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Abstract We characterize the topological spaces of minimum cardinality which are weakly contractible
but not contractible. This is equivalent to finding the non-dismantlable posets of minimum cardinality
such that the geometric realization of their order complexes are contractible. Specifically, we prove that
all weakly contractible topological spaces with fewer than nine points are contractible. We also prove
that there exist (up to homeomorphism) exactly two topological spaces of nine points which are weakly
contractible but not contractible.
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1. Introduction

Finite topological spaces have attracted increasing attention in recent years, principally
from works by Barmak and Minian [3–6]. One of the main reasons for the interest in the
theory of finite spaces is that they serve as models for weak homotopy types of compact
polyhedra. More precisely, for every compact polyhedron K, there exists a finite T0-space
X (K) together with a weak homotopy equivalence K → X (K) [12]. Moreover, there is
a functorial correspondence between finite T0-spaces and finite posets [1] which endows
the theory of finite topological spaces with a natural combinatorial flavour. This allows
the study of compact polyhedra (and often of general topological spaces) by means of
combinatorial tools and gives a new insight into relevant topological questions [2].

A natural problem of this theory is to find finite topological spaces with the minimum
number of points that have certain weak homotopy type. One of the first questions of
this type was asked by May in [10], where he conjectures that, for all n ∈ N, the n-fold
non-Hausdorff suspension of the 0-sphere, denoted by SnS0, is a minimal finite model of
the n-sphere, that is, a finite topological space which is weak homotopy equivalent to the
n-sphere with the minimum possible cardinality. This question was answered positively by
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Barmak and Minian in [3]. Moreover, they also prove that SnS0 is the only minimal finite
model of the n-sphere. In the same article, they give a characterization of the minimal
finite models of the finite graphs.

Further minimality questions were formulated in [9] and in [2] regarding finite models
of the real projective plane and the torus. These problems were solved in [8], where a
characterization of all the minimal finite models of these spaces is given.

Also, in [13] and in [2], a weakly contractible non-contractible space of nine points is
given. Thus, another natural question to pose related to this theory is whether this is the
minimum number of points that a weakly contractible non-contractible space can have
[11, Problem 3.5.4]. In this article, we give an affirmative answer to this question and
show that a weakly contractible non-contractible space must have at least nine points.
Equivalently, any poset with fewer than nine points such that the geometric realization
of its order complex is contractible must be dismantlable. Moreover, we prove that there
exist (up to homeomorphism) exactly two topological spaces of nine points that are weakly
contractible but not contractible.

2. Preliminaries

In this section, we will recall the basic notions of the theory of finite topological spaces and
fix notation. For a comprehensive exposition on finite spaces, the reader may consult [2].

If X is a finite topological space and x ∈ X, the intersection of all the open subsets of
X that contain x is clearly an open subset and is denoted by Ux. Any finite T0-space X
can be endowed with a partial order, which is defined as follows: x1 ≤ x2 if and only if
Ux1 ⊆ Ux2 . This defines a correspondence between finite T0-spaces and finite posets which
was first observed by Alexandroff [1]. Moreover, under this correspondence, continuous
maps between finite T0-spaces correspond to order-preserving morphisms between the
respective posets. Hereafter, any finite T0-space will be regarded also as a poset without
further notice.

Let X be a finite T0-space and let x ∈ X. From the definition of the associated partial
order it follows that Ux = {a ∈ X/a ≤ x}. In a similar way, the smallest closed set that
contains x is {x} = {a ∈ X/a ≥ x} and is denoted by Fx. It is also standard to define
Ûx = {a ∈ X/a < x}, F̂x = {a ∈ X/a > x}, Cx = Ux ∪ Fx and Ĉx = Cx − {x}. We say
that the point x ∈ X is an up beat point (respectively, down beat point) of X if the
subposet F̂x has a minimum (respectively, if the subposet Ûx has a maximum) [2,10,14].
The notion of beat points in finite T0-spaces corresponds to the notion of irreducible points
in posets [13].

