant
stabilizing influence.

However, there are some inherent limitations in Goren & Gottlieb’s theory. First of
all, the unrelaxed axial elastic tension is artificially specified (Ruo et al. 2011; Mohamed
et al. 2015; Xie et al. 2016), and its real physical meaning is unclear. Secondly, the elastic
tension decays exponentially with an increase in the distance from the nozzle. In order to
maintain an approximate constant elastic tension, some constraints need to be imposed. For
example, the validity of this assumption requires that the distance over which the velocity
profile relaxes completely from the nozzle is much shorter than the distance corresponding
to the elastic stress relaxation (Ruo et al. 2011). In the present study, we try to clarify
the physical meaning of the unrelaxed elastic tension and remove unnecessary constraints
through comprehensive and detailed investigation.

It is generally believed that when linear stability theory is used to study the mechanism
of jet breakup, two primary conditions need to be satisfied to get results consistent
with experiments: one is that the model must include all important parameters, such as
viscosity, density, surface tension, etc.; the other is that the basic flow should be the
same as or similar to the real flow. In specific research of FF, when the physical model
is close to the actual situation, temporal stability analysis often gives results comparable
to experiments (Si et al. 2009). In the linear stability analysis of co-flowing liquid–gas
jets performed by Gordillo et al. (2001), the consideration of realistic (non-uniform)
basic velocity profiles revealed new families of modes which are essential to explain
atomization experiments at large enough Weber numbers. We are surprised to see that
almost all the previous studies adopted uniform velocity profiles in the linear stability
analysis of viscoelastic jets, probably for the sake of mathematical simplicity. In this work,
the temporal linear instability analysis is performed by considering viscoelastic jets with
non-uniform basic-velocity profiles in the FF flow configuration. The liquid is assumed
to be an Oldroyd-B viscoelastic fluid, which was commonly used in previous studies. The
characteristic of an Oldroyd-B fluid is that its viscosity is independent of shear in flow
and elastic effects can be clearly distinguished from the viscous effects. It has turned out
to be an appropriate model in describing the viscoelasticity of dilute polymer solutions
under small or moderate deformation (Larson 1992; Morozov & van Saarloos 2007; James
2009).

936 A6-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.41


Z. Ding, K. Mu, T. Si and Y. Jian

The paper is organized as follows. Section 2 provides the governing equations for
viscoelastic jets, the base-state velocity profile and stress tensor and the validation of the
numerical method used in this study. In § 3, an energy budget analysis is implemented
to access the dominating forces in the instability analysis of viscoelastic jets. In § 4, the
influence of fluid elasticity on the jet instability is discussed in detail in § 4.1, where
three different instability mechanisms can be identified by means of the energy budget
analysis. Section 4.2 demonstrates the general features of instability modes by examining
the variations of the maximum growth rate and the corresponding phase speed. In § 4.3,
we investigate the transitions of instability modes in parameter spaces and provide the
transition boundaries between different modes. Finally, the study is summarized and
concluded in § 5.

2. Theoretical model and numerical method

2.1. Governing equations
Consider the linear instability of an incompressible viscoelastic liquid jet of radius R1
and density ρ1. The jet is surrounded by a viscous gas in an external environment,
and the gas stream is considered as a cylinder of radius R2 with the outside surface
being assumed to slip. The effects of gravity and temperature are negligible. Only the
axisymmetric disturbance is considered. The theoretical model is sketched in figure 1,
where a cylindrical polar coordinate system is used with r, θ and z denoting the radial,
azimuthal and axial directions. The characteristic scales used for non-dimensionalizing
the governing equations are: radius R1 for lengths, base-flow velocity U0 at the centre for
velocities, R1/U0 for time and ρ1U2

0 for pressures and stresses.
The dimensionless continuity and Cauchy momentum equations for the viscoelastic

liquid are given by

∇ · V 1 = 0,
∂V 1

∂t
+ (V 1 · ∇) V 1 = −∇p1 + ∇ · T . (2.1a,b)

Here, V 1 = v1er + w1eθ + u1ez is the velocity field, p1 is the pressure field and T is the
deviatoric stress tensor, which can be decomposed into a polymer contribution Tp and a
Newtonian solvent contribution Ts, i.e. T = Ts + Tp. The total viscosity of the solution
is the sum of the solvent and polymer contributions, i.e. μ1 = μs + μp, with μs and μp
being the solvent and polymer viscosities, respectively. The solvent to solution viscosity
ratio is denoted by X = μs/μ1; X = 1 recovers the Newtonian limit. The dimensionless
constitutive equation for the Newtonian solvent stress Ts is

Ts = X
Re

[∇V 1 + (∇V 1)
T]

, (2.2)

while the polymer stress satisfies the Oldroyd-B constitutive relation (Bird, Armstrong &
Hassager 1987; Larson 1988)

Tp + Wi
�
Tp = 1 − X

Re

[∇V 1 + (∇V 1)
T]

, (2.3)

where the superscripts T and ∇ denote transpose and the upper-convected derivative
defined by

�
Tp = ∂Tp

∂t
+ V 1 · ∇Tp − (∇V 1)

T · Tp − Tp · ∇V 1. (2.4)
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Outside boundary
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Figure 1. Schematic diagram of the theoretical model of viscoelastic jets.

For a fixed X, the dimensionless groups relevant to the stability of the Oldroyd-B
fluid are the Reynolds number Re = ρ1U0R1/μ1, the Weber number We = ρ1U2

0R1/σ ,
representing the ratio of inertial force to surface tension (σ ), and the Weissenberg number
Wi = λU0/R1, which is the ratio of the polymer relaxation time λ to the flow time scale.
Alternatively, the elasticity number, El = Wi/Re = λμ1/ρ1R2

1, can be introduced, which
represents the ratio of the elastic and viscous time scales of the liquid jet (Brenn, Liu &
Durst 2000). The advantage of El is that its value is determined by the physical properties
of the fluid itself and has nothing to do with the velocity. Obviously, when El = 0 (or
equivalently Wi = 0), the model degenerates to the Newtonian fluid. On the other hand, if
all nonlinear terms in (2.4) disappear, the Jeffreys constitutive relation (a linear viscoelastic
model) is obtained as follows:

Tp + Wi
∂Tp

∂t
= 1 − X

Re

[∇V 1 + (∇V 1)
T]

. (2.5)

To facilitate expression of the nonlinear terms in the constitutive equation, we define an
operation 〈

Tp, V 1
〉 ≡ V 1 · ∇Tp − (∇V 1)

T · Tp − Tp · ∇V 1, (2.6)

which is bilinear and represents the coupling interaction between the polymer stress and
the velocity. Using this notation, the upper-convected derivative can be rewritten as

�
Tp = ∂Tp

∂t
+ 〈

Tp, V 1
〉
. (2.7)

The dimensionless governing equations for the ambient gas with density ρ2 and
viscosity μ2 are given by

∇ · V 2 = 0,
∂V 2

∂t
+ (V 2 · ∇) V 2 = − 1

Q
∇p2 + N

Q
1

Re
∇2V 2, (2.8a,b)

where V 2 = v2er + w2eθ + u2ez is the velocity field, p2 is the pressure field, Q = ρ2/ρ1
and N = μ2/μ1 are the density ratio and the viscosity ratio, respectively.
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To close the system, consistent conditions at the symmetry axis r = 0 and the outside
boundary r = a with a = R2/R1 are needed

v1 = ∂u1

∂r
= ∂p1

∂r
= 0, at r = 0,

v2 = ∂u2

∂r
= ∂p2

∂r
= 0, at r = a.

⎫⎪⎪⎬
⎪⎪⎭ (2.9)

At the liquid–gas interface r = h(z, t), the continuity of velocity, and the kinematic and
dynamic conditions are satisfied, i.e.

V 1 = V 2, (2.10a)

v1 =
(

∂

∂t
+ V 1 · ∇

)
h, (2.10b)

(T 2 − T 1) · n = 1
We

(∇ · n) n, (2.10c)

where T1 = −p1I + Ts + Tp and T2 = −p2I + N/Re[∇V 2 + (∇V 2)
T] with I the unit

tensor and where n is the outward unit vector normal to the interface.

