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SUMMARY

Hydrothermal time (HTT) is a valuable environmental synthesis to predict weed emergence. However,
weed scientists face practical problems in determining the best soil depth at which to calculate it. Two
different types of measures are proposed for this: moment-based indices and probability density-based
indices. Due to the monitoring process, it is not possible to observe the exact emergence time of every
seedling; therefore, emergence times are not observed individually, seedling by seedling, but in an
aggregated way. To address these facts, some new methods to estimate the proposed indices are
derived, using grouped data estimators and kernel density estimators. The proposed methods have
been exemplified with an emergence data set of Bromus diandrus. The results indicate that
hydrothermal timing at 50 mm is more useful than that at 10 mm.

INTRODUCTION

Seedling emergence is probably the single most
important phenological event influencing the success
of annual plants (Forcella et al. 2000). Generally,
due to the asymmetry of emergence with time, the
first cohorts of seedlings contribute more to stand
biomass and subsequent seed production (Fernández-
Quintanilla et al. 1986), having the largest contribu-
tion to the next generation and stronger competition
with the crop. The ability to predict weed emergence
could enhance crop management by facilitating the
implementation of more effective weed control strat-
egies through the optimization of the timing of weed
control (Leblanc et al. 2003; Izquierdo et al. 2009).

Seedling emergence is controlled by several factors,
including temperature, water potential, burial depth
and soil. However, it seems that temperature and
water potential are the major factors (Forcella et al.
2000). Previous research has demonstrated that emer-
gence of several weed species can be predicted using

indices (Naylor 1981; Hunter et al. 1984) or modelling
techniques (Colbach et al. 2005). Researchers have
used both mechanistic and empirical approaches to
predict weed seedling emergence. However, Grundy
(2003) concludes that, although the benefits of an
improved mechanistic understanding of weed emer-
gence are undeniable, empirical models may offer
the simplicity and flexibility required for practical
decision support. Empirical emergence models can
give valuable information about the beginning and
extent of weed seedling emergence periods after
sowing. Seedling emergence models can be classified
in thermal time (TT) models, if they use soil
temperature above a base temperature to describe
emergence, and hydrothermal time (HTT) models, if
they combine TT and hydro time above a base water
potential. Detailed descriptions of these models can be
found elsewhere (Forcella et al. 2000; Bradford 2002;
Grundy 2003).

HTT models have frequently proved better at
predicting emergence than TT models (Leguizamón
et al. 2005; McGiffen et al. 2008). However, they may
be more suitable for situations with little tillage and
low seed dormancy, where the seeds remain close to
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soil surface and emerge as soon as the environmental
conditions become favourable.

Classical parametric models, such as Gompertz and
logistic, have been used widely to define the relation-
ship between HTT and weed emergence (Dorado et al.
2009; Haj Seyed Hadi & González-Andújar 2009).
Nevertheless, there exists an important practical
problem in calculating the HTT. Since the models
used to describe weed emergence depend on the HTT
in soil, what is the best depth to measure temperature
and water potential in order to calculate it? There is
not a universal answer, although simplistically, it
should be ‘at the position of the individual seed(s)’.
For instance, Royo-Esnal et al. (2010) indicate that
the HTT was estimated in the 0–50mm soil layer,
without being more specific. The difference in HTT
between soil layers may be huge. Since HTT is often
measured at different soil depths, a natural question is
to define an index that reflects which of these depths is
the best to improve weed emergence prediction.

It is worth mentioning that emergence has a
dichotomous nature: a seed can only germinate or
not germinate, but it cannot ‘half germinate’. In that
sense, the number of emerged seedlings is a realization
of a binomial distribution. Most of the models used in
this context work conditionally on seeds emerged
during the experimental study, circumventing this
binomial structure.

It is important to point out that most of the
statistical methods used in this context tackle the
problem from a parametric regression point of view.
Under the parametric regression approach, cumulat-
ive emergence is viewed as a response variable in a
parametric regression model (Gompertz or logistic,
for instance) where cumulative hydrothermal time
(CHTT) is regarded as the explanatory variable. The
parametric regression view for weed emergence has
several problems. First of all, parametric models are
sometimes not flexible enough to capture complex
features in the HTT distribution, such as abrupt jumps
or heavy tails. From a regression perspective, ob-
served cumulative emergence values at consecutive
monitoring CHTTs are not statistically independent.
However, this is not explicitly considered in the weed
science literature, just fitting the model as if the data
were independent. Since cumulative emergence is a
non-decreasing function with values between 0 and 1,
it is more natural to think of it as a distribution
function (rather than a regression function). In
particular, for a regression model to be at least a
reasonable fit to model emergence, one has to take
care that the response function in the model always
gives values between 0 and 1. Finally, if there were no
limitations due to monitoring, one would be able to
observe the exact value of CHTT at the emergence of
every seedling. In such a case, it would be more
natural to formulate the statistical problem in terms of
the distribution (cumulative emergence) of just one

random variable (CHTT) rather than using a reg-
ression approach, involving an explanatory variable
(CHTT) and a response variable (cumulative emer-
gence).

