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Recent literature shows that embedding fractionally integrated time series models
with spectral poles at the long-run and0or seasonal frequencies in autoregressive
frameworks leads to estimators and test statistics with nonstandard limiting dis-
tributions+ However, we demonstrate that when embedding such models in a gen-
eral I ~d! framework the resulting estimators and tests regain desirable properties
from standard statistical analysis+ We show the existence of a local time domain
maximum likelihood estimator and its asymptotic normality—and under Gauss-
ianity asymptotic efficiency+ The Wald, likelihood ratio, and Lagrange multiplier
tests are asymptotically equivalent and chi-squared distributed under local alter-
natives+With independent and identically distributed Gaussian errors and a scalar
parameter, we show that the tests in addition achieve the asymptotic Gaussian
power envelope of all invariant unbiased tests; i+e+, they are asymptotically uni-
formly most powerful invariant unbiased against local alternatives+ In a Monte
Carlo study we document the finite sample superiority of the likelihood ratio test+

1. INTRODUCTION

In this paper we consider likelihood based estimation and testing within a wide
class of possibly nonstationary models, including but not limited to the sea-
sonal fractionally integrated autoregressive moving average~ARMA ! model+
In such models, estimators and test statistics are often found to have non-
standard distributional properties+ In contrast, we show that by adapting time
domain procedures and embedding the models of interest in a generalI ~d! frame-
work, instead of the autoregressive alternatives typically considered in the
literature, estimators and test statistics regain the standard distributions and op-
timality properties well known from simpler models+

Several versions of the Wald, likelihood ratio ~LR!, and score or Lagrange
multiplier ~LM ! testing procedures have appeared in the literature on nonsta-
tionary models, e+g+, when conducting Dickey and Fuller~1979! type tests for a
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unit root ~I ~1! againstI ~0!! or testing stationarity~I ~0! againstI ~1!!+ For a
comprehensive recent survey, see Phillips and Xiao~1998!+ However, these tests
have nonstandard limiting distributions that have to be simulated on a case-by-
case basis+ Some advances have been made recently toward achieving efficient
tests+ Locally optimal and point optimal tests have been derived for the station-
arity hypothesis~e+g+, Saikkonen and Luukkonen, 1993a, 1993b! and for the
unit root hypothesis~e+g+, Elliott, Rothenberg, and Stock, 1996!+ However, these
tests still have nonstandard distributions, and no uniformity results apply+

What is needed is a class of processes that is more general than the unit root
I ~1! models and admits the testing of smooth hypotheses in the sense that the
properties of the process do not differ substantially if the null hypothesis is
changed slightly+ One such class is that of fractionally integrated processes+
Thus, a process isI ~d! ~fractionally integrated of orderd! if its dth difference
is I ~0!; i+e+, yt [ I ~d! if

~12 L!dyt 5 et I~t $ 1!, (1)

whereI~{! denotes the indicator function andet [ I ~0!+ A process isI ~0! if it is
covariance stationary and its spectrum is bounded and bounded away from zero
at any frequency+ TestingH0 : d 5 1 in ~1! may be seen as an alternative to unit
root testing+ We show that in a fractional integration framework much more
desirable properties can be obtained compared with autoregressive~and possi-
bly seasonal and fractional! unit root models where test statistics have nonstan-
dard distributions~see, e+g+, Phillips, 1987; Hylleberg, Engle, Granger, and Yoo,
1990; Sowell, 1990!+

Notable exceptions to the nonstandard tests are Robinson~1994! and Tanaka
~1999!, extending earlier work by Robinson~1991! and Agiakloglou and New-
bold ~1994!, and it is the Robinson~1994! model that we consider further in
this paper+ Robinson~1994! derives the LM test statistic~of ~16! and~23!, which
follow! in the frequency domain, claiming that it is more suitable for the analy-
sis, and shows that the LM test statistic is asymptotically chi-squared distrib-
uted and locally most powerful under Gaussianity+ In a simulation study it is
found that when the data generating process~DGP! is of the fractional type the
finite sample performance of the new test is better than that of existing tests,
the opposite being the case when the DGP is of the autoregressive type+ Tanaka
~1999! considers the fractional unit root model in~1! and shows the existence
of a local time domain maximum likelihood estimator~MLE ! and derives the
LM and Wald tests+ Tanaka~1999! shows that the estimator is asymptotically
normal and, under invariance conditions, that the tests are locally most power-
ful and indeed asymptotically uniformly most powerful against one-sided local
alternatives+ Simulations show that in finite samples the time domain tests are
superior to the frequency domain LM test of Robinson~1994! with respect to
both size and power+ The estimator is also shown to be quite close to its asymp-
totic distribution, except in the presence of errors with strong positive serial
correlation+
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The main contributions of the present paper when compared with the previ-
ous work of Robinson~1994! are summarized in the following five points+
~i! All the results are obtained in the time domain, which is most frequently
employed by practitioners, whereas Robinson~1994! favors a frequency do-
main approach+ The derivation of results and statement of assumptions in the
time domain require different methods than in the frequency domain+ Another
reason to consider the time domain is that in some cases the resulting estima-
tors and tests are more easily applied than their frequency domain counter-
parts+ ~ii ! It is of interest to examine the estimation of the model by maximum
likelihood because the estimator is expected to have good properties+ Indeed, it
is shown that standard asymptotics and efficiency apply, which is a great ad-
vantage in applied work+ ~iii ! Whereas Robinson~1994! only considers the LM
test, we also consider the Wald and LR tests and show that standard asymptot-
ics apply to all the test statistics+ ~iv! For the submodels with a scalar param-
eter and independent and identically distributed~i+i+d+! Gaussian errors, the LM,
LR, and Wald tests are shown to be uniformly most powerful~against local
alternatives! among all invariant and unbiased tests+ ~v! In a simulation study
based on the well-known fractional unit root model it is shown that the LR test
outperforms the LM and Wald tests with respect to both size and power+

Contrary to the present paper, Tanaka~1999! considers only a special case of
the full model in Robinson~1994!, namely, the fractional unit root model, and
conducts an analysis similar to ours+ We consider the full model+

The paper proceeds as follows+ In Section 2 we set up the model and discuss
important special cases+ In Section 3 we consider inference with martingale
difference errors and derive the properties of the estimator and tests, whereas
in Section 4 we allow serially correlated errors+ Section 5 presents the results
of our Monte Carlo experiments, and Section 6 concludes+ All proofs are col-
lected in the Appendix+

2. THE MODEL

Suppose we observe the real-valued stochastic process$ yt , t 5 1,2, + + + , n% gen-
erated by the linear model

yt 5 b 'xt 1 ut , (2)

where$xt % is ak 3 1 purely deterministic component and$ut % is an unobserved
error component+ Two leading cases for the deterministic terms arext 5 1 and
xt 5 ~1, t !' , which yield the modelsyt 5 b0 1 ut and yt 5 b0 1 b1t 1 ut ,
respectively, but other terms such as seasonal dummies are also allowed for; cf+
Assumption 2, which follows+ The unobserved error process$ut % is assumed to
have the generating mechanism

f~L,u!ut 5 et I~t $ 1!+ (3)
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Here, $et % is a stationary and invertible process with only weakly dependent
errors~i+e+, no long memory or nonstationarity! andf~z,u! is a function of the
complex variatez and thep 3 1 parameter vectoru [ Q # Rp+ The chosen
parametrization is such thatu 5 0 is the true value, without loss of generality,
and this belongs to the interior ofQ+

The model is further required to satisfy the following assumptions+

Assumption 1+ The functionf~z,u! is such that~i! f~0,u! 5 1 andf~z,u! 5
f~z! if and only if u 5 0, wheref~z! 5 f~z,u!6u50+ ~ii ! f~z,u! is twice con-
tinuously differentiable inu in an open convex setQ* containingQ and

0 , det~C! , `, (4)

whereC 5 (j51
` zj zj

' andzj is the coefficient onz j in the expansion ofz~z! 5
~]0]u! ln f~z,u!6u50 in powers ofz+ ~iii ! The functionl~z,u! 5 ~f~z,u!0f~z!! 3
~]0]u! ln f~z,u! is continuous inu at u 5 0 for almost allz such that6z6 5 1,
and, letting l j ~u! be the coefficient onz j in the expansion ofl~z,u! in powers
of z, in a neighborhoodN of sizeO~n2102! of u 5 0, supu[N (j51