Stong proves, in [14], that if x is a beat point of X then X − {x} is a strong deformation
retract of X and that two finite T0-spaces are homotopy equivalent if and only if one
obtains homeomorphic spaces after successively removing their beat points. It follows
that a finite T0-space is contractible if and only if its associated poset is dismantlable (by
irreducibles). Also, using the results of Stong it is easy to prove that a finite T0-space
which has a maximum or a minimum is contractible.

If X is a finite T0-space, K(X) will denote the order complex of X, that is, the simplicial
complex of the non-empty chains of X, and |K(X)| will denote its geometric realization.
Also, Xop will denote the poset X with the inverse order and will be called the opposite
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space of X. In addition, we define the height of a finite T0-space X as

h(X) = max{#c − 1/c is a chain of X}.
Note that h(X) = dimK(X).

McCord proves, in [12], that if X is a finite T0-space, then there exists a weak homotopy
equivalence from the geometric realization of K(X) to X. In particular, any finite T0-space
is weak homotopy equivalent to its opposite space since their order complexes coincide.
Note also that the aforementioned result of McCord implies that the singular homology
groups of a finite T0-space X are isomorphic to the simplicial homology groups of K(X).

In the same article, McCord also proves that if X is a finite topological space and
KX denotes its Kolmogorov quotient, then the quotient map X → KX is a homotopy
equivalence. This implies that, given a finite space, one can obtain a homotopy equivalent
finite T0-space whose cardinality is not greater than that of the given space.

The non-Hausdorff suspension of a topological space X is defined as the space SX
whose underlying set is X � {+,−} and whose open sets are those of X together with
X ∪ {+}, X ∪ {−} and X ∪ {+,−} [12]. Note that, if X is a finite T0-space, then the
partial order in SX is induced by the partial order of X together with the relations x ≤ +
and x ≤ − for all x ∈ X. McCord proves that, for every topological space X, there exists
a weak homotopy equivalence between the suspension of X and SX [12]. As an example,
he shows that, for all n ∈ N, the n-sphere Sn is weak homotopy equivalent to the n-fold
non-Hausdorff suspension of the 0-sphere S0. Observe that SnS0 is a finite T0-space of
2n + 2 points.

May asked, in [10], if SnS0 was the smallest space that is weak homotopy equivalent to
the n-sphere. This question was answered by Barmak and Minian in [3]. More precisely,
they proved the following theorem from which the affirmative answer to May’s question
follows.

Theorem 2.1. Let X 	= ∗ be a finite topological space without beat points. Then X
has at least 2h(X) + 2 points. Moreover, if X has exactly 2h(X) + 2 points, then it is
homeomorphic to Sh(X)S0.

In [7], we studied the homology groups of finite T0-spaces obtaining several results and
applications. Among them we mention the following proposition, which will be needed
later. In what follows, homology will always mean homology with integer coefficients.
Thus, the group of coefficients will be omitted from the notation.

Proposition 2.2. Let X be a finite T0-space and let D be an antichain in X. Then
Hn(X,X − D) ∼= ⊕

x∈D H̃n−1(Ĉx) for every n ∈ Z.

If X is a finite T0-space, mxl(X) and mnl(X) will denote the subsets of maximal
and minimal points of X, respectively. The following proposition states some simple facts
concerning the maximal and minimal points of a finite T0-space. Its proof will be omitted.
The first two items appeared in [8].

Proposition 2.3.

(a) Let X be a connected and finite T0-space with more than one point. Then mxl(X) ∩
mnl(X) = ∅.
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Figure 1. Weakly contractible non-contractible space of nine points.

(b) Let X be a finite T0-space without beat points. If a ∈ X − mxl(X), then #(F̂a ∩
mxl(X)) ≥ 2. Similarly, if b ∈ X − mnl(X) then #(Ûb ∩ mnl(X)) ≥ 2.

(c) Let X be a finite T0-space without beat points. If #mxl(X) = 2, then X is
homeomorphic to S(X − mxl(X)).

We end the preliminaries by giving a definition that will be used in the following section.

