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Abstract. The logic of Conditional Beliefs (CDL) has been introduced by Board, Baltag, and
Smets to reason about knowledge and revisable beliefs in a multi-agent setting. In this article both
the semantics and the proof theory for this logic are studied. First, a natural semantics for CDL is
defined in terms of neighbourhood models, a multi-agent generalisation of Lewis’ spheres models,
and it is shown that the axiomatization of CDL is sound and complete with respect to this semantics.
Second, it is shown that the neighbourhood semantics is equivalent to the original one defined in
terms of plausibility models, by means of a direct correspondence between the two types of models.
On the basis of neighbourhood semantics, a labelled sequent calculus for CDL is obtained. The
calculus has strong proof-theoretic properties, in particular admissibility of contraction and cut, and it
provides a decision procedure for the logic. Furthermore, its semantic completeness is used to obtain
a constructive proof of the finite model property of the logic. Finally, it is shown that other doxastic
operators can be easily captured within neighbourhood semantics. This fact provides further evidence
of the naturalness of neighbourhood semantics for the analysis of epistemic/doxastic notions.

§1. Introduction. Modal epistemic logic has been studied for a long time in formal
epistemology, computer science, and notably in artificial intelligence. In this logic, to
each agent i is associated a knowledge modality Ki , so that the formula Ki A expresses
that “agent i knows A.” Through agent-indexed modal operators, epistemic logic can be
used to reason about the mutual knowledge of a set of agents. The logic has been further
extended by other modalities to encode various types of combined knowledge of agents
(e.g., common knowledge). However, knowledge is not the only propositional attitude, and
belief is equally significant to reason about epistemic interaction among agents. Board [6],
and then Baltag & Smets [2–4], have proposed a logic called CDL (Conditional Doxastic
Logic) for modelling both belief and knowledge in a multi-agent setting. The essential
feature of beliefs is that they are revisable whenever the agent learns new information.
To capture the revisable nature of beliefs, CDL contains the conditional belief operator
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CONDITIONAL BELIEFS 737

Beli(C |B), the meaning of which is that agent i would believe C in case she learnt B.
Thus, the connective is employed to represent how an agent would react in response to an
hypothetical situation: if the agent were to learn B, she would believe that C held in the
state of the world before the act of learning B.

For this reason Baltag and Smets qualify this logic as “static” in contrast to “dynamic”
epistemic logic, where the very act of learning (by some form of announcement) may
change the agent’s beliefs. The logic CDL in itself is used as the basic formalism to study
further dynamic extensions of epistemic logics, determined by several kinds of
epistemic/doxastic actions.

The logic of conditional belief has also been significantly employed in game theory [25].
This logic is suitable to describe game models, i.e., idealized static models which represent
games. In this setting, the operators of simple belief and knowledge account for a player’s
doxastic and epistemic attitudes, whereas the conditional belief operator is employed to
represent the choices a player maintains as possible at a certain stage, i.e., the strategies a
player would apply in response to other player’s choices.

More generally, the conditional belief operator is suited to represent the states of belief
an agent would form in response to an hypothetical situation; thus, CDL is able to give a
complete representation of an agent’s epistemic and doxastic attitudes at a given moment
of time. Notice that both unconditional beliefs and knowledge can be defined in CDL:
Beli B (agent i believes B) as Beli(B|�), Ki B (agent i knows B) as Beli(⊥|¬B), the latter
meaning that i considers impossible (inconsistent) to learn ¬B. In order to illustrate the
difference between the conditional belief operator Beli(B|A) and the simple belief operator
Beli(A ⊃ B), consider the following (modified) example from Stalnaker [25]. Let agent i
have the belief that Jones is a coward, formalized as BeliC( j). Now, we want to express the
fact that if the agent is to learn that Jones has been sent to battle, he would no longer believe
that he is a coward (since only brave men are sent to battle). If we expressed this fact with
the simple belief operator we would end up in a contradiction, because from ¬Beli(S( j) ⊃
C( j)) we conclude ¬BeliC( j). However, if we express it as ¬Beli(C( j)|S( j)), we do
not end up in contradiction, since ¬BeliC( j) cannot be derived (this can be verified using
either the axiom system in §2.1 or the sequent calculus in §3).

The axiomatization of the operator Beli in CDL internalises the well-known AGM pos-
tulates of belief revision.1 This is something we include, without modification, in our
treatment. However, differently from what has been previously done in the literature, we
provide a semantics for CDL based on neighbourhood models. These models are often
used in the interpretation of non-normal modal logics; in the present setting they can be
seen as a multi-agent generalization of Lewis’ sphere models for counterfactual logics (see
also [10]). In these models to each world x and agent i is associated a set Ii (x) of nested
sets of worlds; each set α ∈ Ii (x) represents, so to say, a relevant piece of information that
can be used to establish the truth of an epistemic/doxastic statement. We provide a direct
completeness proof of the axiomatization for CDL with respect to our semantics.

In the literature the semantic interpretation of CDL is usually defined in terms of epis-
temic plausibility models, where to each agent i is associated an equivalence relation ∼i

and a well-founded pre-order �i on worlds. The former relation models knowledge and is
used to interpret epistemic indistinguishability of states, whereas the latter relation models
conditional belief. To this aim, the relation assesses the relative plausibility of worlds

1 We cannot mention here the vast literature on the relation between belief revision, conditional
logics, the Ramsey Test, and Gärdenfors Triviality Result [9].
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according to an agent i ; then, it holds that agent i believes B conditionally on A in a
world x if B holds in the most plausible worlds accessible from x in which A holds, the
“most plausible worlds” for an agent i being the�i -minimal ones. This semantic approach
has been dominant in the studies of CDL; in addition to Board [6] and Baltag & Smets [3],
we mention works by Pacuit [22], van Ditmarsch et al. [27] and Demey [7].

We prove that the semantics defined in terms of neighbourhood models is equivalent to
the one defined with epistemic plausibility models. This result does not come as totally
unexpected: for the mono-agent case, it was suggested by Board [6], Pacuit [22] and
Marti et al. [16], based on an old result about the correspondence between partial orders
and Alexandroff topologies [1]. We detail the correspondence for the multi-agent case.
We argue that neighbourhood models provide by themselves a terse interpretation of the
epistemic and doxastic modalities, abstracting away the relational information specified
in plausibility models. Moreover, it is worth noticing that in these models the interpreta-
tion of unconditional beliefs and knowledge results in the standard universal/existential
neighbourhood modalities.

Up to this moment, the logic CDL has been studied only from a semantic point of view,
and no proof system or calculus has been given. Our main goal is to provide one. On the
basis of neighbourhood semantics we develop a labelled sequent calculus, called G3CDL,
following the general methodology of Negri [17] to develop labelled calculi for modal
logics. Similarly to Negri & Olivetti [21], the calculus G3CDL makes use of world and
neighbourhood labels, thereby importing the semantics, limited to the essential, into the
syntax. In G3CDL, each connective is handled by symmetric left/right rules, whereas the
properties of neighbourhood models are handled by additional rules independent of the
language of CDL. The resulting calculus is analytic and enjoys strong proof-theoretical
properties, the most important being admissibility of cut and contraction, which we prove
syntactically. We show that the adoption of a standard strategy for the calculus G3CDL
provides a decision procedure for CDL. We also prove the semantic completeness of the
calculus: it is possible to extract from a failed derivation a finite countermodel of the initial
formula. This result combined with the soundness of the calculus yields a constructive
proof of the finite model property of CDL.

The article is organized as follows: In §2 we present the logic CDL, an axiomatization,
and neighbourhood models for it. In §3 we give the rules of sequent calculus G3CDL, and
in §4 we provide proofs of soundness, termination, and completeness. §5 contains the proof
of equivalence between preferential models and neighbourhood models for CDL. Finally,
in the last section we take into account other belief operators studied in the literature, such
as strong and safe belief [3], and we extend the neighbourhood models interpretation and
the sequent calculus to cover these cases. The fact that we can easily accommodate these
further operators in neighbourhood semantics gives additional evidence of the naturalness
of this semantics in the analysis of epistemic and doxastic notions.

§2. The logic of conditional beliefs. We recall an axiomatization for the logic of
conditional beliefs and present a new semantics, given in terms of neighbourhood models,
for this logic. We then prove soundness and completeness of the axiomatization with
respect to this class of models.

In the literature, the semantics of CDL is usually defined in terms of epistemic plausibil-
ity models. A presentation of these models and a proof of equivalence between plausibility
and neighbourhood models will be shown in §5.

2.1. Axiomatization. The language of CDL is defined from a denumerable set of atoms
Atm by means of propositional connectives and the conditional operator Beli, where the
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index i ranges over a set of agents A. In the following, P denotes an atomic formula and i
an agent. The formulas of the language are generated according to the following definition:

A := P | ⊥ | ¬A | A ∧ A | A ∨ A | A ⊃ A | Beli (A|A).

In the following, let ∧ and ∨ bind stronger than ⊃ and Beli. The conditional belief
operator Beli(C |B) is read as “agent i believes C , given B”. As mentioned in §1, we may
define the modalities of unconditional belief and knowledge in terms of conditional belief
as follows:

Beli A =de f Beli(A|�) (belief)
Ki A =de f Beli(⊥|¬A) (knowledge).

An equivalent second-order characterization of knowledge is Ki A iff for all B we have
Bel(A|B), meaning that A will persist as a belief no matter what is learnt. Observe that in
the definition of the operator of conditional belief the “given B” part is to be interpreted
as “in case B is added to the set of belief”. In other words, B is to be intended as a new
belief, and not as a new knowledge. Interpreting B as knowledge would lead to a circularity
in the definition Ki A =de f Beli(⊥|¬A). Furthermore, this operation is illegitimate, since
Beli(Ki B|B) is not derivable in the system.

An axiomatization of CDL has been discussed in Board [6], Pacuit [22], Baltag & Smets
[3]. We present an alternative axiomatization, HCDL, equivalent to the one in Baltag &
Smets [3]. The double implication A ⊃⊂ B is defined in the standard way as (A ⊃ B) ∧
(B ⊃ A).
We denote by �HCDL derivability in HCDL, so �HCDL A means that A is a theorem in HCDL.

(AX.0) Any axiomatization of the classical propositional calculus including modus ponens

(AX.1) If �HCDL B, then �HCDL Beli(B|A)

(AX.2) If � A ⊃⊂ B, then � Beli(C |A) ⊃⊂ Beli(C |B)

(AX.3) (Beli(B|A) ∧ Beli(B ⊃ C |A)) ⊃ Beli(C |A)

(AX.4) Beli(A|A)

(AX.5) Beli(B|A) ⊃ (Beli(C |A ∧ B) ⊃⊂ Beli(C |A))

(AX.6) ¬Beli(¬B|A) ⊃ (Beli(C |A ∧ B) ⊃⊂ Beli(B ⊃ C |A))

(AX.7) Beli(B|A) ⊃ Beli(Beli(B|A)|C)

(AX.8) ¬Beli(B|A) ⊃ Beli(¬Beli(B|A)|C)

(AX.9) A ⊃ ¬Beli(⊥|A) .

Note that Axiom 6 can be equivalently replaced by the following axioms:

(AX.6a) ¬Beli(¬B|A) ⊃ (Beli(C |A) ⊃ Beli(C |A ∧ B)

(AX.6b) Beli(C |A ∧ B) ⊃ Beli(B ⊃ C |A).

Axiom 6b is in turn equivalent to the following axiom:

(AX.10) (Beli(C |A) ∧ Beli(C |B)) ⊃ Beli(C |A ∨ B).

In terms of belief revision, the above axioms may be understood as a sort of epistemic and
internalized version of the AGM postulates. Some remarks are in order (we refer to [6]
for a deeper discussion): The epistemization rule (2) and distribution axiom (3) express
the deductive closure of beliefs. Success axiom (4) ensures that the learned information is
included in the set of beliefs. Axioms (5) and (6) encode the minimal change principle, a
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basic assumption of belief revision (see the correspondence with AGM postulates K*7 and
K*8). Axioms (7) and (8) express positive and negative introspection of beliefs. Axiom
(9), consistency, ensures that learning a true information cannot lead to inconsistent beliefs
(it roughly corresponds to AGM K*5). The standard characterization of knowledge as an
S5-modality, i.e., the following laws

Ki A ⊃ A Ki A ⊃ Ki Ki A ¬Ki A ⊃ Ki¬Ki A

can be derived from its definition in terms of conditional belief and the above axioms.

2.2. Neighbourhood semantics. We introduce a semantics for CDL based on neigh-
bourhood models, or N-models for short. As explained in §1, these are a multi-agent
version of the sphere models introduced by Lewis [14] for the logic of counterfactuals.

DEFINITION 2.1. Let A be a set of agents. A multi-agent neighbourhood model has the
form M = 〈W, {I }i∈A, � �〉 where W is a nonempty set;2 for each i ∈ A, Ii is a neigh-
bourhood function Ii : W → P(P(W )) that assigns a collection of sets of worlds to each
world in W ; � � : Atm → P(W ) is the propositional evaluation.
For i ∈ A, x ∈ W , Ii satisfies the following properties:

- Nonemptiness: ∀α ∈ Ii (x) . α �= ∅;
- Nesting: ∀α, β ∈ Ii (x) . α ⊆ β or β ⊆ α;
- Total reflexivity: ∃α ∈ Ii (x) . x ∈ α;
- Local absoluteness: If α ∈ Ii (x) and y ∈ α then Ii (x) = Ii (y);
- Strong closure under intersection: If S ⊆ Ii (x) and S �= ∅ then

⋂
S ∈ S.

The truth conditions for formulas of the language are given inductively by extending the
evaluation function � � as follows:

- For the Boolean cases the clauses are standard: �A ∧ B� ≡ �A� ∩ �B�, �¬A� ≡
W − �A�, �A ∨ B� ≡ �A� ∪ �B�, �A ⊃ B� ≡ (W − �A�) ∪ �B�;

- x ∈ �Beli(B|A) � iff (∀α ∈ Ii (x) . α ∩ �A� = ∅) or (∃β ∈ Ii (x) . β ∩ �A� �=
∅ and β ⊆ �A ⊃ B�).

A formula A is valid in M if �A� = W . We say that A is valid in the class of neighbour-
hood models if A is valid in every neighbourhood model M.

Observe that total reflexivity entails that every Ii (x) is nonempty, whereas strong closure
under intersection always holds in finite models, because of nonemptiness and nesting.

Notational convention: We often write M, x � A, meaning x ∈ �A�. This is further
shortened to x � A whenever M is unambiguous. Then, we use the local forcing relations
introduced in Negri [19]:

α �∀ A iff ∀y ∈ α . y � A and α �∃ A iff ∃y ∈ α . y � A.

With this notation, the truth condition of conditional belief Beli becomes

x � Beli(B|A) iff
(∀α ∈ Ii (x) . α �∀ ¬A) or (∃β ∈ Ii (x) . β �∃ A and β �∀ A ⊃ B).

It is worth noticing that with the notation just introduced, the semantic definition of the
unconditional belief and knowledge operators can be stated as follows:

2 As in the sphere models semantics, W can be thought as the set of possible worlds.
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x � Beli B iff ∃β ∈ Ii (x) . β �∀ B and x � Ki B iff ∀β ∈ Ii (x) . β �∀ B.

It can be easily shown that the axiomatization is sound with respect to neighbourhood
semantics:

THEOREM 2.2. For any formula A, if �HCDL A, then A is valid in the class of neighbour-
hood models.

Proof. By induction on the length of the derivation of A defined in the standard way. As
an example, we show validity of Axioms 6a, 7, and 9.
(AX.6a) ¬Beli(¬B|A) ⊃ (Beli(C |A) ⊃ Beli(C |A ∧ B). Let us assume that there is
a model M which satisfies the antecedent but does not satisfy the consequent of the
axiom at world x . Thus, assume M, x � ¬Beli(¬B|A), M, x � Beli(C |A) and M, x �
Beli(C |A ∧ B). We now have the following:

1. ∃α ∈ Ii (x) . α �∃ A
2. ∀δ ∈ Ii (x) . δ �∃ A → δ �∃ A ∧ B
3. (∀α ∈ Ii (x)α �∀ ¬A) or (∃β ∈ Ii (x) . β �∃ A and β �∀ A ⊃ C)
4. ∃α ∈ Ii (x) . α �∃ A ∧ B
5. ∀δ ∈ Ii (x) . δ �∃ A ∧ B → δ �∃ A ∧ B ∧ ¬C .

The first disjunct of 3. does not hold, since it contradicts 1. From the second disjunct of
3, we have that there exists a β0 such that β0 �∃ A. From 2, we have that β0 �∃ A ∧ B.
Then, from 5. we have that β0 �∃ A ∧ B ∧ ¬C . Thus, there exists y ∈ β0 such that
y � A ∧ B ∧ ¬C . From 3. we have that y � A ⊃ C : contradiction.
From 3. we also have that β0 �∀ A ⊃ C : contradiction.
(AX.7) Beli(B|A) ⊃ Beli(Beli(B|A)|C). Again, suppose M, x � Beli(B|A) and M, x �
Beli(Beli(B|A)|C). Thus,

1. (∀α ∈ Ii (x) . α � ¬A) or (∃β ∈ Ii (x) . β �∃ A and β �∀ A ⊃ B)
2. ∃α ∈ Ii (x) . α �∃ C
3. ∀β ∈ Ii (x) . β �∃ C → (β �∃ C and ¬Beli(B|A).

From 3. we have 4. ∃y ∈ β. y � C and y � ¬Beli(B|A), i.e., 5. ∃γ ∈ Ii (y) . γ �∃ A and
6. ∀δ ∈ Ii (y). δ �∃ A → δ �∃ A ∧ ¬B. By the absoluteness condition applied to 4.,
since β ∈ Ii (x) and y ∈ β, we have Ii (x) = Ii (y). Observe that the first disjunct of 1. does
not hold, since it contradicts 5. Thus, the second disjunct of 1. holds, and we have that 7.
∃β ∈ Ii (x) = Ii (y) . β �∃ A and β �∀ A ⊃ B. This contradicts with 6.
(AX.9) A ⊃ ¬Beli(⊥|A). Suppose M, x � A and M, x � Beli(⊥|A). Thus, ∀α ∈
Ii (x) . α �∀ ¬A or ∃β ∈ Ii (x) . β �∃ A and β �∀ A ⊃ ⊥. By total reflexivity the first
disjunct does not hold, since M, x � A and ∃α ∈ Ii (x) . x ∈ α. The second disjunct is
contradictory: we have that ∃y ∈ β . y � A, and that y � A ⊃ ⊥; thus, y � ⊥. �

2.3. Direct completeness proof. The purpose of this section is to show the following:

THEOREM 2.3. For any formula A, if A is valid in the class of neighbourhood models,
then �HCDL A.