In the present paper, a cumulative distribution
(or equivalently, probability density) view is adopted.
This consists of focusing on the HTT cumulative
distribution function (cdf), F(t), which is the prob-
ability that a seedling emerges at an HTT less than
or equal to t, where t is any possible hydrothermal
value within a reasonable interval. The shape of the
distribution or alternatively, its derivative, f (t)=F ′(t),
the density, may be used to obtain some indices
(coefficient of variation, kurtosis, curvature, etc.)
to assess how useful this distribution is for weed
emergence purposes. For instance, it is clear that
the flatter the distribution, the better its predictive
value.

A classical statistical tool for estimating F(t) with-
out any parametric assumption is the empirical cdf.
For a given t, the empirical cdf is just the proportion
of observed seedlings that have emerged before HTT
t. To calculate the empirical cdf at any t, the whole
set of HTTs at the emergence of all seedlings is
needed. However, in practice all these times cannot
be observed exactly. Due to the monitoring process,
F(t) can only be observed at a very limited number of
values for t. So, in this sense, HTTs cannot be
observed for every single seedling, but in an aggre-
gated way. In other words, the set of HTTs is an
incomplete data set (grouped data). This forces us to
adapt the existing statistical tools for use with grouped
data in order to estimate the values of interest (co-
efficient of variation, kurtosis and probability density
functions).

The present work develops new statistical methods
that allow establishment of the best depth to measure
soil variables to compute HTT using a probability
density view. Two indices based on the coefficient
of variation and the kurtosis of observed HTTs are
proposed with this aim in mind. To solve some of
the problems of these two indices, two new ones are
defined. These are based on integrals of the square of
density derivatives and are designed to capture the
flatness of the HTT probability density function or
equivalently, the spread of the HTT distribution.

MATERIALS AND METHODS

Monitoring plants and HTT

As a working example, an unpublished data set
of ripgut brome (Bromus diandrus Roth) was taken
from an experiment carried out during winter–spring
2005/06 in Gibraleon (37°22′N, 6°54′W; 26m asl) and
2006/07 in Palos de La Frontera (37°12′N, 6°48′W;
30m asl); both locations are situated in the province
of Huelva (Andalucia, southern Spain).
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Briefly, the experiment consisted of four polyvinyl-
chloride cylinders (diameter 250 mm, height 50 mm)
placed 1 m apart. For each sample, 200 seeds of
B. diandrus were mixed thoroughly with the soil and
distributed throughout the 0–50mm layer. Numbers
of emerged weed seedlings were recorded once or
twice a week and then removed by cutting seedling
stems at ground level with minimum disturbance of
the substrate. All the data for the cumulative numbers
of seedling emergence from the field were converted
to n/m2.

Daily rainfall and maximum and minimum air
temperatures were obtained from a meteorology
station in Kronos, Quimisur S.L., Seville, Spain,
located c. 50 m from the study field. This information
was used as an input into the STM2 model (Spokas &
Forcella 2009) to simulate water potential and soil
temperatures at 10 and 50mm.

In this example, only a superficial layer (10 mm)
and a deep layer (50 mm) were considered as represen-
tatives of the gradient of emergence of B. diandrus.
Following Schutte et al. (2008), soil temperature and
water potentials were used to calculate HTT for day t,
θHT(t), at the two depths, by means of the following
equation:

θHT(t) = θH(t) · θT(t) (1)
where θH(t)=1{ψ(t)5ψ(b)}, with 1{×} the indicator
function. Therefore, θH(t)=1 when the actual water
potential at day t, ψ(t), is larger than or equal to the
base water potential for seedling germination, ψb,
otherwise θH(t)=0, and

θT(t) = max T(t) − Tb, 0{ } (2)
T(t) being the daily average soil temperature at day t
and Tb the base temperature for seedling germination.
CHTT starting at crop sowing up to day s is defined as
follows:

ΘCHT(s) =
∑s

t=1

θHT(t) (3)

For B. diandrus, 0·91 °C is the base temperature (Tb)
considered and −1·50MPa is the base water potential
(ψb) (M. J. Sánchez del Arco, personal communi-
cation).

