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EFFICIENT LIKELIHOOD INFERENCE
IN NONSTATIONARY
UNIVARIATE MODELS

MORTEN @ORREGAARD NIELSEN
Cornell University

Recent literature shows that embedding fractionally integrated time series models
with spectral poles at the long-run afut seasonal frequencies in autoregressive
frameworks leads to estimators and test statistics with nonstandard limiting dis-
tributions However we demonstrate that when embedding such models in a gen-
erall (d) framework the resulting estimators and tests regain desirable properties
from standard statistical analysli&e show the existence of a local time domain
maximum likelihood estimator and its asymptotic normality—and under Gauss-
ianity asymptotic efficiencyThe Wald likelihood ratig and Lagrange multiplier
tests are asymptotically equivalent and chi-squared distributed under local alter-
natives With independent and identically distributed Gaussian errors and a scalar
parameterwe show that the tests in addition achieve the asymptotic Gaussian
power envelope of all invariant unbiased tests., they are asymptotically uni-
formly most powerful invariant unbiased against local alternatilesa Monte
Carlo study we document the finite sample superiority of the likelihood ratio test

1. INTRODUCTION

In this paper we consider likelihood based estimation and testing within a wide
class of possibly nonstationary modeilscluding but not limited to the sea-
sonal fractionally integrated autoregressive moving ave(adg&vA) model
In such modelsestimators and test statistics are often found to have non-
standard distributional propertieln contrast we show that by adapting time
domain procedures and embedding the models of interest in a gé(wdr&lame-
work, instead of the autoregressive alternatives typically considered in the
literature estimators and test statistics regain the standard distributions and op-
timality properties well known from simpler models

Several versions of the Waltlkelihood ratio (LR), and score or Lagrange
multiplier (LM) testing procedures have appeared in the literature on nonsta-
tionary modelse.g., when conducting Dickey and Fullét979 type tests for a
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unit root (I (1) againstl (0)) or testing stationarity| (0) againstl (1)). For a
comprehensive recent suryage Phillips and Xia¢1998. However these tests
have nonstandard limiting distributions that have to be simulated on a case-by-
case basisSome advances have been made recently toward achieving efficient
tests Locally optimal and point optimal tests have been derived for the station-
arity hypothesigie.g., Saikkonen and Luukkoneri993a 19930 and for the
unit root hypothesige.g., Elliott, Rothenbergand Stock1996. However these
tests still have nonstandard distributipasid no uniformity results apply

What is needed is a class of processes that is more general than the unit root
I (1) models and admits the testing of smooth hypotheses in the sense that the
properties of the process do not differ substantially if the null hypothesis is
changed slightlyOne such class is that of fractionally integrated processes
Thus a process i$(d) (fractionally integrated of ordeat) if its dth difference
isl(0);ie,y, €1(d)if

1-L)% = &lt=1), 1)

wherell (-) denotes the indicator function aede 1(0). A process id (0) if it is
covariance stationary and its spectrum is bounded and bounded away from zero
at any frequencyTestingHy: d = 1 in (1) may be seen as an alternative to unit
root testing We show that in a fractional integration framework much more
desirable properties can be obtained compared with autoregreasigdgossi-

bly seasonal and fractionalnit root models where test statistics have nonstan-
dard distributiongseg e.g., Phillips, 1987 Hylleberg Engle Grangeyand Yoq

1990 Sowell 1990.

Notable exceptions to the nonstandard tests are Robifi88%) and Tanaka
(1999, extending earlier work by Robinsdi991) and Agiakloglou and New-
bold (1994, and it is the Robinso111994 model that we consider further in
this paperRobinson(1994) derives the LM test statisti@f (16) and(23), which
follow) in the frequency domajrtlaiming that it is more suitable for the analy-
sis and shows that the LM test statistic is asymptotically chi-squared distrib-
uted and locally most powerful under Gaussianitya simulation study it is
found that when the data generating prodd3&P) is of the fractional type the
finite sample performance of the new test is better than that of existing tests
the opposite being the case when the DGP is of the autoregressiva tyyaka
(1999 considers the fractional unit root model (h) and shows the existence
of a local time domain maximum likelihood estimatdLE) and derives the
LM and Wald testsTanaka(1999 shows that the estimator is asymptotically
normal andunder invariance conditionthat the tests are locally most power-
ful and indeed asymptotically uniformly most powerful against one-sided local
alternatives Simulations show that in finite samples the time domain tests are
superior to the frequency domain LM test of Robing@894) with respect to
both size and poweThe estimator is also shown to be quite close to its asymp-
totic distribution except in the presence of errors with strong positive serial
correlation
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The main contributions of the present paper when compared with the previ-
ous work of Robinson1994 are summarized in the following five points
(i) All the results are obtained in the time domawhich is most frequently
employed by practitionersvhereas Robinso1994) favors a frequency do-
main approachThe derivation of results and statement of assumptions in the
time domain require different methods than in the frequency dondainther
reason to consider the time domain is that in some cases the resulting estima-
tors and tests are more easily applied than their frequency domain counter-
parts (ii) It is of interest to examine the estimation of the model by maximum
likelihood because the estimator is expected to have good propéntiesd it
is shown that standard asymptotics and efficiency apphich is a great ad-
vantage in applied workKiii ) Whereas Robinso(1994) only considers the LM
test we also consider the Wald and LR tests and show that standard asymptot-
ics apply to all the test statistic6v) For the submodels with a scalar param-
eter and independent and identically distribufieidd.) Gaussian errorshe LM,
LR, and Wald tests are shown to be uniformly most powetagainst local
alternative among all invariant and unbiased tegtg) In a simulation study
based on the well-known fractional unit root model it is shown that the LR test
outperforms the LM and Wald tests with respect to both size and power

Contrary to the present pap@anaka(1999 considers only a special case of
the full model in Robinsori1994), namely the fractional unit root modebnd
conducts an analysis similar to oue consider the full model

The paper proceeds as followa Section 2 we set up the model and discuss
important special casetn Section 3 we consider inference with martingale
difference errors and derive the properties of the estimator and testseas
in Section 4 we allow serially correlated erro&ection 5 presents the results
of our Monte Carlo experimentand Section 6 concludesll proofs are col-
lected in the Appendix

2. THE MODEL

Suppose we observe the real-valued stochastic prdggds=1,2,...,n} gen-
erated by the linear model

Vi = B'% + U, (2)

where{x} is ak X 1 purely deterministic component afw}} is an unobserved
error componentTwo leading cases for the deterministic terms are 1 and
X = (L, t)’, which yield the models;, = By + u; andy, = By + Bt + U,
respectivelybut other terms such as seasonal dummies are also allowedf.for
Assumption 2which follows The unobserved error procefgs} is assumed to
have the generating mechanism

o(L,0)u, =el(t=1). (3)
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Here {g} is a stationary and invertible process with only weakly dependent
errors(i.e., no long memory or nonstationarjtend¢(z, ) is a function of the
complex variatez and thep X 1 parameter vectof € ® C RP. The chosen
parametrization is such thdt= 0 is the true valugwithout loss of generality
and this belongs to the interior @f.

The model is further required to satisfy the following assumptions

Assumption 1 The functioneg(z, ) is such thati) ¢(0,6) =1 and¢(z,6) =
¢(2) if and only if & = 0, where¢(2) = ¢(z,0)|y-o. (ii) ¢(z60) is twice con-
tinuously differentiable ird in an open convex s&* containing® and

0 < det(¥) < oo, (4)

wherew = 37, {;{/ and{j is the coefficient orz! in the expansion of (z) =
(9/00)In ¢(z,0)|y—oin powers ofz (iii) The functionA(z,0) = ($(z,0)/p(2)) X
(9/00)In ¢p(z,0) is continuous inY at# = 0 for almost allz such that z| = 1,
and letting A;(#) be the coefficient oz in the expansion oA (z,6) in powers
of z in a neighborhood of sizeO(n™Y2) of 6 = 0, supey 221/ 4;(8)[* < co.

