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Abstract

The paper provides a solution to the current problem of adaptation in case-based design. The aim of this project is to
develop a case-based model of design, using an evolutionary approach, for the adaptation of previously stored design
solutions. It is argued that such a knowledge-lean methodology is more general in its applicability than conventional
case-based design. A prototypical example in the context of 2-D spatial design of houses is used to test the efficacy and
efficiency of this approach.
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1. INTRODUCTION

Case-based design, or CBD~Flemming, 1994; Oxman &
Oxman, 1994; Maher et al., 1995; Maher & Pu, 1997!, is an
important area in the computability of design. While there
has been much work in the indexation and retrieval of cases
~Williams, 1995!, many issues remain to be resolved. In par-
ticular, the adaptation process has, to date, stymied the util-
ity of the approach, as each problem area has demanded
problem-specific adaptation knowledge which has proven
to be very difficult to formulate.

An evolutionary approach to the process of adaptation
provides a general problem-independent methodology to the
process of case-based adaptation. A general representation
of design cases based on a genotypic representation of de-
signs can be used with the general evolutionary process of
reproduction and stochastic selection serving as the adap-
tation process. Moreover, by working with the entire pop-
ulation of existing design solutions, it makes the indexation
and selection of relevant cases redundant. In addition, it has
the capability to provide a number of potentially satisfac-
tory solutions, rather than a single solution, from which a
designer can make a final selection.

A model of evolutionary case-based design, or ECBD,
will be exemplified through a computer program using a set
of house designs as test cases. These designs will be repre-
sented using a genotypic representation of hierarchical form
growth developed previously~Rosenman, 1996a, 1996b,

1997a; Rosenman & Gero, 1999!. The outcome of such tests
is the generation of new and diverse satisfactory~house!
design solutions, under new design situations.

2. CONVENTIONAL CASE-BASED
DESIGN—CCBD

There are two general computational models for the design
process: design using general or compiled knowledge and
design using specific or episodic or case knowledge~Rosen-
man et al., 1992!. Compiled knowledge is knowledge which
is generalized from a number of experiences without the
specific details of the individual experiences. Specific or
case knowledge is knowledge in which the actual experi-
ence, episode or solution is stored including all relevant de-
tails regarding the situation. When a design problem is given,
a relevant experience is retrieved and adapted to the given
problem. The main arguments for this latter approach are
~1! that the general knowledge approach “re-invents the
wheel” every time a problem is faced without taking into
account previous experience;~2! the problem of acquiring
the compiled knowledge; and~3! in many cases, the critical
information associated with an individual is that which forms
the exception to the “rule” rather than the commonalities.
This information is lost in compiled knowledge.

CCBD~Flemming, 1994; Oxman & Oxman, 1994; Maher
et al., 1995; Maher & Pu, 1997! is derived from the general
method of case-based reasoning, or CBR~Schank, 1982;
Riesbeck & Schank, 1989!. According to Schank~1982!,
the most relevant experience~solution! is selected and
“tweaked” accordingly to produce the required solution to
the given problem. The main problems faced by CCBD are:
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1. The representation of design cases: It is still a matter
of discussion as to what exactly should be in a case,
what its contents, structure, and representation should
be ~Rosenman et al., 1992!. It has been argued that a
design case should~1! just contain only the descrip-
tion of the design solution,~2! that it should contain
the description of the problem, that is, goals that were
used to produce the solution, or~3! that it should also
contain the decisions that were made to select values
to achieve the goals. The most common way to repre-
sent a case is in terms of attribute-value pairs. These
represent a description of a design, in what in evolu-
tionary terms would be called a phenotype descrip-
tion. Both flat and hierarchical structures have been
used where, in the latter, a case may be composed of
case snippets in a hierarchical structure. In all in-
stances, the description of a case is predetermined ac-
cording to a particular view of how to describe that
design. All subsequent views of designs must follow
that particular view.

2. Indexing: The ability of accessing information in a case
base depends on the indexing schema used which de-
pends on the nature of the case contents. Thus, only
the information which is explicitly represented can be
used for case indexing and hence accessed. This pre-
scribes the nature of the queries and hence type of prob-
lems that can be addressed.