We shall prove the contrapositive: If �HCDL A, then A is not valid in the class of neigh-
bourhood models. We introduce standard notions and lemmas.

DEFINITION 2.4. Given S ⊆ LCDL, we say that S is inconsistent if it has a finite subset
{B1, . . . , Bn} ⊆ S such that �HCDL B1 ∧ · · · ∧ Bn ⊃ ⊥. We say that S is consistent if it
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is not inconsistent. We say that S ⊆ LCDL is maximal consistent if it is consistent and for
any formula A �∈ S, S ∪ {A} is inconsistent. Let MAXC(LCDL) denote the set of maximal
consistent sets of LCDL.

LEMMA 2.5. Let S ⊆ LCDL be consistent, then there exists an X ∈ MAXC(LCDL) such
that S ⊆ X.

Proof. Standard: Let A0, A1, . . . , An . . . be an enumeration of all formulas of LCDL.
Define a sequence of sets X0 = S, Si+1 = Si ∪ {Ai } if Ai is consistent with Si , and
Si+1 = Si if not. Then define X = ⋃

i Xi ;
this set can be proved to be consistent and maximal. �

LEMMA 2.6. Let X be in MAXC(LCDL). Then the following properties hold:

(i) For any formula A, either A ∈ X or ¬A ∈ X

(ii) A ∧ B ∈ X iff A ∈ X and B ∈ X

(iii) A ∨ B ∈ X iff A ∈ X or B ∈ X

(iv) A ∈ X and A ⊃ B ∈ X implies B ∈ X

(v) If �HCDL A then A ∈ X .

The following lemma contains a list of theorems of CDL used in subsequent proofs.

LEMMA 2.7. The following are derivable in CDL:

(1) Beli(B|A) ∧ Beli(C |A) ⊃ Beli(B ∧ C |A)

(2) Beli(⊥|A ∨ B) ⊃ (Beli(⊥|A) ∧ Beli(⊥|B))

(3) Beli(⊥|A) ⊃ Beli(¬A|A ∨ B)

(4) If �HCDL A ⊃ B then �HCDL Beli(B|A)

(5) Beli(¬D|C ∨ D) ⊃ Beli(¬D|C)

(6) Beli(D|C) ⊃ Beli(⊥|¬Beli(D|C))

(7) ¬Beli(D|C) ⊃ Beli(⊥|Beli(D|C))

(8) (¬Beli(¬A|A ∨ B) ∧ Beli(¬A|A ∨ C)) ⊃ Beli(¬B|B ∨ C).

Proof. For the sake of readability, we use � instead of �HCDL to denote derivability in
the axiom system.
(1). We have � B ⊃ (C ⊃ B ∧C), so by Axiom 1, Beli(B ⊃ (C ⊃ B ∧C)|A). By Axiom
3 (twice) and the assumptions we obtain Bel(B ∧ C |A).
(2). It suffices to show that Beli(⊥|A ∨ B) ⊃ Beli(⊥|A). By propositional reasoning,
Axiom 1, and Axiom 3, from Beli(⊥|A∨ B) follows (a) Beli(A|A∨ B). Applying Axiom
5 to (a) and Beli(⊥|A ∨ B) we get (b) Beli(⊥|A ∧ (A ∨ B)). Since � A ⊃ A ∨ B, by
Axiom 1 we have Beli(A ⊃ A ∨ B|A); applying Axiom 3 to this formula and to formula
Beli(A|A) (Axiom 4) we have (c) Beli(A ∨ B|A). A final application of Axiom 5 to (b)
and (c) yields Beli(⊥|A).
(3). Applying propositional reasoning, Axiom 1 and Axiom 3 to Beli(⊥|A) we get (a) Beli
(¬A|A). As in the previous case, we obtain (b) Beli(A ∨ B|A) from Axiom 1 applied to
� A ⊃ A ∨ B and Axiom 3. Apply Axiom 5 to (a) and (b) to get Beli(¬A|A ∧ (A ∨ B)).
Since � A ∧ (A ∨ B) ⊃ A ∨ B, by propositional reasoning we have Beli(¬A|A ∨ B).
(4). By Axiom 1, � A ⊃ B gives � Beli(A ⊃ B|A). By Axiom 4 we also have �
Beli(A|A), and by Axiom 3 we conclude that Beli(B|A).
(5). By Axiom 4 we have Beli(C ∨ D|C ∨ D). By propositional reasoning, we also have
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(a) Beli(¬D ⊃ C |C ∨ D). Apply Axiom 3 to (a) and to the antecedent Beli(¬D|C ∨ D)
to get (b) Beli(C |C ∨ D). Then, apply Axiom 5 to the antecedent and (b), and obtain
(c) Beli(¬D|C ∧ (C ∨ D)). Formula Beli(C ∨ D|C) is derivable, by (4) applied to � C ⊃
C ∨ D. Apply Axiom 5 again to (c) and (4) and obtain the consequent Beli(¬D|C).
(6). From Beli(D|C) and Axiom 7 obtain (a) Beli(Beli(D|C)|¬Beli(D|C)). By Axiom 4
we have (b) Beli(¬Beli(D|C)|¬Beli(D|C)). Applying (3) of this Lemma to (a) and (b) yi-
elds Beli(Beli(D|C)∧¬Beli(D|C)|¬Beli(D|C)). This is equivalent to Beli⊥|¬Beli(D|C)).
(7). From ¬Beli(D|C) and Axiom 8 obtain (a) Beli(¬Beli(D|C)|Beli(D|C)). Then, Ax-
iom 4 gives (b) Beli(Beli(D|C)|Beli(D|C)). Apply (1) to (a) and (b) and obtain Beli(Beli
(D|C)∧¬Beli(D|C)|Beli(D|C). Thus, we have that Beli(⊥|Beli(D|C)). (8). We prove the
following equivalent formulation: (Beli(¬A|A∨C)∧¬Beli(¬B|B ∨C)) ⊃ Beli(¬A|A∨
B). First, let us prove the following: i)Beli(¬A|A ∨ C) ⊃ Beli(¬A|A ∨ B ∨ C). It holds
that (a) Beli(A ∨ B ∨ C |A ∨ C), by (4) and a suitable propositional formula. Apply
Axiom 5 to (a) and the antecedent of i) and obtain (b) Beli(¬A|(A ∨ C) ∧ (A ∨ B ∨ C).
By Axiom 4 applied to a ¬A ∧ F , for an arbitrary formula F , Beli(¬A|¬A ∧ F). Let
F = ¬C ∧ (A ∨ B ∨ C). Thus we have Beli(¬A|¬A ∧ ¬C ∧ (A ∨ B ∨ C)), from which
by propositional reasoning we have c) Beli(¬A|¬(A ∨ C) ∧ (A ∨ B ∨ C)). From (b), (c)
and Axiom 10 we have

(d) Beli(¬A|(¬(A ∨ C) ∧ (A ∨ B ∨ C)) ∨ ((A ∨ C) ∧ (A ∨ B ∨ C)).

By propositional reasoning, this is equivalent to Beli(¬A|¬(A ∨ C) ∨ (A ∨ C) ∧ (A ∨
B ∨ C), which is equivalent to Bel(¬A|A ∨ B ∨ C).
Then, we prove i i) ¬Beli(¬B|B ∨ C) ⊃ ¬Beli(¬(A ∨ B)|A ∨ B ∨ C). We prove the
contrapositive: Beli(¬(A∨ B)|A∨ B∨C) ⊃ Beli(¬B|B∨C). From the antecedent derive
by propositional reasoning (e) Beli(¬A|A∨ B ∨C), and ( f ) Beli(¬B|A∨ B ∨C). Apply
Axiom 5 to the antecedent and (e), and obtain (g) Beli(¬(A ∨ B)|B ∨ C). Apply Axiom
10 to ( f ) and (g) to obtain (h) Beli(¬B|(B ∨C)∧ (A∨ B ∨C)). Application of the same
axiom to (g) and (h) yields (l) Beli(A ∨ B ∨ C |B ∨ C). A final application of Axiom 5 to
(h) and (l) yields the desired conclusion Beli(¬B|B ∨ C).
We can now proceed with the proof. Apply i) to the first conjunct of the antecedent
Beli(¬A|A ∨ C) to obtain (a′) Beli(¬A|A ∨ B ∨ C). Apply i i) to the second conjunct of
the antecedent ¬Beli(¬B|B ∨ C) and obtain (b′) ¬Beli(¬(A ∨ B)|A ∨ B ∨ C). Applying
Axiom 6 to (a′) and (b′) yields Beli(¬A|(a ∨ B ∨C)∧ (A∨ B)). Application of the same
axiom to this formula and to the derivable formula Beli(A∨B∨C |A∨B) yields the desired
conclusion Beli(¬A|A ∨ B). �
Our goal is to build a canonical neighbourhood model M such that for any set of formulas
S, if S is consistent then it is satisfiable in M. To this regard,

- The worlds W are the maximal consistent sets: W = MAXC(LCDL);
- The propositional evaluation is defined in the obvious way; for an atom P:

�P� = {X ∈ MAXC(LCDL) | P ∈ X}.

We have to define the neighbourhoods Ii (X) for an element X ∈ W (and this is the hard
part). We proceed similarly to Lewis [14], defining the notion of an ‘implausible’ set of
formulas with respect to X . Then, each implausible set S with respect to X will provide
a neighbourhood of X , namely the set of elements of MAXC(LCDL) which do not contain
any formula in S.
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DEFINITION 2.8. Let S ⊆ LCDL and X ∈ MAXC(LCDL). Define S to be an implausible
set with respect to an agent i and a maximal consistent set X whenever the following
conditions hold:

(i) For any formula A, if Beli(⊥|A) ∈ X then A ∈ S;

(ii) If A ∈ S and B �∈ S then Beli(¬A|A ∨ B) ∈ X .

We denote by IMPLAi (X) the set of all implausible sets S with respect to X and i .

Intuitively, condition (i) means that S contain all formulas that lead agent i to believe an
absurdity, whereas condition (ii) means that for each A ∈ S and B �∈ S, agent i considers
B strictly more plausible than A, that is, if i learns A ∨ B then she would believe ¬A,
(whence she would believe B, since from Beli(¬A|A ∨ B) follows Beli(B|A ∨ B)).

LEMMA 2.9. The following hold:

(i) If S1, S2 ∈ IMPLAi (X) then S1 ⊆ S2 or S2 ⊆ S1;

(ii) LCDL ∈ IMPLAi (X);

(iii) Let S ∈ IMPLAi (X) with S �= LCDL; for any A, if �HCDL A then A �∈ S;

(iv) IMPLAi (X) has a smallest element:

Smin
X = {A ∈ LCDL|Beli(⊥|A) ∈ X}.

Proof.

(i) Suppose the contrary and let A ∈ S1 \ S2 and B ∈ S2 \ S1; by condition (ii) in
Definition 2.8 we get Beli(¬A|A ∨ B) ∈ X and Beli(¬B|A ∨ B) ∈ X . By (1) of
Lemma 2.7 we have Beli(¬(A∨B)|A∨B) ∈ X , and since Beli(A∨B|A∨B) ∈ X ,
we get Beli(⊥|A∨ B) ∈ X . By (2) of Lemma 2.7, this implies both Beli(⊥|A) ∈ X
and Beli(⊥|B) ∈ X , violating condition (i) of definition of implausible set for both
S1 and S2.

(ii) Obvious, since the antecedent of condition (ii) in Definition 2.8 is always false.

(iii) Suppose the contrary: let �HCDL A and A ∈ S. Since S �= LCDL, let B �∈ S.
Then by (ii) of Definition 2.8 we have (1) Beli(¬A|A ∨ B) ∈ X . Since �HCDL A
we also have A ∈ X and � Beli(⊥ |¬A) and therefore Beli(⊥ |¬A) ∈ X so (2)
Beli(A|A ∨ B) ∈ X by (3) of Lemma 2.7. By (1) and (2) Beli(⊥|A ∨ B) ∈ X ,
which implies Beli(⊥|A) ∈ X , whence we obtain A �∈ X , thus a contradiction.

(iv) It suffices to show that Smin
X satisfies condition (ii) of the definition of implausible

set. Let A ∈ Smin
X ; then Beli(⊥|A) ∈ X , whence for any B, by (3) of Lemma 2.7,

Beli(¬A|A ∨ B) ∈ X .

�
For any set S ⊆ LCDL we define

C O(S) = {Y ∈ MAXC(LCDL) |Y ∩ S = ∅}
Ii (X) = {C O(S)| S ∈ IMPLAi (X) and S �= LCDL}.

Intuitively, each sphere α will be defined as a set C O(S): a sphere is thus determined by
an implausible set of formulas S, i.e., a sphere is the set of worlds not containing any
implausible formula with respect to X . Then, Ii (X) is the set of spheres determined by
each set of formulas S.

It trivially holds that C O(LCDL) = ∅; furthermore, it can be proved that if S ∈
IMPLAi (X) and S �= LCDL then C O(S) �= ∅ (the proof is similar to the one of the
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following Lemma 2.10). Observe that the largest neighbourhood is C O(Smin
X ) which con-

tains all Y that do not contain any formula considered “impossible” for X .
The following lemma is similar to Lewis’ Cosphere Lemma [14], and will be widely

used in the sequel.

LEMMA 2.10. Let α ∈ Ii (X) with α = C O(S) for some S ∈ IMPLAi (X). Then for
any formula A it holds that A ∈ S if and only if for all Y ∈ α it holds that A �∈ Y (thus
¬A ∈ Y ).

Proof. To prove direction (⇒), suppose A ∈ S then by definition of α = C O(S), for all
Y ∈ α it holds A �∈ Y .

To prove direction (⇐), suppose that for all Y ∈ α = C O(S) it holds that A �∈ Y ,
and by reductio ad absurdum that A �∈ S. Let us consider the set {¬B | B ∈ S}. Suppose
first that {¬B | B ∈ S} ∪ {A} is consistent. Then for some Z ∈ MAXC(LCDL), we have
{¬B | B ∈ S} ∪ {A} ⊆ Z (Lemma 2.5). We get that Z ∩ S = ∅, so that Z ∈ α = C O(S).
But since A ∈ Z , we have a contradiction with the hypothesis. Thus {¬B | B ∈ S} ∪ {A} is
inconsistent; this means that there is a finite set {¬B1, . . . ,¬Bn} such that

�HCDL (¬B1 ∧ · · · ∧ ¬Bn) ⊃ ¬A,

which is the same as

�HCDL A ⊃ (B1 ∨ · · · ∨ Bn).

It follows that

(1) Beli(B1 ∨ · · · ∨ Bn|A) ∈ X .

For each Bk it holds that Bk ∈ S and A �∈ S; thus, by condition (ii) of Definition 2.8 we
have Beli(¬Bk |A ∨ Bk) ∈ X . This implies that Beli(¬Bk |A) ∈ X for each (i), whence

(2) Beli(¬(B1 ∨ · · · ∨ ¬Bn)|A) ∈ X .

But (1) and (2) imply Beli(⊥|A) ∈ X . Thus, by condition (i) of Definition 2.8, A ∈ S,
against the assumption A /∈ S. �
We are finally ready for the main result. Let us define the canonical model M = 〈W, Ii , � �〉,
where W = MAXC(LCDL), and � �, Ii are defined as before. We prove that M is indeed
a multi-agent neighbourhood model and that it correctly gives the truth condition for
formulas.

The only property we do not show is strong closure under intersection, because we do
not (yet) know whether this property holds in the canonical model. However, this property
is irrelevant for completeness, since (1) the axioms of CDL are valid in models which
do not necessarily satisfy this property, as is shown in the proof of Theorem 2.2, and (2)
by the finite model property, (see end of §4) it follows that if a formula A is satisfiable
in a neighbourhood model then A is satisfiable in a finite model, that in itself satisfies
the strong intersection property. Thus the class of formulas which are valid in models
that satisfy the strong intersection property is the same as the class of formulas that are
valid in models that do not necessarily satisfy this property. No formula can distinguish
between models that satisfy and those that do not satisfy the strong intersection property.
The situation could be different if we considered strong completeness, where we are con-
cerned about derivability of logical consequences of an infinite theory, not just of valid
formulas.
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PROPOSITION 2.11. The model M = 〈W, Ii , � �〉 defined above is a neighbourhood
model.

Proof. We show that the properties of nonemptiness, nesting, total reflexivity, and local
absoluteness hold in the model.

Nonemptiness: If α ∈ Ii (X) we want to show that α �= ∅. Let α = C O(S) for some
S ∈ IMPLAi (X) (S �= LCDL). Proceed similarly to the (⇐) direction of Lemma 2.10:
consider the set {¬B|B ∈ S}, and prove that it is consistent (by contradiction); thus, there
is a Y ∈ MAXC(LCDL) such that {¬B|B ∈ S} ⊆ Y , from which Y ∈ α.

Nesting: Let α, β ∈ Ii (X). Then for some S1, S2 ∈ IMPLAi (X), α = C O(S1) and
β = C O(S2). By Lemma 2.9, either S1 ⊆ S2 or S2 ⊆ S1. In the former case β ⊆ α, in the
latter α ⊆ β.

Total reflexivity: Given X ∈ W , let us consider the set Smin
X = {A ∈ LCDL|Beli(⊥|A) ∈

X} ∈ IMPLAi (X). If A ∈ Smin
X then Beli(⊥|A) ∈ X ; thus by Axiom (9) ¬A ∈ X , whence

A �∈ X . We have shown that Smin
X ∩ X = ∅, thus X ∈ C O(Smin

X ).
Local absoluteness: Let α ∈ Ii (X) and Y ∈ α; we have to show that Ii (X) = Ii (Y ).

To this purpose it is enough to show that IMPLAi (X) = IMPLAi (Y ). To prove this it
suffices to show that for any formulas C, D we have Beli(D|C) ∈ X if and only if
Beli(D|C) ∈ Y , since the conditions (i) and (ii) in Definition 2.8 only involve formulas
of this form (including the particular case of D = ⊥). We know that α ⊆ C O(Smin

X ).
From Beli(D|C) ∈ X , and from (6) of Lemma 2.7 follows Beli(⊥|¬Beli(D|C)) ∈ X .
Thus ¬Beli(D|C)) ∈ Smin

X , and since Y ∈ C O(Smin
X ), we have that ¬Beli(D|C) �∈ Y , so

Beli(D|C) ∈ Y . Conversely, suppose that Beli(D|C) �∈ X , then¬Beli(D|C) ∈ X , thus also
Beli(⊥|Beli(D|C)) ∈ X (by (7) of Lemma 2.7). We have that Beli(D|C) ∈ C O(Smin

X ), and
since Y ∈ C O(Smin

X ) we finally obtain Beli(D|C) �∈ Y . �
Here is the main proposition.