Assumption 2 The k X 1 vector of regressons; is nonstochastic and such
that D, = X, X X/ is positive definite forn sufficiently large where g, =

d(L)X.

Assumption 3 The innovation sequence 8), {e,t = 0,+1,+2,...}, satis-
fies E(g|F-1) = 0 as. and E(e?|F/_,) = o2 as. for all t = 1, where
F = o(e,s = t}) is an increasing sequence ofalgebrag and {e?,t =
0,£1,+2,...} is uniformly integrable

Some comments on the assumptions folléwsumption 1 is a time domain
equivalent of the assumptions made by Robingb®94 on the parametric
mode] where (i) ensures identifiability of and (i) and (iii) are smoothness
conditions on the parametric moddlhe unit root process nested in an auto-
regressive model i€3) with ¢(z,6) =1 — (1 + 0)z but in this case the right-
hand-side inequality af4) is not satisfiedDifferentiability to any order is easily
verified for all of the examples that follaw

Assumption 2 is a very mild multicollinearity condition on the regressidrs
does not even require the smallest eigenvalu@,ab tend to infinity asn — oo,
which is usually required in linear regression models to get consistent esti-
mates off3.

Finally, Assumption 3 ensures that the innovations are such{éhak} and
{e2 — o2 F} are both uniformly integrable martingale difference sequences
This is more general thani.d. and in practice not much more restrictive than
uncorrelatednes&n implication of this assumption is that* >{ ; €2 — o2
in probability (e.g., Hall and Heyde198Q Theorem 222), which we will use
later Assumption 3 can be replaced by any other assumption that gives rise to
a weak law of large numbert&LN ) for {€?} and a central limit theoreCLT)
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in Theorem 31, which follows Thus we could presumably relax Assumption
3 to accommodate autoregressive conditional heteroskedaggiergralized
autoregressive conditional heteroskedastic#RCH/GARCH) type errorgas
suggested by an anonymous referaehich are often found in financial data
where our methods are especially applicable due to the large amount of data
available(see also Ling and L.i1997).

Avery general model considered by Robing@894), and satisfying the pre-
ceding assumptionss

h

#(z,0) = (1- 2% (1 + )% %@ [T (1 - 2cosA;z+ z2)4 0, (5)
j=3

where for eaclj, 6,;, = 6, for somel, and for eacH there is at least ongesuch

that ;) = 6,; i.e, there are up td singularities in the spectral density of

andp = h. That is we do not require that there isgafor each singularityFor
example the quarterlyl (1) hypothesis is given by either one of the functions
é(2,0) = (1 -z, where we use the sanefor each of then = 3 spectral
singularities or ¢(z,0) = (1 — 2)*7%(1 + z)1*%(1 + z?)1*%, where the inte-
gration orders are allowed to be different at different frequencies under the

alternative

The case considered by Tanald®99 is the fractional unit root model de-
fined by
¢(2,0) = (1— 2" (6)
In this model (z) = In(1 — z) and{; = —j ~* such that¥ = 772/6. The weak

dependenceunit root andl (2) models nested in a fractional integration frame-
work correspond t@6) with d = 0, d = 1, andd = 2, respectively

Another important special case of the general md8gis the cyclicall (d)
or generalized fractional autoregressive integrated moving averdgivA )
model of Gray Zhang and Woodward1989, recently advocated by Chung
(1996, Bierens(2001), and Gil-Alana(2001). This model is generated by the
function

$(z,0) = (L— 2cosaz+ z%)%*", 7

whereA is the cyclic frequency of interesthend = 1 andé = O corresponds
to the cycli¢gseasonal unit root at frequenay

Finally, suppose thenvectorx, is | (d,) and fractionally cointegrated and
the cointegrating vector is known a priori from economic theory such that we
can treat, = a'x; as an observed time seri@ghen the cointegration vector is
unknown and must be estimatedtle results in the present paper do not apply
see Nielsen2003. Then the hypothesibly: 0 = 0 in (6) with d = d, corre-
sponds to the null of no fractional cointegrati@amd withd = 0 the hypothesis
Ho: 0 = 0 corresponds to the null of fractional cointegration witB) equilib-
rium errors A well-known example is the purchasing power paritgt x, con-
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sist of the timet domestic log-priceforeign log-price and the log exchange
ratg respectively and suppose; is fractionally integrated of orded. Then
the purchasing power parity predicts that (—1,1,1)' should be a cointegrat-
ing vector and that the cointegration residuals should (0¢ Imposinga =
(—1,1,1) on the datathe last implication can be tested as(6) with d = 0.

The preceding examples illustrate the generality of our apprdackee why
standard asymptotics apphye briefly discuss the data generating mechanism
(see also the discussion by Ling and 2001, pp. 739-74). When{u,} is gen-
erated by truncation as if8), it depends only on the shocks starting at time
t =1 and not on shocks starting in the infinite past as would otherwise be the
case Under(3), there are two fundamentally different approaches to allow for
nonstationarity that lead to different asymptotic resulisg and Li (2001 con-
sider the fractional unit root modé6) assuming thatl € (—3,3), the station-
ary region and allowing unit roots in the autoregressive polynonaéz).
Standard asymptotics is obtained for the fractional difference paranieter
the estimates of the unit roots have nonstandard Dickey—Fuller type distribu-
tions On the other handrobinson(1994) and Tanakd1999 capture the unit
root through the fractional difference paramedesind assume that(z) is sta-
tionary We follow this practice in the present papBecause no unit root must
be estimated ira(z) we avoid the nonsmooth behavior of the model near the
unit roots and this admits standard asymptotics in our setting

In the subsequent analysis we first consider the case wlgrés a martin-
gale difference sequencend then we treat the full model in whidle,} is al-
lowed to follow an ARMA process

3. INFERENCE WITH MARTINGALE DIFFERENCE ERRORS

The Gaussian log-likelihood function ¢2) and(3) is

1 n
L(B.0%0) =~ In(0?) = 5 5 3 (B(L.O)y ~ Fx)? ®)
t=

apart from constant term3he asymptotic results derived in this section im-
pose only Assumption 3 on the error proceSgaussianity is not necessary for
most of our results and is used only to choose a likelihood function and to
show efficiency

Because only is of interest we concentrate out the nuisance parameter
(B',0?). This does not influence the resyl@snd in factd is asymptotically
uncorrelated with(8’,62) (see the formula for the information matri21),
which follows). The concentrated likelihood is

1(0) = L(B(6),0%(6),0) = =2 In(s(6)), ©
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where
B(0) = [(¢(L,0)X) (¢(L,0)X)] *(p(L,0)X)'d(L,0)Y, (10)
1 n
o?(0) = az(cb(L,O)(yt—B(H)’Xt))z, (11)

and capital letters denote the appropriate matrices of observadigns< is the
n X k matrix with x; as thetth row. Herg 8(6) ando?(6) are functions o#.
They define the estimatdB’, 62) = (B(6,), o2(6,)) of (B',2). We shall also
need(B3’,62) = (B(0), o?(0)) which is the estimator of8’,o2) under the true
value off. Note thatB(6) is just the ordinary least squares estimator in a re-
gression ofp(L, )y, on ¢(L,8)x, ando?(h) is the usual maximum likelihood
variance estimator for the residual procésgd., 0)(y; — B(6)'x,).