2.2. Basic-velocity profile and stress tensor
The first step in performing the stability analysis is to find the basic velocity profiles for
the liquid and gas streams. In order to get reasonable results, the basic flow should be the
same as or similar to the real flow, as stated in the introduction section. Lin & Ibrahim
(1990) derived an analytical velocity profile satisfying the Navier–Stokes equations in
their study on the instability of a cylindrical Newtonian fluid jet encapsulated by a
viscous gas in a vertical circular pipe. Gordillo et al. (2001) obtained the velocity profiles
in the FF jet problem by numerically solving the boundary-layer equations. For given
initial velocity profiles of liquid and gas, the evolution of the liquid and gas streams in
space can be computed. However, the algebraic operation is complicated. On the other
hand, several approximate velocity profiles have been successfully applied in theoretical
analysis compared with the experimental results, e.g. that of the error function (Yecko,
Zaleski & Fullana 2002) and that of the hyperbolic–tangent function (Sevilla, Gordillo &
Martínez-Bazán 2002; Gañán-Calvo & Riesco-Chueca 2006; Si et al. 2009). In this work,
velocity profiles of the hyperbolic–tangent function in the two fluids are utilized. The
basic velocity is assumed to be axisymmetric and unidirectional, and denoted by U i =
[0, 0, Ui(r)], where the subscripts i = 1, 2 stand for the liquid and the gas, respectively.

The dimensionless form Ui(r), similar to that of Si et al. (2009), is selected as

Ui(r) = ai tanh (bi(r − 1)) + di, (2.11)

where ai, bi and di(i = 1, 2) are the coefficients to be determined. Using the following
constraint conditions: (i) continuity of the velocity and shear stress at the jet interface;
(ii) symmetry of the velocity at the symmetric axis; (iii) uniformity of the velocity at the
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Goren & Gottlieb’s theory Present result

Expression τ̄zz(z) = τ̄a exp(−z/λU) Γzz = 2(1 − X)El U′2
1

Basic-velocity profile Uniform Non-uniform
Parameters Artificial assumption Practical significance
Requirement λU/l � 1 None

Table 1. Comparison of our result with Goren & Gottlieb’s theory.

outside boundary, the basic velocities can be written as (Si et al. 2009)

U1(r) = (Us − 1) tanh
[

K
Us − 1

(r − 1)

]
+ Us, (2.12a)

U2(r) = (Ua − Us) tanh
[

K
N (Ua − Us)

(r − 1)

]
+ Us, (2.12b)

where Us is the velocity at the unperturbed interface (r = 1), Ua is the velocity at the
outside boundary (r = a) and K is the slope of the liquid velocity profile at the interface.
The parameter K characterizes the strength of interfacial shear. A large value of K implies
a strong interfacial shear. When K = 0, one can get a uniform velocity profile in the whole
flow field. In FF, the gas-to-liquid momentum ratio is very close to unity, and thus Ua ≈
Q−1/2 (see Si et al. 2009), which is also used in this work.

Under the assumption of a steady-state axisymmetric and non-uniform basic velocity,
the polymer contribution to the stress tensor in the base state can be obtained by solving
(2.3) and (2.4), as follows:

Γ =
⎡
⎣Γrr 0 Γrz

0 Γθθ 0
Γzr 0 Γzz

⎤
⎦ = 1 − X

Re

⎡
⎣ 0 0 U′

1
0 0 0

U′
1 0 2WiU′2

1

⎤
⎦ , (2.13)

where f ′ ≡ df /dr. Note that there is a non-zero tension Γzz along the streamlines
proportional to the square of the velocity gradient, which does not appear for both
Newtonian and linear viscoelastic models (i.e. the Jeffreys model). Thus, unlike the
Newtonian and Jeffreys counterparts, the Oldroyd-B fluid exhibits a non-zero first normal
stress difference (Γzz − Γrr). Most notably, Γzz plays the role of unrelaxed axial elastic
tension, compared with Goren & Gottlieb’s theory, but the source of unrelaxed elastic
tension is completely different. In Goren & Gottlieb’s theory, the axial elastic tension
was obtained by integrating (2.3) and (2.4) based on a uniform basic velocity U, i.e.
τ̄zz(z) = τ̄a exp(−z/λU) (see (2.6) in Ruo et al. 2011), where τ̄a is the axial tension at
the nozzle exit and its magnitude needs to be specified artificially. In addition, Goren &
Gottlieb’s theory requires λU/l � 1, with l being the wavelength of a disturbance, so that
the mathematical terms involving the spatial gradient of the tension can be negligible over
distances comparable to the characteristic wavelength (Ruo et al. 2011). As a contrast, by
using a non-uniform basic velocity, we get the axial elastic tension Γzz = 2(1 − X)El U′2

1 ,
which is a function of r and related to the velocity gradient, elasticity number and solvent
viscosity ratio. Note that no additional assumptions need to be introduced in our situation
and the physical meaning of unrelaxed elastic tension is clear. A comparison of our result
with Goren & Gottlieb’s theory is summarized in table 1.
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2.3. Linear stability analysis
To carry out the linear stability analysis, the base state is subjected to small amplitude
axisymmetric disturbances as follows:

V i = U i + Ṽ i, (2.14a)

pi = Pi + p̃i, (2.14b)

Tp = Γ + T̃p. (2.14c)

For axisymmetric disturbances, the perturbation velocity and elastic stress tensor are

Ṽ i =
⎡
⎣ṽi

0
ũi

⎤
⎦ and T̃p =

⎡
⎣τ̃rr 0 τ̃rz

0 τ̃θθ 0
τ̃zr 0 τ̃zz

⎤
⎦ , (2.15a,b)

respectively. It is worth noting that, although axisymmetric disturbances are considered,
the inclusion of the component τ̃θθ in the elastic stress tensor is necessary because the
constitutive equation of τ̃θθ is related to the perturbation velocity ṽ1, which is non-zero
(see (A2) and (A6) in Appendix A).

Substituting (2.14) into the governing equations (2.1a,b)–(2.3) and (2.8a,b) and
neglecting high-order terms, we obtain the governing equations for disturbances as
follows:

∇ · Ṽ 1 = 0, (2.16)

∂Ṽ 1

∂t
+

(
Ṽ 1 · ∇

)
U1 + (U1 · ∇) Ṽ 1 = −∇p̃1 + ∇ · T̃s + ∇ · T̃p, (2.17)

T̃s = X
Re

[
∇Ṽ 1 +

(
∇Ṽ 1

)T
]

, (2.18)

T̃p + Wi

[
∂T̃p

∂t
+

〈
T̃p, U1

〉
+

〈
Γ , Ṽ 1

〉]
= 1 − X

Re

[
∇Ṽ 1 +

(
∇Ṽ 1

)T
]

, (2.19)

∇ · Ṽ 2 = 0, (2.20)

∂Ṽ 2

∂t
+

(
Ṽ 2 · ∇

)
U2 + (U2 · ∇) Ṽ 2 = − 1

Q
∇p̃2 + N

Q
1

Re
∇2Ṽ 2, (2.21)

in which the coupling terms 〈T̃p, U1〉 and 〈Γ , Ṽ 1〉 are defined in the same way as in (2.6).
Using the normal mode method, the perturbation quantities (velocity, pressure and

elastic stress) can be represented in the form of Fourier modes in the following manner:

f̃ (r, z, t) = f̂ (r) exp{ik(z − ct)}, (2.22)

where k is the dimensionless axial wavenumber and c = cr + ici is the dimensionless
complex wave speed. The flow is temporally unstable (stable) if ci > 0 (< 0). Let s = kci
denote the growth rate of a disturbance if it is unstable, and cr represent the phase speed
of the disturbance. The perturbed interface can be expressed as

h(z, t) = 1 + η̃(z, t) with η̃(z, t) = η̂ exp{ik(z − ct)}. (2.23)

Substituting the forms (2.22) of the perturbation quantities into the governing equations
(2.16)–(2.21), one can obtain a set of governing equations for the perturbation amplitudes,
which are presented with the corresponding boundary conditions in Appendix A.
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2.4. Numerical method
The governing equations (A1)–(A10) together with the boundary conditions (A11)–(A17)
in Appendix A form an eigenvalue problem. Obviously, it is difficult to determine the exact
spectrum since an explicit dispersion relation is not available, even for the axisymmetric
case. In previous studies, the Chebyshev spectral collocation method has been successfully
applied to this type of problem because of its ability in identifying all eigenvalues
with high accuracy and efficiency (Boyd 1999; Weideman & Reddy 2000; Chaudhary
et al. 2021). We employ this method to determine the complex eigenvalue (c), where
the dynamical variables (velocity, pressure and stress perturbations) are expanded as a
finite sum of Chebyshev polynomials and substituted in the above linearized differential
equations. The liquid region r ∈ [0, 1] is mapped into the computational space y ∈ [−1, 1]
through the linear transformation

r = 1 + y
2

, (2.24)

and the gas region r ∈ [1, a] is mapped into the computational space y ∈ [−1, 1] through

r = y(1 − a) + (1 + a)