PROPOSITION 2.12. Given the canonical model M = 〈W, Ii , � �〉 defined above, for
any formula A and any X ∈ W , we have X � A if and only if A ∈ X.

Proof. By induction on the weight of A, defined as follows (see also Definition 3.2):
w(P) = w(⊥) = 1; w(¬A) = w(A)+ 2; w(A ◦ B) = w(A)+ w(B)+ 1 for ◦ conjunction,
disjunction, or implication; w(Beli(B|A)) = w(A)+ w(B)+ 2.

The base case (A is atomic) holds by definition. The inductive cases of Boolean com-
binations easily follow by the properties of maximal consistent sets. The only interesting
case is the one of A = Beli(D|C). We show that X � Beli(D|C) iff Beli(D|C) ∈ X .

Suppose that X � Beli(D|C). Thus either (1) for each α ∈ Ii (X), α �∀ ¬C or (2) there
is there is α ∈ Ii (X) such that α �∃ C and α �∀ C ⊃ D. In case (1), let us consider
α = C O(Smin

X ). We have that for all Y ∈ α, Y �� C , thus by inductive hypothesis, C �∈ Y .
By Lemma 2.10, we get C ∈ Smin

X , thus Beli(⊥|C) ∈ X , whence also Beli(D|C) ∈ X . In
case (2), let α = C O(S) for some S ∈ IMPLAi (X). Then, since α �∃ C for some Y ∈ α,
we have Y � C ; thus by inductive hypothesis, C ∈ Y . By Lemma 2.10, C �∈ S. On the
other hand α �∀ C ⊃ D, that is α �∀ ¬(C∧¬D), similarly to case (1). Employing Lemma
2.10 and the inductive hypothesis, we get that (C ∧ ¬D) ∈ S. Since C �∈ S, we have that
Beli(¬(C ∧¬D)|C ∨ (C ∧¬D)) ∈ X . But this implies that Beli(¬(C ∧¬D)|C) ∈ X , that
is Beli(C ⊃ D)|C) ∈ X , and finally Beli(D|C) ∈ X .

Conversely, suppose that Beli(D|C) ∈ X . We distinguish different cases.
Case (1). Suppose that Beli(⊥|C) ∈ X . Consider the largest neighbourhood α =

C O(Smin
X ). We have that C ∈ Smin

X then for all Y ∈ α we have C �∈ Y , so that by inductive
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hypothesis, Y � ¬C , thus α �∀ ¬C , but this also holds for any other β ∈ Ii (X), since
β ⊆ α. We can conclude that X � Beli(D|C).

Case (2). Suppose that Beli(⊥|C) �∈ X . Subcase (2.1). Suppose that Beli(⊥|C ∧ ¬D) ∈
X . Then again consider α = C O(Smin

X ); we have that C �∈ Smin
X , thus by Lemma 2.10 for

some Y ∈ α, C ∈ Y . By inductive hypothesis Y � C , so that α �∃ C . On the other hand
C ∧¬D ∈ Smin

X and reasoning as in (case 1), we finally get α �∀ C ⊃ D. We have shown
that X � Beli(D|C).

Subcase (2.2). Suppose that Beli(⊥|C ∧¬D) �∈ X . This is the most difficult case. Let us
consider the following set:

S = {E ∈ LCDL|¬Beli(¬(C ∧ ¬D)|(C ∧ ¬D) ∨ E) ∈ X or Beli(⊥|E) ∈ X}.
We first show that a) C ∧ ¬D ∈ S: to see this suppose on the contrary that it does not,
then Beli(¬(C ∧ ¬D)|(C ∧ ¬D)) ∈ X . We obtain that Beli(⊥|(C ∧ ¬D)) ∈ X , against
the hypothesis of subcase (2.2).

We also show that b) C �∈ S. Suppose on the contrary that C ∈ S; since Beli(⊥|C) �∈ X ,
it must be

¬Beli(¬(C ∧ ¬D)|(C ∧ ¬D) ∨ C) ∈ X .

But C ≡ (C ∧ ¬D) ∨ C , thus we have ¬Beli(¬(C ∧ ¬D)|C) ∈ X , that is ¬Beli(C ⊃
D|C) ∈ X , so that finally ¬Beli(D|C) ∈ X against the hypothesis Beli(D|C) ∈ X .

We now show that S ∈ IMPLAi (X). Clearly S satisfies condition (i) Definition 2.8. We
want to show that S satisfies also condition (ii). To this purpose let G ∈ S and H �∈ S.
Since G ∈ S, we have Beli(⊥|G) ∈ X or ¬Beli(¬(C ∧ ¬D)|(C ∧ ¬D) ∨ G) ∈ X .
In the former case we get Beli(¬G|H ∨ G) ∈ X by (4) of Lemma 2.7, fulfilling condition
(ii). Otherwise we have (1) ¬Beli(¬(C ∧ ¬D)|(C ∧ ¬D) ∨ G) ∈ X . We have that H �∈
S, which means that Beli(⊥|H) �∈ X and (2) Beli(¬(C ∧ ¬D)|(C ∧ ¬D) ∨ H) ∈ X .
From (1) and (2) we obtain (by (8) of Lemma 2.7) again Beli(¬G|H ∨ G) ∈ X . Thus
S ∈ IMPLAi (X).

Let us consider β = C O(S). We have that C �∈ S and C ∧ ¬D ∈ S, as shown above
in a) and b). By Lemma 2.10 we have for some Y ∈ β, C ∈ Y , whence by inductive
hypothesis Y � C and β �∃ C . Similarly by Lemma 2.10 for all Y ∈ β, C ∧ ¬D �∈ Y ,
whence by inductive hypothesis for all Y ∈ β Y � ¬(C ∧ ¬D), that is Y � C ⊃ D, that
is β �∀ C ⊃ D. We have shown that X � Beli(D|C). �
We conclude the proof of the completeness theorem in the standard way. Suppose that
�HCDL A; then there is X ∈ MAXC(LCDL) such that ¬A ∈ X and A /∈ X . We consider
the canonical model M = 〈W, Ii , � �〉, we have that X ∈ W and by the above proposition
X � A. Thus A is not valid in M.

§3. Sequent calculus. The neighbourhood semantics is used to generate a labelled
sequent calculus, G3CDL, for CDL; this generation follows the methodology, established
in Negri [17], of internalizing possible worlds semantics into the syntax of a contraction-
free sequent system. Neighbourhood semantics is, however, more general than standard
(relational) possible worlds semantics, and there are nontrivial issues to be faced when the
internalization method is applied. A methodological discussion on the stages needed to
find the rules of a well-behaved sequent calculus starting from the meaning explanation of
the logical constants in terms of neighbourhood semantics is given in Negri [18]. The steps
needed to establish the structural properties of sequent calculi based on neighbourhood
semantics are carried over for some basic non-normal modal systems in Negri [19].
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The calculus G3CDL displays two kinds of labels: labels for worlds x, y. . . . and la-
bels for neighbourhoods a, b . . . , as in the ground calculus for neighbourhood semantics
introduced in Negri [19].
The meaning of the expressions employed in the calculus is defined as follows, where on
the right side we assume that x ranges over possible worlds and a, b over neighbourhoods
of possible worlds:

a �∃ A ≡ ∃x . x ∈ a and x � A
a �∀ A ≡ ∀x . x ∈ a → x � A
x �i B|A ≡ ∃c . c ∈ Ii (x) and c �∃ A and c �∀ A ⊃ B
x : Beli(B|A) ≡ ∀a ∈ Ii (x) . a �∃ A → (∃b ∈ Ii (x) . b �∃ A and

b �∀ A ⊃ B).

Here � denotes the forcing condition of neighbourhood semantics; to distinguish the se-
mantic notion and its syntactic counterpart and for the sake of a more compact notation,
we use a colon in the labelled calculus.

The rules of G3CDL can be found in Figure 1. The propositional rules are those of a
classical propositional system, decorated with labels. The rules for local forcing are defined
as in Negri & Olivetti [21].

Each semantic condition on neighbourhood models (Definition 2.1) is in correspondence
with a rule in the calculus. Rule (S) corresponds to the property of nesting in Definition 2.1;
(T ) corresponds to total reflexivity, and (A) to local absoluteness. As for nonemptiness, the
property is expressed by the rules for local forcing. The property of strong closure under
intersection needs not be expressed, because the property holds in finite models and we
shall prove that the logic has the finite model property (see end of §4). Moreover, we wish
to obtain a calculus in which the contraction rule is height-preserving admissible [17]. To
this purpose, a few rules keep their principal formula in their premisses: (L�∀), (R �∃),
(L B) and (RC). Moreover, some extra care is needed for rules that may have instances
with a duplication of atomic formulas in their conclusion. In G3CDL, the rules which
are potentially subject to this condition are (S) (sphere nesting) and (A1) (absoluteness),
for the case in which a = b. In these cases, a closure condition has to be applied: a rule
featuring duplicated formulas contracted into one single formula both in the premiss(es)
and in the conclusion has to be added to the calculus. For (S), the instance with the
duplication is

a ⊆ a, a ∈ Ii (x), a ∈ Ii (x), � ⇒ � a ⊆ a, a ∈ Ii (x), a ∈ Ii (x), � ⇒ �

a ∈ Ii (x), a ∈ Ii (x), � ⇒ �
S

and the contracted instance is

a ⊆ a, a ∈ Ii (x), � ⇒ � a ⊆ a, a ∈ Ii (x), � ⇒ �

a ∈ Ii (x), � ⇒ �
S∗

This rule does not need to be added to the calculus because it reduces (with two identical
premisses one of which is superfluous) to an instance of Ref.
As for (A1), the instance with a duplication has the following form

a ∈ Ii (x), y ∈ a, a ∈ Ii (x), a ∈ Ii (y), � ⇒ �

a ∈ Ii (x), y ∈ a, a ∈ Ii (x), � ⇒ �
A1

,

whereas the contracted instance is rule (A2); observe that (A2) is not an instance of any of
the pre-existing rules of the calculus so it has to be explicitly added in order to satisfy the
closure condition and thus ensure admissibility of contraction.
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Initial sequents

x : P, � ⇒ �, x : P

Rules for local forcing

x ∈ a, � ⇒ �, x : A

� ⇒ �, a �∀ A
R �∀(x fresh)

x : A, x ∈ a, a �∀ A, � ⇒ �

x ∈ a, a �∀ A, � ⇒ �
L �∀

x ∈ a, � ⇒ �, x : A, a �∃ A

x ∈ a, � ⇒ �, a �∃ A
R �∃

x ∈ a, x : A, � ⇒ �

a �∃ A, � ⇒ �
L �∃(x fresh)

Propositional rules

x : A, x : B, � ⇒ �

x : A ∧ B, � ⇒ �
L∧ � ⇒ �, x : A � ⇒ �, x : B

� ⇒ �, x : A ∧ B
R∧

x : A, � ⇒ � x : B, � ⇒ �

x : A ∨ B, � ⇒ �
L∨ � ⇒ �, x : A ∨ B

� ⇒ �, x : A, x : B
R∨

� ⇒ �, x : A x : B, � ⇒ �

x : A ⊃ B, � ⇒ �
L⊃ x : A, � ⇒ �, x : B

� ⇒ �, x : A ⊃ B
R⊃

⊥, � ⇒ �
L⊥

Rules for conditional belief

a ∈ Ii (x), a �∃ A, � ⇒ �, x �i B|A
� ⇒ �, x : Beli(B|A)

RB(a fresh)

a ∈ Ii (x), x : Beli(B|A), � ⇒ �, a �∃ A x �i B|A, a ∈ Ii (x), x : Beli(B|A), � ⇒ �

a ∈ Ii (x), x : Beli(B|A), � ⇒ �
L B

a ∈ Ii (x), � ⇒ �, x �i B|A, a �∃ A a ∈ Ii (x), � ⇒ �, x �i B|A, a �∀ A ⊃ B

a ∈ Ii (x), � ⇒ �, x �i B|A RC

a ∈ Ii (x), a �∃ A, a �∀ A ⊃ B, � ⇒ �

x �i B|A, � ⇒ �
LC(a fresh)

Rules for inclusion

a ⊆ a, � ⇒ �

� ⇒ �
Ref

c ⊆ a, c ⊆ b, b ⊆ a, � ⇒ �

c ⊆ b, b ⊆ a, � ⇒ �
Tr

x ∈ a, a ⊆ b, x ∈ b, � ⇒ �

x ∈ a, a ⊆ b, � ⇒ �
L⊆

Rules for semantic conditions

a ⊆ b, a ∈ Ii (x), b ∈ Ii (x), � ⇒ � b ⊆ a, a ∈ Ii (x), b ∈ Ii (x), � ⇒ �

a ∈ Ii (x), b ∈ Ii (x), � ⇒ �
S

x ∈ a, a ∈ Ii (x), � ⇒ �

� ⇒ �
T (a fresh)

a ∈ Ii (x), y ∈ a, b ∈ Ii (x), b ∈ Ii (y), � ⇒ �

a ∈ Ii (x), y ∈ a, b ∈ Ii (x), � ⇒ �
A1

a ∈ Ii (x), y ∈ a, a ∈ Ii (y), � ⇒ �

a ∈ Ii (x), y ∈ a, � ⇒ �
A2

Fig. 1. Rules of G3CDL.

EXAMPLE 3.1. We show a derivation of the left-to-right direction of Axiom (6). We omit
writing in the final derivation the derivable left premisses of rule (RC) in D and of rule
(L B), as well as the derivable right premiss of (L ⊃).
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D :
y : A · · · ⇒ . . . y : A y : B · · · ⇒ . . . y : B

y : A, y : B, y ∈ b, c ∈ Ii (x), c �∃ A, b ∈ Ii (x) · · · ⇒ . . . y : A ∧ B
R∧

y : A, y : B, y ∈ b, c ∈ Ii (x), c �∃ A, b ∈ Ii (x) · · · ⇒ . . . b �∃ A ∧ B
R �∃

y ∈ b, c ∈ Ii (x), c �∃ A, b ∈ Ii (x) · · · ⇒ . . . b �∃ A ∧ B, y : A ⊃ ¬B
R⊃,R⊃

c ∈ Ii (x), c �∃ A, b ∈ Ii (x) · · · ⇒ . . . b �∃ A ∧ B, b �∀ A ⊃ ¬B
R �∀

c ∈ Ii (x), c �∃ A, b ∈ Ii (x) · · · ⇒ . . . b �∃ A ∧ B, x �i ¬B|A RC

b ∈ Ii (x), b �∃ A, b �∀ A ⊃ C, a �∃ A ∧ B · · · ⇒ . . . x : Beli(¬B|A), b �∃ A ∧ B
R B

E :

z : A · · · ⇒ . . . z : A z : c · · · ⇒ . . . z : C

z : A ⊃ C, z : A, z : B, z ∈ b, b ∈ Ii (x), b �∃ A, b �∀ A ⊃ C, a �∃ A ∧ B, · · · ⇒ . . . z : C
L⊃

z : A, z : B, z ∈ b, b ∈ Ii (x), b �∃ A, b �∀ A ⊃ C, a �∃ A ∧ B · · · ⇒ . . . z : C
L �∀

z ∈ b, b ∈ Ii (x), b �∃ A, b �∀ A ⊃ C, a �∃ A ∧ B · · · ⇒ . . . z : (A ∧ B) ⊃ C
R⊃,L∧

b ∈ Ii (x), b �∃ A, b �∀ A ⊃ C, a �∃ A ∧ B · · · ⇒ . . . b �∀ (A ∧ B) ⊃ C
R �∀

.

.

.
D

.

.

.
E

b ∈ Ii (x), b �∃ A, b �∀ A ⊃ C, a ∈ Ii (x), a �∃ A ∧ B, x : Beli(C |A) ⇒ x : Beli(¬B|A), x �i C |A ∧ B
RC

x �i C |A, a ∈ Ii (x), a �∃ A ∧ B, x : Beli(C |A) ⇒ x : Beli(¬B|A), x �i C |A ∧ B
LC

a ∈ Ii (x), a �∃ A ∧ B, x : Beli(C |A) ⇒ x : Beli(¬B|A), x �i C |A ∧ B
L B

x : Beli(C |A) ⇒ x : Beli(¬B|A), x : Beli(C |A ∧ B)
R B

x : ¬(Beli(¬B|A)), x : Beli(C |A) ⇒ x : Beli(C |A ∧ B)
L⊃

3.1. Rules for knowledge and simple belief. As recalled in §2.1, the modal operators
of knowledge and simple belief can be defined in terms of the conditional belief operator:
Ki A = Beli(⊥|¬A) and Beli A = Beli(A|�). By adopting these definitions, we can extend
G3CDL by the rules displayed below which correspond to the interpretation of these two
modalities in neighbourhood semantics.

Rules for knowledge and simple belief

a ∈ Ii (x), � ⇒ �, a �∀ A
� ⇒ �, x : Ki A

RK (a fresh)
a ∈ Ii (x), x : Ki A, a �∀ A, � ⇒ �

a ∈ Ii (x), x : Ki A, � ⇒ �
L K

a ∈ Ii (x), � ⇒ �, x : Beli A, a �∀ A

a ∈ Ii (x), � ⇒ �, x : Beli A
RSB

a ∈ Ii (x), a �∀ A ⇒ �

x : Beli A, � ⇒ �
L S B(a fresh)

These rules are admissible in G3CDL, i.e., whenever the premiss is derivable, also the
conclusion is. This is shown through a derivation that uses rules of G3CDL and other
rules (such as weakening and cut) which will be later shown to be admissible. By way of
example, we show the case of rule (RK ).
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a ∈ Ii (x), x : Beli(⊥|¬A), a �∀ A, � ⇒ �

a ∈ Ii (x), x : Beli(⊥|¬A), � ⇒ �, a �∃ ¬A
∗

. . . y : ¬A ⇒ y : ¬A . . . y : ⊥ ⇒ . . .

y : ¬A ⊃ ⊥, y : ¬A, y : ¬A . . . � ⇒ �
L⊃

y ∈ b, y : ¬A, b �∀ ¬A ⊃ ⊥ . . . � ⇒ �
L�∀

b ∈ Ii (x), b �∃ ¬A, b �∀ ¬A ⊃ ⊥ . . . � ⇒ �
L�∃

x �i ⊥|¬A . . . � ⇒ �
LC

a ∈ Ii (x), x : Beli(⊥|¬A), � ⇒ �
L B

.