Note that the estimate @@ need not be consistent in our mod@ne such
case occurs whexy = 1 in the fractional unit root mode&b) with d = 1. Then
B = Bo + ey, so B3 is inconsistentbut this has no influence on inference based
onl, = u; + (B — Bo) (see Robinsan1994 also see the Appendixin fact,
what we need in the proofs is the relation

El(B - B)'Dy?| = O(D), (12)

which follows under Assumption 2 by definition @k

3.1. Estimation

In this section we show the existence of a local MLE and derive the limiting
distribution theory following the approach of Sargan and Bharga983 and
Tanaka(1999. In particular we consider the conditional sum of squared resid-
uals objective function9).

In the following we find it convenient to consider maximizing

N L 2 (@L)a)? = X (¢(L,6)a)?
9(6) = 1(6) =10 =~ In 1_EH =1

1o , (13)
-2 (e(L)ay)?
t=1

wheret, = y; — B'%, and 0; = y; — B'%. Assume first that we are in a
neighborhood of the true valuge., that there exists & such thatd = §/4/n
(the existence 08 will be proved shortly. Then we can show the following
results

https://doi.org/10.1017/50266466604201050 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604201050

INFERENCE IN NONSTATIONARY MODELS 123

THEOREM 31. Let Assumptions 1-3 be satisfied and €@ gbe given by
(13). Then, unded = §/vn,

. 5’
() 9(6) =4 W(5) = > 2¥Y2Z - ws),

agle)  aW(s)

i) —— = w27 - s,
(i) w9 a
L ()
-
(iii) PYYYY —p ,

where Z is a p-dimensional standard normal random vector.

Next, we prove the existence of a local ML of 6, = 0 such thaty/nd, =
5= Op(1) following Sargan and Bhargavd 983 and Tanakd1999. Let . be
a p X 1 direction vectari.e, satisfying|¢| = 1, where||-|| is the Euclidean
norm and letd = |8]|.. Generalizing the scalar approach by Sargan and Bhar-
gava(1983 and Tanakd1999, it suffices to show that

5 (u 3g(8/n)

PP = O) =e (14)

for any direction vectot, ¢ > 0, andn = ng (n, fixed) and for some|s| > O.
Note that.’ag(8/4/n)/dé is the directional derivative af at8/+/n, i.e., the rate
of change ofg at §/4/n in the direction..

Thus for all direction vectors, moving some distancis| in the direction
from the true valugthe directional derivative of in the same directionshould
be negative for sufficiently large. In the one-dimensional cagse= =1 and
(14) reduces to the corresponding conditions of Sargan and Bhafd283
and Tanakd1999. It follows from Theorem 3L that

P(L' M = O) - P<L’ 8\/;/;6) = 0>

20
IW(S oW(S IW(S
=P<L' ( )—EL' ( )Z—ELIA>
d0 dJ0 d0
OW(S
Var(U ( ))
00
= oy
dJd
E/
( D )
_ 1
VW 8)%

which can be made arbitrarily small by selectif&j large Thus (14) holds by
appropriate choices dfs|| and ny, and the existence of the local MLE, is
ensured
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THEOREM 32. Under Assumptions 1-3, there exists a local maximizer
of the concentrated likelihood (9) that satisfies, as»ro,

\Vné, —4 N(O, ¥~ 1), (15)

and under the additional assumption of Gaussianity{®f, 6, is asymptoti-
cally efficient in the sense that its asymptotic variance attains the Cramér—Rao
lower bound.

This asymptotic normality result stands in sharp conjrag., to the
nonstandard Dickey—Fuller distributiorin that case n=1al(0)/06|y—¢ =
3(W(1) — 1)2 n™2021()/0096" = [, W2(t) dt, and thusnd = 3(W(1) — 1)¥
fol W?2(t) dt, whereW(t) is a standard Brownian motion ard is weak con-
vergence(seeg e.g., Phillips, 1987 Phillips and Xiag 1998. Furthermoregif a
constant term is included in the Dickey—Fuller model the distribution changes
This is not the case in our modethere the limiting distribution is indepen-
dent of the nuisance parametg’, o ?).

The additional assumption of Gaussianity allows a strengthening of the
results Thus 6, is asymptotically the best estimator in the class of all
v/n-consistent and asymptotically normal estimatditsis result also is in con-
trast with those usually found in the theory of nonstationary time series

The simple asymptotic distribution in Theoren®3makes it easy to con-
structp-dimensional confidence ellipsoids féror conduct Wald-type tests of
hypotheses o#. This is examined in detail in the next section

3.2. Hypothesis Testing
Suppose we wish to test the hypothesis
H0:0 = 60:0, (16)

whered, is set to zero because otherwise we would get trivial asymptotic dis-
tributions under the nulRobinson(1994 considers the LM test in a frequency
domain frameworkWe now consider all the classical likelihood-bag&dald,
LR, LM) tests(see Engle1984) in the time domain

From Theorem 2, the Wald test statistic is

W = né/, w4, (17)

We denote by a tilde an estimator under the null hypothddie (quas) LR
test statistic is given by

~2
LR = 2(L(B,626,) — L(B,620) = nIn(U ) (18)

6’2
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(see equatioii9)). Finally, to derive the LM test statistic

oL oL aL “19L
LM = (m) [E()( (m) (n))] (m) , (19)
an’ an  on’ om  |B=B,0?=320=0
wheren = (B8',0%6’)’", we note that
IL(B,o%06) P
— | ., ., =X X& e (20)
20 B=p,0%=6260=0 =1j=1
whereas the other two partial derivatives vanidere A, = ,“ oy g p(j)and

p(j) is thejth sample autocorrelation & = ¢(L)(y; — B'%).
The diagonal block of the Fisher information matrix corresponding i®

Ul

- 1 nt-1
ot

1 n n -
0—;@;; i {{Eole e 658 ) ;; [ E(e2E(e2| Ay))

n—-1 J
j=1

so the Fisher information matrix if19) evaluated a = 8,02 =626 =0 is
ntimes

1
0 5 0-_4 0 ) (21)

which is invertible forn sufficiently large by(4) and Assumption ZThe diag-
onal blocks corresponding t6 and o2 follow using that{e,, /} and{e? —
o2 F} are martingale differencesespectivelyln Tanaka(1999, =i ~1and
v = 72/6. We allow for more general weights to the autocorrelationéjn
corresponding to the more flexible model represented by the fungtia).
The expressionw, = Ejnz_ll(l — (j/m)¢; ¢ is a truncated version of, which is
asymptotically equivalent t&. Thus the LM test statistic is

LM = nA v 1A,. (22)

In the fractional unit root mode(6) where{; = j~* we haveW;qo, = 1.5831
W50 = 1.6294 andV¥ = ¥, = 7%/6 = 1.6449

We derive the distribution of the test statistics under the more general as-
sumption of local Pitman alternatives given by the sequence

Hy:0 = 6,,=8/\n (23)

with § a fixedp X 1 vector
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THEOREM 33. Let Assumptions 1-3 be satisfied and let T denoteWhe
LR, or LM test statistics given by (17), (18), and (22). Then, under (23), it
holds that

T >y XS(S’\PS)

as n— oo. The three tests are consistent and asymptotically equivalent; i.e., if
T, and T, are any two of the statistics then ¥ T, — 0 in probability. Under
the additional assumption of Gaussianity they are locally most powerful.