3. Matching: The matching of existing cases to the new
problem is done in a number of ways such as counting
the number of attribute entries in the case which match
those of the required problem. Since in most instance
there is little or no description of the structure prop-
erties of the required design, this involves looking only
at the problem description, that is, goals. Sometimes
both attributes and their values are taken into consid-
eration and some matching done on the closeness of
the values to those required. Attribute matching can
be done by direct text match or through some onto-
logical mapping.

4. Retrieval and selection: Two strategies are~1! to find
only a “best-match” case and return it, in which in-
stance there is no further selection; and~2! to select
several “close-match” cases and return these to the
user for final selection. In both instances, there needs
to be an evaluation for finding “best-match” or
“close-match”.

5. Adaptation: While much work has been applied to the
first four problems and various techniques exist~Ma-
her et al., 1995; Maher & Pu, 1997!, the problem of
adaptation still remains a major obstacle to the gen-
eral application of the approach. There is no general
knowledge on how to “tweak” especially in the de-
sign domain and each design application and problem
needs its specific adaptation knowledge. In addition,
there is no guarantee that a so-called “best-match” or

“close-match” will be amenable to adaptation in an
efficient way. The selected case may be so tightly cou-
pled that any modification leads to disintegration of
the design. To date there has been little if any research
on the potentiality of adaptation when selecting a case
for adaptation.

So, in general the limitations of CCBD are that while de-
sign problems are situated, the fixed representation of case
bases, in terms of the attributes described, prescribe the type
of problems that can be addressed. In addition, the adapta-
tion process is still largely a problem area.

3. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms~Holland, 1975; Goldberg, 1989;
Koza, 1992; Schwefel, 1995! cover several approaches but
in general have the following features:

1. They are based on a genotypic representation.

2. They use a population of members.

3. Members evolve by “adapting” to their environment,
represented by a fitness function, over a number of
generations.

4. There is a reproduction mechanism for generating new
members using genetic operators such as crossover and
mutation.

5. Selection of members for propagation is based on
the “survival of the fittest” principle using stochastic
methods such as roulette wheel or tournament selec-
tion based on a member’s “fitness”. This fitness is a
measure of the member’s performance, with respect
to the fitness function, relative to other members’
performance.

6. Different fitness functions produce different solutions.

In summary, the evolutionary approach is a general
knowledge-lean methodology aimed at producing solutions
to difficult and complex problems where the relationships
between the solution and the requirements is not well known.
Within its methodology is the mechanism for adapting mem-
bers to a particular given problem.

4. AN EVOLUTIONARY APPROACH
TO DESIGN

Evolutionary techniques have lately been used in design
research~Louis & Rawlins, 1991; Woodbury, 1993;
Michalewicz et al., 1996!, mainly for optimization of pa-
rameters but also for the generation of designs~Bentley &
Wakefield, 1995, 1997; Rosenman, 1996a, 1996b, 1997a;
Koza et al., 1996; Gero et al., 1997; Dasgupta & Michale-
wicz, 1997; Parmee, 1997; Parmee & Beck, 1997; Bentley,
1999; Rosenman & Gero, 1999!. Recently, there has been
some work on evolutionary methods in case-based design
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~Gero & Schnier, 1995; Maher & Gomez de Silva Garza,
1996; Louis, 1997; Rosenman, 1997b; Gomez de Silva Garza
& Maher, 1999; Louis & Johnson, 1999!.

4.1. A hierarchical model of evolutionary
synthesis of form

Simon~1969! points out that complex objects cannot be gen-
erated as a whole but only through a hierarchical decompo-
sition into more manageable components. Current work by
Rosenman in evolutionary design generation~Rosenman,
1996a, 1996b, 1997a; Rosenman & Gero, 1999! uses a hi-
erarchical genotype representation for the generation of form.
In a multilevel evolutionary approach, at each level, a com-
ponent is generated from a combination of components from
the level immediately below. At the element level, an ele-
ment is generated from a combination of fundamental cells.
Thus, the building blocks at each level are the components
generated at the level immediately below and at each level
the genotype contains genes which are assemblies of lower
level genes. Through this approach, only those factors rel-
evant to the design of a particular component or assembly
need be considered for that component or assembly. These
building blocks or components are labeled by a single sym-
bol replacing the string containing the lower level genes in
much the same way as automatically defined functions
~ADF! are represented in genetic programming~GP! ~Koza,
1994!. A difference between this representation and that of
ADFs as used in GP is that the representation used here is
much more strictly hierarchical in nature. An ADF can oc-

cur at any level, whereas in this representation there is a
strict component0assembly hierarchical order. In addition,
each component is evaluated according to its own particu-
lar requirements rather than by an overall single evaluation
function acting over the whole structure.