In the above derivation, the left premiss of (L B) is derivable from the premiss of (RK );
the right premiss of (L B) is derivable from initial sequents. The step denoted by (∗) is
justified by the rules for negation.

3.2. Structural properties. In this section we prove the principal structural properties
of the calculus, among which the admissibility of cut. Admissibility of cut is a fundamental
property, as it ensures that the calculus is consistent (whence the logic); moreover, it en-
sures the subformula property, meaning that no new formulas are introduced in backwards
proof search of a given sequent.

The syntactic proof of cut admissibility requires to establish several properties, which
are also important from a computational viewpoint. Basically, we have to show that the
structural rules are height-preserving admissible, that label substitution is admissible and
that logical rules are invertible.

We start by defining a notion of weight of labelled formulas:3

DEFINITION 3.2. The label of formulas of the form x : A is x. The label of formulas of the
form a �∀ A and a �∃ A is a. The label of a formula F will be denoted by l(F). The pure
part of a labelled formula F is the part without the label and without the forcing relation,
either local (�∃, �∀) or worldwise (:) and will be denoted by p(F).

The weight of a labelled formula F is the pair (w(p(F)),w(l(F))), where:

(i) For all world labels x and all neighbourhood labels a, w(x) = 0, w(a) = 1;

(ii) w(P) = w(⊥) = 1; w(¬A) = w(A)+ 2; w(A ◦ B) = w(A)+ w(B)+ 1 for ◦ con-
junction, disjunction, or implication; w(B|A) = w(A)+w(B)+2; w(Beli(B|A)) =
w(B|A)+ 1.

Weights of labelled formulas are ordered lexicographically.

It is clear from the definition of weight that the weight gets decreased if we move from a
formula labelled by a neighbourhood label to the same formula labelled by a world label,
or if we move (regardless of the label) to a formula with a pure part of strictly smaller
weight.

LEMMA 3.3. Sequents of the following form are derivable in G3CDL for arbitrary
neighbourhoods labels a, b and formulas A and B:

(i) a �∀ A, � ⇒ �, a �∀ A

(ii) a �∃ A, � ⇒ �, a �∃ A

(iii) x �i B|A, � ⇒ �, x �i B|A
(iv) x : A, � ⇒ �, x : A.

3 A different notion of weight, which does not take labels into account, will be introduced and used
in 5.4 to show that the “new” and the “old” semantics have the same class of valid formulas.
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Proof.
All cases are proved by simultaneous induction on formula weight.
(i) We have the following inference

x : A, x ∈ a, a �∀ A, � ⇒ �, x : A

x ∈ a, a �∀ A, � ⇒ �, x : A
L�∀

a �∀ A, � ⇒ �, a �∀ A
R�∀

The topsequent is derivable by inductive hypothesis because w(x : A) < w(a �∀ A).
(ii) Similar, with (L �∃) and R �∃ in place of (R �∀) and (L �∀), respectively, using

w(x : A) < w(a �∃ A).
(iii) By the derivation

a ∈ Ii (x), a �∃ A, a �∀ A ⊃ B, � ⇒ �, x �i B|A, a �∃ A
... a ∈ Ii (x), a �∃ A, a �∀ A ⊃ B, � ⇒ �, x �i B|A, a �∀ A ⊃ B

a ∈ Ii (x), a �∃ A, a �∀ A ⊃ B, � ⇒ �, x �i B|A RC

x �i B|A, � ⇒ �, x �i B|A LC

Both topsequents are derivable by inductive hypothesis, since w(a �∃ A) < w(x �i B|A)
and w(a �∀ A ⊃ B) < w(x �i B|A).

(iv) By induction on the structure of A. If it is atomic or ⊥, the sequent is initial or
conclusion of (L⊥). If the outermost connective of A is a conjunction or a disjunction,
or an implication, the sequent is derivable by application of the respective rules and the
inductive hypothesis. If A is a formula of conditional belief we have

a ∈ Ii (x), a �∃ A, x : Beli(B|A)� ⇒ �, x �i B|A, a �∃ A
... x �i B|A, a ∈ Ii (x), a �∃ A, x : Beli(B|A), � ⇒ �, x �i B|A

a ∈ Ii (x), a �∃ A, x : Beli(B|A)� ⇒ �, x �i B|A L B

x : Beli(B|A), � ⇒ �, x : Beli(B|A)
RB

The topsequents are derivable by inductive hypothesis, since w(a �∃ A) < w(x : Beli(B|A))

and w(x �i B|A) < w(x : Beli(B|A)). �
The definition of substitution of labels given in Negri [17] can be extended in an obvious
way—that need not be detailed here—to all the formulas of our language and to neigh-
bourhood labels. With this definition we have, for example, (a �∃ A)(b/a) ≡ b �∃ A, and
(x �i B|A)(y/x) ≡ y �i B|A. The calculus is routinely shown to enjoy the property of
height preserving (hp for short) substitution both of world and neighbourhood labels:

PROPOSITION 3.4.

(i) If �n � ⇒ �, then �n �(y/x) ⇒ �(y/x);

(ii) If �n � ⇒ �, then �n �(b/a) ⇒ �(b/a).

Proof. By induction on the height of the derivation. If it is 0, then � ⇒ � is an initial
sequent or a conclusion of (L⊥). The same then holds for �(y/x) ⇒ �(y/x) and for
�(b/a) ⇒ �(b/a). If the derivation has height n > 0, we consider the last rule applied.
If � ⇒ � has been derived by a rule without variable conditions, we apply the inductive
hypothesis and then the rule. Rules with variable conditions require some care in case the
substituted variable coincides with the fresh variable in the premiss. This is the case for the
rules (R �∀), (L �∃), (R B), (LC), (T ). So, if � ⇒ � has been derived by any of these
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rules, we apply the inductive hypothesis twice to the premiss: the first application replaces
the fresh variable with another fresh variable different, if necessary, from the one we
want to substitute; the second occurrence applies the substitution, and finally we apply the
rule. �

PROPOSITION 3.5. The rules of left and right weakening are hp-admissible in G3CDL.

Proof. Straightforward induction, with a similar proviso as in the above proof for rules
with variable conditions. �
Next, we prove hp-invertibility of the rules of G3CDL, i.e., for every rule of the form
�′⇒�′
�⇒� , if �n � ⇒ � then �n �′ ⇒ �′, and for every rule of the form �′⇒�′ �′′⇒�′′

�⇒� if
�n � ⇒ � then �n �′ ⇒ �′ and �n �′′ ⇒ �′′.

LEMMA 3.6. The following hold in G3CDL:

1. If �n � ⇒ �, a �∀ A then �n x ∈ a, � ⇒ �, x : A for any x.

2. If �n x ∈ a, a �∀ A, � ⇒ � then �n x ∈ a, x : A, a �∀ A, � ⇒ �.

3. If �n x ∈ a, � ⇒ �, a �∃ A then �n x ∈ a, � ⇒ �, x : A, a �∃ A.

4. If �n a �∃ A, � ⇒ � then �n x ∈ a, x : A, � ⇒ � for any x.

5. If �n � ⇒ �, x : Beli(B|A) then �n a ∈ Ii (x), a �∃ A, � ⇒ �, x �i B|A for
any a.

6. If �n a ∈ Ii (x), x : Beli(B|A), � ⇒ � then �n a ∈ Ii (x), x : Beli(B|A),
� ⇒ �, a �∃ A and x �i B|A, a ∈ Ii (x), x : Beli(B|A), � ⇒ �.

7. If �n a ∈ Ii (x), � ⇒ �, x �i B|A then �n a ∈ Ii (x), � ⇒ �, x �i B|A, a �∃
A and �n a ∈ Ii (x), � ⇒ �, x �i B|A, a �∀ A ⊃ B.

8. If �n x �i B|A, � ⇒ � then �n a ∈ Ii (x), a �∃ A, a �∀ A ⊃ B, � ⇒ � for
any a.

9. If �n a ∈ Ii (x), b ∈ Ii (x), � ⇒ � then �n a ⊆ b, a ∈ Ii (x), b ∈ Ii (x), � ⇒ �
and �n b ⊆ a, a ∈ Ii (x), b ∈ Ii (x), � ⇒ �.

10. If �n � ⇒ � then �n x ∈ a, a ∈ Ii (x), � ⇒ � for any x and a.

11. If �n a ∈ Ii (x), y ∈ a, b ∈ Ii (x), � ⇒ � then �n a ∈ Ii (x), y ∈ a, b ∈
Ii (x), b ∈ Ii (y), � ⇒ �.

12. If �n x ∈ a, a ⊆ b, � ⇒ � then �n x ∈ a, a ⊆ b, x ∈ b, � ⇒ �.

13. If �n � ⇒ � then �n a ⊆ a, � ⇒ �.

14. If �n c ⊆ b, b ⊆ a, � ⇒ � then �n c ⊆ a, c ⊆ b, b ⊆ a, � ⇒ �.

Proof. The proof is by induction on the height n of the derivation. Base case: Suppose
that � ⇒ �, x : Beli(B|A) is an initial sequent or conclusion of L⊥. In the former
case, since x : Beli(B|A) is neither of the form x : P nor of the form x ∈ a, we have
that a ∈ Ii (x), a �∃ A, � ⇒ �, x �i B|A is an initial sequent as well; in the latter
case, it is a conclusion of L⊥. Inductive step: We show only the case of (5), by means of
example. Assume hp-invertibility up to n, and assume �n+1 � ⇒ �, x : Beli(B|A). If
x : Beli(B|A) is principal in the last rule of the derivation, then the premiss is of the form
a ∈ Ii (x), a �∃ A, � ⇒ �, x �i B|A, with a fresh, and has a derivation of height n. We
obtain the claim for any a by hp-substitution. Otherwise, x : Beli(B|A) is not principal,
the last rule has one or two premisses of the form �′ ⇒ �′, x : Beli(B|A) of derivation
height ≤n. If the rule has a variable condition, before proceeding we have to apply an hp-
substitution to avoid that the eigenvariable coincides with a. By inductive hypothesis we
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have a ∈ Ii (x), a �∃ A, �′ ⇒ �′, x �i B|A for each premiss, with derivation height at
most n. Thus, by application of the same rule, we have �n+1 a ∈ Ii (x), a �∃ A, � ⇒
�, x �i B|A. �

LEMMA 3.7. All the propositional rules of G3CDL are hp-invertible.

Proof. Similar to the proof for G3c (Theorem 3.1.1 in [20]). �
Therefore, as a general result, we have

COROLLARY 3.8. All the rules of G3CDL are hp-invertible.

Proof. By Lemmas 3.6, 3.7, and 3.5, the latter because of the general form of the
neighbourhood rules. �
The rules of contraction of G3CDL have the following form, where F is either a “rela-
tional” atom of the form a ∈ I (x) or of the form x ∈ a, or a labelled formula of one of the
forms x : A, a �∀ A, a �∃ A, or a formula of the form x �i B|A or x : Beli(B|A):

F,F, � ⇒ �

F, � ⇒ �
LCtr

� ⇒ �,F,F
� ⇒ �,F RCtr .

THEOREM 3.9. The rules of left and right contraction are hp-admissible in G3CDL.

Proof. By simultaneous induction on the height of derivation n for left and right contrac-
tion. If n = 0 the premiss is either an initial sequent or a conclusion of a zero-premiss rule.
In each case, the contracted sequent is also an initial sequent or a conclusion of the same
zero-premiss rule. If n > 0, consider the last rule used to derive the premiss of contraction.
There are two cases, depending on whether the contraction formula is principal or a side
formula in the rule.

1. If the contraction formula is not principal in it, both occurrences are found in the
premisses of the rule and they have a smaller derivation height. By inductive hypothesis,
they can be contracted and the conclusion is obtained by applying the rule to the contracted
premisses.

2. If the contraction formula is principal in it, we distinguish two subcases:
2.1. The last rule is one in which the principal formulas appear also in the premiss

(such as L �∀, R �∃, L B, RC , S, A, T r , L ⊆). In all these cases we apply the inductive
hypothesis to the premiss(es) and then the rule. For example, if the last rule use to derive
the premiss of contraction is (RC) we have

a ∈ Ii (x), � ⇒ �, x �i B|A, x �i B|A, a �∃ A
... a ∈ Ii (x), � ⇒ �, x �i B|A, x �i B|A, a �∀ A ⊃ B

a ∈ Ii (x), � ⇒ �, x �i B|A, x �i B|A RC .

By inductive hypothesis applied to the premiss, of shorter height, we get a ∈ Ii (x), � ⇒
�, x �i B|A, a �∃ A and a ∈ Ii (x), � ⇒ �, x �i B|A, a �∀ A ⊃ B and thus by a step
of RC we obtain a ∈ Ii (x), � ⇒ �, x �i B|A, with the same derivation height of the
given premiss of contraction.

2.2. The last rule is one in which the active formulas are proper subformulas of the
principal formula and possibly relational atoms (such as the rules for &, ∨,⊃, R�∀, L �∃,
R B, LC). In all such cases, we apply hp-invertibility to the premiss(es) of the rule so that
we have a duplication of formulas at a smaller derivation height, then apply the inductive
hypothesis (as many times as needed) then the rule in question. For example, if the last rule
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is (R B), we have

a ∈ Ii (x), a �∃ A, � ⇒ �, x �i B|A, x : Beli(B|A)

� ⇒ �, x : Beli(B|A), x : Beli(B|A)
RB (a fresh) .

Using hp-invertibility of (R B) we obtain from the premiss a derivation of height n − 1 of

a ∈ Ii (x), a ∈ Ii (x), a �∃ A, a �∃ A, � ⇒ �, x �i B|A, x �i B|A.

By inductive hypothesis we get a derivation of the same height of a ∈ Ii (x), a �∃ A, � ⇒
�, x �i B|A and application of R B gives a derivation of height n of � ⇒ �, x :
Beli(B|A). �

THEOREM 3.10. Cut is admissible in G3CDL.

Proof. By double induction, with primary induction on the weight of the cut formula
and subinduction on the sum of the heights of derivations of the premisses of cut. The cases
in which the premisses of cut are either initial sequents or obtained through the rules for &,
∨, or ⊃ follow the treatment of Theorem 3.2.3 of Negri & von Plato [20]. For the cases in
which the cut formula is a side formula in at least one rule used to derive the premisses of
cut, the cut reduction is dealt with in the usual way by permutation of cut, with possibly an
application of hp-substitution to avoid a clash with the fresh variable in rules with variable
condition. In all such cases the cut height is reduced.

The only cases we shall treat in detail are those with cut formula principal in both
premisses of cut and of the form a �∀ A, a �∃ A, x �i B|A, x : Beli(B|A).

1. The cut formula is a �∀ A, principal in both premisses of cut. We have a derivation
of the form

D
x ∈ a, � ⇒ �, x : A

� ⇒ �, a �∀ A
R �∀

y : A, y ∈ a, a �∀ A, �′ ⇒ �′

y ∈ a, a �∀ A, �′ ⇒ �′ L �∀

y ∈ a, �, �′ ⇒ �,�′ Cut

This is converted into the following derivation:

D(y/x)
y ∈ a, � ⇒ �, y : A

� ⇒ �, a �∀ A y : A, y ∈ a, a �∀ A, �′ ⇒ �′
y ∈ a, y : A, �, �′ ⇒ �,�′

Cut1

y : A, x ∈ a, �, �, �′ ⇒ �,�, �′
Cut2

y ∈ a, �, �′ ⇒ �,�′ Ctr∗

Here D(y/x) denotes the result of application of hp-substitution to D, using the fact that
x is a fresh variable; compared to the original cut, Cut1 is a cut of reduced height, Cut2 is
one of reduced weight of cut formula, because w(y : A) < w(a �∀ A), and Ctr∗ denote
repeated applications of hp-admissible contraction steps.

2. The cut formula is a �∃ A, principal in both premisses of cut. The cut is reduced in a
way similar to the one in the case above and the inequality to be used on formula weight is
w(y : A) < w(a �∃ A).

3. The cut formula is x �i B|A, principal in both premisses of cut. The premisses of cut
are the following:

a ∈ Ii (x), � ⇒ �, x �i B|A, a �∃ A a ∈ Ii (x), � ⇒ �, x �i B|A, a �∀ A ⊃ B

a ∈ Ii (x), � ⇒ �, x �i B|A RC

https://doi.org/10.1017/S1755020318000023 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000023


756 MARIANNA GIRLANDO ET AL.

D
b ∈ Ii (x), b �∃ A, b �∀ A ⊃ B, �′ ⇒ �′

x �i B|A, �′ ⇒ �′ LC .

The conclusion of the cut is the sequent a ∈ Ii (x), �, �′ ⇒ �, �′. The derivation is
converted into the following:

a ∈ Ii (x), � ⇒ �, x �i B|A, a �∃ A x �i B|A, �′ ⇒ �′

a ∈ Ii (x), �, �′ ⇒ �,�′, a �∃ A
Cut1

(1)

a ∈ Ii (x)3, �2, �
′3 ⇒ �2,�

′3
Cut4

a ∈ Ii (x), �, �′ ⇒ �, �′ Ctr∗

Here (1) is the derivation:

a ∈ Ii (x), � ⇒ �, x �i B|A, a �∀ A ⊃ B x �i B|A, �′ ⇒ �′

a ∈ Ii (x), �, �′ ⇒ �,�′, a �∀ A ⊃ B
Cut2

(1)

a ∈ Ii (x)2, a �∃ A, �, �
′2 ⇒ �,�

′2
Cut3

where (1) is derivation D(a/b) of a ∈ Ii (x), a �∃ A, a �∀ A ⊃ B, �′ ⇒ �′. Observe
that all the four cuts are of reduced height (Cut1 and Cut2) or reduced weight (Cut3 and
Cut4) because w(a �∃ A) < w(a �∀ A ⊃ B) < w(x �i B|A).

4. The cut formula is x : Beli(B|A), principal in both premisses of cut. The premisses
of cut are the following:

D
b ∈ Ii (x), b �∃ A, � ⇒ �, x �i B|A

� ⇒ �, x : Beli(B|A)
RB

a ∈ Ii (x), x : Beli(B|A), �′ ⇒ �′, a �∃ A a ∈ Ii (x), x �i B|A, x : Beli(B|A), �′ ⇒ �′
a ∈ Ii (x), x : Beli(B|A), �′ ⇒ �′ L B .