Definition 2.4. Let X be a connected and finite T0-space. We define

BX = X − (mxl(X) ∪ mnl(X)).

3. Results

In this section, we will prove that a weakly contractible non-contractible space must
have at least nine points. The equivalent formulation for posets states that if P is a
non-dismantlable poset such that |K(P )| is contractible, then P must have at least nine
points.

In addition, we will prove that there exist (up to homeomorphism) exactly two weakly
contractible non-contractible spaces of nine points, or, equivalently, two non-dismantlable
posets of nine points such that the geometric realizations of their order complexes are
contractible.

In Figure 1, we exhibit a weakly contractible non-contractible T0-space of nine points,
which was also considered in [13, Figure 2] and in [2, Example 4.3.3]. Observe that this
space is not contractible since it does not have beat points and it is weakly contractible
since the geometric realization of its order complex is contractible.

We will give now several lemmas which will be useful for proving the main results of
this article.

Lemma 3.1. Let X be a finite T0-space without beat points. Let a, b ∈ X with a > b.
Then #Ûa ≥ #Ûb + 2 and #F̂b ≥ #F̂a + 2.

Proof. Note that Ûa ⊇ Ub since b < a. And since a is not a beat point of X, we obtain
that Ûa � Ub. Therefore #Ûa ≥ #Ub + 1 = #Ûb + 2.
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Applying this result to Xop, we obtain that #F̂b ≥ #F̂a + 2. �

Lemma 3.2. Let X be a finite T0-space such that h(X) = 2. If X is weakly
contractible, then H2(A) = 0 for all subspaces A ⊆ X.

Proof. Let A be a subspace of X. Note that H3(X,A) = 0 since h(X) = 2. The result
then follows from the exact sequence H3(X,A) −→ H2(A) −→ H2(X). �

Lemma 3.3. Let X be a weakly contractible finite T0-space such that h(X) = 2.

Let b, b′ ∈ X − (mxl(X) ∪ mnl(X)) such that b 	= b′. If #(F̂b ∩ F̂b′) ≥ 2, then

#(Ûb ∩ Ûb′) ≤ 1.

Proof. Note that {b, b′} must be an antichain. Suppose that #(Ûb ∩ Ûb′) ≥ 2.
Then there exist distinct elements a, a′ ∈ F̂b ∩ F̂b′ and distinct elements c, c′ ∈ Ûb ∩
Ûb′ . Note that {a, a′} ⊆ mxl(X) and that {c, c′} ⊆ mnl(X). Hence the subspace A =
{a, a′, b, b′, c, c′} is homeomorphic to S2S0 and then H2(A) 	= 0, which contradicts
Lemma 3.2. Thus #(Ûb ∩ Ûb′) ≤ 1. �

Lemma 3.4. Let X be a topological space such that, for some x0 ∈ X, π1(X,x0) is not
a non-trivial perfect group. If SX is weakly contractible, then X is weakly contractible.

Proof. Let ΣX be the suspension of X. Since ΣX is weak homotopy equivalent to
SX, we obtain that ΣX is weakly contractible. Thus Hn(ΣX) = 0 for all n ∈ N. Hence
X is path-connected and Hn(X) = 0 for all n ∈ N. Thus π1(X,x0) is a perfect group.
Therefore π1(X,x0) must be the trivial group. The result then follows from Hurewicz’s
theorem. �

The following proposition shows that the height of a weakly contractible non-
contractible finite T0-space must be greater than one.

Proposition 3.5. Let X be a weakly contractible finite T0-space with h(X) ≤ 1. Then
X is contractible.

Proof. Suppose that X is not contractible. Without loss of generality, we may assume
that X does not have beat points. Let E denote the set of edges of the Hasse diagram
of X. Let R ⊆ X × E be the relation defined by xRa if and only if the point x belongs
to the edge a. Note that #R = 2#E.