4.1.1. Genotype and phenotype

A design grammar, based on the method for conjoin-
ing counteractive vectors in the construction of polygonal
shapes and counteractive faces in the construction of poly-
hedral shapes, is used~Rosenman, 1995, 1999!. A polygon
~polymino for orthogonal geometries! may be described by
its sequence of edge vectors which is the phenotype, whereas
a polyhedron may be described by a sequence of faces and
vectors. A gene consists of two components~shapes! and
their respective counteractive vectors or faces. The geno-
type, for a complex shape, is the sequence of such genes.

The following will give a simple description in the do-
main of polyminoes. For more complex and detailed de-
scriptions including those for polyhedra, see Rosenman
~1995, 1999!. The phenotype representation of a~unit! square
is ~W1, N1, E1, S1,! where the symbols W, N, E, S repre-
sent the vector types, and the subscript being the instance of
that vector type. The counteractive edge vectors are N, S
and E, W. A polymino can be grown by adding one unit
square in turn to the current shape at any edge. Two polym-
inoes can be joined through the conjoining of any pair of
counteractive edges. There are several joinings possible in
both growing a polymino and in joining two polyminoes.
Figure 1 shows~a! a unit square;~b! a domino with its

Fig. 1. Growing and joining polyminoes.
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genotype and phenotype descriptions; and~c! the result of
joining two polyminoes through the conjoining of the coun-
teractive edges, E2 and W2. The same result could be
achieved by joining counteractive edges E1 and W3 or N2
and S1 or S1 and N1 or E3 and W1.

Note that, while in this work the phenotype interpreta-
tion of the genotype is a sequence of edge vectors repre-
senting a description of a shape, for different problems the
phenotype interpretation could differ. For example, it may
be a description of the type of unit, for example, its mate-
rial, and its location either globally or relative to the com-
position in which it is located.

4.1.2. Hierarchical evolution in the domain
of house plans

The domain of house plans will be used to describe the
hierarchical nature of the representation, although the rep-
resentation and concepts are general in nature. A house can
be composed of zones where zones are composed of rooms
and rooms, in turn, composed of number of unit space units,
unit squares, depending on the area of the room required. A
house is generated by firstly generating the rooms required,
then generating the zones as a composition of rooms and
finally by generating the house as a composition of zones.
In a hierarchical evolutionary process, a room is generated
by first randomly generating a number of shapes of the given
number of unit squares and then evolving the shapes over a
number of generations. A number of satisfactory shapes can
be selected for each room. Each zone is then generated by
initially generating a population of zone solutions com-
posed of one of each required room type randomly chosen
from each room type set generated and through randomly
selected edge joinings. The zone population is then evolved
to arrive at a number of satisfactory zone solutions. The house
is generated and evolved in a manner similar to that of the
zones, by randomly selecting and joining zones and evolv-
ing the population. Figure 2 shows the house hierarchy, and
Figure 3 shows the general and hierarchical evolutionary
process.

Figure 3 is diagrammatic only as the hierarchy may occur
over a number of component0assembly levels and evolu-
tion occurs over a number of generations. The final compo-
sition of components and objects is thus a mix of several
elements from those contained at the initial generation even
though it appears as directly composed from the initial ran-
dom generation.

Examples of genotypes and phenotypes for each level of
the house hierarchy are shown in Figure 4, where the phe-
notypic information is the shape of the component. In the
genotype description of rooms, the unit square has been omit-
ted for simplicity and the genotype represented as a list of
edge vector conjoinings. In the description of the pheno-
type, multiple instances of the same edge type are indicated
as G1, . . . ,n, whereG indicates the edge type~N, E, S, or
W! andn the last instance of that type in the sequence, so
that W1, . . . ,3,indicates W1, W2, W3.