Data-generating process

For a fixed soil depth (10 or 50 mm) and a particular
cylinder of a plot, n denotes the number of seedlings
that have emerged at the end of the monitoring
process. Ideally, one would like to know the CHTT,
ΘCHT (si), for i=1, 2, . . . , n, where si is the exact
instant of emergence of the ith seedling. These CHTTs
at emergence, ΘCHT(s1), ΘCHT(s2), . . . , ΘCHT(sn), are
abbreviated as X1, X2, . . . , Xn. Although CHTT, X,
can be modelled by a random variable with a
continuous and a discrete part (due to the base

temperature and the base water potential), for prac-
tical purposes it will be approximated by a continuous
random variable. Since the inspections in the moni-
toring process are performed at a limited number of
instants, the value ΘCHT(s) can only be observed at a
limited number of values for s. Consequently, the
values X1, X2, . . . , Xn are not observable with
precision (incomplete data). However, what is ob-
served is the total number of seedlings that have
emerged before every inspection. The number of in-
spection times (excluding the initial instant) is denoted
by k and the inspection instants by t1, t2, . . . , tk; the
cumulative observed HTTs at inspections become
ΘCHT(t1), ΘCHT(t2), . . . , ΘCHT(tk). For the sake of
brevity, these cumulative observed HTT at inspections
will be denoted by y04y14 ···4yk (y0 is the initial
HTT at the beginning of the monitoring process,
typically equal to zero). Seedling emergence is ob-
served via the cumulative proportion of these Xi that
are smaller or equal to the CHTT, yj, recorded at the
jth inspection day. This proportion will be denoted by

Fn(yj) = Number of seedings iwithXi 4 yj
n

which is the well-known empirical cdf at the collection
of observed CHTT at inspections. In this sense,
seedling emergence can only be observed in an
aggregate way (grouped data), i.e. by recording the
number of emerged seedlings between two consecutive
monitoring instants.

Although the previous paragraph describes the
usual practice when monitoring seedling emergence,
the statistical analysis of the observed HTT at
inspection as grouped or incomplete data is new in
the weed science literature. However, these statistical
tools were developed in other contexts several decades
ago. In fact, the data used in the present paper can be
considered as a kind of interval-censored data,
defined, in general, when the event of interest cannot
be observed and it is only known to have occurred
within a time interval. Pioneer papers considering
interval-censored data were Peto (1973) and Turnbull
(1976). Since then, many papers have been published
considering interval-censored data, in such diverse
areas as medicine, biology, computer science, environ-
mental science, etc. Two examples of reviews on this
topic are Lesaffre et al. (2005) and Sun (2006).
Recently, Onofri et al. (2010) applied censored data
techniques to analyse weed emergence. Ritz et al.
(2010) also used interval censored data to model the
propensity of plants to flower.

Emergence indices

The knowledge of the relationship between seedling
emergence time and the prevailing environmental
conditions is useful for weed emergence prediction.
The main idea is to define an index that reflects which
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of the soil depths is the best to improve weed emer-
gence prediction. Any plausible index should measure
the spread of the probability distribution of CHTT at
emergence. The more spread the distribution, the
better for weed emergence prediction purposes.

Reasonable indices for measuring the relative dis-
persion or the shape of the HTT distribution include
those based on moments. Considering the random
variable X, which measures CHTT at emergence, the
coefficient of variation and the kurtosis are two first
attempts to measure the spread of the distribution of
emergence time:

I1 =CV = σ
μ

I2 =Kur = m4

σ4

where CV is the coefficient of variation and Kur is the
kurtosis coefficient, which are defined in terms of
the mean μ=E(X ), the variance, σ2=Var(X ) and the
fourth central moment m4=E[(X−μ)4]. Both indices
are invariant under scale transformation. This is an
important property that makes these indices stable
with respect to changes in units of measure for time or
temperature. Moreover, I2 is also a shifting invariant
(i.e. I2 does not change when adding a constant to the
CHTTs), while I1 is not. The shifting invariance
property is also important, for instance, when chan-
ging the starting day for measuring CHTT, since two
different starting days lead to two series of CHTTs
that differ only by adding a constant value. Given the
meaning of coefficient of variation and kurtosis, large
values for I1 and small values for I2 indicate good
weed emergence prediction properties for CHTT (see
Ruppert (1987) for a deep insight of the concept of
kurtosis).

Emergence indices can also be defined based on the
probability density function, f, of the CHTT at emer-
gence, X. Intuitively, this density reflects how prob-
able it is to find CHTTs along all possible values. The
flatter the density, the more spread the distribution of
CHTT and, consequently, the better the index for
weed emergence prediction purposes. The slope of the
density, f, can be measured via its first derivative, f ′,
while its second derivative, f ″, is useful for measuring
the density curvature. These two functions are then
squared to avoid compensation of a curve that is
partially increasing and partially decreasing or par-
tially convex and partially concave. Finally, the
square of these functions is integrated out along all
possible values of CHTT at weed emergence. The
following two indices are just some standardized
versions of these integrals, which are multiplied by
two different powers of the standard deviation just for
invariance convenience:

J1 = σ3
∫
f ′(x)2dx

J2 = σ5
∫
f ′′(x)2dx

It is easy to check that these two indices are also
invariant under shifting and scale transformations.
Small values of J1 and J2 provide good opportunities
to improve weed emergence prediction. In other
words, J1 and J2 try to quantify the smoothness of f.
Consequently, small values of these indices are
preferable in the current instance.