Usually in nonstandard tests such as the Dickey—Fuller thstthree test
statistics are not equivaleriirom the proof we note that the equivalence of the
tests depends crucially on the information matrix equalityich holds asymp-
totically in our model but does not hold when the unit root is nested in an auto-
regressive alternative

Thus we find that unusually simple asymptotic tests can be performed in
this model using the chi-squared distributiéiiso, we can easily calculate the
asymptotic local power of the three test statistighich we state as a corollary

COROLLARY 3.1. Under the conditions of Theorem 3.3 it holds that, under
6 =8/n,

P(T> Xg,l—a) —1- Fa’wa(Xg,l—a) (24)

as n— oo, Whereyj,_, is the100(1 — a)% point of they? distribution and
Fs s IS the distribution function of thqg(ﬁ’llfei) distribution.

Using Corollary 31 we can compare the finite sample performance of the
tests with the approximation offered by asymptotic theand we shall discuss
this in Section 5

Next, we show that even stronger results can be obtained in a subclass of
models

3.3. Uniformly Most Powerful Tests

While the general theory discussed previously applies for multidimensiinal

even stronger results are obtained in the special case of gtaday., (6) or

(7), which we now consider brieflyFollowing the reasoning in Elliott et al

(1996 and Tanak&1999, we derive the power envelope for the two-sided test-

ing problems under invariance and unbiasedness conditions and show that this

two-sided power envelope is equal (@4), i.e., that this power is achieved by

our tests The unbiasedness condition is new because Elliott.et1806 and

Tanaka(1999 only consider one-sided tests and thus do not need unbiasedness
In particulay we assume that the errors are Gaussian and that the model in

(3) is characterized by a scalar parametefhis rules out the general model
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in (5) but still applies to most of the models in SectionT2e testing problem
is invariant to any transformation of the tyge— ay + Xb (a > 0 andb € R¥),
or in the parameter space

(6,B,0%) = (0,b+ aB,a%c?). (25)

Thus we shall restrict attention to the family of tests that are invariant to the
group of transformations if25) (see Lehmannl986 Chap 6).

Assume that the DGP is given 68) and(3), with true parameter valug, =
c/~/n for some fixedc. Now consider testing the hypothesig: 8§ = 0 against
the sequence of local alternativels: #,, = §/+/n for some fixeds. This is a
test of a simple null vsa simple alternative with nuisance parametgf, o 2).
Then we can apply invariance argumentg 3, o2) and the Neyman—Pearson
lemma tells uge.g., Lehmannp 1986 p. 338 that the test that rejects the null
when

n n
P-4
t=1 t=1

M, =n (26)

N

> &
t=1

>

becomes large is most powerful invarigiMPl) with respect to the group of
transformationg25). As in the previous sectiQrg,, and&,, are residuals under
Ho andHy, respectively The next theorem derives the limiting distribution of
M, under local alternatives

THEOREM 34. Let M, denote the MPI test statistic (26), witlg, = c¢/vn
(c a fixed scalar) instead af, = 0. Let Assumptions 1 and 2 be satisfied and
suppose the error process is i.i.d. Gaussian. Then, under the sequence of local
alternativesfy, = 8//n (8 a fixed scalar), it holds that

M, =4 M(c,8) = 26N¥Z + §(2c — 8)¥
as n— oo, where Z is a standard normal variable.

Thus invariance arguments have reduced the testing problem to the consid-
eration of the statistid/,, and the power envelope of all invariant tests is the
power ofM (8, 8). Obviously the results in Tanaké 999 apply with little change
to the corresponding one-sided testing problem in our setup and this power en-
velope is achieved by one-sided versions of our tddtsvever because we
consider mainly the two-sided testing probleme cannot hope to achieve the
same power envelopand thus the following results differ from those in Tanaka
(1999, where only one-sided hypotheses are considered

To find a test statistic that applies against two-sided alternatives we invoke
the principle of unbiasedneg¢see Lehmannl986 Ch. 4) to construct an MPI
unbiased testUnbiasedness requires that the power of the test never falls be-
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low the nominal significance level for any point in the alternatiBecause for
varying ¢ the family of distributionsM(c, §) is normal it satisfies the require-
ment that it be strictly totally positive of order thr€8TR;; see LehmanrL986

p. 119, and hence the power envelope of all invariant and unbiased tests of
Ho: 6 = 0 againstH;: 6, = §/4/n is given byII(§) = 1 — P(Cp,(5) <
M(8,6) < C, ,(8)) (Lehmann 1986 p. 303, where the constants are deter-
mined by

P(Cy.(6) <M(0,6) <C, ,(8) =1—a, (27)

dP(Cy,(8) <M(c,6) < C,,(6))
Jdc c=0

= 0. (28)

A test whose asymptotic power attains the power envelope for all pdiists
asymptotically uniformly most powerful invariant unbiasé&tie following theo-
rem shows that the power envelope of all invariant and unbiased tests is given
by (24), i.e., that this power is achieved by our tests

THEOREM 35. Let Assumptions 1 and 2 be satisfied and suppose the error
process is i.i.d. Gaussian. Then the asymptotic Gaussian power envelope of all
invariant (with respect to (25)) and unbiased tests gf H= 0 against H : 6,, =
8/N/n (8 a fixed scalar) is given by (24). Thus, th'¢, LR, andLM tests are
uniformly most powerful (against local alternatives) among all invariant and
unbiased tests.

This result is in stark contrast to the results of Saikkonen and Luukkonen
(19933 1993h and Elliott et al (1996, among otherswhose tests are only
point optimal invarianti.e., tests that have maximal power against a single
prespecifiedlocal) point in the alternativeOur criterion is against all possible
(local) alternatives

FurthermoreTheorem 3 also applies to the test statistic in Robingd894)
and thus generalizes his resutio, because he only shows that his test is lo-
cally most powerful

4. INFERENCE WITH SERIALLY CORRELATED ERRORS

Now we extend the basic model to allow for weakly depend@RMA ) errors
In particular we work with the following assumption

Assumption 4 {e} is generated by an ARMA model of the form
a(L)e = b(L)s, (29)

where{e,} satisfies Assumption.3Herea(z) andb(z) are finite polynomials
without common roots and all roots strictly outside the unit cirGllee coeffi-
cients in the autoregressive and moving average polynomials are collected in
theq X 1 parameter vectap.
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This assumption follows Tanaka999; Tanaka in addition assumes tHat}
is i.i.d. Thus we offer more generality in this respect tdzecause of our mar-
tingale difference assumption da,}.

Collect the parameters of the dynamic part of the model in the vector
v = (6,4') with true valuey, = (0,4¢)" and letc(z,¢) = a(z)b1(2).
Analogously tol(z,60), define é(z,y) = dIn(¢p(z,0)c(z,4))/0y and é(z) =
aIn(p(z,0)c(z,¥))/dyl,=,, = ZZ1 £ 2. Note thaté; = (¢/,¢))" with ¢ de-
fined as before and; defined as the coefficient or’ in the expansion of
alnc(z,)oyl,—,, in powers ofz As in Assumption i) we define

(30)

Kk @

with k = 27, ¢ ¢/ and® =37 ¢ ¢.