Simple crossover is used for the propagation of members
during the evolution process. A biased random roulette wheel
method is used for selection of members for “mating” and
for selection of members for new generations. Although the
examples use two-dimensional~2-D! spatial forms for
houses, using a square cell, the methodology is more general
and the grammar can be applied to any polygonal configu-
rations. The grammar has been extended to three-dimensional
~3-D! polyhedra~Rosenman, 1999!.

5. EVOLUTIONARY CASE-BASED
DESIGN—ECBD

CCBD was based on Schank’s model of CBR~Schank, 1982!,
whereas evolutionary case-based design~ECBD!, in con-
trast, uses Calvin’s model~Calvin, 1987, 1996, 1998!. In
Schank’s model a particular closest match experience is se-
lected and “tweaked”~adapted!, whereas in Calvin’s model
thinking tasks are achieved by Darwinian competition to or-
ganize complex patterns.

Existing house designs can be formulated using the above
hierarchical representation resulting in a case base of house
designs represented by their genotype which encodes how
they are to be synthesized. Given a particular set of require-
ments formulated as a fitness function, this case base is used
in its entirety as the initial population for an evolutionary
process which will evolve new and satisfactory solutions to
the given problem. Starting from a population of existing
house designs rather than generating a solution from the be-
ginning has the advantage that higher level components,
rooms and zones, already exist. Thus the efficiency of the
process is greatly increased. An example of this is given in
Figure 5 where two house solutions, H1 and H2, with low
perimeter-to-area ratios, are selected as parents to produce,
after crossover, the solutions H3 and H4. The solutions found
are satisfactory solutions to a design problem using a fit-

Fig. 2. House hierarchy.
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ness function of high perimeter-to-area ratio which reflects
the need for solutions for cross ventilation in a hot humid
climate.

One of the shortcomings in conventional case-based de-
sign, CCBD, is the concentration on selecting the best-
matched case in the assumption that this will lead to simple
adaptation. This assumption breaks down when the se-
lected case is so tightly constrained that any “tweaking”
causes major perturbances. It may well be that a solution

not so closely matched is actually easier to adapt. In an evo-
lutionary case-based design approach, ECBD, it is not nec-
essary to preselect members for adaptation as the general
methodology of the approach will progressively remove less
fit members from future populations. Moreover, since di-
rect relationships between the structure~form! and function
~performance! are not always known, seemingly poor per-
forming solutions may have elements which are useful in
combination with other elements of other members. Fig-

Fig. 3. General hierarchical evolutionary process.

Fig. 4. Example of room, zone, and house genotype and phenotype.
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ure 6 shows a diagrammatic comparison between the CCBD
and ECBD approaches.

Figure 6 shows the different modules corresponding to
the different functions required, the necessity for CCBD to
have a knowledge base for adaptation knowledge, contain-
ing both domain specific and general knowledge and the
fact that only one solution is produced with CCBD as against
several solutions in ECBD. The domain-specific knowl-
edge, together with the case representation, prescribes the
type of problems that can be solved. All possible situations
must be accounted for. In contrast, the evolutionary process
has a general adaptation methodology. Domain-specific
knowledge is built into the fitness function and hence into
the interpretations of the genotype and evaluation of the
phenotypes.

6. RELATION TO EXISTING WORK ON
EVOLUTIONARY CASE-BASED DESIGN

There is existing work in the area of evolutionary case-
based design by Gero and Schnier~1995!, Maher and Gomez
da Silva Garza~1996!, and Louis~1997!. Gero and Schnier
use more direct learning in a genetic engineering approach
to first evolve useful building blocks~complex genes! and
then reuse them in combination with the basic genes in a
manner similar to GP. The learning is carried out from a set
of examples containing both good and bad solutions. The
work presented here uses a more structured representation
where the components are meaningful entities subject to their
own requirements rather than just substrings. Moreover, there
is no requirement of the case base containing any good so-

Fig. 5. Evolution of house plans resulting from a new fitness function.

Fig. 6. Diagrammatic comparison between conventional and evolutionary case-based design.
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lutions although obviously there must be sufficient possi-
bility to evolve to good solutions. While both Louis and
Maher and Gomez, have similar conceptual approaches, both
carry out preselections on the case base before carrying out
evolution. In the case of Maher and Gomez, this results in a

very small population for the evolution process. Louis men-
tions that a problem exists in deciding how to select the pop-
ulation so as not to lose some potentially critical information.
Moreover, Louis’s example is in the domain of scheduling
rather than design synthesis. Maher and Gomez use a flat

Fig. 7. Test case base of 40 houses.
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genotype representation where genes directly represent
attributes of buildings. Thus the representation in this work,
which stems from the concept of hierarchical aggregation
of atomic cells into more complex elements, forms a major
difference between this work and other work.