` 7l j ~u!72 , `+

Assumption 2+ The k 3 1 vector of regressorsxt is nonstochastic and such
that Dn 5 (t51

n Ixt Ixt
' is positive definite forn sufficiently large, where Ixt 5

f~L!xt +

Assumption 3+ The innovation sequence in~3!, $et , t 5 0,61,62, + + + % , satis-
fies E~et 6Ft21! 5 0 a+s+ and E~et

26Ft21! 5 s2 a+s+ for all t $ 1, where
Ft 5 s~$es,s # t %! is an increasing sequence ofs-algebrae, and $et

2, t 5
0,61,62, + + + % is uniformly integrable+

Some comments on the assumptions follow+ Assumption 1 is a time domain
equivalent of the assumptions made by Robinson~1994! on the parametric
model, where~i! ensures identifiability ofu and ~ii ! and ~iii ! are smoothness
conditions on the parametric model+ The unit root process nested in an auto-
regressive model is~3! with f~z,u! 5 1 2 ~1 1 u!z, but in this case the right-
hand-side inequality of~4! is not satisfied+ Differentiability to any order is easily
verified for all of the examples that follow+

Assumption 2 is a very mild multicollinearity condition on the regressors+ It
does not even require the smallest eigenvalue ofDn to tend to infinity asn r `,
which is usually required in linear regression models to get consistent esti-
mates ofb+

Finally, Assumption 3 ensures that the innovations are such that$et ,Ft % and
$et

2 2 s2,Ft % are both uniformly integrable martingale difference sequences+
This is more general than i+i+d+ and in practice not much more restrictive than
uncorrelatedness+ An implication of this assumption is thatn21 (t51

n et
2 r s2

in probability ~e+g+, Hall and Heyde, 1980, Theorem 2+22!, which we will use
later+ Assumption 3 can be replaced by any other assumption that gives rise to
a weak law of large numbers~LLN ! for $et

2% and a central limit theorem~CLT!
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in Theorem 3+1, which follows+ Thus, we could presumably relax Assumption
3 to accommodate autoregressive conditional heteroskedasticity0generalized
autoregressive conditional heteroskedasticity~ARCH0GARCH! type errors~as
suggested by an anonymous referee!, which are often found in financial data,
where our methods are especially applicable due to the large amount of data
available~see also Ling and Li, 1997!+

A very general model considered by Robinson~1994!, and satisfying the pre-
ceding assumptions, is

f~z,u! 5 ~12 z!d11ui ~1! ~11 z!d21ui ~2! )
j53

h

~12 2 cosl j z1 z2!dj1ui ~ j !, (5)

where for eachj, ui ~ j ! 5 ul for somel, and for eachl there is at least onej such
that ui ~ j ! 5 ul ; i+e+, there are up toh singularities in the spectral density ofut

andp # h+ That is, we do not require that there is auj for each singularity+ For
example, the quarterlyI ~1! hypothesis is given by either one of the functions
f~z,u! 5 ~1 2 z4!11u , where we use the sameu for each of theh 5 3 spectral
singularities, or f~z,u! 5 ~1 2 z!11u1~1 1 z!11u2~1 1 z2!11u3, where the inte-
gration orders are allowed to be different at different frequencies under the
alternative+

The case considered by Tanaka~1999! is the fractional unit root model de-
fined by

f~z,u! 5 ~12 z!d1u+ (6)

In this modelz~z! 5 ln~1 2 z! andzj 5 2j 21 such thatC 5 p206+ The weak
dependence, unit root, andI ~2! models nested in a fractional integration frame-
work correspond to~6! with d 5 0, d 5 1, andd 5 2, respectively+

Another important special case of the general model~5! is the cyclicalI ~d!
or generalized fractional autoregressive integrated moving average~ARIMA !
model of Gray, Zhang, and Woodward~1989!, recently advocated by Chung
~1996!, Bierens~2001!, and Gil-Alana~2001!+ This model is generated by the
function

f~z,u! 5 ~12 2 coslz1 z2!d1u, (7)

wherel is the cyclic frequency of interest+ Thend 5 1 andu 5 0 corresponds
to the cyclic0seasonal unit root at frequencyl+

Finally, suppose them-vector xt is I ~dx! and fractionally cointegrated and
the cointegrating vector is known a priori from economic theory such that we
can treatut 5 a 'xt as an observed time series~when the cointegration vector is
unknown and must be estimated, the results in the present paper do not apply;
see Nielsen, 2003!+ Then the hypothesisH0 : u 5 0 in ~6! with d 5 dx corre-
sponds to the null of no fractional cointegration, and withd 5 0 the hypothesis
H0 : u 5 0 corresponds to the null of fractional cointegration withI ~0! equilib-
rium errors+ A well-known example is the purchasing power parity+ Let xt con-
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sist of the timet domestic log-price, foreign log-price, and the log exchange
rate, respectively, and supposext is fractionally integrated of orderd+ Then
the purchasing power parity predicts thata 5 ~21,1,1!' should be a cointegrat-
ing vector and that the cointegration residuals should beI ~0!+ Imposinga 5
~21,1,1!' on the data, the last implication can be tested as in~6! with d 5 0+

The preceding examples illustrate the generality of our approach+ To see why
standard asymptotics apply, we briefly discuss the data generating mechanism
~see also the discussion by Ling and Li, 2001, pp+ 739–741!+When$ut % is gen-
erated by truncation as in~3!, it depends only on the shocks starting at time
t 5 1 and not on shocks starting in the infinite past as would otherwise be the
case+ Under~3!, there are two fundamentally different approaches to allow for
nonstationarity that lead to different asymptotic results+ Ling and Li ~2001! con-
sider the fractional unit root model~6! assuming thatd [ ~2 1

2
_ , 12_!, the station-

ary region, and allowing unit roots in the autoregressive polynomiala~z!+
Standard asymptotics is obtained for the fractional difference parameter, but
the estimates of the unit roots have nonstandard Dickey–Fuller type distribu-
tions+ On the other hand, Robinson~1994! and Tanaka~1999! capture the unit
root through the fractional difference parameterd and assume thata~z! is sta-
tionary+We follow this practice in the present paper+ Because no unit root must
be estimated ina~z! we avoid the nonsmooth behavior of the model near the
unit roots, and this admits standard asymptotics in our setting+

In the subsequent analysis we first consider the case where$et % is a martin-
gale difference sequence, and then we treat the full model in which$et % is al-
lowed to follow an ARMA process+

3. INFERENCE WITH MARTINGALE DIFFERENCE ERRORS

The Gaussian log-likelihood function of~2! and~3! is

L~b,s2,u! 5 2
n

2
ln~s2! 2

1

2s2 (
t51

n

~f~L,u!~ yt 2 b 'xt !!
2 (8)

apart from constant terms+ The asymptotic results derived in this section im-
pose only Assumption 3 on the error process+ Gaussianity is not necessary for
most of our results and is used only to choose a likelihood function and to
show efficiency+

Because onlyu is of interest we concentrate out the nuisance parameter
~b ',s2!+ This does not influence the results, and in fact Zu is asymptotically
uncorrelated with~ Zb ', [s2! ~see the formula for the information matrix~21!,
which follows!+ The concentrated likelihood is

l ~u! 5 L~b~u!,s2~u!,u! 5 2
n

2
ln~s2~u!!, (9)
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where

b~u! 5 @~f~L,u!X !'~f~L,u!X !#21~f~L,u!X !'f~L,u!Y, (10)

s2~u! 5
1

n (
t51

n

~f~L,u!~ yt 2 b~u!'xt !!
2, (11)

and capital letters denote the appropriate matrices of observations; e+g+, X is the
n 3 k matrix with xt

' as thetth row+ Here, b~u! ands2~u! are functions ofu+
They define the estimator~ Zb ', [s2! 5 ~b~ Zun!',s2~ Zun!! of ~b ',s2!+We shall also
need~ Db ', Is2! 5 ~b~0!',s2~0!! which is the estimator of~b ',s2! under the true
value ofu+ Note thatb~u! is just the ordinary least squares estimator in a re-
gression off~L,u!yt on f~L,u!xt ands2~u! is the usual maximum likelihood
variance estimator for the residual processf~L,u!~ yt 2 b~u!'xt !+

Note that the estimate ofb need not be consistent in our model+ One such
case occurs whenxt 5 1 in the fractional unit root model~6! with d 5 1+ Then
Db 5 b0 1 e1, so Db is inconsistent, but this has no influence on inference based

on Iut 5 ut 1 ~ Db 2 b0! ~see Robinson, 1994; also see the Appendix!+ In fact,
what we need in the proofs is the relation

E7~ Db 2 b!'Dn
1027 5 O~1!, (12)

which follows under Assumption 2 by definition ofDb+

3.1. Estimation

In this section we show the existence of a local MLE and derive the limiting
distribution theory following the approach of Sargan and Bhargava~1983! and
Tanaka~1999!+ In particular, we consider the conditional sum of squared resid-
uals objective function~9!+

In the following we find it convenient to consider maximizing

g~u! 5 l ~u! 2 l ~0! 5 2
n

2
ln312

1

n

(
t51

n

~f~L! Iut !
2 2 (

t51

n

~f~L,u! [ut !
2

1

n (
t51

n

~f~L! Iut !
2 4 , (13)

where Iut 5 yt 2 Db 'xt and [ut 5 yt 2 Zb 'xt + Assume first that we are in a
neighborhood of the true value, i+e+, that there exists ad such thatu 5 d0Mn
~the existence ofd will be proved shortly!+ Then we can show the following
results+
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THEOREM 3+1+ Let Assumptions 1–3 be satisfied and let g~u! be given by
(13). Then, underu 5 d0Mn,

(i) g~u! rd W~d! 5
d '

2
~2C102Z 2 Cd!,

(ii)
]g~u!