It is easily shown tha® is the Fisher information foy under Assumption 4
eg., if {&} is an AR(1) process with coefficiena thenc = —al"tand® =
(1 — a?*. Finally, corresponding t@¢4), we assume that

0 < det(? — k'® k) < oo, (31)

which in particular implies thag is nonsingular
The log-likelihood function in the case of serially correlated errorexsept
for constants

2 n 2 1 C ’ 2
L(B.o%y) = =5 In(0?) = o B ($(LOCL)(%—Bx)%: (32
0" t=1
to be compared witli8). The concentrated likelihood function fer= (6',¢")’
becomes
n 2
I(y) = 5 In(o=(y)) (33)

except for constanisvhere

B(y) = [($(L,0)c(L, ) X) (S(L,0)c(L,y)X)]

X (p(L,0)c(L, ) X)'d(L,0)c(L, )Y, (34)
1 n
o?(y) = " Z (o(L,0)c(L, ) (y: = B(y)'%))?, (35)

and(p’,62) and (B3’,#2) are now defined in terms of the functio34) and
(35). Corresponding t@13) we consider the function

a(y) = 1(y) — (o)
> (p(L)c(L, ) 0)? — t:Elw(L,e)c(L,w)ot)Z

1
= —~In|1- -
2

1 n
3 (@(Le(L i) a)?
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4.1. Estimation

The analysis of the model with serially correlated errors proceeds in the same
way as with martingale difference errors as discussed previolislis we are

able to show the existence of a local MIJE = (6},4/)" satisfying\ny, =

O, (1) and to prove joint asymptotic normality 6f andy,,. Under Gaussianity

we achieve efficiency as befare

THEOREM 41. Under Assumptions 1, 2, and 4 and (31) there exists a local
maximizery, = (6),,)" of the concentrated likelihood (33) that satisfies, as
n — oo,

VN (94— v0) >4 N(O,E7H). (36)

Under the additional assumptions of Gaussianity®} and correct (minimal)
specification (all elements af, are nonzero);y, is asymptotically efficient in
the sense that its asymptotic variance attains the Cramér—Rao lower bound.

Based on this theorem it is possible to create joimt- g)-dimensional con-
fidence ellipsoids fop andi that take into account the asymptotic correlation
between the estimates represented by the matrikhis is important for in-
ference not only on# but also ony. Usually in applied work one would
determine the appropriate filtration of ddtae., the functiong(z,6)) by Dickey—
Fuller tests or similar methods and then treat the filtered data as if it were ob-
servedi.e., as if the correct filter were known a prioffhe resulting inference
on ¢ is incorrect because the correlation betweérand s is ignored When
applying Theorem 4, this pretesting problem is avoided becadsandys are
estimated jointly

When inference o# is of interestthe asymptotic marginal distribution 6§
can be immediately derived from the theortem

COROLLARY 4.1. Under the conditions of Theorem 4.1,
Vné, =g N(O,(¥ — k'®~1k)™1) (37)
as n— oo.

In parallel with Corollary 41, var(\Nn (i, — o)) — (@ — k¥ k') (by
the partitioned matrix inverse formyleand in the special case whegeis not
present this reduces ™2, which is the Fisher information ot. Thus the
well-known asymptotic efficiency of the MLE in pure ARMA models comes
out as a special case of our resul®re important Theorem 41 with ¢ present
demonstrates the joint efficiency in the generalized model

To illustrate the loss of efficiency in estimation éfstemming from serially
correlated errorsconsider again the fractional unit root mod8uppose we
know that the errors are not serially correlated but simply are martingale dif-
ferences Then the asymptotic variance afné, is 6/72 by Theorem 2. If
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instead it is known that the errors exhibit serial correlation of the( ARr
MA (1) type with coefficienta, then the asymptotic variance afnd, is the
inverse of(7%/6) — ((1 — a?)/a?)(In(1 — a))2 by Corollary 41.

Figure 1 shows the relative efficiency of these two estimates as a function of
the serial correlation parametex This is calculated as

6 1—-a?
1- ; ? (In(l— a))2, (38)

which has a minimum a& = 0.684. This suggests that moderate levelsaof

best replicate the behavior of tlieeighted autocorrelations of a fractionally
integrated proces3he pointa = 0 shows that the relative efficiency allowing
for serial correlation when it is not present i892, as noted by Tanakd 999.

4.2. Hypothesis Testing

We now consider the testing problerti®) and(23) in the presence of serially
correlated errorswhere again only is of interest The Wald LR, and LM test
statistics are

W = nf, (¥ — k' 1k)6,, (39)
2 O’ ~n
LR=nln % , (40)
g (Gn’lpn)
LM = nA,(¥ — &' 1R) 1A, (41)

-1 -0.5 0 05 1

AR/MA parameter a

Ficure 1. Relative efficiency of, in the presence of first-order autoregressive or mov-
ing average errors
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where and ® are evaluated af,, and ¢ and ® are evaluated af,, the esti-
mate ofy under the nullandA, = 3"} £ p(]) is defined in terms of thgth
sample autocorrelation & = ¢(L)c(L, ) (Y — B'%).

It is obvious from the expressions for the test statistics Apthat the LM
test is not necessarily the simplest to apply in pracfide implementation of
the Wald and LR test statistics is straightforward when we can estimate the
model under both the null and alternative and should not be a prolgieen
the methods available in the previous sectidnsparticular the LR test is at-
tractive because there is no need to calculate, and d.

Similar to the calculation of the infinite-order moving average coefficients
in standard ARMA modelsthe calculation ofx and ® can be quite cumber-
some when the model in Assumption 4 is more complex than just ail)Adt
MA (1) model (see also the discussion in Tanak&99. To overcome this is-
sue one could employ the numerical approximations

t=1 00 0 t=1 Hy
_ no98, [ 98, 98, O 1o
LM=nEa—i(E—‘—‘, 55) O
t=1 00" \{=1 00 90" o =1 89

which of course have the same asymptotic propertied/and LM. However
because?, x, and ®, and thusW and LM, can be calculated for any given
parameter valudsay y) by numerically expanding In ¢>(z 0)c(z, d;)/&y at

y = ¥ in powers ofz using a computeme do not consideW and LM furthet
The asymptotic distribution of the tests under local alternatives and with se-

rial correlation is given by the following theorem

THEOREM 42. Let Assumptions 1, 2, and 4 and (31) be satisfied and let T
denote thaWV, LR, or LM test statistics (39), (40), and (41). Then, under (23),
it holds that

T >y /\/S(S’(\If — kK'® 1K) 6)

as n— oo. The three tests are consistent and asymptotically equivalent, and
under the additional assumption of Gaussianity they are locally most powerful.

This theorem shows that the tests are still locally most powgeeftén in the
presence of serially correlated erro8ettingx = ® = 0, i.e., when no serial
correlation is present anl is not estimatedgenerates Theorem3as a spe-
cial case As with Corollary 31 in the case without serial correlatiowe can
easily calculate the asymptotic local powgiving us a benchmark against which
to compare the power of the tests in finite samples
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COROLLARY 4.2. Under the conditions of Theorem 4.2 it holds that, under
6 = 5/\n,

P(T> x31-0) 2> 1= Fsworotos(Xp1-a) (42)

as n— oo, where x5, is the 100(1 — a)% point of the y; distribution
and Fy(y_.o 105 iS the distribution function of thes (8" (¥ — k'@ 'k)8)
distribution.

Using Corollary 42, Figure 2 shows the local power functions against posi-
tive alternatives for the fractional unit root model with different specifications
of AR(1) errors Becaused only enters(42) through?, the power functions
are symmetricThe starred line is the local power function when the errors are
a martingale difference sequence and this is knoway using Corollary 31).
The dotted dashedand solid lines correspond to AR specifications of the
errors with coefficiena = —0.5, a = 0, anda = 0.5, respectivelyIn the case
a = 0, the errors are a martingale difference sequehaean AR1) error pro-
cess is estimated

The local power of the tests in the model wah= 0.5 is much lower than
for the other specificationgOn the other handthe power loss in the model
with a = —0.5 is small This is in accordance with the results in Sectiaf; 4
cf. (38) and Figure 1

FIGURE 2. Asymptotic local power functions with martingale difference and first-order
autoregressive or moving average errors
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5. FINITE SAMPLE PERFORMANCE

In this sectionwe compare the asymptotic local power functions derived in the
previous sections to the finite sample rejection frequencies by means of Monte
Carlo experiments

The model we use for the simulation study is the well-known fractional unit
root model with an AR1) error.