7. IMPLEMENTATION

7.1. Case base

A test case base of 40 houses was formulated~Figure 7!
using the genotypic representation previously described.
Each house consists of three zones, namely the Living Zone,
Utility Zone, and Bed Zone. Each zone type can be rotated
90, 180, or 2708, ~R90, R180, or R270! or mirrored along
the X or Y axes ~MX or MY ! or mirrored and rotated
~MXR90, MYR90!. Each house genotype is 31 2 ~zones1
edge joinings! long. The genotypes of each zone and room
is not given here but as an example, the following zone geno-
types are:

Element Genotype

LZ1 $@~LR1, DR1, W6, E1!, Ki1, S7, N1#, En1,
E7, W4%

UZ1 La1

BZ2 ~$@~MB2, Ha2, N5, S1!, B1, N1, S4# ,
Ba1, E1, W2%, B1~R90!, E3, W2!

The genotype of house, H1, can be given in a tree form as

~~$@~LR1, DR1, W6, E1!, Ki1, S7, N1# , En1, E7 W4%,

@La1~R90!# , S1, N3!,

~$@~MB2, Ha2, N5, S1!, B1, N1, S4# , Ba1, E1, W2%,

B1~R90!, E3, W2!, S3, N5!

as shown in Figure 8. The room genotypes as generations of
unit squares are not given here, for simplicity, but could be
similarly expanded and added to the tree representation.

7.2. New problem formulation

As a first test to investigate possible issues, a design prob-
lem was formulated where the aim is to design houses
suitable for hot humid climates. Such houses require the max-
imum cross-ventilation possible. As an approximation, this
was formulated as maximizing the perimeter-to-area ratio,
P0A. In addition, it was required that the circulation effi-
ciency of the house remained reasonably efficient. The prob-
lem could have been formulated as a Pareto optimization
problem with two criteria, namely maximizing theP0A ra-
tio and minimizing a weighted sum of distances between
rooms with given closeness requirements. However, it was
felt that houses with very bad circulation efficiencies~CE!
might very well produce largeP0A ratios but be totally un-

suitable. Hence, the fitness function was formulated to in-
clude a penalty function to penalize solutions for poor
circulation efficiency. The fitness function was then formu-
lated as:

MaxF 5 ~P0A * 100! * P,

whereP is a penalty and

P 5 1 if CE % 100

P 5 0.75 if 100, CE % 150

P 5 0.5 if 150, CE % 250

P 5 0.25 if 250, CE % 500

P 5 0.1 if 500, CE

The penalty values were obtained from inspection of house
solutions with acceptable and near acceptable circulation
efficiencies.

In Figure 7, the fitness of each house is given in terms of
its perimeter-to-area~P0A! ratio as well as its circulation
efficiency~CE!. The cases are divided into two groups, cases
1–26 which are in general very compact houses and cases
27–40 which include some less compact houses, the aim
being to test what information is necessary for a case base
to produce satisfactory results. For houses 1–26, the lowest
P0A is 0.393~house H21!, the highest is 0.537~house H15!,
and the averageP0A is 0.450. For houses 27–40, the lowest
P0A is 0.442~house H28!, the highest is 0.624~house H40!,
and the averageP0A is 0.523, giving an averageP0A of 0.475
for the 40 cases.

7.3. Tests

A total of five tests were carried out. Each test was carried
out over a number of runs with each run over a number of

Fig. 8. Tree representation of house H1 genotype.
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generations until 10 solutions deemed satisfactory were
found. The first four tests are case-based tests while the fifth
test is a generation of houses using the growth process to be
used as a comparison against the case-based results. This
growth process involves the generation of rooms, zones, and
houses. The tests are as follows:

• Test 1: crossover limited to the house level, that is, only
between zones and the joining edges. Only the top part
of the tree in Figure 8 was allowed for cut sites, so that
only the zones with the orientation and the edge join-
ings as existing in the cases could be used in new
combinations—26 cases.