]d
rd

]W~d!

]d
5 C102Z 2 Cd,

(iii)
]2g~u!

]d]d '
rp 2 C,

where Z is a p-dimensional standard normal random vector.

Next, we prove the existence of a local MLEZun of u0 5 0 such thatMn Zun 5
Zd 5 Op~1! following Sargan and Bhargava~1983! and Tanaka~1999!+ Let i be

a p 3 1 direction vector, i+e+, satisfying 7i7 5 1, where 7{7 is the Euclidean
norm, and letd 5 7d7i+ Generalizing the scalar approach by Sargan and Bhar-
gava~1983! and Tanaka~1999!, it suffices to show that

PSi'
]g~d0Mn!

]d
$ 0D # « (14)

for any direction vectori, « . 0, andn $ n0 ~n0 fixed! and for some7d7 . 0+
Note thati']g~d0Mn!0]d is the directional derivative ofg at d0Mn, i+e+, the rate
of change ofg at d0Mn in the directioni+

Thus, for all direction vectorsi, moving some distance7d7 in the directioni
from the true value, the directional derivative ofg in the same directioni should
be negative for sufficiently largen+ In the one-dimensional casei 5 61 and
~14! reduces to the corresponding conditions of Sargan and Bhargava~1983!
and Tanaka~1999!+ It follows from Theorem 3+1 that

PSi'
]g~d0Mn!

]d
$ 0Dr PSi'

]W~d!

]d
$ 0D

5 PSi'
]W~d!

]d
2 Ei'

]W~d!

]d
$ 2Ei'

]W~d!

]d
D

#

VarSi'
]W~d!

]d
D

SEi'
]W~d!

]d
D2

5
1

i'Ci7d72
,

which can be made arbitrarily small by selecting7d7 large+ Thus, ~14! holds by
appropriate choices of7d7 and n0, and the existence of the local MLEZun is
ensured+
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THEOREM 3+2+ Under Assumptions 1–3, there exists a local maximizerZun

of the concentrated likelihood (9) that satisfies, as nr `,

Mn Zun rd N~0,C21!, (15)

and under the additional assumption of Gaussianity of$et %, Zun is asymptoti-
cally efficient in the sense that its asymptotic variance attains the Cramér–Rao
lower bound.

This asymptotic normality result stands in sharp contrast, e+g+, to the
nonstandard Dickey–Fuller distribution+ In that case, n21]l ~u!0]u6u50 n
1
2
_~W~1! 2 1!2, n22]2l ~u!0]u]u ' n *0

1 W2~t ! dt, and thusn Zu n 1
2
_~W~1! 2 1!20

*0
1 W2~t ! dt, whereW~t ! is a standard Brownian motion andn is weak con-

vergence~see, e+g+, Phillips, 1987; Phillips and Xiao, 1998!+ Furthermore, if a
constant term is included in the Dickey–Fuller model the distribution changes+
This is not the case in our model, where the limiting distribution is indepen-
dent of the nuisance parameter~b ',s2!+

The additional assumption of Gaussianity allows a strengthening of the
results+ Thus, Zun is asymptotically the best estimator in the class of all
Mn-consistent and asymptotically normal estimators+ This result also is in con-
trast with those usually found in the theory of nonstationary time series+

The simple asymptotic distribution in Theorem 3+2 makes it easy to con-
structp-dimensional confidence ellipsoids foru or conduct Wald-type tests of
hypotheses onu+ This is examined in detail in the next section+

3.2. Hypothesis Testing

Suppose we wish to test the hypothesis

H0 : u 5 u0 5 0, (16)

whereu0 is set to zero because otherwise we would get trivial asymptotic dis-
tributions under the null+ Robinson~1994! considers the LM test in a frequency
domain framework+ We now consider all the classical likelihood-based~Wald,
LR, LM ! tests~see Engle, 1984! in the time domain+

From Theorem 3+2, the Wald test statistic is

W 5 n Zun
'C Zun+ (17)

We denote by a tilde an estimator under the null hypothesis+ The ~quasi! LR
test statistic is given by

LR 5 2~L~ Zb, [s2, Zun! 2 L~ Db, Is2,0!! 5 n lnS Is2

[s2D (18)
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~see equation~9!!+ Finally, to derive the LM test statistic

LM 5
]L~h!

]h '
FE0S ]L~h!

]h

]L~h!

]h '
DG21 ]L~h!

]h *
b5 Db,s25 Is2,u50

, (19)

whereh 5 ~b ',s2,u '!' , we note that

]L~b,s2,u!

]u *
b5 Db,s25 Is2,u50

5 Is22 (
t51

n

(
j51

t21

zj Iet2j Iet 5 n DAn, (20)

whereas the other two partial derivatives vanish+ Here, DAn 5 (j51
n21 zj Ir~ j ! and

Ir~ j ! is the j th sample autocorrelation ofIet 5 f~L!~ yt 2 Db 'xt !+
The diagonal block of the Fisher information matrix corresponding tou is

1

s4 (
t51

n

(
s51

n

(
j51

t21

(
i51

s21

zj zi
'E0~et2j et eses2i ! 5

1

s4 (
t51

n

(
j51

t21

zj zj
'E~et2j

2 E~et
26Ft21!!

5 n (
j51

n21S12
j

n
Dzj zj

' ,

so the Fisher information matrix in~19! evaluated atb 5 Db,s2 5 Is2,u 5 0 is
n times

3
s22Dn 0 0

0
1

2
s24 0

0 0 Cn

4 , (21)

which is invertible forn sufficiently large by~4! and Assumption 2+ The diag-
onal blocks corresponding tob and s2 follow using that$et ,Ft % and $et

2 2
s2,Ft % are martingale differences, respectively+ In Tanaka~1999!, zj 5 j 21 and
C 5 p206+ We allow for more general weights to the autocorrelations inDAn,
corresponding to the more flexible model represented by the functionf~z,u!+
The expressionCn 5 (j51

n21~1 2 ~ j0n!!zj zj
' is a truncated version ofC, which is

asymptotically equivalent toC+ Thus, the LM test statistic is

LM 5 n DAn
' C21 DAn+ (22)

In the fractional unit root model~6! wherezj 5 j 21 we haveC100 5 1+5831,
C500 5 1+6294, andC 5 C` 5 p206 5 1+6449+

We derive the distribution of the test statistics under the more general as-
sumption of local~Pitman! alternatives given by the sequence

H1 : u 5 u1n 5 d0Mn (23)

with d a fixed p 3 1 vector+
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THEOREM 3+3+ Let Assumptions 1–3 be satisfied and let T denote theW,
LR, or LM test statistics given by (17), (18), and (22). Then, under (23), it
holds that

T rd xp
2~d 'Cd!

as nr `. The three tests are consistent and asymptotically equivalent; i.e., if
T1 and T2 are any two of the statistics then T1 2 T2 r 0 in probability. Under
the additional assumption of Gaussianity they are locally most powerful.

Usually in nonstandard tests such as the Dickey–Fuller test, the three test
statistics are not equivalent+ From the proof we note that the equivalence of the
tests depends crucially on the information matrix equality, which holds asymp-
totically in our model but does not hold when the unit root is nested in an auto-
regressive alternative+

Thus, we find that unusually simple asymptotic tests can be performed in
this model using the chi-squared distribution+ Also, we can easily calculate the
asymptotic local power of the three test statistics, which we state as a corollary+

COROLLARY 3+1+ Under the conditions of Theorem 3.3 it holds that, under
u 5 d0Mn,

P~T . xp,12a
2 ! r 12 Fd 'Cd~xp,12a

2 ! (24)

as nr `, wherexp,12a
2 is the100~1 2 a!% point of thexp

2 distribution and
Fd 'Cd is the distribution function of thexp

2~d 'Cd! distribution.