2
. (2.25)

In our spectral formulation, we discretize all of the equations (A1)–(A10), and the
resulting generalized eigenvalue problem is of the form

Ax = cBx, (2.26)

where the coefficient matrices A and B are obtained from the governing equations
and the boundary conditions, and x = [x1; x2; η̂] with x1 = (v̂1, û1, p̂1, τ̂rr, τ̂rz, τ̂θθ , τ̂zz)

T

and x2 = (v̂2, û2, p̂2)
T being the vectors comprising of the coefficients of the spectral

expansion at the collocation points in liquid and gas regions, respectively. The size
of the coefficient matrices is (7N1 + 3N2 + 11) × (7N1 + 3N2 + 11), where N1 + 1 and
N2 + 1 are the numbers of Gauss–Lobatto collocation points in liquid and gas regions,
respectively.

A MATLAB code is developed to solve the generalized eigenvalue problem (2.26). The
numbers of collocation points are chosen to satisfy the desired accuracy. The convergence
of the complex wave speed (c) to the numbers of the collocation points N1 and N2 for
different El is illustrated in table 2. It can be seen that, as El increases, more collocation
points are needed in order to achieve the desired accuracy. A further increase in El (i.e.
El > 10 and X = 0.9) will lead to a sharp deterioration in convergence, which can be
explained by means of the behaviour of unstable eigenvalues with El (see figure 15 in
Appendix B). To avoid this problem, we restrict ourselves to the range of (1 − X)El < 1
in this work. For fixed El and X, the effects of the collocation points and the radius ratio
a on the convergence are shown in table 3. In the calculations, a = 7, N1 = 30 and N2 =
40 provide the complex wave speed with a more than three-digit accuracy. Therefore,
such a set of (a, N1, N2) will be used in our calculations, but when higher accuracy is
required, like the calculations of eigenspectra, we must resort to more collocation points
(see figures 13–15). The validity of the code has been checked by comparing with the
result of Si et al. (2009) in the Newtonian limit case and that of Ruo et al. (2011) in the
case of viscoelastic jets with uniform basic-velocity profiles, as illustrated in figure 2.

3. Energy budget

Energy budget is an elaborate method to access the mechanism of jet instability (Lin
2003; Li, Yin & Yin 2011; Ye et al. 2016). A history of the use of energy budgets can
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El N1 N2 cr ci

0.1 20 60 1.191925 0.306297
0.1 30 60 1.191925 0.306297
2 20 60 1.091806 0.189093
2 40 60 1.091803 0.189093
8 20 60 1.065633 0.018524
8 60 60 1.065416 0.018358
8 90 60 1.065416 0.018358

Table 2. Convergence of the complex wave speed for different El, where Re = 100, We = 3, X = 0.9,
Q = 0.0013, N = 0.018, K = 0.9, Us = 1.2, a = 4 and k = 1.

a N1 N2 cr ci

3 20 40 1.144541 0.233055
4 20 40 1.138434 0.227604
5 30 40 1.137637 0.226885
5 30 60 1.137637 0.226885
6 30 40 1.137533 0.226791
7 30 40 1.137519 0.226779

Table 3. Convergence of the complex wave speed for different radius ratios a, where Re = 100, We = 3,
El = 1, X = 0.9, Q = 0.0013, N = 0.018, K = 0.9, Us = 1.2 and k = 1.
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Figure 2. Variations of the growth rate s as a function of the dimensionless axial wavenumber k. (a) Compared
with the results of Si et al. (2009) in the Newtonian limit (El → 0), where El = 0.01, Re = 100, We = 3,
X = 0.9, Q = 0.0013, N = 0.018, K = 1, Us = 1.2, a = 5; (b) compared with the results of Ruo et al. (2011)
in the case of viscoelastic jets with the uniform basic-velocity profile and inviscid ambient gas under the same
parameters (see figure 1 in Ruo et al. (2011); note that they used De instead of El there), where the symbols
represent the results of Ruo et al. (2011) and the curves are the results of our calculations.

be found in Joseph & Renardy (1992). The common procedure is to represent the rate of
change of disturbance kinetic energy as a sum of the rates of various terms, such as the
works of viscosity and surface tension (Otto, Rossi & Boeck 2013; Qiao et al. 2020; Mu
et al. 2021). To better understand the role of liquid elasticity in jet instability, we perform
such an energy analysis. First, taking a dot product of the linearized momentum equation
(2.17) with the disturbance velocity Ṽ 1, and then integrating over a control volume of one
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disturbance wavelength Λ = 2π/k, we get
�

0≤z≤Λ
0≤r≤1

(∂t + U1 · ∇) e dV = −
�

0≤z≤Λ
0≤r≤1

Ṽ 1 ·
(

Ṽ 1 · ∇U1

)
dV −

�
S

p̃1Ṽ 1 · n dS

+
�

0≤z≤Λ
0≤r≤1

Ṽ 1 ·
(
∇ · T̃s

)
dV +

�
0≤z≤Λ
0≤r≤1

Ṽ 1 ·
(
∇ · T̃p

)
dV, (3.1)

where e = Ṽ 1 · Ṽ 1/2 is the disturbance kinetic energy, S is the surface of the control
volume and n denotes the outward-pointing unit normal vector of the surface. Noting that
Ṽ 1 · ∇p̃1 = ∇ · (p̃1Ṽ 1) because of the incompressibility, the divergence theorem has been
applied to the second term on the right-hand side of (3.1).

The term on the left-hand side of (3.1) represents the rate of change of the disturbance
kinetic energy. The first term on the right-hand side gives the rate of energy transfer
between the basic flow and the disturbance. The second term gives the rate of work done
by the pressure. The third and fourth terms on the right-hand side of (3.1) can be further
rewritten by means of the formulas (White 1998)

Ṽ 1 ·
(
∇ · T̃s

)
= ∇ ·

(
Ṽ 1 · T̃s

)
− T̃s : ∇Ṽ 1, (3.2a)

Ṽ 1 ·
(
∇ · T̃p

)
= ∇ ·

(
Ṽ 1 · T̃p

)
− T̃p : ∇Ṽ 1. (3.2b)

Thus, (3.1) can be rewritten as�
0≤z≤Λ
0≤r≤1

(∂t + U1 · ∇) e dV = −
�

0≤z≤Λ
0≤r≤1

Ṽ 1 ·
(

Ṽ 1 · ∇U1

)
dV

+
�
S

[
−p̃1Ṽ 1 + Ṽ 1 ·

(
T̃s + T̃p

)]
· n dS

−
�

0≤z≤Λ
0≤r≤1

T̃s : ∇Ṽ 1 dV −
�

0≤z≤Λ
0≤r≤1

T̃p : ∇Ṽ 1 dV. (3.3)

After substituting the dynamic boundary conditions (A15) and (A16) into the second
term on the right-hand side of (3.3) in order to include the influence of interface movement,
we can finally write the energy budget as

KE = REY + PRG + NVG + SHG + SUT + SHB + NE + DIS + DIP, (3.4)

where the expression of each term and its physical interpretation are summarized in table 4.
It is notable that there are two important terms (i.e. NE and DIP) related to the elastic
effect in the energy budget analysis, which are absent for Newtonian jets. Furthermore, for
the terms of surface integral in (3.4), such as PRG, NVG, SHG, SUT, SHB and NE, the
integrals over the two ends (i.e. z = 0 and z = Λ) of the control volume cancel each other
out because the disturbance is periodic in the z-direction, and the surface integral is only
related to the integral over the side of the control volume (i.e. r = 1).