Index estimation

If the exact value of CHTT at emergence could be
observed for every seedling, the indices I1 and I2 could
be estimated using their empirical analogues, i.e. by
computing the sample mean, the sample variance and
the sample fourth moment with the exact CHTTs for
all seedlings. However, these data are not available,
since we only know the proportion of seedling emer-
gence between consecutive CHTTs. This incomplete-
ness of the data, forces us to obtain grouped-data
versions of the empirical estimates.

The observed CHTT values are denoted as
y04y14 ···4yk, and their pertaining seed emergence
proportions as Fn(y0)4Fn(y1)4 ···4Fn(yk). The
grouped-data estimators of the coefficient of variation
and the kurtosis indices are as follows:

Î1 =ĈV = σ̂

μ̂

Î2 =K̂ur = m̂4

σ̂4

where

μ̂ =
∑k
i=1

witi

σ̂2 =
∑k
i=1

wi(ti − μ̂)2

m̂4 =
∑k
i=1

wi(ti − μ̂)4

wi=Fn(yi)−Fn(yi−1) and ti=(yi−1+yi)/2, for i=1,
2, . . . , k. These estimators are just the grouped-data
versions of the sample mean, variance and fourth
central moment. To compute them, the central values,
ti, between every pair of consecutive HTTs are
calculated and the proportions of emergence, wi, in
every interval are used.

In order to estimate the indices J1 and J2, one needs
first to estimate the underlying density function, f, of
the CHTT at emergence. If the exact values, X1, . . . ,
Xn, of CHTT at emergence were observed, then the
well-known Parzen–Rosenblatt kernel density estima-
tor (see Wand & Jones 1995) could be used for
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this purpose:

f̃ h(x) =
1
nh

∑n
i=1

K
x− Xi

h

( )

where K is a kernel function (typically a density
function chosen by the user, such as the normal
density function) and h is the bandwidth or smoothing
parameter that regulates the amount of smoothing to
be used. Although the choice of the kernel function is
of secondary importance, the smoothing parameter
plays a crucial role in kernel density estimation. The
idea of kernel density estimation is very close to that of
a histogram. The kernel method simply generalizes the
definition of a histogram in order to make it smooth
(the histogram is a step function) and also indepen-
dent of any arbitrary choice of the intervals endpoints.
The smoothness is achieved by using a kernel
function.

In practice, these HTTs at emergence, Xi, cannot
be observed for every individual seedling. For that
reason, the Parzen–Rosenblatt kernel density estima-
tor has to be adapted to a grouped-data set-up:

f̂h(x) = 1
h

∑k
i=1

wiK
x− ti
h

( )
(4)

where, as above, ti and wi are the central points and
the proportions of emergence for every interval of
consecutive HTTs. Figure 1 shows the kernel density
estimates for CHTT at emergence, computed with
Eqn (4), using several smoothing parameters and a
Gaussian kernel. The CHTTs used to obtain these
estimates are those collected in Table 1 (see Results

section) for the depth of 50 mm. The importance of
the bandwidth choice is evident from this figure.

Plugging σ̂ and Eqn (4) into the definition of J1 and
J2, estimators of these indices are easily obtained:

Ĵ1 = σ̂3 · L̂1 (5)
Ĵ2 = σ̂5 · L̂2 (6)

where

L̂1 = − 1
h3

∑k
i=1

∑k
j=1

K ′′ ti − tj
h

( )
wiwj (7)

L̂2 = 1
h5

∑k
i=1

∑k
j=1

K (4) ti − tj
h

( )
wiwj (8)

K″ is the second derivative of the kernel function, K,
and K(4) is its fourth derivative. An alternative way to
define Eqns (7) and (8) consists of adapting those
proposed by Jones & Sheather (1991) in a complete
data set-up to the present grouped-data context.

To deal with the problem of bandwidth selection
in this grouped-data setup, a bootstrap method is
proposed. The algorithm for smoothing parameter
selection is included in Appendix 1 at the end of the
present paper.

RESULTS

In this section, the analysis of B. diandrus emergence is
presented. As previously indicated, field experiments
were conducted in two locations. The observed emer-
gence data for locations 1 and 2 are collected in Tables
1 and 2. As it can be seen in these tables, the CHTT at
emergence can not be observed for every individual
seed, but just in an aggregated way.