Using Corollary 3+1 we can compare the finite sample performance of the
tests with the approximation offered by asymptotic theory, and we shall discuss
this in Section 5+

Next, we show that even stronger results can be obtained in a subclass of
models+

3.3. Uniformly Most Powerful Tests

While the general theory discussed previously applies for multidimensionalu,
even stronger results are obtained in the special case of scalaru, e+g+, ~6! or
~7!, which we now consider briefly+ Following the reasoning in Elliott et al+
~1996! and Tanaka~1999!, we derive the power envelope for the two-sided test-
ing problems under invariance and unbiasedness conditions and show that this
two-sided power envelope is equal to~24!, i+e+, that this power is achieved by
our tests+ The unbiasedness condition is new because Elliott et al+ ~1996! and
Tanaka~1999! only consider one-sided tests and thus do not need unbiasedness+

In particular, we assume that the errors are Gaussian and that the model in
~3! is characterized by a scalar parameteru+ This rules out the general model

126 MORTEN ØRREGAARD NIELSEN

https://doi.org/10.1017/S0266466604201050 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604201050


in ~5! but still applies to most of the models in Section 2+ The testing problem
is invariant to any transformation of the typey r ay1 Xb ~a . 0 andb [ Rk!,
or in the parameter space,

~u,b,s2! r ~u,b 1 ab,a2s2!+ (25)

Thus, we shall restrict attention to the family of tests that are invariant to the
group of transformations in~25! ~see Lehmann, 1986, Chap+ 6!+

Assume that the DGP is given by~2! and~3!, with true parameter valueu0n 5
c0Mn for some fixedc+ Now consider testing the hypothesisH0 : u 5 0 against
the sequence of local alternativesH1 : u1n 5 d0Mn for some fixedd+ This is a
test of a simple null vs+ a simple alternative with nuisance parameter~b ',s2!+
Then we can apply invariance arguments to~b ',s2! and the Neyman–Pearson
lemma tells us~e+g+, Lehmann, 1986, p+ 338! that the test that rejects the null
when

Mn 5 n
(
t51

n

Ietn
2 2 (

t51

n

[etn
2

(
t51

n

Ietn
2

(26)

becomes large is most powerful invariant~MPI! with respect to the group of
transformations~25!+ As in the previous section, Ietn and [etn are residuals under
H0 andH1, respectively+ The next theorem derives the limiting distribution of
Mn under local alternatives+

THEOREM 3+4+ Let Mn denote the MPI test statistic (26), withu0n 5 c0Mn
~c a fixed scalar) instead ofu0 5 0. Let Assumptions 1 and 2 be satisfied and
suppose the error process is i.i.d. Gaussian. Then, under the sequence of local
alternativesu1n 5 d0Mn ~d a fixed scalar), it holds that

Mn rd M~c,d! 5 2dMCZ 1 d~2c 2 d!C

as nr `, where Z is a standard normal variable.

Thus, invariance arguments have reduced the testing problem to the consid-
eration of the statisticMn, and the power envelope of all invariant tests is the
power ofM~d,d!+ Obviously, the results in Tanaka~1999! apply with little change
to the corresponding one-sided testing problem in our setup and this power en-
velope is achieved by one-sided versions of our tests+ However, because we
consider mainly the two-sided testing problem, we cannot hope to achieve the
same power envelope, and thus the following results differ from those in Tanaka
~1999!, where only one-sided hypotheses are considered+

To find a test statistic that applies against two-sided alternatives we invoke
the principle of unbiasedness~see Lehmann, 1986, Ch+ 4! to construct an MPI
unbiased test+ Unbiasedness requires that the power of the test never falls be-
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low the nominal significance level for any point in the alternative+ Because for
varying c the family of distributionsM~c,d! is normal, it satisfies the require-
ment that it be strictly totally positive of order three~STP3; see Lehmann, 1986,
p+ 119!, and hence the power envelope of all invariant and unbiased tests of
H0 : u 5 0 againstH1 : u1n 5 d0Mn is given by P~d! 5 1 2 P~C1,a~d! ,
M~d,d! , C2,a~d!! ~Lehmann, 1986, p+ 303!, where the constants are deter-
mined by

P~C1,a~d! , M~0,d! , C2,a~d!! 5 1 2 a, (27)

]P~C1,a~d! , M~c,d! , C2,a~d!!

]c *
c50

5 0+ (28)

A test whose asymptotic power attains the power envelope for all pointsd is
asymptotically uniformly most powerful invariant unbiased+ The following theo-
rem shows that the power envelope of all invariant and unbiased tests is given
by ~24!, i+e+, that this power is achieved by our tests+

THEOREM 3+5+ Let Assumptions 1 and 2 be satisfied and suppose the error
process is i.i.d. Gaussian. Then the asymptotic Gaussian power envelope of all
invariant (with respect to (25)) and unbiased tests of H0 : u 5 0 against H1 : u1n 5
d0Mn ~d a fixed scalar) is given by (24). Thus, theW, LR, and LM tests are
uniformly most powerful (against local alternatives) among all invariant and
unbiased tests.

This result is in stark contrast to the results of Saikkonen and Luukkonen
~1993a, 1993b! and Elliott et al+ ~1996!, among others, whose tests are only
point optimal invariant, i+e+, tests that have maximal power against a single
prespecified~local! point in the alternative+ Our criterion is against all possible
~local! alternatives+

Furthermore, Theorem 3+5 also applies to the test statistic in Robinson~1994!
and thus generalizes his result, too, because he only shows that his test is lo-
cally most powerful+

4. INFERENCE WITH SERIALLY CORRELATED ERRORS

Now we extend the basic model to allow for weakly dependent~ARMA ! errors+
In particular, we work with the following assumption+

Assumption 4+ $et % is generated by an ARMA model of the form

a~L!et 5 b~L!«t , (29)

where$«t % satisfies Assumption 3+ Here a~z! and b~z! are finite polynomials
without common roots and all roots strictly outside the unit circle+ The coeffi-
cients in the autoregressive and moving average polynomials are collected in
the q 3 1 parameter vectorc+
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This assumption follows Tanaka~1999!; Tanaka in addition assumes that$«t %
is i+i+d+ Thus, we offer more generality in this respect too, because of our mar-
tingale difference assumption on$«t % +

Collect the parameters of the dynamic part of the model in the vector
g 5 ~u ',c '!' with true valueg0 5 ~0',c0

' !' and let c~z,c! 5 a~z!b21~z!+
Analogously toz~z,u!, define j~z,g! 5 ] ln~f~z,u!c~z,c!!0]g and j~z! 5
] ln~f~z,u!c~z,c!!0]g 6g5g0

5 (j51
` jj z j+ Note thatjj 5 ~zj

' ,cj
'!' with zj de-

fined as before andcj defined as the coefficient onz j in the expansion of
] ln c~z,c!]c6c5c0

in powers ofz+ As in Assumption 1~ii ! we define

J 5 (
j51

`

jj jj
'5 FC k '

k FG (30)

with k 5 (j51
` cj zj

' andF 5 (j51
` cj cj

' +
It is easily shown thatF is the Fisher information forc under Assumption 4;

e+g+, if $et % is an AR~1! process with coefficienta then cj 5 2a j21 and F 5
~1 2 a2!21+ Finally, corresponding to~4!, we assume that

0 , det~C 2 k 'F21k! , `, (31)

which in particular implies thatJ is nonsingular+
The log-likelihood function in the case of serially correlated errors is, except

for constants,

L~b,s2,g! 5 2
n

2
ln~s2! 2

1

2s2 (
t51

n

~f~L,u!c~L,c!~ yt 2 b 'xt !!
2, (32)

to be compared with~8!+ The concentrated likelihood function forg 5 ~u ',c '!'

becomes

l ~g! 5 2
n

2
ln~s2~g!! (33)

except for constants, where

b~g! 5 @~f~L,u!c~L,c!X !'~f~L,u!c~L,c!X !#21

3 ~f~L,u!c~L,c!X !'f~L,u!c~L,c!Y, (34)

s2~g! 5
1

n (
t51

n

~f~L,u!c~L,c!~ yt 2 b~g!'xt !!
2, (35)

and ~ Zb ', [s2! and ~ Db ', Is2! are now defined in terms of the functions~34! and
~35!+ Corresponding to~13! we consider the function

g~g! 5 l ~g! 2 l ~g0!