The conclusion of cut is the sequent a ∈ Ii (x), �, �′ ⇒ �, �′. The cut is converted to
four smaller cuts as follows:

� ⇒ �, x : Beli(B|A) a ∈ Ii (x), x : Beli(B|A), �′ ⇒ �′, a �∃ A

a ∈ Ii (x), �, �′ ⇒ �,�′, a �∃ A
Cut2

(1)

a ∈ Ii (x)3, �3, �
′2 ⇒ �3,�

′2
Cut4

a ∈ Ii (x), �, �′ ⇒ �,�′ Ctr∗

where (1) is the derivation
� ⇒ �, x : Beli(B|A)

D(a/b)

a ∈ Ii (x), a �∃ A, � ⇒ �, x �i B|A

.

.

. a ∈ Ii (x), x �i B|A, x : Beli(B|A), �′ ⇒ �′
a ∈ Ii (x), x �i B|A, �, �′ ⇒ �,�′

Cut1

a ∈ Ii (x)2, a �∃ A, �2, �′ ⇒ �2,�′
Cut3

Observe that the two uppermost cuts (Cut1 and Cut2) have reduced cut height and the
others are cuts on formulas of reduced weight because w(a �∃ A) < w(x �i B|A) <
w(x : Beli(B|A)). �
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With standard Gentzen calculi, admissibility of cut immediately ensures the subformula
property and its immediate consequences such as consistency (by underivability of the
empty sequent). With the calculus that we have introduced we have similar properties, but
we have to be more specific with the precise formulation of the subformula property. This
property, taken literally, would impose that any sequent occurring in a derivation of a given
sequent � ⇒ � contain only formulas which are subformulas of the formulas in � ⇒ �.
However, the decomposition of a formula such as Beli(A|B) may introduce formula A|B,
and this latter might introduce A ⊃ B. Neither A|B nor A ⊃ B are, strictly speaking,
subformulas of Beli A|B and A|B, respectively. Even if these are not strictly subformulas,
they are less complex formulas built from subformulas of formulas in the conclusion, and
can be accounted for by a less strict notion of subformula. Then, we have to consider the
labels: There are rules, such as Ref, that may introduce arbitrary labels when read bottom-
up. It is easy to prove that Ref can be restricted to a rule that operates on labels already in
the conclusion (by basically the same argument given in §8 of [8]), thereby justifying the
fact that in a G3CDL derivation all labels are either eigenvariables in rules with freshness
condition, or labels already in the conclusion.

If we extend the notion of subformula to cover these cases, we can conclude that the
calculus is analytic and has the subformula property.

§4. Soundness, termination, and completeness. In this section we shall prove sound-
ness of the calculus with respect to the neighbourhood semantics that we have introduced.
For this purpose, we need to interpret labelled sequents in neighbourhood models, and
this requires a notion of realization that connects the syntactic labels with the semantic
elements (possible worlds, neighbourhoods).

DEFINITION 4.1. Let M = 〈W, {I }i∈A, � �〉 be a neighbourhood model, S a set of world
labels, and N a set of neighbourhood labels. An SN-realization over M consists of a pair
of functions (ρ, σ ) such that

• ρ : S → W is a function that assigns to each x ∈ S an element ρ(x) of W ;
• σ : N → P(W ) is a function that assigns to each a ∈ N an element σ(a) of I (w),

for some w ∈ W .

Given a sequent � ⇒ �, with S, N as above, and (ρ, σ ) an SN-realization, we say that
� ⇒ � is satisfiable in M under the SN-realization (ρ, σ ) if the following conditions
hold:

• M �ρ,σ a ∈ Ii (x) if σ(a) ∈ Ii (ρ(x));
• M �ρ,σ a ⊆ b if σ(a) ⊆ σ(b);
• M �ρ,σ x : A if ρ(x) � A;
• M �ρ,σ a �∃ A if σ(a) �∃ A;
• M �ρ,σ a �∀ A if σ(a) �∀ A;
• M �ρ,σ x �i B|A if for some c ∈ Ii (ρ(x)), c �∃ A and c �∀ A ⊃ B;
• M �ρ,σ x �i Beli(B|A) if for all a ∈ Ii (ρ(x)), a �∀ A or M �ρ,σ x �i B|A;
• M �ρ,σ � ⇒ � if either M �ρ,σ F for some formula F ∈ � or M �ρ,σ G for

some formula G ∈ �.

Then, define M � � ⇒ � iff M �ρ,σ � ⇒ � for every SN- realization (ρ, σ ). A sequent
� ⇒ � is said to be valid if M � � ⇒ � holds for every neighbourhood model M, i.e.,
if � ⇒ � is satisfied for every model M and for every SN-realization (ρ, σ ).
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THEOREM 4.2 (Soundness). If a sequent � ⇒ � is derivable in the calculus, then it is
valid in the class of multi-agent neighbourhood models.

Proof. By induction on the height of the derivation of a sequent � ⇒ �. If the height
of the derivation is 0, the sequent is initial or conclusion of L ⊥, and by definition it is
valid in the class of multi-agent neighbourhood models. If the height of the derivation is
> 0, the sequent � ⇒ � has been derived by one of the rules of the calculus G3CDL.
We prove that all rules preserve validity from the premisses to the conclusion. We con-
sider in detail the cases in which the last rule applied is one of the rules for conditional
belief.

[RC] Suppose the premisses of the rule are valid, whereas the conclusion is not. Thus,
there is a model M and a realization (ρ, σ ) that falsify the conclusion, i.e., M �ρ,σ a ∈
Ii (x), M �ρ,σ F for all F ∈ �, M �ρ,σ G for all G ∈ � and M �ρ,σ x �i B|A, i.e.,
1) for all c ∈ Ii (ρ(x)) it holds that c �∃ ¬A or c �∀ ¬(A ⊃ B). Since by hypothesis
both premisses are valid, it holds that 2) M �ρ,σ a �∃ A and 3) M �ρ,σ a �∀ A ⊃
B. However, 2) and 3) cannot simultaneously hold: if 2) holds, then the first term of the
disjunction in 1) is not satisfied, and the second term must hold, i.e., for all c ∈ Ii (ρ(x)),
c �∃ ¬(A ⊃ B), and this contradicts with 3). A similar contradiction is reached if 3) holds;
thus, one of the premisses is not valid.

[LC] Suppose the premiss is valid and the conclusion is not, i.e., M �ρ,σ x �i B|A,
M �ρ,σ F for all F ∈ � and M �ρ,σ G for all G ∈ �, i.e., there exists a c ∈ Ii (ρ(x))
such that c �∃ A and c �∀ A ⊃ B. Now define a new interpretation (ρ′, σ ′) such that

ρ′(x) = ρ(x)
σ ′(b) = c
σ ′(t) = σ(t), for t �= a.

Since the premiss is valid, it is valid under all interpretations; thus, it holds that M �ρ′,σ ′
c ∈ Ix , and that M �ρ′,σ ′ F for all F ∈ � and M �ρ′,σ ′ G for all G ∈ �. It must hold
that either M �ρ′,σ ′ c �∃ A or M �ρ′,σ ′ c �∀ A ⊃ B, which contradicts with c �∃ A and
c �∀ A ⊃ B.

[RB] Suppose the premiss of R B is valid, whereas the conclusion is not. Then there is
a model M and a realization (ρ, σ ) which falsify the conclusion, i.e., M �ρ,σ F for all
formulas F ∈ �, M �ρ,σ G for all formulas G ∈ � and M �ρ,σ x : Beli(B|A). This
means ρ(x) � Beli(B|A), i.e., there exists a b ∈ Ii (ρ(x)) such that b �∃ A and for all
c ∈ Ii (ρ(x)), c �∀ ¬A or c �∃ ¬(A ⊃ B). Now consider the premiss of the rule, and
define a new realization (ρ′, σ ′) defined as follows:

ρ′(x) = ρ(x)
σ ′(a) = b
σ ′(t) = σ(t), for t �= a.

The realization (ρ′, σ ′) differs from (ρ, σ ) only for the interpretation of the neighbourhood
label a, which is the new neighbourhood introduced in the premiss. Consider the model
M defined above, and the new realization (ρ′, σ ′). It holds that M �ρ′,σ ′ a ∈ Ii (x),
M �ρ′,σ ′ a �∃ A, and M �ρ′,σ ′ F for all formulas F ∈ �, M �ρ′,σ ′ G for all formulas
G ∈ �. Since the premiss of the rule is valid (hypothesis), it holds that M �ρ′,σ ′ x �i B|A,
which means that for some b ∈ Ii (ρ(x)) it holds that b �∃ A and b �∃ A ⊃ B. However,
this is a contradiction with what stated above, i.e., that for all c ∈ Ii (ρ(x)), c �∀ ¬A or
c �∃ ¬(A ⊃ B).
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[LB] Suppose the premisses of the rule are valid, whereas the conclusion is not. Then,
there is be a model M and a realization (ρ, σ ) which falsify the conclusion, i.e., M �ρ,σ

a ∈ Ii (x), M �ρ,σ x : Beli(B|A), M �ρ,σ F for all F ∈ � and M �ρ,σ G for
all G ∈ �. This means that for some σ(a) ∈ Ii (ρ(x)), ρ(x) � x : Beli(B|A), i.e., 1)
for all b ∈ Ii (ρ(x)) either b �∀ ¬A or there exists c ∈ Ii (x) such that c �∃ A and
c �∀ A ⊃ B. Then, since both premisses of the rule are valid (hypothesis) it holds that
2) M �ρ,σ a �∃ A and 3) M �ρ,σ x �i B|A, i.e., 4) for all c ∈ Ii (ρ(x)), c �∀ ¬A
or c �∃ ¬(A ⊃ B). Now, 2) and 3) cannot be simultaneously satisfied. Suppose 2) holds;
then the first term of the disjunction of 1) is not satisfied, and the second term must hold,
i.e., there exists c ∈ Ii (x) such that c �∃ A and c �∀ A ⊃ B. But these conditions are in
contradiction with 4). A similar reasoning applies if 2) holds. Thus, one of the premisses
is not valid, against the hypothesis. �

4.1. Termination. We now show that, by adopting a suitable proof search strategy,
the calculus yields a decision procedure for CDL. Thus, in the following we consider
only derivations whose root formula is a (labelled) formula of CDL. We also prove the
completeness of the calculus under the same strategy. The adoption of a proof search
strategy is not strictly necessary for completeness, but it ensures that we can extract a
finite countermodel from an open or failed derivation branch. Although the termination
proof has some similarity with the one in Negri & Olivetti [21], for G3CDL it is more
difficult because of the additional semantic rules.

As often happens with labelled calculi, the calculus G3CDL in itself is nonterminating
in the sense that a root-first (i.e., upwards) construction of a derivation may generate infinite
branches. Here below is an example (in which we omit writing the derivable left premisses
of L B):

...
c ∈ Ii (x), c �∃ A, c �∀ A ⊃ B . . . x : Beli(B|A) ⇒ x �i C |A

x �i B|A, b ∈ Ii (x), b �∃ A, b �∀ A ⊃ B, a ∈ Ii (x), a �∃ A, x : Beli(B|A) ⇒ x �i C |A LC

b ∈ Ii (x), b �∃ A, b �∀ A ⊃ B, a ∈ Ii (x), a �∃ A, x : Beli(B|A) ⇒ x �i C |A L B

x �i B|A, a ∈ Ii (x), a �∃ A, x : Beli(B|A) ⇒ x �i C |A LC

a ∈ Ii (x), a �∃ A, x : Beli(B|A) ⇒ x �i C |A L B

x : Beli(B|A) ⇒ x : Beli(C |A)
RB

The loop is generated by the application of rules (L B) and (LC). Our aim is to specify
a strategy that ensures termination by preventing any kind of loop. The main point is to
avoid redundant (backwards) applications of rules. To specify this notion we need to define
saturation conditions associated to each rule.

DEFINITION 4.3. Given a derivation branch B of the form �0 ⇒ �0, . . . , �k ⇒ �k, �k+1
⇒ �k+1, . . . where �0 ⇒ �0 is a sequent of the form ⇒ x0 : A, let ↓ �k/ ↓ �k denote
the union of the antecedents/succedents that occur in the branch from the root �0 ⇒ �0
up to �k ⇒ �k .

We say that a sequent � ⇒ � satisfies the saturation condition for a rule R if, whenever
� ⇒ � contains the principal formulas in the conclusion of R, then it also contains the
formulas introduced by one of the premisses of R. The saturation conditions for the rules
of G3CDL are detailed below (the saturation conditions associated to propositional rules
are standard and can be found in [21]).
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(L∧) If x : A ∧ B ∈ �, then x : A ∈↓ � and x : B ∈↓ �;

(Rf) If a is in �, � then a ⊆ a is in �;

(Tr) If a ⊆ b and b ⊆ c are in �, then a ⊆ c is in �;

(L ⊆) If x ∈ a and a ⊆ b are in �, then x ∈ b is in �;

(R �∀) If a �∀ A is in ↓ �, then for some x there is x ∈ a in � and x : A in ↓ �;

(L �∀) If x ∈ a and a �∀ A are in �, then x : A is in ↓ �;

(R �∃) If x ∈ a is in � and a �∃ A is in �, then x : A is in ↓ �;

(L �∃) If a �∃ A is in ↓ �, then for some x there is x ∈ a in � and x : A is in ↓ �;

(RB) If x : Beli(B|A) is in ↓ �, then for some a, a ∈ Ii (x) is in �, a �∃ A is in ↓ �
and x �i B|A is in ↓ �;

(LB) If a ∈ Ii (x) and x : Beli(B|A) are in �, then either a �∃ A is in ↓ � or x �i B|A
is in ↓ �;

(RC) If a ∈ Ii (x) is in � and x �i B|A is in �, then either a �∃ A or a �∀ A ⊃ B are
in ↓ �;

(LC) If x �i B|A is in ↓ �, then for some a, a ∈ Ii (x) is in �, a �∃ A and a �∀ A ⊃ B
are in ↓ �;

(S) If a ∈ Ii (x) and b ∈ Ii (x) are in �, then a ⊆ b or b ⊆ a are in �;

(T) For all x occurring in ↓ �∪ ↓ �, for all i ∈ A there is an a such that a ∈ Ii (x) and
x ∈ a are in �;

(A) If a ∈ Ii (x) and y ∈ a are in �, then if b ∈ Ii (x) is in � also b ∈ Ii (y) is in �; if
b ∈ Ii (y) is in � also b ∈ Ii (x) is in �.

Furthermore, � ⇒ � is saturated if

(Init) There is no x : P in � ∩�;
(L⊥) there is no x : ⊥ in �;
� ⇒ � satisfies all saturation conditions.

To analyse the interdependences between labels in a sequent we introduce the following:

DEFINITION 4.4. Given a branch B as in Definition 4.3, let a be neighbourhood label and
x, y be world labels all occurring in ↓ �k ; we define the following:

• k(x) = min{t | x occurs in �t }; k(a) = min{t | a occurs in �t };
• x →g a (read “x generates a”) if for some t ≤ k and i ∈ A, k(a) = t and

a ∈ Ii (x) occurs in �t ;
• a →g x (read “a generates x”) if for some t ≤ k and i ∈ A, k(x) = t and x ∈ a

occurs in �t ;
• x

w→ y (read “x generates y”) if for some a it holds that x →g a and a →g y.

LEMMA 4.5. Given a branch B as in Definition 4.3, the following hold:

(a): The relation
w→ is acyclic and forms a tree with root x0;

(b): All world labels occurring in B are nodes of the tree, that is letting
w→∗

be the

transitive closure of
w→, if u occurs in ↓ �k , then x0

w→∗
u.

Proof. (a) immediately follows from the definition of relation→g and from the sequent
calculus rules. As for (b), it is easily proved by induction on k(u) � k. If k(u) = 0, then
u = x0 and (b) trivially holds. If k(u) = t > 0, u does not occur in �t−1 and u occurs in
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�t . This means that there exists a v and there exists a b such that b ∈ Ii (v) occurs in �t−1,

and that u ∈ b occurs in �t ; thus, k(v) < k(u). By inductive hypothesis, x0
w→∗

v ; since

v
w→ u, also x0

w→∗
u holds. �

We can now define the proof-search strategy. A rule R is said to be applicable to a world
label x if R is applicable to a labelled formula with label x occurring in the conclusion of
a rule. In case of rules A1 and A2 of local absoluteness, we say the rules are applied to x
(rather than to y).

DEFINITION 4.6. When constructing root-first a derivation tree for a sequent ⇒ x0 : A,
apply the following strategy:

(i) No rule can be applied to an initial sequent;

(ii) If k(x) < k(y) all rules applicable to x are applied before any rule applicable to
y.

(iii) Rule T is applied as the first one to each world label x ;

(iv) Rules which do not introduce a new label (static rules) are applied before the rules
which do introduce new labels (dynamic rules), with the exception of T , as in the
previous item;

(v) For each x, y and a, static rules A1 and A2 are applied before any other static
rule;

(vi) A rule R cannot be applied to a sequent �i ⇒ �i if ↓ �i and / or ↓ �i satisfy the
saturation condition associated to R.

It follows from the strategy that if x
w→ y, every rule applicable to x is applied before

every rule applicable to y. Moreover, in the previous example, the loop would have been
stopped at the second application root-first of L B, because the application of L B would
violate condition (vi): the branch already satisfies the saturation condition for L B, because
x �i B|A is already in ↓ �.
As usual, the size of a formula A, denoted by |A|, is the number of symbols that occur in
A. The size of a sequent � ⇒ � is the sum of all the sizes of the formulas that occur in it.

LEMMA 4.7. Given a branch B as in Definition 4.3 and a world label x, we define
N (x) = {a | x →g a} as the set of neighbourhood labels generated by x, and W (x) =
{y | x

w→ y} as the set of world labels generated by x. The size of N (x) and W (x) is finite,
more precisely: |N (x)| = O(n) and |W (x)| = O(n2).

Proof. We first prove that |N (x)| = O(n). By definition, a ∈ N (x) iff x →g a, i.e.,
if there exists t � k and there exists i ∈ A such that a does not occur in �s for all s � t
and a ∈ Ii (x) belongs to �t . This means that label a has been introduced either by (R B)
or by (LC). Therefore x may create as many neighbourhood labels a as there are formulas
x : Beli(B|C) occurring in ↓ �k∪ ↓ �k (plus one neighbourhood introduced by T ) and
the number of these formulas is O(n).