Figure 2 shows the cumulative emergence of
B. diandrus at soil depths of 10 and 50mm for
locations 1 and 2 using the mean data. At 10 mm, a
very high slope of the distribution function at CHTTs
close to zero was observed. This large probability
mass close to zero for HTTs at 10 mm leads to the
conclusion that this depth is not good for predicting
seedling emergence. The emergence distribution is
much more spread for HTTs at 50 mm, which is good
for weed emergence prediction. In summary, the more
spread the distribution of HTT at emergence, the
easier it is to predict the emergence process.

The free statistical software R (R Development
Core Team 2008) was used to implement the statistical
methods presented in the subsection on Index esti-
mation (above) and in Appendix 1. Using this code,
the first two indices (I1 and I2) presented in the
Emergence indices subsection (above) were estimated
for the B. diandrus emergence data in locations 1 and
2. The mean samples of the four cylinders in every
location were used. These estimates are collected in
Table 3.

0·014

0·012

0·01

0·008

0·006

0·004

0·002

0
0 100 200 300 400 500 600 700 800

f h
 (

x)

CHTT

Fig. 1. Kernel density estimation for CHTT at emergence
using several smoothing parameters (h=10 ----, h=25— and
h=50 ····) and a Gaussian kernel, for location 1 at soil depth
50 mm.
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As mentioned above, the best value for the soil
depth would be the one with the largest I1 or the
smallest I2 in Table 3. Unfortunately, the smallest
values for I1 correspond to depths where I2 attains also
its smallest values. In fact, I1 seems not to be a good
index because it changes when adding a constant to
CHTTs. For example, if the measurement of HTTs
was started a few days earlier, this would give new
CHTT values that consist of simply adding a positive
number to the actual ones. Then, the estimated index
I1 would be smaller, since σ̂ remains the same after

such a shifting but μ̂ is larger. However, both
emergence data (with or without shifting) will be
equally good for weed emergence prediction.
Therefore, it was decided not to use I1 as a means of
comparison. On the other hand, I2 can be taken as a
good index in this case, since its smaller values for
depth 50mm reflect the visual impression in Fig. 2.
Consequently, 50 mm seems to be the best soil depth
to predict weed emergence in terms of the index I2.

Next, indices J1 and J2 for depths of 10 and 50mm
will be estimated. For this, as explained before, a

Table 1. Seedling emergence data of B. diandrus for Location 1

Date

HTT Cumulative emergence (proportion)

Mean (S.D.)

Depth (mm) Cylinder

10 50 1 2 3 4

14 Dec 2006 0 15 0·00 0·00 0·00 0·00 0·00 (0·000)
19 Dec 2006 0 88 0·00 0·00 0·00 0·00 0·00 (0·000)
22 Dec 2006 0 130 0·12 0·19 0·53 0·53 0·34 (0·189)
26 Dec 2006 0 187 0·71 0·55 0·64 0·77 0·67 (0·084)
29 Dec 2006 0 219 0·96 0·78 0·75 0·77 0·81 (0·087)
2 Jan 2007 0 219 0·99 0·82 0·78 0·78 0·84 (0·085)
5 Jan 2007 0 219 0·99 0·82 0·80 0·80 0·85 (0·081)
8 Jan 2007 0 219 1·00 0·82 0·81 0·82 0·86 (0·078)
12 Jan 2007 0 219 1·00 0·83 0·82 0·83 0·87 (0·075)
16 Jan 2007 0 219 1·00 0·84 0·82 0·84 0·87 (0·072)
19 Jan 2007 0 219 1·00 0·85 0·83 0·84 0·88 (0·069)
23 Jan 2007 18 219 1·00 0·86 0·84 0·84 0·88 (0·067)
26 Jan 2007 18 219 1·00 0·86 0·85 0·84 0·89 (0·064)
30 Jan 2007 66 260 1·00 0·86 0·86 0·84 0·89 (0·064)
2 Feb 2007 122 305 1·00 0·95 0·94 0·98 0·94 (0·043)
6 Feb 2007 203 370 1·00 0·96 0·95 0·95 0·97 (0·019)
9 Feb 2007 262 416 1·00 0·97 0·97 0·97 0·98 (0·013)
13 Feb 2007 349 484 1·00 0·98 0·98 0·98 0·98 (0·008)
16 Feb 2007 349 543 1·00 0·99 0·98 0·98 0·99 (0·008)
20 Feb 2007 366 612 1·00 0·99 1·00 0·99 0·99 (0·005)
23 Feb 2007 435 665 1·00 1·00 1·00 0·99 1·00 (0·003)
27 Feb 2007 486 741 1·00 1·00 1·00 1·00 1·00 (0·000)

Table 2. Seedling emergence data of B. diandrus for location 2

Date

HTT Cumulative emergence (proportion)

Mean (S.D.)