5 2
n

2
ln312

1

n

(
t51

n

~f~L!c~L,c0! Iut !
2 2 (

t51

n

~f~L,u!c~L,c! [ut !
2

1

n (
t51

n

~f~L!c~L,c0! Iut !
2 4 +
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4.1. Estimation

The analysis of the model with serially correlated errors proceeds in the same
way as with martingale difference errors as discussed previously+ Thus, we are
able to show the existence of a local MLE[gn 5 ~ Zun

' , Zcn
' !' satisfyingMn [gn 5

Op~1! and to prove joint asymptotic normality ofZun and Zcn+ Under Gaussianity
we achieve efficiency as before+

THEOREM 4+1+ Under Assumptions 1, 2, and 4 and (31) there exists a local
maximizer [gn 5 ~ Zun

' , Zcn
' !' of the concentrated likelihood (33) that satisfies, as

n r `,

Mn~ [gn 2 g0! rd N~0,J21!+ (36)

Under the additional assumptions of Gaussianity of$«t % and correct (minimal)
specification (all elements ofc0 are nonzero), [gn is asymptotically efficient in
the sense that its asymptotic variance attains the Cramér–Rao lower bound.

Based on this theorem it is possible to create joint~ p 1 q!-dimensional con-
fidence ellipsoids foru andc that take into account the asymptotic correlation
between the estimates represented by the matrixk+ This is important for in-
ference, not only on u but also onc+ Usually, in applied work one would
determine the appropriate filtration of data~i+e+, the functionf~z,u!! by Dickey–
Fuller tests or similar methods and then treat the filtered data as if it were ob-
served, i+e+, as if the correct filter were known a priori+ The resulting inference
on c is incorrect, because the correlation betweenu and c is ignored+ When
applying Theorem 4+1, this pretesting problem is avoided becauseu andc are
estimated jointly+

When inference onu is of interest, the asymptotic marginal distribution ofZun

can be immediately derived from the theorem+

COROLLARY 4+1+ Under the conditions of Theorem 4.1,

Mn Zun rd N~0, ~C 2 k 'F21k!21! (37)

as nr `.

In parallel with Corollary 4+1, var~Mn~ Zcn 2 c0!! r ~F 2 kC21k '!21 ~by
the partitioned matrix inverse formula!, and in the special case wheref is not
present this reduces toF21, which is the Fisher information onc+ Thus, the
well-known asymptotic efficiency of the MLE in pure ARMA models comes
out as a special case of our results+ More important, Theorem 4+1 with f present
demonstrates the joint efficiency in the generalized model+

To illustrate the loss of efficiency in estimation ofu stemming from serially
correlated errors, consider again the fractional unit root model+ Suppose we
know that the errors are not serially correlated but simply are martingale dif-
ferences+ Then the asymptotic variance ofMn Zun is 60p2 by Theorem 3+2+ If
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instead it is known that the errors exhibit serial correlation of the AR~1! or
MA ~1! type with coefficienta, then the asymptotic variance ofMn Zun is the
inverse of~p206! 2 ~~1 2 a2!0a2!~ ln~1 2 a!!2 by Corollary 4+1+

Figure 1 shows the relative efficiency of these two estimates as a function of
the serial correlation parameter, a+ This is calculated as

12
6

p2

12 a2

a2 ~ ln~12 a!!2, (38)

which has a minimum ata 5 0+684+ This suggests that moderate levels ofa
best replicate the behavior of the~weighted! autocorrelations of a fractionally
integrated process+ The pointa 5 0 shows that the relative efficiency allowing
for serial correlation when it is not present is 0+392, as noted by Tanaka~1999!+

4.2. Hypothesis Testing

We now consider the testing problems~16! and~23! in the presence of serially
correlated errors, where again onlyu is of interest+ The Wald, LR, and LM test
statistics are

W 5 n Zun
'~C 2 [k ' ZF21 [k! Zun, (39)

LR 5 n lnS s2~0, Dcn!

s2~ Zun, Zcn!D, (40)

LM 5 n DAn
' ~C 2 Ik ' EF21 Ik!21 DAn, (41)

Figure 1. Relative efficiency of Zun in the presence of first-order autoregressive or mov-
ing average errors+
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where [k and ZF are evaluated atZcn and Ik and EF are evaluated atDcn, the esti-
mate ofc under the null, and DAn 5 (j51

n21 zj Ir~ j ! is defined in terms of thej th
sample autocorrelation ofI«t 5 f~L!c~L, Dcn!~ yt 2 Db 'xt !+

It is obvious from the expressions for the test statistics andDAn that the LM
test is not necessarily the simplest to apply in practice+ The implementation of
the Wald and LR test statistics is straightforward when we can estimate the
model under both the null and alternative and should not be a problem, given
the methods available in the previous sections+ In particular, the LR test is at-
tractive because there is no need to calculateC, k, andF+

Similar to the calculation of the infinite-order moving average coefficients
in standard ARMA models, the calculation ofk and F can be quite cumber-
some when the model in Assumption 4 is more complex than just an AR~1! or
MA ~1! model ~see also the discussion in Tanaka, 1999!+ To overcome this is-
sue, one could employ the numerical approximations

ZW 5 n Zun
'S(

t51

n ] [«t

]u

] [«t

]u '
Y(

t51

n

[«t
2D Zun*

H1

,

ZLM 5 n (
t51

n

I«t

] I«t

]u ' S(
t51

n ] I«t

]u

] I«t

]u ' (t51

n

I«t
2D21

(
t51

n

I«t

] I«t

]u *H0

,

which of course have the same asymptotic properties asW andLM+ However,
becauseC,k, and F, and thusW and LM, can be calculated for any given
parameter value~say, Tg! by numerically expanding] ln f~z,u!c~z,c!0]g at
g 5 Tg in powers ofz using a computer, we do not consider ZW and ZLM further+

The asymptotic distribution of the tests under local alternatives and with se-
rial correlation is given by the following theorem+

THEOREM 4+2+ Let Assumptions 1, 2, and 4 and (31) be satisfied and let T
denote theW, LR, or LM test statistics (39), (40), and (41). Then, under (23),
it holds that

T rd xp
2~d '~C 2 k 'F21k!d!

as nr `. The three tests are consistent and asymptotically equivalent, and
under the additional assumption of Gaussianity they are locally most powerful.

This theorem shows that the tests are still locally most powerful, even in the
presence of serially correlated errors+ Settingk 5 F 5 0, i+e+, when no serial
correlation is present andc is not estimated, generates Theorem 3+3 as a spe-
cial case+ As with Corollary 3+1 in the case without serial correlation, we can
easily calculate the asymptotic local power, giving us a benchmark against which
to compare the power of the tests in finite samples+
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COROLLARY 4+2+ Under the conditions of Theorem 4.2 it holds that, under
u 5 d0Mn,

P~T . xp,12a
2 ! r 12 Fd '~C2k 'F21k!d~xp,12a

2 ! (42)

as n r `, where xp,12a
2 is the 100~1 2 a!% point of thexp

2 distribution
and Fd '~C2k 'F21k!d is the distribution function of thexp

2~d '~C 2 k 'F21k!d!
distribution.

Using Corollary 4+2, Figure 2 shows the local power functions against posi-
tive alternatives for the fractional unit root model with different specifications
of AR~1! errors+ Becaused only enters~42! throughd2, the power functions
are symmetric+ The starred line is the local power function when the errors are
a martingale difference sequence and this is known~i+e+, using Corollary 3+1!+
The dotted, dashed, and solid lines correspond to AR~1! specifications of the
errors with coefficienta 5 20+5, a 5 0, anda 5 0+5, respectively+ In the case
a 5 0, the errors are a martingale difference sequence, but an AR~1! error pro-
cess is estimated+

The local power of the tests in the model witha 5 0+5 is much lower than
for the other specifications+ On the other hand, the power loss in the model
with a 5 20+5 is small+ This is in accordance with the results in Section 4+1;
cf+ ~38! and Figure 1+

Figure 2. Asymptotic local power functions with martingale difference and first-order
autoregressive or moving average errors+
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5. FINITE SAMPLE PERFORMANCE

In this section, we compare the asymptotic local power functions derived in the
previous sections to the finite sample rejection frequencies by means of Monte
Carlo experiments+

The model we use for the simulation study is the well-known fractional unit
root model with an AR~1! error:

~12 L!11u yt 5 et I~t $ 1!, (43)