Because of the non-uniqueness of eigenfunction for the eigenvalue problem (2.26), it
leads to the non-uniqueness of all energy terms in (3.4). To eliminate this problem, it is
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Term Physical interpretation

KE = π
∫ Λ

0

∫ 1
0 (∂t + U1∂z)(ṽ

2
1 + ũ2

1)r dr dz Rate of change of the disturbance kinetic
energy

REY = −2π
∫ Λ

0

∫ 1
0 U′

1ũ1ṽ1r dr dz Energy exchange between the
disturbance and basic flow

PRG = −2π
∫ Λ

0 (p̃2ṽ1)r=1 dz Rate of work done by the gas pressure
fluctuation on the liquid jet

NVG = 4Nπ

Re

∫ Λ

0 (ṽ1∂ṽ2/∂r)r=1 dz Rate of work done by the normal viscous
stress exerted by the fluctuating gas at
the interface

SHG = 2Nπ

Re

∫ Λ

0 [ũ1(∂ ũ2/∂r + ∂ṽ2/∂z)]r=1 dz Rate of work done by the shear stress
exerted by the fluctuating gas at the
interface

SUT = 2π

We

∫ Λ

0 [ṽ1(1 + ∂2/∂z2)η̃]r=1 dz Rate of work done by the surface tension

SHB = 2π

Re

∫ Λ

0 η̃ũ1(NU′′
2 − U′′

1 )r=1 dz Rate of work done by the shear stress
associated with the basic flow
distortion

NE = 2π
∫ Λ

0 ∂η̃/∂z(ũ1Γzz)r=1 dz Rate of work done by the unrelaxed axial
elastic stress with the interface
fluctuation

DIS = −� T̃s : ∇Ṽ 1 dV Rate of work contributed by the solvent
viscous dissipation

DIP = −� T̃p : ∇Ṽ 1 dV Rate of work contributed by the elastic
stress

Table 4. Physical interpretation of terms from the energy analysis.

appropriate to consider the relative rate of change of energy, i.e. dividing each energy term
in (3.4) by the disturbance kinetic energy of the system, e.g.

KE = KE
DK

, REY = REY
DK

, PRG = PRG
DK

, etc., (3.5a–c)

with the disturbance kinetic energy

DK =
�

0≤z≤Λ
0≤r≤1

Ṽ 1 · Ṽ 1/2 dV. (3.6)

As pointed out by Ye et al. (2016), the dimensionless relative rate of change of the
disturbance kinetic energy is equal to the growth rate of the disturbance. Therefore, the
relative energy terms quantitatively represent the contribution of each physical factor
(surface tension, elastic tension, viscous dissipation, etc.) to the temporal growth rate.
In the following, the relative rate of change of energy instead of the rate of change
of energy will be adopted, and the superscript bar for each term in (3.5a–c) will be
dropped for simplicity. In addition, it is easy to verify that when the hyperbolic–tangent
function is used as the basic-velocity profile, the SHB term is actually equal to zero due to
U′′

1 (1) = U′′
2 (1) = 0.
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Instability of viscoelastic jet in co-flowing gas stream

4. Results and discussion

4.1. Influence of fluid elasticity on jet instability
In this section, we discuss the influence of fluid elasticity on jet instability based on the
variations of the growth rate s of disturbances with s = kci. In calculations, we choose the
typical parameters as the reference state: Re = 100, We = 3, X = 0.9, Q = 0.0013, N =
0.018, Us = 1.2 and K = 0.9. These dimensionless parameters are fixed to the reference
values in the following discussion unless they are specifically stated.

Figure 3 illustrates the variations in the growth rate s with the dimensionless axial
wavenumber k, for different parameters X and El but with the same value of (1 − X)El. It
can be found that, for a dilute polymer solution (X > 0.7), there is no significant difference
in the unstable growth rate curve under the same combination (1 − X)El. The present study
is confined to considering the jet instability of a dilute polymer solution, so that one can
investigate the influence of fluid elasticity on the jet instability by only changing El with a
fixed X.

In figure 4, we explore the variations of the growth rate s for different El. As El is
increased from 0 to 0.01, the growth rate of the disturbance shows a slight increase
(figure 4b). As El is increased further, the growth rate shows a rapid decline. This indicates
that the elasticity of the fluid plays a dual role in the analysis of jet stability: a viscoelastic
jet composed of weakly elastic fluids exhibits more rapid growth of axisymmetric
disturbances than a Newtonian one, while for viscoelastic jets with more pronounced
elastic properties, the growth of axisymmetric disturbances is significantly suppressed.
This feature is consistent with the experimental evidence for a laminar capillary jet of a
viscoelastic fluid (Goldin et al. 1969), and has not been reported in the existing theoretical
analyses, to the best of our knowledge. We believe that the above behaviour is universal
in the viscoelastic jet instability, and it is essentially related to the nonlinear constitutive
relation of viscoelastic fluids and non-uniform basic velocity.

It is noticed that, for a uniform basic-velocity profiles, the elastic stress tensor Γ = 0.

Thus, all nonlinear terms in the rheological constitutive equations are eliminated after
linearization, giving the same results as those obtained using the Jeffreys model. The
instability analysis was thus regarded to be independent of the form of the constitutive
equations (Goldin et al. 1969; Ruo et al. 2011). However, when a non-uniform basic
velocity is considered in the base-state solutions, as described in § 2.2, the nonlinear
viscoelastic impacts will be preserved in the stability analysis. On the one hand, the
non-uniform basic velocity induces a non-zero elastic stress tensor Γ , including the
unrelaxed axial elastic tension Γzz, based on the nonlinear constitutive equation. On the
other hand, a coupling term between the elastic stress tensor and the perturbation velocity,
i.e. 〈Γ , Ṽ 1〉 in (2.19), is derived from the linearization of the constitutive equation, which
reflects the nonlinear characteristics of the constitutive equation to some extent. Strictly
speaking, the term 〈T̃ p, U1〉 in (2.19) is also from the linearization of the nonlinear part of
the constitutive equation. However, its impact on the jet instability is small relative to the
term 〈Γ , Ṽ 1〉 (see figure 8 for case B where the influence of 〈Γ , Ṽ 1〉 is removed and the
DIP including the contribution of 〈T̃ p, U1〉 is negligibly small). Therefore, the influence
of nonlinear elasticity can be predicted through the coupling term 〈Γ , Ṽ 1〉.

Figure 5 shows the relative contribution of various factors in the rate of change of
disturbance kinetic energy vs the wavenumber for different El. For small El, the effects
of surface tension (represented by SUT) and external gas shear and pressure (represented
by SHG and PRG) are significant factors on the instability in the long-wave and short-wave
regions, respectively (see figure 5a). With the increase of El, the influence of fluid

936 A6-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.41


Z. Ding, K. Mu, T. Si and Y. Jian

0.5 1.0 1.5 2.0 2.5

k
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

G
ro

w
th

 r
at

e 
s

X = 0.9, El = 1
X = 0.8, El = 1/2
X = 0.7, El = 1/3
X = 0.5, El = 1/5
X = 0, El = 1/10

Figure 3. Variations of the growth rate s with the dimensionless axial wavenumber k for different parameters
X and El but with the same combination (1 − X)El = 0.1.
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Figure 4. Variations of the growth rate s with the dimensionless axial wavenumber k for different El:
(a) El = 0.1, 0.3, 1, 5; (b) El = 0.001, 0.005, 0.01, 0.1. Note that (b) shows the enlarged region near the
maximum growth rate. Obviously, there are two peaks (denoted by P1 and P2) for El = 1 in (a), indicating
that two different instability modes may appear at the corresponding locations (wavenumbers). With the help
of the energy budget method, it can be further confirmed that P1 corresponds to elastic instability while P2
corresponds to shear instability (refer to the last paragraph in § 4.1 for detailed descriptions of the instabilities).

elasticity (represented by NE and DIP) begins to increase gradually and finally becomes
dominant (figures 5(b) and 5(c)). It is notable that NE and DIP make completely opposite
contributions to the rate of change of disturbance energy: NE tends to amplify the
disturbance kinetic energy, thereby promoting the instability; on the contrary, DIP tends
to reduce the kinetic energy of disturbance, thereby suppressing the jet instability. Note
that NE is related to the unrelaxed elastic tension whereas DIP includes the influence of
the coupling term 〈Γ , Ṽ 1〉 in the constitutive equation. The combined effect of NE and
DIP is shown in figure 5(d). The NE is dominant for Wi < O(1), while DIP is dominant
for Wi > O(1). In summary, the influence of fluid elasticity on the jet instability is mainly
controlled by the magnitudes of NE and DIP, and the competition between NE and DIP is
determined by Wi.