Depth (mm) Cylinder

10 50 1 2 3 4

16 Dec 2005 16 127 0·00 0·00 0·00 0·00 0·00 (0·000)
23 Dec 2005 16 215 0·74 0·82 0·81 0·86 0·81 (0·045)
29 Dec 2005 108 293 0·92 0·93 0·92 0·96 0·93 (0·019)
4 Jan 2006 159 375 0·98 0·99 0·97 0·99 0·98 (0·007)
13 Jan 2006 283 491 0·99 0·99 0·98 0·99 0·99 (0·005)
20 Jan 2006 376 548 1·00 1·00 1·00 1·00 1·00 (0·000)

706 R. CAO E T A L .

https://doi.org/10.1017/S002185961100030X Published online by Cambridge University Press

https://doi.org/10.1017/S002185961100030X


kernel function and a bandwidth parameter must be
selected. The proposed bootstrap method to select the
bandwidth (described in Appendix 1) needs of a para-
metric model as prior step. Technical details about
functions, parameters and models used in the present
research are given in detail in Appendix 2. Using the
fitted models with parameter values in Table 4 (see
Appendix 2), bootstrap bandwidth selectors were
obtained as explained in Appendix 1. Using these
bandwidths, non-parametric estimations for the indi-
ces J1 and J2 were computed. These values as well as
the corresponding bandwidths used to compute them
(in brackets) are included in Table 5. As pointed out
above for index I2, the values of indices J1 and J2 at
depth 50mm are smaller than those at a depth of
10 mm. This is a common feature at both locations.
As a consequence, 50 mm seems to be the best soil

depth to predict weed emergence also in terms of the
indices J1 and J2.

On the other hand, the values of J1 and J2 at depth
10mm are very large for location 1. The reason for
these values is the large slope of the cumulative
emergence close to zero (see Fig. 2). Thus, J1 and J2
capture the intuitive idea of spread and they are useful
tools for improving weed emergence prediction.

DISCUSSION

With the decline in the number of selective products
available for chemical weed control, and the increase
in environmental pressure for reduced pesticide in-
puts, there is greater emphasis on optimizing the
application timing of herbicides. The ability to predict
the emergence behaviour of weed species in relation to
meteorological events presents a number of practical
opportunities to meet these challenges. The develop-
ment of emergence models could serve as the basis for
making decisions on the use of weed management
strategies (Izquierdo et al. 2009). However, variation
in HTT estimates in soil depths could limit the use
of these equations in weed management. Failure to
provide an accurate prediction can produce important
economic losses by letting many weeds escape to
compete with the crop and may contribute greatly to
seeds returning to the seedbank (Grundy 2003). Weed
scientists choose the depth at which to measure
thermal time or HTT without a clear criterion
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Fig. 2. Cumulative emergence proportions of B. diandrus for CHTT at soil depths of 10 mm (–·–·–) and 50mm (—) for
(a) location 1 and (b) location 2 using the mean data.

Table 3. Estimated emergence indices Î1 and Î2, based
on the coefficient of variation and kurtosis, for the two

soil depths (10 and 50 mm) at locations 1 and 2

Location 1 Location 2

Depth (mm) Depth (mm)

10 50 10 50

Î1 3·31 0·47 1·36 0·30
Î2 20·08 12·89 23·04 14·54
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or without establishing the best depth. For instance,
Schutte et al. (2008) developed a hydrothermal
emergence model for giant ragweed (Ambrosia
trifida L.), estimating HTT to 10mm depth when the
maximum emergence for this species was 70 mm. One
way of improving the predictability of these equations
would be to choose the best soil depth to measure
HTT through robust statistical methods involving
observation of the depths from which individual
seedlings emerge in the field.

As an illustrative example, a dataset concerning B.
diandrus emergence has been analysed. Relationships
between HTT and cumulative weed emergence pro-
portion have been found for different locations and
soil depths (10 and 50mm).

Indices I2, J1 and J2 are good tools for measuring
the spread of the distribution of HTT at emergence at
every depth. The flatter the density function, the lower
the indices and, consequently, the better the depth for
weed emergence prediction purposes.

The values of the estimated indices I2, J1 and J2 for
the B. diandrus emergence data are much smaller for
soil depth 50mm than for 10 mm. As a consequence,

it is clearly concluded that the best soil depth to model
B. diandrus emergence is the estimation of the HTT at
50 mm.