~12 aL!et 5 «t , (44)

where$«t % is i+i+d+ standard normal+ This model is also studied in simulations
by Robinson~1994! and Tanaka~1999!+ In addition to this fractional DGP, Rob-
inson ~1994! also considers an autoregressive DGP and finds that his test is
dominated by Dickey–Fuller type tests in the latter case+

We concentrate on comparing the finite sample performance of the three test
statistics~Wald, LR, and LM!+ Tanaka~1999! documents that the time domain
LM test outperforms Robinson’s~1994! frequency domain LM test, so we do
not consider the frequency domain test here+ The properties of the estimatorZun

in this model are examined by Tanaka~1999!, who finds that in the case with-
out serial correlation the behavior of the local MLE is very close to the asymp-
totic distribution+ However, with serially correlated errors the performance of
the local MLE degrades, and especially in the case of strong positive serial
correlation the performance is poor+ This is expected based on~38! and Figure 1+

Throughout, we fix the nominal level~type I error! at 0+05 and the number
of replications at 5,000+ We consider the sample sizesn 5 100 andn 5 500+
The former is typical for macroeconomic time series and the latter~or even
larger! for financial time series+ For each experiment, 5,000 samples of size
n 5 500 were generated using the rann, diffpow, and armagen routines in Ox
version 3+00 including the Arfima package version 1+01 ~see Doornik, 2001;
Doornik and Ooms, 2001!+ For the smaller sample size, n 5 100, we used the
first 100 out of the 500 observations from each sample+

Figures 3–6 present the simulated finite sample power functions of the test
statistics for different specifications of the error term in~44! ~the tables con-
taining the numerical values used to construct the figures can be obtained from
the author upon request!+ For each value ofu, the asymptotic local power has
been calculated by settingd 5 uMn in Corollaries 3+1 and 4+2 and is reported
under the heading Limit+ In all the figures, the left-hand-side figures~a! and~c!
present the simulated power functions of the tests calculated as in Sections 3+2
and 4+2, whereas the simulated power functions in the right-hand-side fig-
ures~b! and~d! are calculated using size corrected critical values+

First, consider the case of martingale difference errors shown in Figure 3,
i+e+, $et % 5 $«t % + In this case, all the finite sample rejection frequencies are very
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Figure 3. Finite sample power functions with martingale difference errors+

Figure 4. Finite sample power functions with AR~1! errors with coefficienta 5 20+5+
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Figure 5. Finite sample power functions with AR~1! errors with coefficienta 5 0+

Figure 6. Finite sample power functions with AR~1! errors with coefficienta 5 0+5+
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close to the asymptotic local power, except the LM test in the small sample
n 5 100, which has lower power than the LR and Wald tests+

When the errors are serially correlated the differences between the test sta-
tistics are more apparent+With negative serial correlationa 5 20+5 ~Figure 4!,
and witha 5 0 ~Figure 5!, i+e+, when there is no serial correlation in the DGP
but an AR~1! is estimated, the LM test loses power compared to the LR and
Wald tests, and the Wald test tends to be oversized in the small sample, which
is also reflected by its very low size corrected power forn 5 100 in Figure 5~b!+

In Figure 6 the errors are positively serially correlated witha 5 0+5+ From
the previous sections we know that the asymptotic local power is much lower
in this case than with negative or no serial correlation+ As Figure 6 shows, this
is also the case for the finite sample rejection frequencies~note that the scaling
along the vertical axis is different in Figures 6~a! and ~b!, compared with the
other plots!+ In the small sample, n 5 100, there are severe distortions, espe-
cially to the LM and Wald tests+ The LM test completely loses power against
negative alternatives, with rejection frequencies even lower than the nominal
size, and the Wald test is severely oversized+ Whenn 5 500 the situation im-
proves, but the LM test still has the lowest power and the Wald test is still
severely oversized+

Unreported simulations~which can be obtained from the author upon re-
quest! show that, not surprisingly, the performance of the LR test~with n 5
100! is very bad when relevant deterministic terms are left out and that the
inclusion of irrelevant mean and0or trend terms decreases power against posi-
tive values ofu+ This is well known from AR-based unit root tests such as the
Dickey–Fuller test, where a mean~and trend! must be included if any power
against nonzero mean~and trend! is desired+ However, it is worth noting that,
unlike in our model, the distribution of Dickey–Fuller type test statistics changes
when deterministic terms are included+

Overall, the simulations show that the improvement with respect to both
size and power when consideringn 5 500 instead ofn 5 100 is substantial+
Thus, one would expect very good performance of the tests in financial appli-
cations, where samples are often many times larger+ In such cases, the power
loss resulting from the estimation of serially correlated errors would also be of
less importance+ It was also found that generally the LM test has lower power
than the Wald and LR tests and that the Wald test is often severely oversized+
We have stressed the possibility of conducting simple asymptotic inference in
our model, using the chi-squared tables, and because this property is lost if
size corrected critical values must be employed, this weighs heavily against the
Wald test+

Even though we concentrated on the simple and well-known fractional unit
root model in the present simulation study, similar relative performance is to
be expected in more complicated models such as the general model in~5!+ Thus,
the LR test is expected to outperform the Wald and LM tests with respect to
both size and power also in more complicated models+
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6. CONCLUSION

We have considered likelihood inference in a wide class of potentially nonsta-
tionary univariate time series models+ In such cases, inference is usually drawn
in an autoregressive framework and nonstandard asymptotics apply+

In this paper we have shown that, when the estimation and testing problems
are embedded in a fractional integration framework, standard asymptotics ap-
ply and desirable statistical properties of likelihood inference reemerge+ In par-
ticular, there exists a local MLE that is asymptotically normal, and the classical
likelihood-based tests~Wald, LR, and LM! are consistent and asymptotically
chi-squared distributed under local alternatives+ Under the additional assump-
tion of Gaussianity, the local MLE is asymptotically efficient, and the tests are
locally most powerful+ Furthermore, in the scalar parameter case with i+i+d+
Gaussian errors, our tests achieve the asymptotic Gaussian power envelope of
all invariant and unbiased tests; i+e+, they are asymptotically uniformly most
powerful ~against local alternatives! among all invariant and unbiased tests+

The Monte Carlo study shows that with sample sizes typical for macroeco-
nomic time series the tests perform reasonably well, and with larger sample
sizes such as those usually found in finance applications the performance of
the tests is very good and their rejection frequencies very close to the asymp-
totic local power+ In our Monte Carlo study the LR test dominates with respect
to both size and power in finite samples+ The LR test also has attractive com-
putational features when serially correlated errors are allowed for, because it
avoids a quite cumbersome calculation of covariance matrices+

The results derived in this paper could also be applied to the problem of
testing for fractional cointegration when the cointegrating vector is known a
priori, e+g+, from economic theory+When the cointegrating vector must be esti-
mated the results in this paper no longer apply+ This presents an interesting
avenue for further research which is currently under investigation by the au-
thor ~see, e+g+, Nielsen, 2003!+
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APPENDIX: PROOFS

Proof of Theorem 3.1. First, by noting thatf~L! Iut 5 et 1 ~b 2 Db!' Ixt it is immedi-
ate that the denominator ing~u! is

~s2 1 op~1!! 1
1

n (
t51

n

~b 2 Db!' Ixt Ixt
'~b 2 Db! 1

1

n (
t51

n

~b 2 Db!' Ixt et (A.1)

by Assumption 3+ The last two terms are asymptotically negligible because

E** 1

n (
t51

n

~b 2 Db!' Ixt Ixt
'~b 2 Db!** 5 OS1

n
tr~Dn

2102Dn Dn
2102!D
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by Assumption 2 and~12! and

E** 1

n (
t51

n

~b 2 Db!' Ixt et**
2

5 OS1

n
tr~Dn

2102Dn Dn
2102!D

using also uncorrelatedness of$et % +
The numerator ing~u! can be written as

(
t51

n

~f~L! Iut !
2 2 (

t51

n

~f~L!ut !
2 1 (

t51

n

~f~L,u!ut !
2 2 (

t51

n

~f~L,u! [ut !
2 (A.2)

1 (
t51

n

~f~L!ut !
2 2 (

t51

n

~f~L,u!ut !
2+ (A.3)

By the mean value theorem we have, for someu* 5 u*~t, n! such that 0# 7u*7 # 7u7,

f~L,u!ut 5 f~L!ut 1 u '
]f~L,u* !