1A=L)y = el(t=1), (43)
(1-al)e =&, (44)

where{e} is i.i.d. standard normalThis model is also studied in simulations
by Robinson(1994 and Tanak&1999. In addition to this fractional DGRRob-
inson (1994 also considers an autoregressive DGP and finds that his test is
dominated by Dickey—Fuller type tests in the latter case

We concentrate on comparing the finite sample performance of the three test
statistics(Wald, LR, and LM). Tanaka(1999 documents that the time domain
LM test outperforms Robinson&l994) frequency domain LM tesso we do
not consider the frequency domain test hdtee properties of the estimatéy
in this model are examined by TanakE099, who finds that in the case with-
out serial correlation the behavior of the local MLE is very close to the asymp-
totic distribution However with serially correlated errors the performance of
the local MLE degradesand especially in the case of strong positive serial
correlation the performance is podhis is expected based ¢88) and Figure 1

Throughout we fix the nominal leveltype | erropy at Q05 and the number
of replications at 00 We consider the sample sizas= 100 andn = 500
The former is typical for macroeconomic time series and the ldtiereven
largep for financial time seriesFor each experimen6,000 samples of size
n = 500 were generated using the radiffpow, and armagen routines in Ox
version 300 including the Arfima package versionO1 (see Doornik 2007
Doornik and Ooms2001). For the smaller sample size = 100, we used the
first 100 out of the 500 observations from each sample

Figures 3—6 present the simulated finite sample power functions of the test
statistics for different specifications of the error term(##) (the tables con-
taining the numerical values used to construct the figures can be obtained from
the author upon requestor each value o), the asymptotic local power has
been calculated by settingy= 6+/n in Corollaries 31 and 42 and is reported
under the heading Limitn all the figuresthe left-hand-side figure@) and(c)
present the simulated power functions of the tests calculated as in Secons 3
and 42, whereas the simulated power functions in the right-hand-side fig-
ures(b) and(d) are calculated using size corrected critical values

First, consider the case of martingale difference errors shown in Figure 3
i.e, {&} = {&}. In this caseall the finite sample rejection frequencies are very
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Limit——— W----~

0 T T T T T T T T T T T 0 T T T T T T T T T T T
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0.3 0.2 0.1 0 0.1 0.2 0.3
6 6
(c) n=500, not size corrected (d) n=500, size corrected
Ficure 3. Finite sample power functions with martingale difference errors
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(c) n=500, not size corrected

(d) n=500, size corrected

FiGuURE 4. Finite sample power functions with AR) errors with coefficiena = —0.5.
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I Limit —— — W ----- LR —-—-LM] Limit — — —W----- IR—-— LM
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(c) n=500, not size corrected (d) n=500, size corrected

Ficure 5. Finite sample power functions with AR) errors with coefficiena = 0.
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(a) n=100, not size corrected (b) n=100, size corrected

(c) n=500, not size corrected (d) n=500, size corrected

FiGuURE 6. Finite sample power functions with AR) errors with coefficiene = 0.5.
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close to the asymptotic local powesxcept the LM test in the small sample
n = 100, which has lower power than the LR and Wald tests

When the errors are serially correlated the differences between the test sta-
tistics are more apparenwith negative serial correlatioa= —0.5 (Figure 4,
and witha = 0 (Figure 5, i.e., when there is no serial correlation in the DGP
but an AR) is estimatedthe LM test loses power compared to the LR and
Wald testsand the Wald test tends to be oversized in the small samieh
is also reflected by its very low size corrected powerrfer 100 in Figure 5b).

In Figure 6 the errors are positively serially correlated vdtk 0.5. From
the previous sections we know that the asymptotic local power is much lower
in this case than with negative or no serial correlatids Figure 6 showsthis
is also the case for the finite sample rejection frequengiete that the scaling
along the vertical axis is different in Figure$ap and (b), compared with the
other plots. In the small samplen = 100, there are severe distortignsspe-
cially to the LM and Wald testsThe LM test completely loses power against
negative alternativeswith rejection frequencies even lower than the nominal
size and the Wald test is severely oversiz&dhenn = 500 the situation im-
proves but the LM test still has the lowest power and the Wald test is still
severely oversized

Unreported simulationgwhich can be obtained from the author upon re-
quesj show that not surprisingly the performance of the LR te$with n =
100 is very bad when relevant deterministic terms are left out and that the
inclusion of irrelevant mean aridr trend terms decreases power against posi-
tive values off. This is well known from AR-based unit root tests such as the
Dickey—Fuller testwhere a mearfand trend must be included if any power
against nonzero med@and trend is desired However it is worth noting that
unlike in our modelthe distribution of Dickey—Fuller type test statistics changes
when deterministic terms are included

Overall the simulations show that the improvement with respect to both
size and power when considerimg= 500 instead ofh = 100 is substantial
Thus one would expect very good performance of the tests in financial appli-
cations where samples are often many times lardgersuch caseshe power
loss resulting from the estimation of serially correlated errors would also be of
less importancet was also found that generally the LM test has lower power
than the Wald and LR tests and that the Wald test is often severely oversized
We have stressed the possibility of conducting simple asymptotic inference in
our mode] using the chi-squared tableand because this property is lost if
size corrected critical values must be emplaythis weighs heavily against the
Wald test

Even though we concentrated on the simple and well-known fractional unit
root model in the present simulation studymilar relative performance is to
be expected in more complicated models such as the general ma8gelTihus
the LR test is expected to outperform the Wald and LM tests with respect to
both size and power also in more complicated madels
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6. CONCLUSION

We have considered likelihood inference in a wide class of potentially nonsta-
tionary univariate time series modela such casesnference is usually drawn
in an autoregressive framework and nonstandard asymptotics. apply

In this paper we have shown thathen the estimation and testing problems
are embedded in a fractional integration framewatiandard asymptotics ap-
ply and desirable statistical properties of likelihood inference reemérger-
ticular, there exists a local MLE that is asymptotically norgreaid the classical
likelihood-based testéWald, LR, and LM) are consistent and asymptotically
chi-squared distributed under local alternativdader the additional assump-
tion of Gaussianitythe local MLE is asymptotically efficiepand the tests are
locally most powerful Furthermore in the scalar parameter case withd.
Gaussian errorour tests achieve the asymptotic Gaussian power envelope of
all invariant and unbiased testise., they are asymptotically uniformly most
powerful (against local alternativesmong all invariant and unbiased tests

The Monte Carlo study shows that with sample sizes typical for macroeco-
nomic time series the tests perform reasonably waild with larger sample
sizes such as those usually found in finance applications the performance of
the tests is very good and their rejection frequencies very close to the asymp-
totic local powerIn our Monte Carlo study the LR test dominates with respect
to both size and power in finite sampléhe LR test also has attractive com-
putational features when serially correlated errors are allowed&mause it
avoids a quite cumbersome calculation of covariance matrices

The results derived in this paper could also be applied to the problem of
testing for fractional cointegration when the cointegrating vector is known a
priori, e.g., from economic theorywWhen the cointegrating vector must be esti-
mated the results in this paper no longer apfliis presents an interesting
avenue for further research which is currently under investigation by the au-
thor (see e.g., Nielsen 2003.
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APPENDIX: PROOFS

Proof of Theorem 3.1. First, by noting thatp (L) 0, = & + (8 — B)'% it is immedi-
ate that the denominator g(0) is