As is well known, Wi quantifies the nonlinear response of the viscoelastic fluid
(Galindo-Rosales et al. 2014; Ding & Jian 2021) (note that the factor Wi appears in front
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Figure 5. Energy budget, using the relative rate of change of energy, vs the wavenumber for (a) El = 0.1,
(b) El = 0.5 and (c) El = 1. Here, the meanings of the letters can be found in table 4. Note that, in (c), the
abrupt changes near k ≈ 1.2 may be due to the increase in the calculation error caused by the mode transition
(see figure 4(a) for El = 1). (d) Comparison of the relative sizes of NE and DIP with the change of Wi. When
Wi < O(1), |NE| > |DIP|, while for Wi > O(1), |NE| < |DIP|.

of the nonlinear terms of the constitutive equation (2.3)). Thus for Wi < O(1), the linear
terms of the constitutive equation dominate the nonlinear parts, and the magnitude of
NE exceeds the one of DIP (as shown in figure 5d), so that the perturbation growth rate
shows an increasing trend. While for Wi > O(1), a strong nonlinear effect is stimulated,
and the magnitude of DIP exceeds that of NE, so that the perturbation growth rate shows
a downward trend. This is consistent with the change of disturbance growth rate shown in
figure 4(b), where the critical El ∼ 0.01 corresponds to Wi ∼ 1.

Figure 6 further shows the variations of the maximum perturbation growth rate
with Wi. It is found that, when Wi < O(1), the viscoelastic jet is less stable than its
Newtonian counterpart, since the nonlinear viscoelastic effect is insignificant and the
unrelaxed tension promotes the instability of the jet. While in the range of Wi > O(1), the
nonlinear viscoelastic effect greatly suppresses the maximum growth rate, which makes
the viscoelastic jet more stable than the Newtonian one.

In order to demonstrate the influences of the nonlinear elasticity and the unrelaxed
elastic tension more clearly, we consider two specific cases: (i) using a linear viscoelastic
model, i.e. the Jeffreys model − case A, in which the unrelaxed axial elastic tension Γzz
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Figure 6. Variations of the maximum growth rate smax (smax = maxk{s}) with the Weissenberg number Wi
for (a) Re = 100 and (b) Re = 10, where the green triangles (�, green) represent the shear instability (SI)
modes and the blue circles (�, blue) represent the elastic instability (EI) modes (the detailed definitions of
these instability modes are given in the penultimate paragraph in § 4.1). Here, the Newtonian maximum growth
rate is also shown (dashed line) for reference. It is notable that the forms of the variations of the growth rate
for different Re are unified by means of Wi. Specifically, the growth rate of disturbance increases slightly with
Wi < O(1), while it decreases rapidly with Wi > O(1).

and the coupling term 〈Γ , Ṽ 1〉 does not appear in spite of the non-uniform basic velocity
considered; (ii) using the Oldroyd-B model with the coupling term 〈Γ , Ṽ 1〉 removed in
(2.19) – case B. In case A, the influences of both the unrelaxed elastic tension and nonlinear
elasticity are eliminated at the same time. Compared with the full Oldroyd-B model, case
B is able to show the effect of Γzz alone without being limited by the nonlinear factors.

The variations of the growth rate s of disturbance for cases A and B are shown in
figures 7(a) and 7(b), respectively. As El is increased from 0 to 0.1 in case A, the growth
rate shows a slight increase, and when El continues to increase, the growth rate reaches
saturation and hardly changes. The slight promotion effect of linear viscoelasticity on the
growth rate is consistent with the above analysis. However, for case B, the growth rate
increases continuously with El due to the presence of the unrelaxed elastic tension. In
other words, the unrelaxed elastic tension further promotes the increase in the growth rate
of the disturbance. Compared with the full Oldroyd-B model, the downward trend of the
growth rate does not appear due to the lack of the nonlinear elasticity. From the perspective
of energy budget analysis, as shown in figure 8, NE becomes dominant in the jet instability
and promotes the increase in the growth rate with the increase of El for case B. It is notable
that the contribution of the DIP term related to the nonlinear elasticity effect on the growth
rate of the disturbance is almost negligible in case B. Comparing with the full Oldroyd-B
model, this illustrates the significance of the coupling term 〈Γ , Ṽ 1〉 in the nonlinear elastic
behaviour of the jet.

In the linear and nonlinear regimes of fluid elasticity, the structure of the spectrum is also
different, which is discussed in detail in Appendix B. In the linear regime (i.e. Wi < O(1)),
the ring structure in the viscoelastic spectrum is prominent, whereas in the nonlinear
regime (Wi > O(1)), the ring collapses into the continuous spectra in an irregular manner.
In addition, by tracking its trajectory, we find the most unstable eigenvalue falls into the
continuous spectrum balloon when (1 − X)El ∼ 1, which leads to a sharp deterioration in
the accuracy and convergence for resolving the most unstable eigenvalue.

Based on the energy analysis, three different types of instability mechanism can
be identified in the present work. First, similar to the case of Newtonian jets, the
predominance of the SUT term characterizes the instability caused by surface tension,
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which can be called the capillary instability (abbreviated as CI), while the predominance
of SHG or PRG corresponds to the instability caused by external gas shear and pressure,
called the shear instability (abbreviated as SI). In addition, a new instability mechanism
can be identified, where the elastic effect (i.e. NE) plays a dominant role in the instability
of a viscoelastic jet, and this instability is called the elastic instability (abbreviated as EI).
The previous analysis of figures 4–8 is helpful to understand the mechanism and features
of EI. Importantly, the nonlinear elastic effect in the EI regime plays a stabilizing role in
the jet.

With the help of energy budget analysis and identification of instability modes, we can
explore the instability mechanisms in figure 4(a), and determine the instability modes
at the peaks (denoted by P1 and P2). For small El (e.g. El = 0.1), the instability of
a jet is attributed to SI since the contributions of SHG and PRG to the instability
are dominant at the most dangerous disturbance wavenumber k ≈ 1 (figure 5a). As
El increases to 1, the elastic effect becomes enhanced, and the instability of the jet
belongs to EI in the long-wave region, while SI is still the main instability mode
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in the short-wave region (figure 5c). Comparing the maximum growth rates in the
long-wave and short-wave regions, it can be seen that the maximum growth rate in the
long-wave region is significantly larger (figure 4a), and thus the dominant mechanism
of instability for El = 1 in figure 4(a) is attributed to EI. In this paper, we mainly focus
on the instability corresponding to the maximum growth rate over the entire wavelength
range.

4.2. General features of instability modes
To gain more insight into the instability, we depict the variations in the maximum growth
rate over the entire wavelength range, i.e. smax = maxk{s}, and the corresponding phase
speed, cr,max, with the relevant parameters in figure 9. Note that the unstable eigenvalues
are usually located on the I1 branch (figure 13), but this does not mean that the external
gas does not contribute to the instability. In fact, we have known from the analysis in § 4.1
that the effect of external gas is the source of SI. As El increases, the transition of the
instability mode from CI (or SI) to EI occurs (see figure 9a), as expected. In the EI regime,
the growth rate decreases approximately linearly with El. In addition, the transitions from
SI (or EI) to CI and from CI to SI occur with the increase of We−1 and K, respectively
(figures 9(c) and 9(e)). The growth rates in the CI and SI regimes increase approximately
linearly with We−1 and K, respectively. The phase diagrams on the mode transitions in
different parameter spaces will be given in § 4.3.

With increasing El, the phase speed cr in the EI regime decreases and tends to the basic
velocity at the centre of the internal fluid (i.e. cr → 1 in figure 9b), so the EI mode can
be also called the centre mode. This feature is analogous to the centre mode instability
in viscoelastic Poiseuille flow (Garg et al. 2018; Khalid et al. 2021). In figure 9(d), with
the decrease of We, the phase speed in the CI regime decreases (suppressed), and then
gradually tends to a constant value. However, the phase speed in the CI regime is always
above the average velocity of the jet, and stays near the velocity Us at the jet interface, so
the CI mode can be also called the interface mode. In figure 9( f ), it can be observed that,
as K increases, the phase speed in the SI regime increases (promoted), which tends to the
velocity in the shear layer of the external gas, so the SI mode can be called the shear mode.
The above features on the growth rate and phase speed under the three instability modes
are summarized in table 5.