We now prove |W (x)| = O(n2). By definition y ∈ W (x) iff x
w→ y, i.e., iff for some

b it holds that x →g b and b →g y. We have just shown that for each x , the number of
neighbourhood labels generated by x is O(n). Let us consider b →g y. By definition, this
means that there exists t < k, and there exists an i ∈ A, such that y does not occur in �s

for s � t and y ∈ b occurs in �t+1. There are several ways in which a formula y ∈ b can
be introduced:
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CASE 1. The formula y ∈ b is introduced by a formula b �∃ C that belongs to ↓ �k by
application of rule L �∃. There are two subcases, according to how formula b �∃ C has
been derived: (a) b �∃ C has been introduced by (R B) applied to a formula x : Beli(D|C)
that belongs to ↓ �k and (b) b �∃ C has been introduced by (LC) applied to a formula
x �i D|C that belongs to ↓ �k . In turn, this formula has been introduced by L B applied
to a formula x : Beli(D|C) that belongs to ↓ �k . In case (a), we notice again that (R B)
can be applied only once to each formula x : Beli(D|C) that occurs in the consequent, and
it generates exactly one new neighbourhood label b and one formula b �∃ C . Similarly in
case (b) (LC) can be applied only once to x �i D|C and generates one new neighbourhood
label b and one formula b �∃ C . By the saturation condition, each formula x �i D|C in
turn is introduced by (L B) applied only once to one formula x : Beli(D|C) that occurs in
↓ �k . Now each rule L �∃ generates exactly one new world label for each b �∃ C that
occurs in ↓ �k and, as we have just shown the number of such formulas is bounded by the
number of formulas of type x : Beli(D|C) that occur in ↓ �k , and this number is O(n).
Therefore we can conclude that the number of new world labels introduced in this case is
O(n).

CASE 2. The formula y ∈ b is introduced by a formula b �∀ C that belongs to ↓ �k by
application of rule R �∀. But a formula b �∀ C may be introduced only by an application
of (RC) to a formula u �i F |E , where C = E ⊃ F ∈↓ �k . In turn, a formula of type
u �i F |E may be introduced only by an application of R B. Let us consider the set Sb of
formulas C such that Sb = {C | b �∀ C belongs to ↓ �k}. It holds that

Sb = {C | b �∀ C belongs to ↓ �k}
= {E ⊃ F | ∃u∃i . u �i F |E belongs to ↓ �k}

= {E ⊃ F | ∃u∃i . u : Beli(F |E) belongs to ↓ �k}.
The cardinality of Sb is the same as the cardinality of the set {E ⊃ F | ∃u∃i . u : Beli(F |E)
belongs to ↓ �k}; thus, for each b ∈ W (x), |Sb| = O(n). In the present case, each
b ∈ W (x) generates O(n) labels.
Then, since |N (x)| = O(n) we finally get that |W (x)| = O(n2). �

PROPOSITION 4.8. Any derivation branch B = �0 ⇒ �0, . . . , �k ⇒ �k, �k+1 ⇒
�k+1, . . . of a derivation starting from �0 ⇒ �0 ≡ ⇒ x0 : A0 built in accordance with
the strategy is finite.

Proof. Let us consider a branch B, and suppose by contradiction that B is not finite.
Let �∗ = ⋃

k �k and �∗ = ⋃
k �k ; then, �∗ is infinite. All labelled formulas in �∗

are subformulas of A0; however, the subformulas of A0 are finitely many (namely they
are O(n), where n is the length of A0); thus �∗ must contain infinitely many labels.
By Lemma 4.7, �∗ must contain infinitely many world labels, since each world label x
generates only O(n) neighbourhood labels. Let us consider now the tree determined by the

relation
w→∗

with root x0. By Lemma 4.5, each label in any �k occurs in the tree, which
therefore is infinite. By Lemma 4.7, every label in the tree has O(n2) successors, thus a
finite number. By König’s lemma, the tree must contain an infinite path: x0

w→ x1
w→

. . .
w→ xt

w→ xt+1 . . . , with all xt being different. We observe that (a) infinitely many xt

must be generated by dynamic rules applied to subformulas of A0, but (b) these formulas
are finitely many, thus there must be a subformula of A0 which is used infinitely many
times to “generate” world labels (or better to generate a neighbourhood label from which
a further world label is generated).
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There are two cases: this subformula is of type Beli(D|C) and occurs in �∗ or it is of
type �i B|A and occurs in �∗ (in this latter case it is not properly a subformulas of A0 but
it is derived form a subformula of A0).

In the first case, for some xt we have that xt : Beli(D|C) occurs in some �s(xt );
furthermore, for some a such that k(a) = s(xt ) + 1, we have that a ∈ Ii (xt ), a �∃
C ∈ �s(xt )+1 and xt �i D|C ∈ �s(xt )+1. Moreover, we have a →g xt+1. There must
be in the sequence an xr with r > t , such that xr : Beli(D|C) occurs in some �s(xr )

and for a new b, that is with k(b) = s(xr ) + 1, we have that (∗) b ∈ Ii (xr ), b �∃ C
belongs to �s(xr )+1, xr �i D|C occurs in �s(xr )+1 and b →g xt+1. By the definition of
the strategy, we have that a ∈ Ii (xr ), thus a itself fulfils the saturation condition for (R B)
applied to xr : Beli(D|C) belongs to �s(xr ). Thus, step (∗) violates the strategy and we get
a contradiction.

The second case displays a similar situation: for some t , xt �i D|C occurs in some
�s(xt ) and for a new a, with k(a) = s(xt ) + 1, we have that a ∈ Ii (xt ), a �∃ C occurs
in �s(xt )+1 and a �∀ C ⊃ D occurs in �s(xt )+1. Moreover, we have that a →g xt+1.
Similarly there must be an xr in the sequence with r > t , such that xr �i D|C occurs
in some �s(xr ) and for a new b, with k(b) = s(xr ) + 1, we have that we have that (∗∗)
b ∈ Ii (xr ), b �∃ C occurs in �s(xr )+1 and b �∀ C ⊃ D occurs in �s(xr )+1. By definition
of the strategy we have that a ∈ Ii (xr ), thus a itself fulfils the saturation condition for LC
applied to xr �i D|C occurring in �s(xr ). Step (∗∗) violates the strategy, and we get a
contradiction. �
The previous proof actually shows something stronger than termination of each derivation
branch. The proof demonstrates that a formula of type Beli(B|A) or x �i B|A cannot
be used twice to generate two world labels that occur in the same path of the label tree
associated to the derivation. Therefore, given an initial formula A0, the number of formulas
of type Beli(B|A) or x �i B|A that can be generated in the derivation of ⇒ x : A0 is
bounded by O(n), with n length of A0. As a consequence, we have the following:

FACT 4.9. The height of each branch of a derivation defined as described in Proposition
4.8 is bounded by O(n); thus, the height of the derivation is bounded by O(n), where n is
the length of A0.

Termination of proof search under the strategy is now an obvious consequence:

THEOREM 4.10. Proof search built in accordance with the strategy for any sequent of the
form ⇒ x0 : A0 always comes to an end after a finite number of steps. More precisely, the
maximal size of each sequent is O(n4n+2), and the maximal length of a derivation branch
is bounded by O(n2n+1 · n4n+2) = O(n6n+3).
Furthermore, each sequent that occurs as a leaf of the derivation tree is either an initial
sequent or a saturated sequent.

Proof. Consider a branch of a derivation tree whose root is the sequent ⇒ x0 : A0, and
build the finite tree structure with all the labels that occur in the derivation. The root of the
tree will be the label x0, and all the other labels that occur in ↓ �k will occur as nodes in
the tree. As above, n is the length of A0.

By Proposition 4.9 we have that the height of the label tree associated with the derivation
is bounded by O(n).

Then, by Lemma 4.7 we have that the number of world labels and of neighbourhood
labels that can be generated from each node is finite, and it is bounded by n2, i.e., it is
O(n2).
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Let us consider a derivation tree with root ⇒ x0 : A0. The number of world labels
that occur in each branch ↓ �k is bounded by O(n2n). The number of neighbourhood
labels occurring in ↓ �k is bounded by the number of world labels multiplied by the
maximal number of labels generated by each world, that is at most n. Thus, the number of
neighbourhood labels is bounded by O(n2n · n) = O(n2n+1).

The maximal size of each sequent occurring in the derivation is given by the maximal
number of labelled formulas multiplied by the maximal number of subformulas of A0,
which is bounded by n: thus, O(n2n+1 · n) = O(n2n+2). However, this measure is not
sufficient, since it takes into account only formulas of the form x : F , a �Q F or x �i

F |G. We have to calculate also the number of formulas of the form y ∈ b and b ∈ Ii (x)
which could have been introduced in the derivation by (L ⊆) or T . The cardinality of the
set {(y ∈ b) | y, b occurs in ↓ �k} is given by n2n+1 · n2n+1 = n4n+2. Thus, the maximal
size of the sequents is bounded by O(n4n+2).

Finally, the maximal length of each derivation branch is calculated by taking into account
the maximal size of the sequents and the maximal number of rules which can be applied to
it. We have to distinguish between rules which can be applied more than once (rules L �∀,
R �∃, RC and L B ) and rules which can be applied only once (all the others). The rules
which can be applied more than once can be applied as many times as the number of labels
occurring in the sequent, i.e., O(n2n+1). Thus, the maximal length of a derivation branch
is bounded by O(n2n+1 · n4n+2) = O(n6n+3).

To prove the second part of the theorem, consider a branch �0 ⇒ �0, . . . , �n ⇒ �n .
As we have just proved, every branch of a derivation tree is finite. The leaf of the branch
will be the sequent �n ⇒ �n , and no rule is applicable to it; thus, trivially, the sequent is
either an initial sequent or it is saturated. �
From the proof of Theorem 4.5 we have the following:

PROPOSITION 4.11. The validity of a formula A in CDL can be decided in NEXPTIME.

We know that multi-agent S5 is a fragment of CDL. By the result in Halpern & Moses
[12] we immediately obtain that P S P AC E is the lower bound for deciding validity of a
CDL formula. We conjecture that P S P AC E is also the upper bound for the logic [11];
this problem will be considered in further research.

4.2. Completeness. We show that the calculus is complete under the terminating strat-
egy of Definition 4.6.

THEOREM 4.12. Let � ⇒ � be the upper sequent of a saturated branch B in a derivation
tree. Then there exists a finite countermodel M to � ⇒ �.

Proof. Let � ⇒ � be the upper sequent of a saturated branch B. By Theorem 4.10, B is
finite. We construct a model MB and an SNB-realization (ρ, σ ), and show that the model
satisfies all formulas in ↓ � and falsifies all formulas in ↓ �. Let

SB = {x | x ∈ (↓ � ∪ ↓ �)} and NB = {a | a ∈ (↓ � ∪ ↓ �)}.
Then, associate to each a ∈ NB a neighbourhood αa , such that αa = {y ∈ SB | y ∈
a belongs to �}, thus αa ⊆ SB. We define a neighbourhood model MB = 〈W, {I }i∈A, � �〉 as

• W = SB, i.e., the set W consists of all the labels occurring in the saturated branch
B;

• For each x ∈ W , Ii (x) = {αa | a ∈ Ii (x) belongs to ↓ �};
• For P atomic, �P� = {x ∈ W | x : P belongs to ↓ �}.
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We first show that

(∗) If a ⊆ b belongs to �, then αa ⊆ αb.

To this aim, suppose y ∈ αa . This means that y ∈ a belongs to �; then, by the saturation
condition L ⊆ also y ∈ b belongs to �. By definition of the model we have y ∈ αb, and
thus that αa ⊆ αb.
We now show that MB = 〈W, {I }i∈A, � �〉 satisfies the properties of a multi-agent neigh-
bourhood model, namely nonemptiness (trivial), total reflexivity, nesting and local ab-
soluteness. Strong closure under intersection follows from finiteness, cf. the end of this
section.

Total reflexivity: According to the saturation condition T , for every x that occurs in
↓ � ∪ ↓ � also a ∈ Ii (x), x ∈ a occur in �; then, by definition of MB, αa ∈ Ii (x) and
x ∈ αa .

Nesting: Suppose αa ∈ Ii (x) and αb ∈ Ii (x). We want to show that αa ⊆ αb or αb ⊆ αa .
By definition of the model, from αa ∈ Ii (x) and αb ∈ Ii (x) it follows that a ∈ Ii (x) and
b ∈ Ii (x) both belong to �. From the saturation condition S, we have that a ⊆ b or b ⊆ a
belong to � and we conclude by the fact (∗) above.

Local absoluteness: Suppose αa ∈ Ii (x) and y ∈ αa . We want to show that Ii (x) =
Ii (y). Suppose αb ∈ Ii (x); by definition of the model we have that a ∈ Ii (x), y ∈ a and
b ∈ Ii (x) all belong to �. By the saturation condition A, also b ∈ Ii (y) belongs to �;
thus, by definition, αb ∈ Ii (y) holds. For the opposite inclusion apply the same reasoning,
exploiting the second condition of the saturation condition A.

Next, define a realization (ρ, σ ) such that ρ(x) = x and σ(a) = αa . We now prove
the following, where F denotes any formula of the language, i.e., F is a ∈ Ii (x), x ∈ A,
a ⊆ b, x �∀ A, x �∃ A, x �i B|A, x : A, x : Beli(B|A):

[Claim 1] If F is in ↓ �, then MB � F ;
[Claim 2] If F is in ↓ �, then MB � F .

The two claims are proved by cases, by induction on the weight of the formula F .
[a] If F is a formula of the form a ∈ Ii (x), x ∈ a or a ⊆ b, Claim 1. holds by definition

of MB, and Claim 2. is empty. For the case of a ⊆ b, employ the fact (∗) above.
[b] If F is a labelled atomic formula x : P , the claim holds by definition of the model;

by the saturation condition (I ni t) no inconsistencies arise. If F ≡ ⊥, it is not forced in
any model so Claim 2 holds; instead Claim 1 holds by the saturation clause L⊥. If F is a
conjunction, disjunction or implication, both claims hold for the corresponding saturation
conditions and by inductive hypothesis on formulas on smaller weight.

[c] If F ≡ a �∃ A is in ↓ �, then by the saturation clause L �∃ for some x there are
x ∈ a, x : A are in ↓ �. By definition of the model MB, for some x , x ∈ αa . Then,
since w(x : A) < w(a �∃ A), apply the inductive hypothesis and obtain MB � x : A.
Therefore, by definition of satisfiability, MB � αa �∃ A.
If a �∃ A is in ↓ �, then it is also in �. Consider an arbitrary world x in αa . By definition
of MB we have that x ∈ a is in �; we apply the saturation condition R �∀ and obtain
that x : A is in ↓ �. By inductive hypothesis we have that MB � x : A; thus, since this
line of reasoning holds for arbitrary x , we can conclude by definition of satisfiability that
MB � αa �∃ A.
The case in which F ≡ a �∀ A is similar.

[d] If x �i B|A is in ↓ �, then by the saturation condition LC for some i , a it
holds that a ∈ Ii (x) is in �, and a �∃ A, a �∀ A ⊃ B are in ↓ �. By inductive
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hypothesis, MB � αa �∃ A, and MB � αa �∀ A ⊃ B. By definition, this yields
MB � x �i B|A.
If x �i B|A is in ↓ �, consider an arbitrary neighbourhood γc in Ii (x). Then by definition
of MB we have that c ∈ Ii (x) is in �; apply the saturation condition RC and obtain that
either c �∃ A or c �∀ A ⊃ B is in ↓ �. By inductive hypothesis, either M � γc �∃ A or
MB � γc �∀ A ⊃ B. In both cases, by definition MB � x �i B|A.

[e] If x : Beli(B|A) is in ↓ �, then it is also in �. Consider an arbitrary neighbourhood
αa in Ii (x). By definition of MB we have that a ∈ Ii (x) is in �; apply the saturation
condition L B and conclude that either a �∃ A is in ↓ �, or x �i B|A is in ↓ �. By
inductive hypothesis, it holds that either MB � αa �∃ A or MB � x �i B|A. In both
cases, by definition MB � x : Beli(B|A).
If x : Beli(B|A) is in ↓ �, by the saturation condition R B for some i , a it holds that
a ∈ Ii (x) is in �, a �∃ A is in ↓ � and x �i B|A is in ↓ �. By inductive hypothesis,
MB � αa �∃ A and MB � x �i B|A, thus, by definition, we have MB � x :
Beli(B|A). �
The completeness of the calculus is an obvious consequence:

THEOREM 4.13. If A is valid then it is provable in G3CDL.

Theorem 4.12 together with the soundness of G3CDL provides a constructive proof of the
finite model property of CDL: if A is satisfiable in a model (i.e., ¬A is not valid), then, by
the soundness of G3CDL ¬A is not provable, thus by Theorem 4.12 we can build a finite
countermodel that falsifies ¬A, i.e., which satisfies A.

§5. Relating the old and the new. In this section we recall the semantics of plausi-
bility models, an earlier semantics for CDL described in the literature. We shall relate this
semantics to the neighbourhood semantics we have formerly introduced and prove that the
two systems are equivalent, i.e., that they validate exactly the same formulas. Observe that
this result provides an alternative (indirect) proof of soundness and completeness of the
axiomatization of CDL with respect to plausibility models.

5.1. The semantics of plausibility models. Epistemic plausibility models are versatile
structures that have been used in a variety of different contexts by logicians, game theorists,
and computer scientists, as emphasised in the recent survey article by Pacuit [22]. Epis-
temic plausibility models, here called P-models for short, also come with different names
depending on the context of inquiry: Board [6], for instance, calls them Belief Revision
Structures.

Epistemic plausibility models are Kripke structures that display for each agent both an
equivalence relation over worlds, defining knowledge (as in standard epistemic models)
and a plausibility relation, which is used to define beliefs. The intuition is that an agent’s
beliefs are the propositions that hold in the worlds (state of affairs, scenarios) that the agent
considers the most plausible.

We recall a few preliminary notions. A pre-order � over a set W is a reflexive and
transitive relation over W . Given S ⊆ W , � is connected over S if for all x, y ∈ S
either x � y or y � x . An infinite descending �-chain over W is a sequence {xn}n≥0
of elements of W such that for all n, xn+1 � xn but xn �� xn+1. We say that � is well-
founded over W if there are no infinite descending �-chains over W . Given S ⊆ W , let
Min�(S) ≡ {u ∈ S | ∀z ∈ S . z � u → u � z}. Observe that whenever� is connected over
S the definition Min�(S) can be simplified to Min�(S) = {u ∈ S | ∀z ∈ S . u � z}. Finally,
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the well-foundedness property can be equivalently stated as: for each S ⊆ W if S �= ∅ then
Min�(S) �= ∅.

DEFINITION 5.1. Let A be a set of agents; an epistemic plausibility model

M = 〈W, {∼i }i∈A, {�i }i∈A, � �〉
consists of a nonempty set W of elements called “worlds”or “states”; for each i ∈ A, an
equivalence relation ∼i over W (with [x]∼i ≡ {w | w ∼i x}); for each i ∈ A, a well-
founded pre-order �i over W ; a valuation function � � : Atm → P(W ). The preorder �i

satisfies the following properties:

• Plausibility implies possibility: If w �i v then w ∼i v .
• Local connectedness: If w ∼i v then w �i v or v �i w (in other words, �i is

connected over every equivalence class of ∼i ).