On the other hand, since X is a path-connected space and #X ≥ 2 (as we are assuming
that X is not contractible), from the first item of Proposition 2.3, we obtain that mxl(X) ∩
mnl(X) = ∅. Thus, for each x ∈ X, we obtain that x /∈ mxl(X) or x /∈ mnl(X). And since
X does not have beat points, it follows that R(x) ≥ 2 for all x ∈ X. Hence #R ≥ 2#X.

Therefore #E ≥ #X. Thus 1 = χ(X) = #X − #E ≤ 0, which entails a contradic-
tion. �

We will now prove one of the main results of this article.
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Theorem 3.6. Let X be a non-contractible topological space that is weakly con-
tractible. Then #X ≥ 9.

Equivalently, if P is a non-dismantlable poset such that |K(P )| is contractible, then
#P ≥ 9.

Proof. Observe that we may assume that X is a finite T0-space without beat points.
By Proposition 3.5, h(X) ≥ 2. And by Theorem 2.1, if h(X) ≥ 4, then #X ≥ 10. Thus,

we may assume that h(X) = 2 or h(X) = 3.

Case 1 : h(X) = 3. By Theorem 2.1, #X ≥ 8. If #X = 8, then, again by Theorem 2.1,
X is homeomorphic to S3S0 which is weak equivalent to S3. But this is a contradiction
since X is weakly contractible. Thus #X ≥ 9.

Case 2 : h(X) = 2. Applying items (a) and (b) of Proposition 2.3, we obtain that
mxl(X) ∩ mnl(X) = ∅, #mxl(X) ≥ 2 and #mnl(X) ≥ 2.

We will prove now that #mxl(X) ≥ 3. Suppose that #mxl(X) = 2. Then X is home-
omorphic to S(X − mxl(X)) by item (c) of Proposition 2.3. Let Y = X − mxl(X). Note
that h(Y ) = 1 and thus π1(Y, y0) is a free group for all y0 ∈ Y . By Lemma 3.4, Y is
weakly contractible. Since X does not have beat points, the same holds for Y . And since
mnl(X) ⊆ Y , we obtain that #Y ≥ 2 and hence Y is not contractible, which contradicts
Proposition 3.5. Thus #mxl(X) ≥ 3.

Working with Xop in a similar way, we obtain that #mnl(X) ≥ 3.
Since h(X) = 2, we obtain that BX is a non-empty antichain of X. If #BX ≥ 3, then

#X ≥ 9. Thus we may assume that #BX ≤ 2.

Case 2.1 : #BX = 1. Suppose that BX = {b}. Note that F̂b ⊆ mxl(X) and Ûb ⊆
mnl(X). Let αb = #F̂b and βb = #Ûb. By Proposition 2.3, αb ≥ 2 and βb ≥ 2.

Since mxl(X) ∩ mnl(X) = ∅, it follows that #Ûa ≥ 2 for all a ∈ mxl(X) by the second
item of Proposition 2.3. And from Lemma 3.1, we obtain that #Ûa ≥ βb + 2 for all a ∈ F̂b.
Let l denote the number of 1-chains of X and let m = #mxl(X). From the previous
inequalities it follows that

l = #Ûb +
∑

a∈mxl(X)

#Ûa = Ûb +
∑
a∈F̂b

#Ûa +
∑

a∈mxl(X)−F̂b

#Ûa

≥ βb + αb(βb + 2) + 2(m − αb) = βb + αbβb + 2m ≥ αbβb + 8.

On the other hand, note that the number of 2-chains of X is αbβb.
Hence

1 = χ(X) = #X − l + αbβb ≤ #X − (αbβb + 8) + αbβb = #X − 8.

Therefore #X ≥ 9.

Case 2.2 : #BX = 2. If #mxl(X) ≥ 4 or #mnl(X) ≥ 4, then #X ≥ 9. Thus we may
assume that #mxl(X) = #mnl(X) = 3. As above, note that F̂b ⊆ mxl(X) and Ûb ⊆
mnl(X) for all b ∈ BX since BX is an antichain.