The velocity and polymer stress eigenfunctions corresponding to the unstable
eigenvalues are shown in figure 10. It can be found that, as El increases, the axial velocity
eigenfunctions gradually approach the centre of the jet (i.e. r = 0) in the EI regime, which
is consistent with the behaviour of the eigenvalues, although the eigenfunctions are not
localized near the centreline. In contrast, the axial disturbance velocity fields are almost
uniform, spreading across the cross-section of the liquid jet for the parameters considered
in the CI regime (corresponding to small We; see figure 10c). The amplitude of the axial
velocity eigenfunction in figure 10(d) is significantly larger near the interface (i.e. r ≈ 1)
than that at the centre due to the dominance of the shearing effect in the SI regime. In
addition, the τ̂zz eigenfunction shows a sharp peak for large El near the boundary layer of
the liquid jet, in which a large velocity gradient appears for the basic velocity.

4.3. Transitions of instability modes in parameter space
In the previous section, we have analysed the characteristics of the three instability modes
in detail. In this section, we focus on the transition boundaries between different modes
(i.e. CI/SI, CI/EI and SI/EI) in parameter space.
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Figure 9. Variations of the maximum growth rate smax and the corresponding phase speed cr,max of
disturbances with (a,b) El, (c,d) We−1 and (e, f ) K for a fixed El = 0.01. Here, Re = 100, Q = 0.0013,
N = 0.018, Us = 1.2. The red squares represent the CI modes, the green triangles represent the SI modes
and the blue circles represent the EI modes. In (b,d), the dimensionless average velocity Um of the jet at the
basic state is shown for reference. The growth rate in the EI regime in (a) decreases approximately linearly with
the increase of El, while the growth rates increase approximately linearly with the increase of We−1 and K in
the CI and SI regimes of (c,e), respectively.

Figure 11(a) shows the transition between CI and SI on a We–K plane for very small
El (El = 0.01). As We or K increases, the transition of the instability mode from CI to
EI occurs. The transition boundary of CI/SI is found to approximately satisfy the curve
l1: KWe = c1, with the constant c1 depending on Re (see table 7). As El increases, the EI
mode appears, which has been known from the previous discussion. Figure 11(b) shows
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Instability mode Control parameter Growth rate s Phase speed cr Wavelength type

CI We ↓ Promoted ↑ Suppressed ↓ Long-wave instability
SI K ↑ Promoted ↑ Promoted ↑ Short-wave instability
EI El ↑ Suppressed ↓ Suppressed ↓ Long-wave instability

Table 5. The features on the growth rate and phase speed for the instability modes CI, SI and EI.
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Figure 10. Profiles of the axial (a) velocity and (b) polymer stress of the disturbance corresponding to unstable
eigenvalues at different El with k = 0.8, X = 0.9, Re = 100, We = 3, Us = 1.2 and K = 0.9. (c,d) Show the
profiles of the axial velocity of the disturbance at different We and K, respectively, with El = 0.1. Here, the
moduli of the velocity and stress are calculated because they are complex variables. In (a) the axial velocity
profiles for large El correspond to EI modes, while in (c) the velocity profiles for small We correspond to CI
modes and in (d) the velocity profiles correspond to SI modes.

the transition between CI and EI on a El–K plane for small We (We = 0.5). Note that
a large value of K means a large velocity gradient for the basic velocity of the jet (see
(2.12)), thereby resulting in a large unrelaxed axial elastic tension Γzz, which makes the EI
tend to dominate even at a small value of El. The transition boundary of CI/EI is found
to approximately satisfy the curve l2: Weγ (1 − X)El Kα = c2 with α = 3 and γ = 1.5,
where the constant c2 depends on Re.

For certain parameter ranges (e.g. small El or We), only two instability modes and
their transitions (e.g. CI/SI or CI/EI) can be observed (figures 11(a) and 11(b)). While,
for large El or We, three instability modes and their transitions are usually observed.
Figures 11(c) and 11(d) show the transition boundaries of CI/SI, CI/EI and SI/EI on a
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Figure 11. (a) Phase diagram of CI/SI mode on a We–K plane at Re = 200, El = 0.01 and X = 0.9. (b) Phase
diagram of CI/EI mode on a El–K plane at We = 0.5, Re = 50 and X = 0.8. (c) Phase diagrams of CI/SI, CI/EI
and SI/EI on a El–K plane at We = 3, Re = 50, X = 0.8. (d) Phase diagrams of CI/SI, CI/EI and SI/EI on a
El–We plane at Re = 100, K = 0.9 and X = 0.8. The red squares (�, red) represent the CI mode, the green
triangles (�, green) represent the SI mode and the blue circles (�, blue) represent the EI mode. The transition
boundary of CI/SI mode is close to the curve l1: KWe = c1; the transition boundary of CI/EI mode is close to
the curve l2: Weγ (1 − X)El Kα = c2 with α = 3 and γ = 1.5; while the transition boundary of SI/EI mode is
close to the curve l3: (1 − X)El Kβ = c3 with β = 1. Here, the constants c1, c2 and c3 depend on Re, which are
listed in table 7. Note that, in (c), the boundary curve l1 of CI/SI is a horizontal line on a El–K plane for a fixed
We. In (d) the boundary curves l1 and l3 of CI/SI and SI/EI are the horizontal and vertical lines, respectively,
on a El–We plane for fixed K and X.

El–K or El–We plane, where the curves l1 and l2 are still valid at large We (e.g. We = 3)
for the transition boundaries of CI/SI and CI/EI, respectively. Furthermore, the transition
boundary of SI/EI is approximately given by the curve l3: (1 − X)El Kβ = c3 with β = 1.
In all cases, the transition boundaries of CI/SI, CI/EI and SI/EI and the values of c1, c2
and c3 are summarized in tables 6 and 7, respectively. Note that the transition boundary
of CI/SI is a straight line on the El − K plane with a fixed We or on the El–We plane with
a fixed K, and the transition boundary of SI/EI is a straight line on the El–We plane for a
fixed K (figures 11(c) and 11(d)).

Figure 12 displays the variations of the transition boundaries of CI/SI, CI/EI and SI/EI
with related parameters. From figure 12(a), it can be found that the boundary of CI/SI
would shift up as Re increases, i.e. the CI region expands and the SI region shrinks,
because the constant c1 increases with the increase of Re. The boundary of CI/EI varies
slightly with Re due to the weak dependence of c2 on Re (figure 12b). In figure 12(c),
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Mode transition Boundary curve Parameters

CI/SI l1: KWe = c1
CI/EI l2: Weγ (1 − X)El Kα = c2 α = 3, γ = 1.5
SI/EI l3: (1 − X)El Kβ = c3 β = 1

Table 6. The approximate transition boundaries between different modes (CI/SI, CI/EI and SI/EI) in the
parameter space, where the constants c1, c2 and c3 depend on Re and their values are provided in table 7.

Re c1 c2 c3

50 1.7 0.12 0.045
100 2.3 0.14 0.033
400 2.8 0.19 0.026

Table 7. The values of c1, c2 and c3 are provided for different Re.

the boundary of CI/EI would shift down as We increases, i.e. the CI region would shrink,
which is consistent with the fact that a large We characterizes relatively small surface
tension. While for large X, i.e. a large solvent component, the influence of fluid elasticity
is weakened, resulting in the contraction of the EI region (figures 12(d) and 12( f )). In
addition, since the constant c3 decreases with the increase of Re (see table 7), the boundary
of SI/EI would shift down as Re increases (figure 12e).

5. Conclusions

The present study provides a comprehensive account of the linear instability of viscoelastic
jets, where the importance of a non-uniform basic velocity is clarified for the first time.
Especially, a new unrelaxed axial elastic tension is derived based on a non-uniform basic
velocity, which is significantly different from Goren & Gottlieb’s theory. The unrelaxed
elastic tension depends on the velocity gradient, elasticity number and solvent viscosity
ratio. To carry out the linear stability analysis, the base state is subjected to small
amplitude axisymmetric disturbances. After neglecting high-order terms, the linearized
governing equations together with the linearized boundary conditions can be derived,
which constitute a generalized eigenvalue problem. Despite its complexity, we successfully
solve this problem by employing a spectral collocation method. Furthermore, to better
understand the mechanism of jet instability, an analysis of the energy budget of the
destabilization process is performed over a control volume of one disturbance wavelength.