The truth conditions for Boolean combinations of formulas are the standard ones; the truth
condition for the conditional belief operator is the following:

�Beli(B|A)� ≡ {x ∈ W |Min�i ([x]∼i ∩ �A�) ⊆ �B�}.
A formula A is valid in a model M if �A� = W and that A is valid in the class of

epistemic plausibility models if A is valid in every epistemic plausibility model.

The following proposition, proved by unfolding the definitions, gives an equivalent formu-
lation of the truth condition of the conditional operator Beli given in §2.2. From now on,
we shall use this formulation.

PROPOSITION 5.2. Given any P-model M = 〈W, {∼i }i∈A, {�i }i∈A, � �〉 with x ∈ W ,
we have that M, x � Beli(B|A) iff

(∀y . y ∼i x → y � ¬A) or (∃y ∼i x . y � A and (∀z . z �i y → z � A ⊃ B)).

Proof. (Only if) Assume M, x � Beli(B|A), that is, Min�i ([x]∼i ∩ [A]) ⊆ [B]. Now,
it is either true or false that for all y, y ∼i x implies y � ¬A: if it is true, we immediately
get the result. Else, for some y, y ∼i x and y � A. Hence SA ≡ Min�i ({w | w ∼i x, w �
A}) �= ∅ from the well-foundedness of �i . Given any z ∈ SA, given any world y such that
y ∼i x and y � A, we have z �i y since �i is a total preordering. Hence z � B from our
initial assumption, so that z � A ⊃ B.

(If) Assume that for all y, y ∼i x implies y � ¬A or there is y ∼i x such that y � A
and ∀z, z �i y implies z � A ⊃ B. If the first disjunct holds, then SA is empty, which
makes the (If)-direction trivially true. If the second disjunct holds, then there is some y
with y ∼i x such that y � A (i.e., SA is nonempty) and ∀z, z �i y implies z � A ⊃ B.
Let w ∈ SA. We then have w �i y and therefore w � A ⊃ B. Since w ∈ SA, we also have
w � A, so that w � B follows, hence the claim Min�i ([x]∼i ∩ [A]) ⊆ [B]. �

OBSERVATION 5.3. Recall the definitions of the operators of unconditional belief and
knowledge in terms of the conditional belief operator: Beli A =de f Beli(A|�) and Ki A =de f

Beli(⊥|¬A). The truth conditions for these operators in plausibility models are the follow-
ing:

�Beli A� ≡ {x ∈ W |Min�i ([x]∼i ) ⊆ �A�}
�Ki A� ≡ {x ∈ W | [x]∼i ⊆ �A�)}.

By Proposition 5.2 it is possible to reformulate the above conditions as follows:
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M, x � Beli A iff ∃y ∼i x . y � A and (∀z . z �i y → z � A)
M, x � Ki (A) iff ∀y . y ∼i x → y � A.

5.2. Equivalence between N - and P-models. We now show the equivalence between
neighbourhood models, here called N -models, and epistemic plausibility models (P-
models). The proofs make use of the basic correspondence between partial orders and
topologies dating back to Alexandroff [1] and recalled in Marti and Pinosio [16] and
Pacuit [23]. However, the result must be adapted to the present setting of multi-agent
epistemic and neighbourhood models. The equivalence (Theorem 5.7) is obtained from
Theorems 5.5, 5.6 and 2.1. To prove these results, we need to define a suitable measure of
weight for CDL formulas (in Definition 3.2 we defined weight for G3CDL formulas).

DEFINITION 5.4. The weight of a CDL formula is defined as follows: w(P) = w(⊥) = 1;
w(A ◦ B) = w(A)+ w(B)+ 1 for ◦ = {∧,∨,⊃}; w(Beli(B|A)) = w(A)+ w(B)+ 3.

THEOREM 5.5. If a formula A is valid in the class P-models, then it is valid in the class of
multi-agent N-models.

Proof. Given a N-model MN we build an P-model MP and we show that for any
formula A, if A is valid in MP then A is valid in MN . Let MN = 〈W, {I }i∈A, � �〉 be
a multi-agent N-model. We construct a P-model MP = 〈W, {∼i }i∈A, {�i }i∈A, � �〉, by
stipulating:

• x ∼i y iff ∃α ∈ Ii (x) . y ∈ α;
• x �i y iff ∀α ∈ Ii (y) . y ∈ α → x ∈ α.

We first show that ∼i is an equivalence relation.

• Reflexivity. By total reflexivity ∃α ∈ Ii (x), x ∈ α holds, thus x ∼i x .
• Symmetry. Suppose x ∼i y, this means ∃α ∈ Ii (x), y ∈ α; by local absoluteness

we get Ii (x) = Ii (y). By total reflexivity, ∃β ∈ Ii (x) . x ∈ β, thus also β ∈ I (y),
and this shows y ∼i x .

• Transitivity. Suppose x ∼i y and y ∼i z, i.e., ∃α ∈ Ii (x) . y ∈ α and ∃β ∈
Ii (y) . z ∈ β; by local absoluteness of Ii we have Ii (x) = Ii (y); therefore ∃β ∈
Ii (x) . z ∈ β, which means x ∼i z.

Next we prove that �i such as constructed satisfies reflexivity, transitivity, plausibility
implies possibility, local connectedness, and well-foundedness:

• Reflexivity. Trivial since ∀α ∈ Ii (x) . x ∈ α → x ∈ α.
• Transitivity. Suppose x �i y and y �i z, we have 1) ∀α ∈ Ii (y) . y ∈ α → x ∈ α

and 2) ∀β ∈ Ii (z) . z ∈ β → y ∈ β. Let z ∈ β. Then, from 2) we have y ∈ β
and from 1) x ∈ β follows, i.e., ∀β ∈ Ii (z) . z ∈ α → x ∈ β holds. This means
x �i z.

• Local connectedness: by contradiction suppose that x ∼i y holds, but that neither
x �i y nor y �i x holds. By definition of �i we have

for some β ∈ Ii (y), y ∈ β and x /∈ β
for some γ ∈ Ii (x), x ∈ γ and y /∈ γ .

Since x ∼i y, by reflexivity ∃α ∈ Ii (x) . y ∈ α, whence by local absoluteness
Ii (y) = Ii (x). Thus both β, γ ∈ Ii (x) and by nesting β ⊆ γ or γ ⊆ β holds. If
the former holds we get y ∈ γ , if the latter holds x ∈ β, in both cases reaching
a contradiction.
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• Plausibility implies possibility. Suppose x �i y; by definition, it holds that ∀α ∈
Ii (y) if y ∈ α then x ∈ α. By total reflexivity, there exists β ∈ Ii (y) . y ∈ β, thus
we get x ∈ β. Therefore we have ∃β ∈ Ii (y) . x ∈ β, which means y ∼i x , whence
x ∼i y by symmetry.

• Well-foundedness. If MN is finite there is nothing to prove. Suppose then that
MN is infinite. Suppose by contradiction that there is an infinite descending chain
{zk}k≥0, i.e., such that for all k:

zk+1 �i zk and zk ��i zk+1.

Observe that by definition of�i , plausibility implies possibility, and local absolute-
ness we obtain that for all k, h ≥ 0, it holds that Ii (zk) = Ii (zh) = · · · = Ii (z0).
Thus by definition of �i , since for all k ≥ 0 . zk ��i zk+1, we get that for all
zk ∈ {zk}k≥0 there exists βzk+1 ∈ Ii (z0) such that

(∗) zk+1 ∈ βzk+1 and zk �∈ βzk+1 .

Consider the set T = {βzk+1 | zk ∈ {zk}k≥0}. T is nonempty; thus by strong closure
under intersection it follows that

⋂
T ∈ T , and also

⋂
T �= ∅. Obviously, we have

that

(∗∗) for all β ∈ T ,
⋂

T ⊆ β.

Since
⋂

T ∈ T , we have
⋂

T = βzt+1 for some zt ∈ {zk}k≥0. By using (∗)
twice (namely for zt+1 and for zt+2) we have zt+1 ∈ βzt+1 and zt+1 �∈ βzt+2 , thus⋂

T = βzt+1 �⊆ βzt+2 against (∗∗).
We now prove that for any x ∈ W and formula A

(a) MN , x � A iff MP , x � A.

We proceed by induction on the structure of A. The base case (A atomic) holds by defi-
nition, as � � is the same in the two models. For the propositional cases A = B ∧ C, B ∨
C, B ⊃ C , statement (a) easily follows by inductive hypothesis. We only consider the case
A = Beli(C |B). To simplify the notation we write u �P B instead of MP , u � B and
u �N B instead of MN , u � B.
[⇒] Suppose that x �N Beli(C |B). This means that

(∀α ∈ Ii (x) . α �∀ ¬B) or (∃β ∈ Ii (x) . β �∃ and β �∀ B ⊃ C).

We consider the two cases separately. Suppose first that ∀α ∈ Ii (x) . α �∀ ¬B holds;
we show that for all y y ∼i x implies y �P ¬B. Let y ∼i x ; then, by definition, ∃α ∈
Ii (x) . y ∈ α; since α �∀ ¬B we get y �N ¬B, and thus by inductive hypothesis y �P ¬B
holds.

Suppose now that ∃β ∈ Ii (x) . β �∃ B and β �∀ B ⊃ C hold. We prove that
∃w . w ∼i x and w �P B, and that ∀z . z �i w → z �P B ⊃ C . The hypothesis
gives in particular that ∃β ∈ Ii (x) such that β �∃ B, whence ∃w ∈ βw such that w �N B.
Thus, x ∼i w and by inductive hypothesis also w �P B. Now let z �i w. By definition
this means that ∀γ ∈ I (w) . w ∈ γ → z ∈ γ . Therefore, since w ∈ β, also z ∈ β. From
β �∀ B ⊃ C we get z �N B ⊃ C , whence also z �P B ⊃ C by inductive hypothesis.

[⇐] Suppose that x �P Beli(C |B) holds. This means that

(∀y . y ∼i x → y �P ¬B) or
(∃w . w ∼i x and w �P B and (∀z . z �i w → z �P B ⊃ C)).
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As above, there are two cases to consider. Suppose first that ∀y . y ∼i x → y �P ¬B.
Let α ∈ I (x) and u ∈ α. By definition u ∼i x , thus by hypothesis u �P ¬B and by
inductive hypothesis u �N ¬B. This means that α �∀ ¬B (first case of truth definition of
Beli in neighbourhood models).

Suppose now that there exists w such that w ∼i x and w �P B and for all z z �i w
implies z �P B ⊃ C . From w ∼i x (hypothesis) it follows by definition that ∃α ∈
I (x) . w ∈ α. By local absoluteness, I (x) = I (w). Now consider the set S = {β ∈
I (x) |w ∈ β}. It holds that α ∈ S, and that S �= ∅. Let γ = ∩S. By strong closure under
intersection, γ ∈ S ⊆ Ii (x), thus γ ∈ Ii (x). But w ∈ γ and since we have w �P B, we
also have w �N B by inductive hypothesis. We have obtained that γ �∃ B. We still have
to prove that γ �∀ B ⊃ C . Let u ∈ γ ; let us prove that u �i w and u �N B ⊃ C . We first
show that u �i w. To this purpose, let δ ∈ I (w) with w ∈ δ (by definition of �i ), and we
prove that u ∈ δ: since I (x) = I (w), also δ ∈ I (x), whence δ ∈ S and γ ⊆ δ; therefore
u ∈ δ, and u �i w. Since u �i w by hypothesis we have u �P B ⊃ C and by inductive
hypothesis u �N B ⊃ C . Thus, γ �∀ B ⊃ C .

(End of the proof). Suppose that A is valid in MP . Thus for all w ∈ W , we have w �P A,
and by (a) we have also w �N A for all w ∈ W , which means that A is valid in MN . So
we proved that if A is valid in MP then A is also valid in MN . Finally, given a N-model
MN , we build an P-model MP as above. By the proof given above, if A is valid in MP ,
A is valid in MN . This concludes the proof. �

THEOREM 5.6. If a formula A is valid in the class of multi-agent N-models, then it is valid
in the class of P-models.

Proof. Given a P-model MP we build an N-model MN and we show that for any
formula A, if A is valid in MN then A is valid in MP . The result easily follows from this
fact.
Let MP = 〈W, {∼i }i∈A, {�i }i∈A, � �〉 be an P-model. We build a N-model MN as
follows. Let u ∈ W , and define its downward closed set ↓�i u according to �i as ↓�i

u = {v ∈ W | v �i u} Now we define the model MN = 〈W, {I }i∈A, � � 〉, where for any
x ∈ W

Ii (x) = {↓�i u | u ∼i x}.
We first show that MN is indeed a N-model.

• Nonemptiness: Let α ∈ Ii (x), then α =↓�i u for some u ∼i x and since u ∈↓�i u,
we have α �= ∅.

• Nesting: Let α, β ∈ Ii (x). Then, α =↓�i u for some u ∼i x and β =↓�i v for
some v ∼i x . We can conclude u ∼i v , and by local connectedness we have u �i v
or v �i u. It is immediate to see that this entails ↓�i u ⊆↓�i v or ↓�i v ⊆↓�i u,
from which the result follows.

• Total reflexivity: Obvious since x ∈↓�i x .
• Local absoluteness: We first prove the following fact: if y ∼i x then Ii (y) = Ii (x).

Let y ∼i x and ↓�i z ∈ Ii (y), then z ∼i y, so that by transitivity z ∼i x , thus
↓�i z ∈ Ii (x) and hence Ii (y) ⊆ Ii (x). The opposite inclusion Ii (x) ⊆ Ii (y) is
proved in the same way. As for local absoluteness: suppose α ∈ Ii (x) and y ∈ α.
This means that α =↓�i u for some u ∼i x ; since y ∈↓�i u, we have y �i u and
by plausibility implies possibility y ∼i u and therefore also y ∼i x . Then we apply
the above fact.
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• Closure under intersection: In the finite case, this property immediately follows
from properties nonemptiness and nesting. If MP is infinite, let S ⊆ Ii (x), S �= ∅,
with S countable so that S = {αh | h � 0} where αh =↓�i xh for xh ∼i x . We
prove that

(∗) ∃αh ∈ S such that ∀αk ∈ S . αh ⊆ αk .

If (∗) holds then αh = ⋂
S and αh ∈ S and the proof is over. Suppose by

contradiction that (∗) does not hold. This means that 1) ∀αh ∈ S ∃αk ∈ S . αh � αk .
Thus, by the property of spheres nesting 2) ∀αh ∈ S ∃αk ∈ S . αk ⊂ αh . From 2), by
denumerable dependent choice, we can build an infinite (strictly decreasing) chain
of neighbourhoods

α1 ⊃ α2 ⊃ α3 ⊃ . . .

For every n ≥ 1 we have by definition that αn =↓�i un . Let vn ∈ αn−αn+1, vn+1 ∈
αn+1 − αn+2, etc. We have vn+1 �i un+1 by construction and it is enough to prove
that un+1 �i vn to conclude by transitivity that vn+1 �i vn . By construction, we
have vn �i un+1 and therefore by local connectedness, un+1 �i vn . Moreover by
vn �i un+1 it also follows that vn �i vn+1. We have thus an infinitely descending
�i -chain of worlds {vn}n≥1, against the assumption of well-foundedness of W . We
reached a contradiction from the negation of (∗); therefore, (∗) holds.

We now prove that for any x ∈ W and formula A

(b) MP , x � A iff MN , x � A.

We proceed by induction on the structure of A. Again, for the base case, A atomic it holds
by definition as � � is the same in the two models. For the propositional cases A = B ∧
C, B ∨ C, B ⊃ C , statement (b) easily follows by inductive hypothesis. We only consider
the case A = Beli(C |B). As in previous theorem, we use the following abbreviations:
u �P B instead of MP , u � B and u �N B instead of MN , u � B.
[⇒] Suppose that x �P Beli(C |B). This means that

(∀y . x ∼i y → y �P ¬B) or
(∃w . w ∼i x and w �P B and (∀z . z �i w → z � B ⊃P C)).

Suppose first that ∀y . y ∼i x → y �P ¬B. Take any α ∈ Ii (x). By definition, α =↓�i z,
for some z ∼i x . Let y ∈↓�i z. Then by definition y �i z and by plausibility implies
possibility, y ∼i z; thus by transitivity y ∼i x . By hypothesis we have y �P ¬B, whence
by inductive hypothesis also y �N ¬B. We showed α �∀ ¬B for any α ∈ Ii (x), thus
x �N Beli(C |B) holds (first case of the truth condition).
Suppose now that there is a w ∼i x such that w �P B and ∀z . z �i w → z �P B ⊃ C .
Let us consider α =↓�i w. By inductive hypothesis w �N B and since w ∈↓�i w we
obtain α �∃ B. Now consider any u ∈ α =↓�i w. By definition u �i w. Thus by
hypothesis u �P B ⊃ C , whence by inductive hypothesis also u �N B ⊃ C . We showed
that α �∀ B ⊃ C .

[⇐] Suppose that x �N Beli(C |B), this means that

(∀α ∈ Ii (x) . α �∀ ¬B) or (∃β ∈ Ii (x) . β �∃ B E β �∀ B ⊃ C).
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In first case ∀α ∈ Ii (x) . α �∀ ¬B holds. Let y ∼i x , we want to show that y �P ¬B.
Since y ∼i x , we have ↓�i y ∈ Ii (x). Thus by hypothesis ↓�i y �∀ ¬B and y �N ¬B,
whence by inductive hypothesis also y �P ¬B.

In the second case, there is β ∈ Ii (x) such that β �∃ B and β �∀ B ⊃ C . We prove that
for some u ∼i x we have u �P B and for all v �i u it holds v �P B ⊃ C . By definition
β =↓�i z for some z ∼i x . Since by hypothesis β �∃ B, there exists u ∈ β such that
u �N B, whence also u �P B by inductive hypothesis. By definition of β, we have u �i z
and thus u ∼i x . Let now v �i u. By transitivity v ∈ β, and since β �∀ B ⊃ C we have
v �N B ⊃ C , whence also v �P B ⊃ C by inductive hypothesis.