• Test 2: crossover limited to the house level as for
Test 1 but allowing random edge joinings between
zones—26 cases.

• Test 3: as for Test 1—40 cases.

• Test 4: as for Test 2—40 cases.

• Test 5: growth process.

For the case base of 26 cases, there are 10 Living Zone types,
12 Bed Zone types, and 2 Utility Zone types. The augmen-
tation to 40 cases resulted in 11 Living Zone types, 14 Bed
Zone types, and 2 Utility Zone types. For Test 5, 16 Living
Zone types, 2 Utility Zone types, and 12 Bed Zone Types
were generated.

7.4. Results

Figures 9–13 show the 10 house results found for Tests 1–5,
respectively.

Table 1 shows some of the statistics from the five tests.
The number of runs and generations for Test 5 are the total
for all rooms, zones, and the houses. The number of runs
for the rooms and zones was 36 and the number of genera-
tions for the rooms and zones was 567. Thus, for Test 5 the
number of generations for the houses was 290.

Fig. 9. Ten houses resulting from Test 1—26 cases.

Fig. 10. Ten houses resulting from Test 2—26 cases.
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7.5. Analysis of results

The two tests using the 26 very compact houses, that is,
Tests 1 and 2 obtained fairly similar results. Although the
maximumP0A result of 0.642 for Test 1~solution 1-NH9!
was higher than the maximum of 0.625 for Test 3~solution
2-NH3!, the averageP0A result for Test 2 of 0.596 was higher
than the average of 0.584 of Test 1. A similar result is ob-
tained when comparing Tests 3 and 4. The maximumP0A
of 0.727 for Test 3~solution 3-NH6! is higher than the max-
imum of 0.684 for Test 4~solutions 4-NH7 and 4-NH9!,
whereas the average of 0.640 for Test 4 was higher than the
average of 0.628 for Test 3. This shows that allowing the
zones to be randomly joined does not necessarily result in
obtaining a solution that is better than using the joinings
given in the case base but does result in getting a better set
of solutions from which a final choice can be made. Since
the aim in design is not necessarily to find a solution with
the “best” based on a narrow definition of “best” given by

some fitness function but may be based also on other fac-
tors not expressed in the fitness function, getting a range of
potentially good solutions is important.

On the other hand, there is a marked difference between
the results of the tests using 26 cases~Tests 1 and 2! and the
results of the test using 40 cases~Test 3 and 4!. It is quite
clear that expanding the case base to 40 cases improves both
the maximumP0A and averageP0A results and that the num-
ber of generations required to obtain the results drops. This
shows that the efficiency of the case-based approach de-
pends strongly on the information available in the case base.
If the genotypic information is poor with respect to its ca-
pability of producing fit solutions, then unless mutation can
change this, the results will be impoverished. When there
exists sufficient genotypic information then the case-based
approach is very efficient.

There is not a great difference in the quality of results
obtained from the case-based approach using 40 cases and
the results obtained by generating the houses anew. How-

Fig. 11. Ten houses resulting from Test 3—40 cases.

Fig. 12. Ten houses resulting from Test 4—40 cases.
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ever, the effort expended by the case-based approach is sub-
stantially less. For Test 2, a total of 70 generations were run
whereas for Test 5 a total of 857 generations were run~count-
ing the generations of rooms, zones, and houses!. This shows
that the information contained in the case base regarding
the rooms, composition of zones, and the joining of zones is
useful.

A feature which appeared in the generation of houses anew
~Test 5! and when allowing random joining of zones~Tests
2 and 4! was that the initial random population generated
was very uneven. Only very few~1 in most cases! solutions
had values which were close to being satisfactory, the rest
had very low values because of the poor circulation effi-
ciency values resulting from poor joinings of zones. So that
while one or two solutions may have a score of approxi-
mately 40~P0A3 Penalty! many solutions had score of less
than 10. This meant that one or two solutions clearly dom-
inated the rest of the population and the run quickly con-
verged to those solutions. In some cases, where all the
initially generated solutions were very low, the run con-
verged without any satisfactory solutions found. This ex-
plains why the number of generations with Tests 2 and 4 is
fairly high. In comparison, the initial generation for Tests 1
and 3 was the case base with a fairly even spread of solutions.