]u
ut

5 et 1
d '

Mn
z~L!et 1

d '

Mn
~l~L,u* ! 2 z~L!!et , (A.4)

where the last term has mean zero and varianceO~n21 (j51
` 7l j ~u

* ! 2 zj72! 5 o~n21!
by Assumption 1~iii ! and dominated convergence+ As in Robinson~1994, p+ 1435!, it
follows that

f~L,u!ut 5 et 1
d '

Mn
z~L!et 1 op~n2102! (A.5)

uniformly in t+ Using ~A+5! we get that~A+3! is

2 (
t51

n d '

Mn
~z~L!et !et 2 (

t51

n d '

Mn
~z~L!et !~z~L!et !

'
d

Mn
1 op~1!+ (A.6)

For a fixedm . 0, consider thep-vector vt 5 (j51
m zj et2j et and thep 3 p matrix

Vt 5 (j51
m (k51

m zj zk
'et2j et2k+ By Assumption 3, EVt 5 s2 (j51

m zj zj
' and applying an

LLN , n21 (t51
n Vt r s2 (j51

m zj zj
' in probability+ The vector sequence$vt % is a martin-

gale difference sequence with respect to the filtration$Ft % becausevt is Ft 0B measur-
able and integrable andE~vt 6Ft21! 5 (j51

m zj et2j E~et 6Ft21! 5 0 a+s+ for all t+ Using
Assumption 3, Evt vt' 5 E~E~vt vt' 6Ft21!! 5 s4 (j51

m zj zj
' , and by application of a mar-

tingale difference CLT~e+g+, Brown, 1971; Hall and Heyde, 1980, Chap+ 3+2!, we estab-
lish that

1

Mn (
t51

n

vt rd NS0,s4 (
j51

m

zj zj
'D+ (A.7)

BecauseE7n2102 (t51
n (j5m11

n21 zj et2j et72 5 O~(j5m11
` 7zj 72! can be made arbitrarily

small by choosingm large by~4!, we can apply Bernstein’s lemma~e+g+, Hall and Heyde,
1980, pp+ 191–192! to conclude that~A+3! converges in distribution tod '~2C102Z 2
Cd!s2+ Because
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g~u! 5 2
n

2
lnF12

1

n
~2W~d! 1 op~1!!G5 W~d! 1 op~1!

we have proven the first statement of the theorem if we show that~A+2! is asymptoti-
cally negligible+

Thus, ~A+2! can be written as

(
t51

n

~b 2 Db!' Ixt Ixt
'~b 2 Db! 1 (

t51

n

~b 2 Zb!' [xt [xt
'~b 2 Zb! (A.8)

2 2 (
t51

n

~b 2 Db!' Ixt et 2 2 (
t51

n

~b 2 Zb!' [xt ~et 1 op~n2102!! (A.9)

by ~A+5!, where [xt 5 f~L,u!xt + Now, ~A+9! is

2 (
t51

n

~ Zb 2 Db!' Ixt et 1 2 (
t51

n

~b 2 Zb!'~ Ixt 2 [xt !et 1 op~1!, (A.10)

where

~ Ixt 2 [xt !
' 5

d '

Mn
z~L! Ixt

'1 o~n2102! (A.11)

uniformly in t by the same analysis as forut , and

Zb 5 S(
t51

n

[xt [xt
'D21

(
t51

n

[xt ~et 1 Op~n2102!! 5 Db 1 Op~1! (A.12)

using ~A+11! and Assumption 2+ Now the second term of~A+10! is 2n2102 3

(t51
n ~b 2 Zb!' (j51

t21 Ixt2j zj
'det 1 op~1! andE7n2102 (t51

n ~b 2 Zb!' (j51
t21 Ixt2j zj

'det72 5
O~n21! by uncorrelatedness of$et % , Assumption 2, ~4!, ~12!, and ~A+12!+ The same ar-
guments apply to the first term of~A+10! and to the terms in~A+8!+

Next, we examine

]g~u!

]d
5 2S1

n (
t51

n

~f~L,u! [ut !
2D21 1

Mn (
t51

n S ]f~L,u!

]u
[utDf~L,u! [ut + (A.13)

The expression in the first set of parentheses is

1

n (
t51

n

~f~L,u!ut !
2 1

1

n (
t51

n

~b 2 Zb!' [xt [xt
'~b 2 Zb!

1
2

n (
t51

n

~b 2 Zb!' [xt ~et 1 Op~n2102!! 5 s2 1 op~1! (A.14)

using~A+5!, E7n21 (t51
n ~b 2 Zb!' [xt [xt

'~b 2 Zb!75 O~n21!, E7n21 (t51
n ~b 2 Zb!' [xt~et 1

Op~n2102!!7 5 O~n22! as in~A+1! by Assumption 2, ~12!, ~A+11!, and~A+12!+
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Defining the functionz~z,u! 5 ~]0]u! ln f~z,u!, the second sum in~A+13! is

1

Mn (
t51

n

~z~L,u!f~L,u! [ut !f~L,u! [ut 2
1

Mn (
t51

n

~z~L,u!f~L,u!ut !f~L,u!ut (A.15)

1
1

Mn (
t51

n

~z~L,u!f~L,u!ut !f~L,u!ut 2
1

Mn (
t51

n

~z~L!et !f~L,u!ut (A.16)

1
1

Mn (
t51

n

~z~L!et !f~L,u!ut 2
1

Mn (
t51

n

~z~L!et !et (A.17)

1
1

Mn (
t51

n

~z~L!et !et , (A.18)

where~A+18! converges in distribution toC102Zs2 as in~A+6!+ Applying ~A+5! to ~A+17!
we see that it equalsn21 (t51

n ~z~L!et !~z~L!et !
'd 1 op~1!, which converges in proba-

bility to Cds2 as in~A+6!+
Thus, we need to show that~A+15! and ~A+16! are asymptotically negligible+ First,

write ~A+15! as

1

Mn (
t51

n

~z~L,u!f~L,u!~ [ut 2 ut !!f~L,u! [ut

1
1

Mn (
t51

n

~z~L,u!f~L,u!ut !f~L,u!~ [ut 2 ut !

5
1

Mn (
t51

n

~z~L!~b 2 Zb!' [xt !~et 1 ~b 2 Zb!' [xt !

1
1

Mn (
t51

n

~~z~L,u! 2 z~L!!~b 2 Zb!' [xt !~et 1 ~b 2 Zb!' [xt !

1
1

Mn (
t51

n

~z~L!et !~b 2 Zb!' [xt 1
1

Mn (
t51

n

~~z~L,u! 2 z~L!!et !~b 2 Zb!' [xt 1 op~1!

using ~A+5!+ The first and third terms areOp~n2102! by ~4! and the arguments applied
to ~A+14!, and the second and fourth terms areOp~n2102! by combining the argu-
ments applied to the first term and those applied to~A +4!+ Rewriting ~A +16! as
n2102 (t51

n ~~l~L,u! 2 z~L!!et !~et 1 Op~n2102!! using ~A+5!, we note that it is asymp-
totically negligible by the same arguments as applied to~A+4!+ This establishes the sec-
ond statement of the theorem+

The second derivative is

]2g~u!

]d]d '
5 2S1

n (
t51

n

~f~L,u! [ut !
2D21 1

n (
t51

n S ]f~L,u!

]u
[utDS ]f~L,u!

]u
[utD'

2 S1

n (
t51

n

~f~L,u! [ut !
2D21 1

n (
t51

n S ]2f~L,u!

]u]u '
[utDf~L,u! [ut ,
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which is equal to

2s22
1

n (
t51

n

~z~L,u!f~L,u! [ut !~z~L,u!f~L,u! [ut !
'

2s22
1

n (
t51

n

~l~L,u!f~L! [ut !f~L,u! [ut

2s22
1

n (
t51

n

~z~L,u!z~L,u!f~L,u! [ut !f~L,u! [ut 1 op~1!

by ~A+14!+ Combining the preceding arguments it can be shown that the last two terms
are bothop~1! whereas the first term converges in probability to2C+ This completes
the proof+ n

Proof of Theorem 3.2. By Theorem 3+1~iii ! and Assumption 1, g~u! is asymptoti-
cally a concave function ofd 5 Mnu in Sp~0,7d70Mn!, the sphere inp-dimensional
Euclidean space centered at the origin with radius7d70Mn+ Hence, by Theorem 3+1 and
the subsequent analysis, Zd 5 Mn Zun is asymptotically the unique maximizer ofW~d! in
Sp~0,7d70Mn!, and its asymptotic distribution is given by~15! by the usual expansion+
Under Gaussianity of$et % , ~8! is the true likelihood+ The limiting Fisher information is
then given by

lim
nr`

1

n
ES2

]2l ~u!