Our results show that the elasticity of fluid plays a dual role in the analysis of jet
stability: a viscoelastic jet composed of weakly elastic fluids exhibits more rapid growth
of axisymmetric disturbances than a Newtonian one, while for viscoelastic jets with more
pronounced elastic properties, the growth of axisymmetric disturbances is significantly
suppressed. This feature is essentially related to the nonlinear constitutive relation of
viscoelastic fluids and the non-uniform basic velocity. When Wi < O(1), the linear terms
of the constitutive equation dominate the nonlinear parts, and the linear elasticity of fluids
leads to an increase in the growth rate of disturbance. While when Wi > O(1), a strong
nonlinear effect is stimulated by the coupling term 〈Γ , Ṽ 1〉 between the elastic stress
tensor and perturbation velocity, where the non-zero elastic stress tensor is induced by
non-uniform basic velocity. The nonlinear elasticity of fluids has a significant inhibitory
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Figure 12. Variations of the transition boundaries of CI/SI, CI/EI and SI/EI with related parameters, where
(a) El = 0.01 and X = 0.9 with Re = 50, 100, 400; (b) We = 0.5 and X = 0.8 with Re = 50, 100, 400;
(c) Re = 100 and X = 0.8 with We = 0.5, 1, 3; (d) Re = 100 and We = 0.5 with X = 0.7, 0.8, 0.9; (e) We = 3
and X = 0.8 with Re = 50, 100, 400; ( f ) Re = 100 and We = 3 with X = 0.7, 0.8, 0.9.

effect on the disturbance growth rate. These assertions are supported by the results of the
energy analysis, and are further verified by considering two specific cases: (i) using a linear
viscoelastic model, i.e. the Jeffreys model – case A; (ii) using the nonlinear Oldroyd-B
model with the coupling term 〈Γ , Ṽ 1〉 removed – case B

Based on the energy budget analysis, three different instability mechanisms can be
identified, which correspond to three instability modes, i.e. the capillary instability (CI),
shear instability (SI) and elastic instability (EI) modes. For the CI mode, the surface
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tension is dominant in the jet instability; for the SI mode, the shear and pressure of
external gas are dominant in the jet instability; and for the EI mode, the elastic tension
plays a dominant role in the jet instability. The general features of these instability modes
are explored. It is found that both the growth rate and phase speed of the disturbances
are promoted in the SI regime, while they are both suppressed in the EI regime. In
contrast, the growth rate in the CI regime is promoted, whereas the phase speed in the
CI regime is suppressed. Furthermore, in the EI regime, the phase speed tends to the
basic velocity at the centre of the jet and the corresponding velocity eigenfunction also
gradually approaches the centre as El increases, but the eigenfunction is not localized near
the centreline. Although the phase speed in the CI regime is also decreasing, it is always
above the average velocity of the jet, which means that it does not tend to the basic velocity
at the centre, and the corresponding velocity eigenfunction is almost uniform, spreading
across the cross-section of the liquid jet. In contrast, the phase speed in the SI regime is
increasing, and tends to the velocity in the shear layer of the external gas, and the amplitude
of the corresponding velocity eigenfunction is significantly larger near the interface due to
the dominance of the shearing effect in the SI regime. In addition, the eigenfunction for
the axial elastic stress shows a sharp peak near the boundary layer of the liquid jet, where
a large velocity gradient appears in the basic velocity.

Finally, we investigate the transitions of instability modes in parameter spaces
and provide the transition boundaries between different modes (i.e. CI/SI, CI/EI and
SI/EI). This study provides guidance for understanding the mechanism of instability of
viscoelastic jets in a co-flowing gas stream and the transition criterion of instability modes.
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Appendix A. The linearized governing equations and boundary conditions

Substituting (2.22) into the governing equations (2.16)–(2.21), we obtain the following set
of linearized governing equations:

v̂′
1 + 1

r
v̂1 + ikû1 = 0, (A1)

ik (U1 − c) v̂1 = −p̂′
1 + X

Re

[
v̂′′

1 + 1
r
v̂′

1 − 1
r2 v̂1 − k2v̂1

]
+ τ̂ ′

rr + 1
r
τ̂rr + ikτ̂rz − 1

r
τ̂θθ ,

(A2)
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ik (U1 − c) û1 = −U′
1v̂1 − ikp̂1 + X

Re

[
û′′

1 + 1
r

û′
1 − k2û1

]
+ τ̂ ′

rz + 1
r
τ̂rz + ikτ̂zz, (A3)

[1 + ikWi (U1 − c)] τ̂rr = 2ik(1 − X)ElU′
1v̂1 + 2

1 − X
Re

v̂′
1, (A4)

[1 + ikWi (U1 − c)] τ̂rz + Wi
[
−U′

1τ̂rr + 1 − X
Re

U′′
1 v̂1 − 2ik(1 − X)El

(
U′

1
)2

v̂1

−1 − X
Re

U′
1
(
v̂′

1 + ikû1
)] = 1 − X

Re

(
û′

1 + ikv̂1
)
, (A5)

[1 + ikWi (U1 − c)] τ̂θθ = 2(1 − X)

Re
v̂1

r
, (A6)

[1 + ikWi (U1 − c)] τ̂zz − 2Wi U′
1

[
τ̂rz − 2(1 − X)El U′′

1 v̂1 + 2ik(1 − X)El U′
1û1

+1 − X
Re

û′
1

]
= 2(1 − X)

Re
ikû1, (A7)

v̂′
2 + 1

r
v̂2 + ikû2 = 0, (A8)

ik (U2 − c) v̂2 = − 1
Q

p̂′
2 + 1

Re
N
Q

[
v̂′′

2 + 1
r
v̂′

2 − 1
r2 v̂2 − k2v̂2

]
, (A9)

ik (U2 − c) û2 = −U′
2v̂2 − ik

Q
p̂2 + 1

Re
N
Q

[
û′′

2 + 1
r

û′
2 − k2û2

]
. (A10)

Here, the prime denotes the derivative with respect to r.
For the boundary conditions, the velocity and pressure at the symmetry axis satisfy the

consistency conditions
v̂1 = û′

1 = p̂′
1 = 0, at r = 0. (A11)

At the liquid–gas interface, the continuity of velocity, the kinematic boundary condition
and the balance of the normal and tangential stresses are satisfied, i.e.

v̂1 = v̂2, (A12)

û1 − û2 + (
U′

1 − U′
2
)
η̂ = 0, (A13)

ik (U1 − c) η̂ = v̂1, (A14)

p̂1 − p̂2 + 2N
Re

v̂′
2 − 2X

Re
v̂′

1 − τ̂rr = − 1
We

(
1 − k2

)
η̂, (A15)

N
Re

U′′
2 η̂ + N

Re

(
û′

2 + ikv̂2
) = 1

Re
U′′

1 η̂ + X
Re

(
û′

1 + ikv̂1
) − 2ik(1 − X)El

(
U′

1
)2

η̂ + τ̂rz,

(A16)

at r = 1.
At the outside boundary,

v̂2 = û′
2 = p̂′

2 = 0, at r = a, (A17)

with a = R2/R1.
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Figure 13. Eigenspectra of the jet for (a) Oldroyd-B (El = 2 × 10−4 and X = 0.9) and (c) Newtonian fluids,
at k = 1, Re = 100, We = 3, Q = 0.0013, N = 0.018, Us = 1.2, K = 0.9; (b,d) show the enlarged regions near
the unstable eigenvalue (marked by the red circle) in (a,c), respectively. In order to ensure the accuracy, the
eigenspectra are obtained using N1 = 120 and N2 = 100. For both Newtonian and viscoelastic jets, the structure
of spectrum is composed of two separate parts (denoted by I1 and I2): the I1 branch corresponds to the internal
fluid (liquid); while the I2 branch corresponds to the external gas. Obviously, the unstable eigenvalues are
usually located on the I1 branch. In contrast to the Newtonian case, a ring structure appears on the I1 branch
in viscoelastic spectra. However, for small El, the eigenspectra of the Oldroyd-B and Newtonian jets near the
unstable eigenvalue are similar (see (b,d)).