It is important to note that the goal of the present
work was not to model the emergence of B. diandrus,
but to show how new statistical tools can help
to improve the predictive ability of weed emergence
models. Development of an accurate model for
B. diandrus would require inclusion of the whole
range of depths from which this species can emerge.
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Part of the third author research was done while he
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Summer Fellowship. We thank two anonymous
referees for constructive comments that improved the
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Table 4. Estimated parameters for the normal mixture model for soil depths of 10 and 50 mm at locations 1 and 2

Component

Location 1 Location 2

Depth (mm) Depth (mm)

10 50 10 50

αi μi σi αi μi σi αi μi σi αi μi σi

1 0·87 1 0·3 0·82 150 36 0·70 36 10 0·70 207 25
2 0·01 20 120 0·06 210 1 0·22 46 20 0·22 237 20
3 0·06 90 15 0·01 230 200 0·06 96 30 0·06 277 35
4 0·05 240 140 0·08 300 15 0·02 246 50 0·02 427 50
5 0·01 350 10 0·03 520 84 – – – – – –

Table 5. Estimated emergence indices Ĵ1 and Ĵ2, based on the density function, for soil depths 10 and 50 mm at

locations 1 and 2. The corresponding bootstrap bandwidths, h∗MSE,J1

( )
and h∗MSE,J2

( )
, are given in parentheses

Location 1 Location 2

Depth (mm) Depth (mm)

10 50 10 50

Ĵ1 h∗MSE,J1

( )
10·03×105 (0·43) 0·21 (69·36) 2·86 (19·08) 0·59 (42·06)

Ĵ2 h∗MSE,J2

( )
6·58×1010 (0·43) 1·64 (45·05) 13·64 (24·08) 0·31 (67·03)
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APPENDIX 1

BANDWIDTH SELECTION METHOD

As pointed out above, the choice of the smoothing
parameter is important in kernel density estimation.

Figure 1 shows how important it is to choose an
adequate bandwidth in this set-up. A too narrow
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bandwidth leads to density estimations with many
peaks and valleys, most of them produced by the fact
that the CHTTs at emergence are observed in an
aggregate way (grouped in intervals). On the other
hand, large bandwidths lead to oversmoothed esti-
mations that may hide important features of the
distribution. Figure 1 exhibits this problem when
estimating only the density, and, since the indices J1
and J2 depend on the density, it is clear that a similar
problem of bandwidth (h) selection arises when
estimating these two indices. To solve this problem, a
parametric model is built that mimics the original data
and uses the bootstrap method to estimate the mean-
squared error of Ĵ1 and Ĵ2 as a function of the
bandwidth, h. Then the bandwidth producing an
optimal value for the bootstrap mean-squared error
is proposed. Similar ideas have been applied in
different contexts by Cao (1993), González-Manteiga
et al. (1996) and Cao et al. (2001).

Using a parametric model as a reference for
bandwidth selection is a common practice in density
estimation, because the optimal bandwidth often
depends on the selection of an auxiliary smoothing
parameter, called pilot bandwidth. Silverman’s rule of
thumb (see, for instance, Silverman 1986) is a first
attempt to implement this idea in a single step. Since
the choice of the bandwidth, the pilot bandwidth, the
prepilot bandwidth, etc., is a never-ending process,
some parametric reference is used to stop the process
at some stage (often at the second stage). At that
point, a parametric model is assumed for pilot or

prepilot estimation. The rationale of this method is
that although the parametric fit may not be very
accurate, it will only be used as a reasonable starting
point for bandwidth selection (not for final esti-
mation).

The parametric model for bandwidth selection for
CHTT density estimation is a normal mixture
distribution with r components. This can be justified
by Fig. 2. Consider a discrete random variable G with
possible values 1, 2, . . . , r and probability mass
P(G= i)=αi, with αi50 and

∑r
i=1 αi = 1. The con-

ditional distribution ofX givenG= i under this normal
mixture model is as follows:

X |G=i =d N μiσ
2
i

( ) (9)
where μi and σ2i are the mean and variance of the ith
component in the normal mixture. As a consequence,
the marginal density function of X is a convex linear
combination of normal densities:

f (x; α, μ, σ2) =
∑r

i=1

αi
1
σi
ϕ

x− μi
σi

( )
(10)

where ϕ is the standard normal density.
This model is flexible and, when fitted to the data, is

a useful parametric reference. Parameter estimation
can be carried out using, for instance, the minimum
distance approach of Cao et al. (1995). From the fitted
model, ideal samples of exact HTTs at emergence can
be generated. Obviously, a grouped-data version can
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Fig. A1. Cumulative emergence for the normal mixture fitted model at soil depth 10mm (–·–·–) and 50mm (—) for
(a) location 1 and (b) location 2.
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be built from such an ideal sample, by mimicking the
real data-generating process, i.e. counting the number
of seedlings with simulated HTT between two con-
secutive inspection times. Moreover, once the model
has been fitted, the values of the indices can be
computed and the distance between these values and
the corresponding non-parametric estimators can also
be observed.