]u]u ' *u50
D 5 C,

which is the inverse of the asymptotic variance as required+ n

Proof of Theorem 3.3. Though the equivalence of the test statistics is well known in
standard testing problems, we have stressed the nonstandard nature of our model, and
thus we start by showing equivalence+ By the mean value theorem

Mn Zun 5 S1

n

]2l ~u!

]u]u ' *u5u*
D21S 1

Mn

]l ~u!

]u *
u50
D,

whereu* is an intermediate value+ This implies thatW 2 LM r 0 in probability by
Theorem 3+1+ Similarly, by a Taylor expansion of the likelihood

l ~0! 5 l ~ Zun! 1 Zun
'

]l ~u!

]u *
u5 Zun

1
1

2
Zun
'

]2l ~u!

]u]u ' *u5u*
Zun

5 l ~ Zun! 1
1

2
n Zun
'S1

n

]2l ~u!

]u]u ' *u50
D Zun 1 op~1!,

and thusLR 2 W r 0 in probability by Theorem 3+1~iii !+
The asymptotic distribution of the test statistics follows directly from the previous

theorems+ Under the local alternatives~23! we setMn~ Zun 2 u1n! 5 Zd 2 d rd C2102Z by
Theorem 3+2+ Then the Wald test is

W 5 Zd 'C Zd rd ~C2102Z 1 d!'C~C2102Z 1 d!
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by Theorem 3+2+ Similarly,

LM 5
]g~u!

]u '
FE0S ]g~u!

]u

]g~u!

]u '
DG21 ]g~u!

]u
rd ~C102Z 2 Cd!'C21~C102Z 2 Cd!

by Theorem 3+1~ii ! and~21!, and

LR 5 2g~ Zun! rd ~C2102Z 1 d!'C~C2102Z 1 d!

by Theorems 3+1~i! and 3+2+
Under the additional assumption of Gaussianity the tests are locally most powerful

because the noncentrality parameter is maximal by Theorem 3+2 and the formula for the
information matrix~21!+ n

Proof of Corollary 3.1. This is immediate from Theorem 3+3+ n
Proof of Theorem 3.4. Following the arguments of the previous sections and those

in Tanaka~1999! and using~A+5! we find that

Ietn 5 et 1
c

Mn (
j51

t21

zj et2j 1 op~n2102!,

[etn 5 et 1
c 2 d

Mn (
j51

t21

zj et2j 1 op~n2102!

uniformly in t+ Thus, the denominator of~26! normalized byn21 converges tos2 in
probability asn r `, and the numerator

(
t51

n

~ Ietn
2 2 [etn

2 ! 5
2d

Mn (
t51

n

(
j51

t21

zj et2j et 1
d~2c 2 d!

n (
t51

n S(
j51

t21

zj et2jD2

1 op~1!

5 2dMCs2Z 1 d~2c 2 d!Cs2 1 op~1!

by the same arguments as those in the proof of Theorem 3+1+ As before, it can be shown
that this is unaffected by the presence of the regressors and the result follows+ n

Proof of Theorem 3.5. Consider first~28!, which implies that~in this contextf is
the density function of the standard normal distribution!

fSC2,a~d! 1 d2C

2dMC
D 5 fSC1,a~d! 1 d2C

2dMC
D

with the nontrivial solutionC1,a~d! 5 2C2,a~d! 2 2d2C+ Now determine the constants
by ~27!:

12 a 5 P~2C2,a~d! 2 2d2C , M~0,d! , C2,a~d!!

5 PS2
C2,a~d! 1 d2C

2dMC
, Z ,

C2,a~d! 1 d2C

2dMC
D,

whereZ is a standard normal random variable+ Thus, C2,a~d! is the solution to

F~~C2,a~d! 1 d2C!02dMC! 5 12 a02,
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i+e+, C2,a~d! 5 2dMCZ12a02 2 d2C, whereZ12a02 is the 100~1 2 a02!% point of the
standard normal distribution+

The power envelope is given by

P~d! 5 12 P~C1,a~d! , M~d,d! , C2,a~d!!

5 12 P~22dMCZ12a02 2 d2C , 2dMCZ 1 d2C , 2dMCZ12a02 2 d2C!

5 P~6Z 1 dMC6 . Z12a02!

5 Fd2C~x1,12a
2 !,

where the last line follows by squaring both sides of the inequality, x1,12a
2 is the

100~1 2 a!% point of thex1
2 distribution, andFd2C is the distribution function of the

x1
2~d2C! distribution+ n

Proof of Theorem 4.1. The proof proceeds along the same lines as those of Theo-
rems 3+1 and 3+2+ By the same arguments it can be shown that the results are unaffected
by the presence of the regressors, so we assume here that$ut % is observed+

Underg 5 g0 1 m0Mn, m 5 ~d ',n '!' , we first show that

~ i! g~g! rd W~m! 5
m'

2
~2J102Z 2 Jm!,

~ ii !
]g~g!

]m
rd

]W~m!

]m
5 J102Z 2 Jm,

~ iii !
]2g~g!

]m]m'
rp 2 J,

whereZ is a ~ p 1 q!-dimensional standard normal random vector+
It is immediate that the denominator ing~g! converges in probability tos2 by As-

sumption 4+ By the mean value theorem we have, for someg* 5 g*~t, n! partitioned as
g* 5 ~u*',c *'!' and such that7g07 # 7g*7 # 7g7,

f~L,u!c~L,c!ut 5 «t 1
m'

Mn
j~L!«t 1

d '

Mn
~l~L,u* ! 2 z~L!!«t

1
n '

Mn
~ln~L,c * ! 2 ln~L,c0!!«t ,

where ln~z,c! 5 ~] ln c~z,c!0]c!~c~z,c!0c~z,c0!! and l~z, u! is defined in
Assumption 1~iii !+ Denoting by ln, j ~c! the coefficient onz j in an expansion of
ln~z,c! in powers of z and by N a neighborhood of sizeO~n2102! around c0,
supc[N (j50

` 7ln, j ~c!72 , ` becausea~z,c! andb~z,c! have roots that are outside the
unit circle+ Thus, as in~A+5! it follows that

f~L,u!c~L,c!ut 5 «t 1
m'

Mn
j~L!«t 1 op~n2102! (A.19)

uniformly in t+
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Hence, the numerator ing~g! is

2 (
t51

n m'

Mn
~j~L!«t !«t 2 (

t51

n m'

Mn
~j~L!«t !~j~L!«t !

'
m

Mn
1 op~1!+ (A.20)

Define for a fixedm . 0 the ~ p 1 q!-vector vt 5 (j51
m jj «t2j «t and the~ p 1 q! 3

~ p 1 q! matrix Vt 5 (j51
m (k51

m jj jk
' «t2j «t2k+ As in the proof of Theorem 3+1,

n21 (t51
n Vt r s2 (j51

m jj jj
' in probability, and

1

Mn (
t51

n

vt rd NS0,s4 (
j51

m

jj jj
'D

by application of a martingale difference CLT+ Part~i! now follows by Bernstein’s lemma+
To prove~ii ! we notice that the first term in

]g~g!

]m
5 2S1

n (
t51

n

~f~L,u!c~L,c!ut !
2D21

3
1

Mn (
t51

n

~j~L,g!f~L,u!c~L,c!ut !f~L,u!c~L,c!ut (A.21)

is ~s2 1 op~1!!21 by ~A+19! and write the second term in~A+21! as

1

Mn (
t51

n

~j~L,g!f~L,u!c~L,c!ut !f~L,u!c~L,c!ut

2
1

Mn (
t51

n

~j~L!«t !«t 1
1

Mn (
t51

n

~j~L!«t !«t +

The last term converges in distribution toJ102Zs2 as in ~A+20!, and by application of
~A+19! the difference of the first two terms isn21 (t51

n m'~j~L!«t !~j~L!«t !
'm 1 op~1!,

which converges in probability toJms2 as in~A+20!+
The result~iii ! follows exactly as in the proof of Theorem 3+1+
Next, it follows as in Section 3+1 that~14! holds withd replaced bym andg replaced

by the function in Section 4+ Thus, the existence and uniqueness inSp1q~0,7m70Mn! of
a local MLE [gn satisfyingMn [gn 5 Op~1! are ensured, and its distribution is given by
~36! from the usual expansion+

Efficiency follows directly from~iii !, which is the Fisher information under Gauss-
ianity of $«t % + n

Proof of Corollary 4.1. Apply the partitioned matrix inverse formula toJ+ n
Proof of Theorem 4.2. This follows straightforwardly by applying the arguments in

the proof of Theorem 3+3 to the results in Theorem 4+1 and its proof+ n
Proof of Corollary 4.2. This is immediate from Theorem 4+2+
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