(o2 + op(1) +

Sk

n - - 12 -

2 (B-BXKB-B+ - Z(B-prue (A1)
t=1 t=1
by Assumption 3The last two terms are asymptotically negligible because

E

- E (B=B)%%(B—B) H = o(% tr(D, V2D, Dn_l/z)>

Ni=1
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by Assumption 2 and12) and

1.0 » 2 1
- E(,B*,B)’S(teI = O<‘tf(Dn1/2DnDnl/2))
N n

using also uncorrelatedness{ef}.
The numerator irg(6) can be written as

3 ($L0)° ~ X GO0+ 3 B0~ 3 (G(L06)° (A2)
+ 3 6w~ 3 B(LOW? (A3)
By the mean value theorem we hater somed* = 6*(t, n) such that 0= |6%] = [4],
d(L,0)u, = p(L)u, + 6’ %{9’0*) Uy
b2 fe+ = (AL6%) — E(Le, (A4)
N NG

where the last term has mean zero and varigdte * 372, [|A;(6*) — [?) = o(n™1)
by Assumption giii) and dominated convergencis in Robinson(1994 p. 1439, it
follows that

(L,0)u, = i} £(L)e + oy(n~¥2) (A5)

uniformly in t. Using (A.5) we get that(A.3) is

n / ’

2 (L 25 (L) L)e) — + o,(1 A.6
\/—(5 )€)e — \F(s“ e)({( )e[)\/— 0p(1). (A.6)

For a fixedm > 0, consider thep-vectoruv, = Ej”;l {i€—j& and thep X p matrix
Vi = 2% 3L {dke; &« By Assumption 3EV;, = 0?3, £;¢{/ and applying an
LLN, n™* 3L,V » 023, ;4] in probability The vector sequende,} is a martin-
gale difference sequence with respect to the filtrafidj} because is /B measur-
able and integrable anBl(v | A1) = Ej”ll {e_jE(elF-,) = 0as for all t. Using
Assumption 3Ev,v{ = E(E(v,v{| FK_1)) = 042,-'“:1 i ¢, and by application of a mar-
tingale difference CLTe.g., Brown, 1971, Hall and Heyde198Q Chap 3.2), we estab-

lish that
1 n m
—nEvt —d N<Osa425j§j’>- (A7)
t=1 j=1

BecauseE[n Y231, 31 g6 &2 = Ol )12) can be made arbitrarily
small by choosingn large by(4), we can apply Bernstein’s lemnte.g., Hall and Heyde
198Q pp. 191-192 to conclude thatA.3) converges in distribution té’'(2¥Y?Z —
¥8)o 2. Because
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1
g(0) = —2 In [1 - (W) + Op(l))] = W(8) + 0,(1)

we have proven the first statement of the theorem if we show(th&) is asymptoti-
cally negligible
Thus (A.2) can be written as

HM:

(/3 B X (B — ﬂ>+2<ﬁ BYX K (B —B) (A.8)

-2 gl(ﬁ - )% —2 2103 - B)'% (& + 0,(n"¥2)) (A.9)

by (A.5), wherex; = ¢(L,0)x. Now, (A.9) is

Z(ﬁ B)’Xtet+221(B_[§)’(X1_)A(t)et+op(l)y (A.10)
where
(X — %) = i (L) + o(n~V?) (A.11)
t T Xt NG t :

uniformly in t by the same analysis as far, and
n -1 n B
= <E X, X() > Xi(e+ Op(n¥2) = B+ 0,(1) (A.12)
t=1 t=1

using (A.11) and Assumption 2Now the second term ofA. 10) is 2n~Y2 x
2B - ,3) E]t 1Xt ¢ o6 + 0p() andE[n Y23 (B — B) EJ 1 % def? =
O(n™1) by uncorrelatedness ¢& }, Assumption 2(4), (12), and(A.12). The same ar-
guments apply to the first term ¢A.10) and to the terms ifA.8).

Next, we examine

ag(o 12 - " ap(L,e

?9(5) = _<‘2(¢(L,¢9)01)2> Z( o ) >¢(L,6)0[. (A.13)

Ni=1 -1

The expression in the first set of parentheses is
12 10 R
-2 (B(LOU + 3 (B PIRR(B—B)

t=1 t=1

+ % i (B~ B)* (& + Op(n"Y2)) = 02 + 0,(1) (A.14)
t=1

using(A.5), E[n"1 =L (B = B)& & (B — B) = 0(n™1), EIn"t 3L, (B — B)'*i(e +
Op(n~Y2))| = O(n~2) as in(A.1) by Assumption 2(12), (A.11), and(A.12).
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Defining the function/ (z,6) = (9/060)In ¢(z,6), the second sum ifA.13) is

1 n ~ R 1 n
N > (L(L,0)p(L,0)0)¢(L,0)0 — —= > ({(L,0)d(L,0)u)p(L,0)u,  (A.15)
t=1 n{=1

1 n
2 (L) (L, O)u) (L, Ou — Z (Z(L)e)p(L,0)u, (A.16)

T
n 1 n
T g (L)L, 0)u — = tgl(z(L)et)et (A.17)
1 n
+ —nzl(f(L)e[)e[, (A.18)

where(A.18) converges in distribution t&2Zo 2 as in(A.6). Applying (A.5) to (A.17)

we see that it equals™* > (7 (L)e) (£ (L)e)'s + 0p(1), which converges in proba-
bility to w602 as in(A.6).

Thus we need to show thatA.15) and (A.16) are asymptotically negligibleFirst,
write (A.15) as

é é L,0 ({) L (7 0 —Uu (j) L 0 0
,—nt 1( ( ) ) ( ’ )( t t)) ( ’ ) 't
f—nt A Z ’ s t 5 Ut Ul
A i( (L)( A)/)/()( ( A),X)
nt 4 g B B t et B B t

2 ((¢(L,0) = ¢ (L)(B = BY%) (& + (B—B)%)

<||

ﬂl

0 . 12 N
Z C(Le)(B=B) %+ = Zl((f(L,ﬂ) —{(L)e)(B = B)' %+ 0,(1)

using (A.5). The first and third terms ar®p(n‘1/2) by (4) and the arguments applied
to (A.14), and the second and fourth terms e@g(n*l/z) by combining the argu-
ments applied to the first term and those applied(#04). Rewriting (A.16) as
n Y23 ((A(L,0) — Z(L))e)(e + Op(n~*2)) using (A.5), we note that it is asymp-

totically negligible by the same arguments as applie@Ad). This establishes the sec-
ond statement of the theorem

The second derivative is

90 (13 18 (10L0) ) (16L0) Y
000 _<n§1(¢(|"6)0‘)2> ; 2( >< 0[)

t= 00

1 n . 71:_L n 2¢(L )
- (EtEl(ML,@)ut)z) nE( FYEYY >¢(L 6)Q,,

iy

t=1
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which is equal to

n

1
2 N ;(?(L,9)¢(L,9)Ut)(Z(L,9)¢(L,0)01)’

n

1
70 S ML 0ILIBH(L0)0

1 n
-2 H %(;(Lag)g(l-v0)¢(L70)0[)¢(L99)0t + op(l)

by (A.14). Combining the preceding arguments it can be shown that the last two terms
are botho,(1) whereas the first term converges in probability-td’. This completes
the proof |

Proof of Theorem 3.2. By Theorem 3L(iii) and Assumption ]1g(6) is asymptoti-
cally a concave function of = \/né in S,(0,|8]/n), the sphere irp-dimensional
Euclidean space centered at the origin with radiéls’vn. Hence by Theorem 3L and
the subsequent analysi = v/né, is asymptotically the unique maximizer @#(8) in
S,(0,]8]//n), and its asymptotic distribution is given if§5) by the usual expansion
Under Gaussianity ofe }, (8) is the true likelihoodThe limiting Fisher information is

then given by
)
0

which is the inverse of the asymptotic variance as required n

1
lim — —
n—oo N 0000" | o=

Proof of Theorem 3.3. Though the equivalence of the test statistics is well known in
standard testing problem#e have stressed the nonstandard nature of our maddl
thus we start by showing equivalendy the mean value theorem

L RO
0 \Vno 90 |e=0)’

neg, =

NG, n 9606’ o=

where#* is an intermediate valuérhis implies thatWw — LM — 0 in probability by
Theorem 3L. Similarly, by a Taylor expansion of the likelihood

o)
0

a2l (0)

S 1
1O =1+ 00507 |0t 2% 000

n

2
—I(0)+} (Eal(e)

6.+ o.(D),
9000’ )“ p(D)

and thusLR — W — 0 in probability by Theorem 3(iii ).