The method for bandwidth selection proceeds as
follows:

1. Given the incomplete original sample Fn(y0),
Fn(y1), . . . , Fn(yk) for the sequence of consecutive
HTTs y04y14 . . .4yk, compute estimates,
α̂i, μ̂i and σ̂2i for the parameters αi, μi and σ2i
(for i= 1, 2,. . .,r) of the normal mixture model in
Eqn (10).

2. Draw a bootstrap resample, X1
*, X2

*,. . ., Xn
*, from

the fitted normal mixture density, f (x; α̂, μ̂, σ̂2).
3. Compute the incomplete version of the bootstrap

resample by computing the values Fn
*(y0),

Fn
*(y1),. . ., Fn

*(yk), where

F∗
n (yi) =

Number of X ∗
i 4 yi

n

4. Fix a bandwidth, h, and use the incomplete
bootstrap resample to compute the bootstrap
version of the two density-based indices
Ĵ
∗
1 = σ∗3 · L̂∗

1 and Ĵ
∗
2 = σ̂∗5 · L̂∗

1, where

σ̂∗2 =
∑k
i=1

w∗
i (ti − μ̂∗)2, μ̂∗ =

∑k
i=1

w∗
i ti

w∗
i =F∗

n (yi) − F∗
n (yi−1), i = 1, 2, ..., k

L̂∗
1 =− 1

h3
∑k
i=1

∑k
j=1

K ′′ ti − tj
h

( )
w∗
i w

∗
j

L̂∗
2 =− 1

h5
∑k
i=1

∑k
j=1

K (4) ti − tj
h

( )
w∗
i w

∗
j

5. Repeat steps 2–4 a large number, B, of times
to obtain B bootstrap replications of these two
indices: Ĵ

∗1
1 , Ĵ

∗2
1 , ... , Ĵ

∗B
1 , Ĵ

∗1
2 , Ĵ

∗2
2 , ... , Ĵ

∗B
2 . Use

these bootstrap replications to obtain bootstrap

estimations of the mean-squared errors:

MSE∗
J1 (h) =

1
B

∑B
j=1

Ĵ∗j
1 − Ĵpar

1

( )2

MSE∗
J1 (h) =

1
B

∑B
j=1

Ĵ∗j
2 − Ĵpar

2

( )2
where Ĵ1

par and Ĵ2
par are the indices computed for

the fitted normal mixture parametric model:

Ĵpar
1 = σ̂3pooled ·

∫
f ′(x, α̂, μ̂, σ̂2)2dx

Ĵpar
1 = σ̂5pooled ·

∫
f ′′(x, α̂, μ̂, σ̂2)2dx

and

σ̂2pooled =
∑r

i=1

α̂iσ̂
2
i +

∑r

i=1

α̂i(μ̂i − μ̂pooled)2

μ̂pooled =
∑r

i=1

α̂iμ̂i

6. Repeat step 5 for different values of h, as many
times as required, in order to approximate numeri-
cally the optimal value for h in MSE∗

J1 h( ) and
MSE∗

J2 h( ). These bandwidths will be denoted by
h∗MSE,J1 and h∗MSE,J2 .

APPENDIX 2

TECHNICAL ISSUES FOR THE STATISTICAL
ANALYSIS OF B. DIANDRUS EMERGENCE

This Appendix gives some detailed information about
the functions, parameters and models used to obtain
the results presented in the Results Section. The
Gaussian kernel is used for non-parametric estimation
of the indices Ĵ1 and Ĵ2. In order to select the
smoothing parameter, the algorithm presented in the
previous Appendix is used, with B=500 bootstrap
replications. The first task is to fit normal mixture
models to the four data sets (depths of 10 and 50mm
for locations 1 and 2). In view of the different
distributions of the four emergence data sets (see
Fig. 2) the number of normal components in the
mixtures has been set to r=5, for depths of 10 and
50mm in location 1, and r=4, for depths of 10
and 50mm in location 2. The estimated para-
meters in these four mixture models are collected in
Table 4. Figure A1 shows the emergence cdfs of the
fitted parametric models for both locations and
depths.

Visual comparison of Figs. 2 and A1 shows that the
parametric fits are quite similar to the empirical
cumulative emergence data. The indices I1 and I2

Table A1. Estimated values for the emergence indices
I1 and I2 for the fitted normal mixture models

Location 1 Location 2

Depth (mm) Depth (mm)

10 50 10 50

I1 3·30 0·47 0·78 0·19
I2 20·83 12·81 27·92 14·74
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have been computed for the normal mixture models
with the parameters detailed in Table 4. The values of
these indices are included in Table A1. It is worth
mentioning the good approximation between the non-
parametric estimates Î1 and Î2 (see Table 3) and their

parametric counterparts using the fitted normal
mixture model. As a consequence of all these features,
the fitted parametric models are adequate starting
points for bandwidth selection in non-parametric
estimation of the indices J1 and J2.
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