(End of the proof). We proved that if A is valid in MN then A is also valid in MP . Suppose
that A is valid in MN . Thus, for all w ∈ W , we have w �N A, and by (b) we have also
w �P A for all w ∈ W , which means that A is valid in MP . Finally, let A be valid in the
class of N-models. Then, A is also valid in the class of P-models. Given a P-model MP ,
we build an N-model MN as above. By hypothesis A is valid in MN and for what we have
just shown A is valid in MP . This concludes the proof. �
Putting the two previous theorems together and making use of Theorem 2.1 we finally
obtain the following:

THEOREM 5.7. A formula A is a theorem of CDL if and only if it is valid in the class of
plausibility models.

§6. Other epistemic and doxastic modalities. Following Baltag & Smets [3] and
Pacuit [22], we add to CDL the doxastic operators of safe belief and strong belief. These
operators can be defined both in terms of epistemic plausibility models and in terms of
neighbourhood models. Starting from the neighbourhood models characterization, we give
sequent calculus rules for these operators and extend the sequent calculus G3CDL to cover
these modalities. Similarly, we define in both models a modal operator [>]i that expresses
a strict order relation, which in turn allows to define two additional modalities: weakly safe
belief and the operator of unary revision.
The safe belief operator captures the epistemic attitude corresponding to “Stalnaker’s knowl-
edge”: according to Stalnaker, knowledge is a doxastic attitude which remains stable in
front of belief revision with any true information [3,24]. The view that in order to define (a
strong notion of) knowledge the grounds for the epistemic attitude should be conclusive,
i.e., that knowledge needs to be defined as stable under the acquisition of further informa-
tion, was made explicit already by Hintikka (p. 20–21, [13]) following Malcom [15]:

If someone says “I know that p” in this strong sense of knowledge, he
implicitly denies that any further information would have led him to alter
his view. He commits himself to the view that he would still persist in
saying that p is true (. . . ) even if he knew more than he now knows.

Following Baltag & Smets [3] we use the term “knowledge” for the modality Ki , and call
the present attitude of undefeasible knowledge “safe belief”. The intuitive meaning of the
safe belief operator BelSafe

i A is that agent i safely believes A if and only if A is true, she
believes A, and she continues to believe A whatever true information is received.

In terms of epistemic plausibility models, the safe belief operator is defined as follows
[3, 22]:

(Sa f eP) MP , x � BelSafe
i A iff ∀y . y �i x → MP , y � A.
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We give the following condition in terms of neighbourhood models:

(Sa f eN ) MN , x � BelSafe
i A iff ∃α ∈ Ii (x) . x ∈ α and α �∀ A.

To prove that the two notions correspond to each other, we have to extend the inductive
proofs of Theorems 5.5 and 5.6 on the equivalence between epistemic plausibility models
and neighbourhood models. More precisely, we have to add a suitable inductive step which
takes into account also the strong belief operator. The key fact is expressed in the next
proposition.

PROPOSITION 6.1. The extension of preferential models by the truth condition for the
safe belief operator, SafeP , gives the same class of valid formulas as the extension of
neighbourhood models with condition SafeN .

Proof. Let MP be an epistemic plausibility model. We construct a neighbourhood
model as in the proof of Theorem 5.5. We now have to prove that

(a+) MP , x � BelSafe
i A iff MN , x � BelSafe

i A

from the assumption that �A�MN = �A�MP . In order to prove the left-to-right direction,
suppose MP , x � BelSafe

i A, i.e., ∀y . y �i x implies y � A. This means that ∀y ∈↓�i x

. y � A, i.e., ↓�i x �∀ A. By construction we have ↓�i x ∈ Ii (x), and therefore ∃α ∈
Ii (x) . x ∈ α and α �∀ A, i.e., MN , x � BelSafe

i A. As for the other direction of (a+),

suppose that MN , x � BelSafe
i A. This means ∃x ∈ Ii (x) . x ∈ α and α �∀ A. By

construction, α =↓�i z for some z, z ∼i x . Since x ∈ α, then x ∈↓�i z. This implies that
↓�i x ⊆↓�i z, and since ↓�i z �∀ A, we have a fortiori ↓�i x �∀ A, i.e., ∀y . y �i x →
y � A.

For the other direction of the proposition, let MN be a neighbourhood model. We construct
from it a plausibility model MP following the procedure described in the proof of Theorem
5.6. We now have to prove that

(b+) MN , x � BelSafe
i A iff MP , x � BelSafe

i A

assuming as hypothesis that �A�MN = �A�MP . For one direction, suppose that MP , x
� BelSafe

i A. This means that ∀y(y �i x → MP , y � A), i.e., from the definition of
MP :

(hp1) (∀y∀β ∈ I (x) . x ∈ β → y ∈ β) → MN , y � A.

We have to prove that (∗) ∃α ∈ Ii (x) . x ∈ α and α �∀ A. We proceed by absurdum,
assuming as hypothesis the negation of (∗):

(hp2) ∀α ∈ Ii (x) . x ∈ α → α �∀ A.

Let 
 = {α ∈ Ii (x) | x ∈ α} (i.e., 
 is the principal filter generated by x in Ii (x)). By
total reflexivity, we have that 
 �= ∅. Let α∗ = ∩
. By the intersection property we have
that α∗ �= ∅, and by strong intersection property we have that α∗ ∈ Ii (x) (and that α∗ ∈ 

as well). Thus we have that x ∈ α∗, and it holds that ∀β ∈ Ii (x) . α∗ ⊆ β. By (hp2) we
conclude α∗ �∀ A; thus, ∃y ∈ α∗ . y � A.

We now show that y �i x , in order to apply (hp1). Consider an arbitrary β ∈ Ii (x) and
suppose x ∈ β. Then α∗ ⊆ β and, if y ∈ α∗, y ∈ β, i.e., it holds that ∀β ∈ I (x) . x ∈

https://doi.org/10.1017/S1755020318000023 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000023


774 MARIANNA GIRLANDO ET AL.

β → y ∈ β. Apply (hp1) to conclude y � A (for arbitrary y), in contraction with
∃y ∈ α∗ . y � A.

As for the other direction of (b+), suppose that MN � BelSafe
i A. Thus we have as

hypothesis that ∃α ∈ Ii (x) . x ∈ α and α �∀ A. We want to prove that (∀β ∈ I (x) . x ∈
β → y ∈ β) → MN , y � A. Given an arbitrary y, suppose that ∀β ∈ Ii (x) . x ∈
β → y ∈ β; we have to show that y � A. By hypothesis there is an α0 ∈ Ii (x) . x ∈
α0 and α0 �∀ A. Thus, since x ∈ α0, also y ∈ α0 (by hypothesis) and y � A. �

The notion of strong belief can be found in Stalnaker [24], where it is called “robust
belief”; in more recent years, the notion was treated by Battigalli & Siniscalchi [5], Baltag
& Smets [3] and Pacuit [22]. According to Baltag and Smets,4 the strong belief operator
can be defined in terms of knowledge and safe belief:

Bel
Strong
i A iff Beli A∧ Ki (A ⊃ BelSafe

i A) (∗)

Intuitively, a strong belief formula Bel
Strong
i A is saying that an agent i strongly believes

A if she believes A, and if she knows that if A is true, then she safely believes A, i.e., A is
stable under belief revision with any true information.

This condition can be expressed in terms of epistemic plausibility models. Recall first the
truth condition for the unconditional belief operator in plausibility models in Observation
5.3: M, x � Beli A iff ∃y ∼i x . y � A and (∀z.z �i y → z � A). 5 We have

MP , x � Bel
Strong
i A iff (∃y.y ∼i x & (∀z . z �i y → z � A)) &

(∀z . z ∼i x & z � A → (∀y . y �i z → y � A)).

The condition can be translated in terms of neighbourhood models in an immediate way as
follows:

MN , x � Bel
Strong
i A iff (∃α ∈ Ii (x) . α �∀ A) &

(∀β ∈ Ii (x)∀y ∈ β . y � A → (∃γ ∈ Ii (x).y ∈ γ & γ �∀ A)).

The sequent calculus rules for both safe and strong belief can be derived from the defini-
tions of the operators in terms of neighbourhood models. We factorize the complex seman-
tic condition for strong belief by introducing an additional operator K Safe

i , corresponding

to the second conjunct of the above definition. The modality K Safe
i could be interpreted as

some sort of doxastic introspection: it means that if the agent knows that A is true, then she
safely believes A. For the present scope, however, we employ this modality as a technical
device.

x : K Safe
i ≡ ∀b ∈ Ii (x)∀y ∈ b . y : A → (∃c ∈ Ii (x).y ∈ c & c �∀ A).

Note that the rules for strong belief introduce the simple and safe belief operators in the
premisses, in accordance with the definition of the operator.

4 Pacuit provides a slightly different characterization of the operator, always in terms of epistemic

plausibility models: MP , x � Bel
Strong
i A iff (∃y . y ∼i x and y � A) and (�A� ∩ [x]∼i �i

�¬A� ∩ [x]∼i ), where for S, S′ ⊆ W , let S �i S′ iff ∀x ∈ S∀y ∈ S′ . x �i y.
5 Since the strong belief operator can be defined in terms of the other epistemic operators, we do

not explicitly extend the theorem of equivalence between models.
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Rules for safe and strong belief

x ∈ a, a ∈ Ii (x), a �∀ A, � ⇒ �

x : BelSafe
i A, �,⇒ �

L SF (a fresh)

a ∈ Ii (x), x ∈ a, � ⇒ �, x : BelSafe
i A, a �∀ A

a ∈ Ii (x), x ∈ a, � ⇒ �, x : BelSafe
i A

RSF

a ∈ Ii (x), y ∈ a, y : A, � ⇒ �, y : BelSafe
i A

� ⇒ �, x : K Safe
i A

RKSafe
i (y,a fresh)

�′ ⇒ �, y : A y : BelSafe
i A, �′ ⇒ �

a ∈ Ii (x), y ∈ a, x : K Safe
i A, � ⇒ �

L KSafe
i

�′ = a ∈ Ii (x), y ∈ a, x : K Safe
i A, �

a ∈ Ii (x), a �∀ A, x : K Safe
i A, � ⇒ �

x : Bel
Strong
i A, � ⇒ �

L SG (a fresh)

a ∈ Ii (x), � ⇒ �, a �∀ A a ∈ Ii (x), � ⇒ �, x : K Safe
i A

a ∈ Ii (x), � ⇒ �, x : Bel
Strong
i A

RSG

Observe that the characterisation of strong belief is guaranteed by the rules of the
calculus, since it is easy to prove that for arbitrary x the following sequents are derivable

x : Bel
Strong
i A ⇒ x : Beli A ∧ Ki (A ⊃ BelSafe

i A)

x : Beli A ∧ Ki (A ⊃ BelSafe
i A) ⇒ x : Bel

Strong
i A.

Baltag & Smets [3] also consider the epistemic modality that expresses a strict order on
plausibility models, i.e., the following operator:

(>P) MP , x � [>]i A iff ∀y . y <i x → y � A.

In terms of neighbourhood models, the definition of the [>]i operator is the following:

(>N ) MN , x � [>]i A iff ∀α ∈ Ii (x) . x /∈ α → α �∀ A.

The [>]i operator is not particularly meaningful by itself; however, it can be used to define
the operator of weakly safe belief and the (more interesting) operator of unary revision,
respectively:

BelW eak
i A := A ∧ [>]i A ∗i A := A ∧ [>]i¬A.

Observe that x � BelW eak
i A holds only if x is a minimal world with to respect to the strict

relation <i , where for minimal is meant that all smaller worlds do not satisfy A. We will
now prove the equivalence of conditions (>P) and (>N ), thus proving the equivalence of
the two classes of models also with respect to this operator. The proof is an extension of
those of Theorems 5.5 and 5.6, as in the strong belief operator case.

PROPOSITION 6.2. The definition of the safe belief operator in preferential models,
expressed by condition >P , is equivalent to the definition of the operator in neighbourhood
models, expressed by condition >N .
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Proof. Suppose we have a plausibility model MP . We build a neighbourhood model
MN as described in the proof of Theorem 5.5. We now have to prove the following
proposition, assuming as hypothesis that �A�MN = �A�MP :

(a ++) MN , x � [>]i A iff MP , x � [>]i A.

In order to prove one direction, take as hypothesis ∀α ∈ Ii (x) . x /∈ α → α �∀ A.
We want to prove that ∀y . y <i x → y � A. Suppose y <i x . Then, by construction,
x /∈↓�i y, for ↓�i y = {u ∈ W | u � y}. We have that ↓�i y = α, for some α. By
hypothesis, α �∀ A. Then, since y ∈ α, we have that y � A.

As for the other direction, we assume as hypothesis that ∀y . y <i x → y � A, and
we want to prove that ∀α ∈ Ii (x) . x /∈ α → α �∀ A. Suppose α ∈ Ii (x) and x /∈ α.
By construction, α =↓�i y, for some y ∼i x , and x /∈↓�i y. Thus, we have y < x . By
hypothesis, y � A. Since this holds for all y such that x /∈↓�i y, and since y ∈↓�i y, we
have that ↓�i y �∀ A.

Suppose we have a neighbourhood model MN . We built a plausibility model MP from
it, as described in Theorem 5.6. In order to build the plausibility model, we will use the
following additional condition:

y ≺i x iff (1) ∀α ∈ Ii (x) . x ∈ α → y ∈ α
(2) ∃β ∈ Ii (x) = Ii (y) . y ∈ β and x /∈ β.

We have to prove the following statement, always under the hypothesis �A�MN = �A�MP :

(b ++) MN , x � [>]i A iff MP , x � [>]i A.

To prove one direction of (b++), suppose ∀α ∈ Ii (x) . x /∈ α → α �∀ A. We want to
show that ∀y . y ≺i x → y � A. Suppose y ≺i x . This means that (1) ∀α ∈ Ii (x) . x ∈
α → y ∈ α and (2) ∃β ∈ Ii (x) = Ii (y) . y ∈ β and x /∈ β. Note that the condition of the
equality of spheres in (2) is justified by the following reasoning: by total reflexivity, y ∈ α,
and by absoluteness we have Ii (x) = Ii (y). From (2), we have that there exists a sphere
β0 such that β0 ∈ Ii (x), y ∈ β0 and x /∈ β0. By hypothesis, we have that β0 �∀ A. Thus,
since y ∈ β0, y � A.

As for the other direction, assume that ∀y . y ≺i x → y � A. We want to show that
∀α ∈ Ii (x) . x /∈ α → α �∀ A. Let α ∈ Ii (x) such that x /∈ α, and let u ∈ α; we have to
show that u � A. Let 
 = {γ | u ∈ β and x /∈ γ }. Since α ∈ 
, 
 �= ∅. Let δ = ∩
; by
the strong intersection property, δ ∈ Ii (x) and δ �= ∅.

It holds that u ∈ δ. We want to show that u ≺i x , since by hypothesis this implies
u � A. Thus, we have to prove that condition (1) and (2) hold. Condition (2) holds by
construction; as for (1), let β ∈ Ii (x) such that x ∈ β; we have to prove that also u ∈ β.
By nesting, it holds that either β ⊆ δ or δ ⊆ β. The case β ⊆ δ is not possible, since we
have set that x ∈ β, but by construction we have that x /∈ δ. Thus, it must hold that δ ⊆ β;
since by construction u ∈ δ, we have ∈ β. Thus, by hypothesis we can conclude u � A,
and the proposition in proved. �
It should be possible to extend the calculus G3CDL to cover also operators BelW eak

i and
∗i . We leave the definition of appropriate rules to the interested reader.

The following informal observation should be useful to get an idea of the motivation behind
the definition in neighbourhood models of the operators we have introduced in this section.
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Let us consider a world x and the set Ii (x) of neighbourhoods associated to it. We can split
Ii (x) into two sets, namely:

Ii (x)+ = {α ∈ Ii (x) | x ∈ α} Ii (x)− = {α ∈ Ii (x) | x /∈ α}.
These represent, respectively, the set of neighbourhoods to which x belongs and the set

of neighbourhoods to which x does not belong. Now recall the four modalities which can
be defined in a standard way in neighbourhood models:6

x � �∀A iff ∀α ∈ Ii (x)(α �∀ A)

x � �∃A iff ∃α ∈ Ii (x)(α �∀ A)

x � �∀A iff ∀α ∈ Ii (x)(α �∃ A)

x � �∃A iff ∃α ∈ Ii (x)(α �∃ A).

Note that the simple belief operator x � Beli A iff ∃α ∈ Ii (x) . α �∀ A corresponds to the
�∃ modality, while the knowledge operator x � Ki A iff ∀α ∈ Ii (x) . α �∀ A corresponds
to the �∀ modality.

Furthermore, all the operators that we have taken into account in this section can be
interpreted as one of the above modalities, defined either on Ii (x)+ or Ii (x)−. More
precisely, the safe belief operator corresponds to the �∃ modality defined on Ii (x)+; the
strong belief operator is defined on the same set. The [>]i operator corresponds to the
�∀ modality defined on Ii (x)−. The weakly safe belief operator and the unary revision
operator are defined on the same set.

This overview gives an idea of the wide variety of modal operators which is possible
to define in neighbourhood models. Following [3], we have restricted our analysis to the
operators that should be interesting from an epistemic viewpoint—in principle, however,
there are many others.

§7. Conclusions and further research. We have proposed a semantics based on
neighbourhood models, a multi-agent version of Lewis’ sphere models, for the logic CDL
of doxastic conditional beliefs. On the basis of this neighbourhood semantics, we have
developed a labelled sequent calculus G3CDL for the logic, following the methodology of
Negri [17, 19] and Negri & Olivetti [21]. The calculus G3CDL is analytic and enjoys cut
elimination and admissibility of the other structural rules as well as invertibility of all its
rules. Moreover, on the basis of this calculus, we obtain a decision procedure for the logic
under a natural strategy of proof search. The completeness of the calculus is proved by a
finite countermodel construction extracted from a failed or open branch of a derivation. The
finite countermodel construction provides in itself a constructive proof of the finite model
property of the logic. Finally we have shown how to extend the semantic interpretation and
the sequent calculus G3CDL to other doxastic operators, namely safe belief and strong
belief [3].

There are a number of issues which may be objects of further investigation. First, CDL
is the “static” logic that underlies dynamic extensions by doxastic actions [3]. It should
be worth studying whether and how our calculus can be extended to deal also with the
dynamic extensions.

6 Such modalities are denoted by [ ], 〈 ], [ 〉, 〈 〉 in Pacuit [22]; their proof theory is studied through
labelled sequent calculi based on neighbourhood semantics in Negri [19].
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From a computational viewpoint, to the best of our knowledge the exact complexity
of CDL is not known. We conjecture its upper bound to be PSPACE; however, further
investigations are needed to confirm this result.

Moreover, some optimizations of the search strategy are possible, in particular to reduce
the number of labels generated in a derivation. We plan to deal with all these topics in
future research.
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