The asymptotic distribution of the test statistics follows directly from the previous
theoremsUnder the local alternative®3) we set\n (6, — 61,) = 6 — 6 =4 ¥ Y2Z by
Theorem 2. Then the Wald test is

W= §"W8 5y (VY27 4+ 8)' W(¥ Y27 +§)
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by Theorem 2. Similarly,

L = 290) [E0<6g(0) 69@))]—1 dg9(0)

- —q (WY2Z —w8) v H(WY2Z — ¥§)
a0’ a6 00’ a0

by Theorem 3L(ii) and(21), and
LR = 29(6,) =g (¥ Y2Z + 8) W (¥ Y27 + §)

by Theorems A(i) and 32.

Under the additional assumption of Gaussianity the tests are locally most powerful
because the noncentrality parameter is maximal by Theor2rarfl the formula for the
information matrix(21). |

Proof of Corollary 3.1. This is immediate from Theorem3 u

Proof of Theorem 3.4. Following the arguments of the previous sections and those
in Tanaka(1999 and using(A.5) we find that

t—1

Cc
étn =& + n E gj et—j + Op(n_l/z)v
j=1

c—-86' 1
étnzet"'ﬁ_glgiet*i-i_op(n )
o

uniformly in t. Thus the denominator of26) normalized byn—* converges tar? in
probability asn — oo, and the numerator

8(2c—68) O [C
n

t

>

1 2
g etj> + 0,(1)

j=1

n 26 n t—1
2 a2y - 7 : e +
t:21(@% &%) w% LS

i
=25\ Wo2Z +8(2c - §) Vo2 + 0,(1)

by the same arguments as those in the proof of Theor&nfA8 beforeg it can be shown
that this is unaffected by the presence of the regressors and the result followsH

Proof of Theorem 3.5. Consider first(28), which implies that(in this contexte is
the density function of the standard normal distribution

(CZ,Q(S) + 52w> 3 <c]_a(5) + 52w>
25\ - 25\

with the nontrivial solutiorCy ,(8) = —C, ,(8) — 26%¥. Now determine the constants
by (27):

1—a =P(-C,,(8) —282¥ < M(0,58) < C, ,(8))

( C, ,(8) + 62 c2a(5)+52xp>
=P <z )
26NT 26N

whereZ is a standard normal random variabldus C, ,(8) is the solution to

D ((Cp o (8) +82W)/25N V) = 1 - a/2,
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i.e, Cp4(8) = 26NVZ, ,,, — 82V, whereZ;_,, is the 1001 — a/2)% point of the
standard normal distribution
The power envelope is given by

1(8) = 1— P(Cy,(8) < M(8,6) < C, ,(5))
=1-P(=20\NWZ, ., — 82 <26NWZ + 82 < 26\ WZ, ,, — 82W)
=P(|Z+N¥|>2Z, )
= Fozq(X11-0),

where the last line follows by squaring both sides of the inequajif, . is the
100(1 — @)% point of the y? distribution andFsz,, is the distribution function of the
Xx2(82W) distribution u

Proof of Theorem 4.1. The proof proceeds along the same lines as those of Theo-
rems 31 and 32. By the same arguments it can be shown that the results are unaffected
by the presence of the regress@s we assume here th@at,} is observed

Undery = yo + u/Nn, u = (8",v"), we first show that

() 9() =g W(w) = 5 (25¥2Z ~ Zp)

ag(y) W(p) _

i) =22 =Y27 - Ep,
(i) I d I M
82
i 280, g
oo

whereZ is a(p + g)-dimensional standard normal random vector

It is immediate that the denominator g{y) converges in probability to-2 by As-
sumption 4 By the mean value theorem we hater somey* = y*(t,n) partitioned as
y* = (6*,¢*)" and such thatyo| = [y*[ = |y,

M S o _
o(L,0)c(L,p)u, = g + \/ﬁf(L)St"’ \/ﬁ(/\(L,G ) —{(L)e

+ ﬁ (L) = A, (L o) 2,

where A, (z,r) = (dInc(z,)/d)(c(z,4)/c(z,0)) and A(z,6) is defined in
Assumption 1iii). Denoting by A, j(¢) the coefficient onz! in an expansion of
A, (z,4) in powers ofz and by N a neighborhood of siz&(n=v2) around iy,
SURyen 220l A, | ()|? < oo becausea(z, ) andb(z,) have roots that are outside the
unit circle Thus as in(A.5) it follows that

(L, 0)c(L,p)u, = & + % £(L)e +0p(n"2) (A.19)

uniformly in t.
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Hence the numerator ig(y) is

n

Z\/—(S(L)st)st 2\/—(f(L)st)(f(L)st)’\/—+0p(1) (A.20)

Define for a fixedm > 0 the (p + g)-vectorv, = 3%, & ¢,_;& and the(p + q) X
(p + g matrix V; = X0, 3¢, & ére ek As in the proof of Theorem .3,
N30 V= 0?3 & ¢ in probability and

l n m
ﬁtzzll)t —d N<O,0’4]§§J§J’>

by application of a martingale difference ClHart(i) now follows by Bernstein’s lemma
To prove(ii) we notice that the first term in

9y _ _<} é((b(l_,@)c(l-,‘//)ut)z)
alu, Ni=1

1 n
SN El(f(L,7)¢(L,9)C(L’¢)Ut)¢(|-,9)C(|—,!/f)ut (A.21)

is(oc?+ 0p(1)) ! by (A.19) and write the second term i#.21) as

n

% 2 (E(Ly)b(L,0)c(L,y)u) (L, )L, )y,

1 - 1 2
__nzl(f(L)st)st+ﬁzl(f(l-)st)at-

The last term converges in distribution B”?Zo 2 as in(A.20), and by application of
(A.19) the difference of the first two terms is * i, w' (£(L)&) (£(L) ) m + 0p(1),
which converges in probability tEuo? as in(A.20).

The result(iii ) follows exactly as in the proof of Theorem13

Next, it follows as in Section 3 that(14) holds withé replaced byu andg replaced
by the function in Section.4Thus the existence and uniqueness3n (0, x|/+/n) of
a local MLE 9, satisfyingv/n¥y,, = Op(1) are ensuredand its distribution is given by
(36) from the usual expansion

Efficiency follows directly from(iii ), which is the Fisher information under Gauss-

ianity of {&}. n
Proof of Corollary 4.1. Apply the partitioned matrix inverse formula . u
Proof of Theorem 4.2. This follows straightforwardly by applying the arguments in

the proof of Theorem .3 to the results in Theorem#and its proof n

Proof of Corollary 4.2. This is immediate from Theorem2
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