Appendix B. Eigenspectrum of viscoelastic jets

Using the numerical method in § 2.4, the viscoelastic jet spectrum can be obtained.
Figure 13 shows the eigenspectrum for an Oldroyd-B jet, where the spectrum for a
Newtonian jet with the same configuration is also shown for reference. It can be found
that the structure of spectrum is composed of two separate parts (denoted by I1 and I2), for
both Newtonian and viscoelastic jets. On the I1 branch, the real parts of the eigenvalues
on the centreline approach the dimensionless velocity of the internal fluid (i.e. the phase
speed cr ≈ 1), which means that the I1 branch is related to the internal fluid. While for
the I2 branch, the real parts of most eigenvalues are concentrated near the dimensionless
velocity of the external gas (i.e. cr ≈ Q−1/2 ≈ 27), so the I2 branch is related to the
external gas. For the I2 branch, a characteristic ‘Y-shaped’ structure can be observed,
which is well known for Poiseuille flow of a Newtonian fluid (Schmid & Henningson
2001). In contrast to the case of Newtonian jets, a ring structure appears on the I1 branch
for the low El in viscoelastic spectra. Similar to the cases of viscoelastic plane and pipe
flows, the ring structure originates from the discrete high-frequency Gorodtsov–Leonov
modes (refer to Chaudhary et al. 2021). This demonstrates the viscoelastic jet spectrum
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Figure 14. Eigenspectra of the jet for an Oldroyd-B fluid at k = 1, Re = 100, We = 3, X = 0.9, Q = 0.0013,
N = 0.018, Us = 1.2 and K = 0.9, with El ranging from 1 × 10−3 to 0.05 (equivalently, Wi ranging from 0.1
to 5): (a) El = 1 × 10−3 (Wi = 0.1); (b) El = 5 × 10−3 (Wi = 0.5); (c) El = 0.01 (Wi = 1) and (d) El = 0.05
(Wi = 5). The eigenspectra are obtained using N1 = 200 and N2 = 120. Here, we concentrate on showing the
change of the ring structure on the I1 branch, since there is no obvious change of the ‘Y-shaped’ structure of
the I2 branch. The ring structure is prominent at the lower El, but is absent beyond El ∼ 10−2 or Wi ∼ 1. The
locations of the CS1 and CS2 lines are shown for reference, where ci = −1/kWi and −1/kXWi, respectively,
and cr ∈ [min{U1}, max{U1}] = [1, 1.2] (note that Us = 1.2) for the two CS. The eigenvalue with ci > 0 is the
unstable one.

differs substantially from its Newtonian counterpart. As El is increased from 10−4 to 10−3

(Wi from 0.01 to 0.1), the ring structure gets smaller in size (see figure 16). Interestingly,
for Jeffreys viscoelastic jets, the ring falls off from the I1 branch with the increase of El,
in contrast with the case of Oldroyd-B viscoelastic jets (figure 16).

With increasing El (ranging from 10−3 to 0.05) or equivalently Wi (ranging from 0.1
to 5) for a fixed Re, figure 14 shows the ring structure of the viscoelastic spectrum
is altered in a singular manner. Meanwhile, a visible feature is the appearance of two
continuous spectra (CS) located in the centre of the ring structure. It is now well
understood that the CS arise from the local nature of the constitutive model for the
polymeric stress (Graham 1998; Chaudhary et al. 2021; Roy et al. 2021). Specifically,
the origin of the CS in viscoelastic flows can be traced to the singularity which arises
when the coefficient of the highest-order derivative in the differential equation governing
the stability vanishes. Similar to the cases of viscoelastic plane and pipe flows (Chaudhary
et al. 2021; Khalid et al. 2021), this coefficient turns out to be the product [1 + ikWi(U1 −
c)][1 + ikXWi(U1 − c)]. This leads to a pair of horizontal ‘lines’ in the cr − ci plane with
ci = −1/kWi and ci = −1/kXWi, respectively, and with min{U1} ≤ cr ≤ max{U1} for the
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Figure 15. Eigenspectra for the Oldroyd-B fluid for different El in the range 0.5–10, where k = 1, Re = 100,
We = 3, X = 0.9, Q = 0.0013, N = 0.018, Us = 1.2 and K = 0.9. The eigenspectra are obtained using N1 =
200 and N2 = 120. The scaled growth rate kWici fixes the locations of both the CS (for X = 0.9, CS1 and
CS2 lie very close to each other). The continuous (blue) line in (a) shows the trajectory of the most unstable
eigenvalue as El is varied. The ranges of cr and ci are chosen so as to provide a larger view of the part of
interest. (b) Enlarged region where the most unstable eigenvalue collapses into the CS balloon at the point P.

two CS. Henceforth, these two continuous spectra are respectively abbreviated as ‘CS1’
and ‘CS2’, where CS1 with ci = −1/kWi is present even in the absence of solvent (i.e.
X = 0) and CS2 with ci = −1/kXWi is present only for a non-zero X.

The ring surrounds the continuous spectra at small El of O(∼ 10−3). As Wi or El is
increased, both CS1 and CS2 get closer to zero, and at the same time, the ring moves
towards the CS with the ring getting smaller in size (figures 14(a) and 14(b)). Note that
the size of the CS (i.e. the range of cr) is constant. For El ∼ 10−2 (i.e. Wi ∼ 1), the ring
structure is distorted and for higher El (Wi) the modes originally on the ring collapse into
the CS in an irregular manner (figure 14d). Since Wi quantifies the nonlinear response
of viscoelastic fluids (Galindo-Rosales et al. 2014; Ding & Jian 2021), we conclude that
the ring structure, existing when Wi < O(1), is related to the linear properties of fluid
elasticity. When the nonlinearity of fluid elasticity dominates, characterized by Wi > O(1),
the ring structure disappears while the CS become prominent. In contrast, the CS do not
appear for Jeffreys fluids due to the linear constitutive relation in (2.5) (see figure 16).
Note that the eigenvalues in the ring and CS correspond to stable modes. The variations
of unstable eigenvalues and the corresponding growth rates and phase speeds have been
explored in detail in §§ 4.1 and 4.2, respectively.

Figure 15 displays the eigenspectra for El ranging from 0.5 to 10, where the scaled
growth rate kWi ci is used to fix the locations of the CS and the ranges of cr and ci are
chosen so as to provide a larger view of the part of interest. For this range of El, the CS are
very close to zero (ci = −2 × 10−2 ∼ −10−3). As the eigenfunctions corresponding to
the CS eigenvalues are singular, the spectral method, using a finite number of polynomials
to approximate the dynamical variables, does not resolve the singular eigenfunctions
as accurately as those corresponding to the discrete eigenvalues, which results in a
ballooning up of the (expected) ‘line’ of eigenvalues. The spread of the CS balloon only
decreases slowly with increasing the collocation points. The continuous line in figure 15(a)
represents the trajectory of the most unstable eigenvalue as El is varied, from which
one can see that the most unstable eigenvalue eventually fall into the CS balloon as El
increases to 10 (i.e. (1 − X)El = 1). This leads to a sharp deterioration in the accuracy
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Figure 16. Eigenspectra of the jet for Oldroyd-B fluids with (a) El = 1 × 10−4(Wi = 10−2), (c) El = 3 ×
10−4 (Wi = 3 × 10−2) and (e) El = 1 × 10−3 (Wi = 0.1) and for Jeffreys fluids with (b) El = 1 × 10−4, (d)
El = 3 × 10−4 and ( f ) El = 1 × 10−3, at k = 1, X = 0.9, Re = 100, We = 3, Q = 0.0013, N = 0.018, Us =
1.2, K = 0.9. In order to ensure accuracy, the eigenspectra are obtained using N1 = 120 and N2 = 100. Note
that the ranges of cr and ci are chosen so as to provide a larger view of the spectra.

and convergence for resolving the most unstable eigenvalue at El ∼ 10 or more generally
(1 − X)El ∼ 1. For this reason, we restrict to (1 − X)El < 1 in this work.

Finally, we compare the evolution of the eigenspectra of Jeffreys and Oldroyd-B
viscoelastic jets with the same parameters in figure 16. It can be observed that for the
case of Oldroyd-B fluids, the ring structure becomes smaller in size with the increase of
El but it remains on the I1 branch. In contrast, for Jeffreys fluids, the ring structure not
only becomes smaller in size, but also it gradually separates from the I1 branch with the
increase of El.
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For Oldroyd-B fluids, the ring structure disappears while the continuous spectra become
visible at Wi ∼ 1 (figure 14). In contrast, for Jeffreys fluids, the ring structure only shrinks
further but not disappear with the increase of Wi (Wi � 1), and no continuous spectra
appear. This verifies that the ring structure is related to the linear behaviour of fluid
elasticity, whereas the appearance of the continuous spectra is related to the nonlinear
behaviour of fluid elasticity.
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