The implementations using the case-based approach did
not find the solution shown in Figure 14 which has aP0A of
0.818, although solution 3-NH6~P0A 5 0.727! could pos-
sibly be used to suggest it.

An observation made was that while the fitness function
evaluates the overallP0A of the house there is no assess-
ment made of the potential of zones to produce the required
results. This is left to the general methodology of the evo-
lutionary method to sort out. An example is given in Fig-
ure 15. The two squares~3 3 3 units! haveP0A ratios of
1.33, so that a selection based on the fitness of the squares
would not be able to prefer one over the other. However, the
shapes A and B composing the left-hand square can be com-
posed to form the shape shown with aP0A of 2.22 as against
the composition of C and D, shown on the right-hand side,
with a P0A of 1.78. This shows that preselecting based on
the performance of given solutions could discard solutions
containing elements which have the potential to contribute
to good solutions.

8. SUMMARY

The evolutionary case-based design process promises a gen-
eral, domain-independent, method for case-based design with
solutions to the problems of case-base adaptation, case rep-
resentation, and indexing. The experimentation has shown
that even at the highest building block level, it is possible to
achieve good results. In addition, not only is it unnecessary
to preselect “good” cases or classify the cases into “good”
and “bad” solutions but this may be detrimental. This con-
tradicts the conclusions reached by Louis and Johnson~1999!
and Maher and Gomez de Silva Garza~1996!. That is, all
the information that is available in the design experience,
represented by the case base, should be used since it is not
possible to determine what components of any cases may or
may not be useful by simply evaluating the performance of

Fig. 13. Ten houses resulting from Test 5—growth process.

Table 1. Statistics

No.
of

Cases Runs

Total
No. of

Generations

Max. No. of
Generations

in a Run
Best
P0A

Average
P0A

Test 1 26 15 217 30 0.642 0.584
Test 2 26 19 162 27 0.625 0.596
Test 3 40 7 70 13 0.727 0.628
Test 4 40 21 170 17 0.684 0.640
Test 5 — 63 857 60 0.697 0.622
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the overall design. However, what is critical is the informa-
tion contained in the case base. This is not specific to the
evolutionary approach but to case-based design in general.
A case base must contain sufficient information with the po-
tential to generate suitable solutions from its cases to be
effectual.

9. FUTURE WORK

Future work is needed to resolve several issues, such as:

• How large and how varied does the case-base need be
to be useful? If the variability of the case base is lim-
ited, can new components be created to overcome this
and how will this then be different from just generat-
ing solutions without recourse to a case base?

• The level at which the genetic operations, for example,
crossover, have to be applied in a hierarchical repre-
sentation. Can they be restricted to the highest level of
description for the house, that is, using zones as build-
ing blocks or will it be necessary to descend to lower
levels, for example, to create new zones or even new
rooms? This is allowing cut sites at different levels in
the tree structure. Since there is a strict component0
assembly hierarchy, where an assembly~symbol!
replaces a combination of components, any new
combination of components creates a new assembly
~symbol!. How is this accomplished in a case-based en-
vironment, how is it recognized, and how is it incor-
porated into the process? Unlike the general genetic
programming process, the crossover in the tree repre-

sentation has to be controlled between similar parts, or
subtrees, of the tree to maintain consistency of structure.

• Related to the previous point, what information can be
learned from a case base and reapplied and what new
information needs be created? Should only the compo-
nent information be used or both the component and
configuration~ joinings! of component information be
used? For example, it may be that only the zone~and
room! solutions can be reused, without the need for new
solutions, whereas the rotation and edge joinings have
to be generated anew.

• Since the efficiency of a hierarchical case base is re-
lated to the reuse of high-level components, if new lower
level components are to be generated, a strategy is re-
quired to bias the process towards reuse rather than
regeneration.

Further, the use of evolutionary case-based design brings
into focus the interpretation of the genotype into phenotype
descriptions depending on the particular problem. Since in
the test example the fitness function was associated with
perimeter values, an interpretation based on edge vectors
was suitable. However, other problems may require other
phenotypic interpretations. This addresses the issue that al-
though the process for creating the solution is given by the
genotype description, its description is not fixeda priori
but determined depending on the problem.
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