First, we will prove that, for all b ∈ BX , #Ûb = 2 and #F̂b = 2. Let b ∈ BX . Clearly, 2 ≤
#Ûb ≤ 3, where the first inequality follows from Proposition 2.3. Suppose that #Ûb = 3.
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Then Ûb = mnl(X). Let b′ be the element of BX − {b}. We claim that F̂b ⊆ F̂b′ . Indeed,
let a ∈ F̂b. Then Ûa ⊇ Ub, and since a is not a beat point of X, we obtain that Ûa � Ub.
But since Ub ⊇ mnl(X), it follows that b′ ∈ Ûa and hence a ∈ F̂b′ . By Proposition 2.3,
#F̂b ≥ 2 and #Ûb′ ≥ 2. Thus #(F̂b ∩ F̂b′) ≥ 2 and #(Ûb ∩ Ûb′) ≥ 2, which contradicts
Lemma 3.3. Therefore #Ûb 	= 3 and hence #Ûb = 2. In a similar way, we obtain that
#F̂b = 2.

Now, let mxl(X) = {a1, a2, a3}, BX = {b1, b2} and mnl(X) = {c1, c2, c3}. Without loss
of generality, we may assume that F̂b1 = {a1, a2} and Ûb1 = {c1, c2}. We will prove that
#Ûa1 + #Ûa2 + #Ûa3 ≥ 12 by analyzing two cases: b2 < a3 and b2 ≮ a3.

If b2 < a3, then #Ûa3 ≥ #Ûb2 + 2 = 4 by Lemma 3.1. And since b1 < a1 and b1 <

a2, we also obtain that #Ûa1 ≥ 4 and #Ûa2 ≥ 4 by Lemma 3.1. Thus #Ûa1 + #Ûa2 +
#Ûa3 ≥ 12.

If b2 ≮ a3, then F̂b2 = {a1, a2} = F̂b1 . By Lemma 3.3, Ûb2 	= Ûb1 = {c1, c2}. Hence c3 <

b2. Thus Ûa1 = Ûa2 = {b1, b2, c1, c2, c3}, and since #Ûa3 ≥ 2 by Proposition 2.3, we obtain
that #Ûa1 + #Ûa2 + #Ûa3 ≥ 12.

Therefore #Ûa1 + #Ûa2 + #Ûa3 ≥ 12 in any case.
As above, let l denote the number of 1-chains of X. Then

l = #Ûa1 + #Ûa2 + #Ûa3 + #Ûb1 + #Ûb2 ≥ 12 + 2 + 2 = 16.

Now, note that the number of 2-chains of X is #F̂b1#Ûb1 + #F̂b2#Ûb2 = 8. Thus

χ(X) = #X − l + 8 ≤ 8 − 16 + 8 = 0

and hence the space X is not weakly contractible. �

As a corollary of the previous theorem, we obtain that the space of Figure 1 is a weakly
contractible non-contractible space with the minimum possible number of points. In the
following theorem, we find all the weakly contractible non-contractible spaces of this
minimum number of points.

Theorem 3.7. Let X be a weakly contractible non-contractible topological space such
that #X = 9. Then X is homeomorphic to either the space of Figure 1 or its opposite.

Proof. By Theorem 3.6, we may assume that X is a finite T0-space without beat
points. By Proposition 2.3, #mxl(X) ≥ 2. If #mxl(X) = 2, X is homeomorphic to S(X −
mxl(X)) by Proposition 2.3. Note that X − mxl(X) does not have beat points. Since
#(X − mxl(X)) = 7, from [8, Theorem 5.7] we obtain that π1(X − mxl(X), x0) is a free
group for all x0 ∈ X − mxl(X). Thus X − mxl(X) is weakly contractible by Lemma 3.4,
which contradicts Theorem 3.6. Therefore #mxl(X) ≥ 3. Applying this argument to Xop,
we obtain that #mnl(X) ≥ 3.

By Proposition 3.5, h(X) ≥ 2. Thus BX 	= ∅. On the other hand, mxl(X) ∩ mnl(X) =
∅ by Proposition 2.3 and hence #(mxl(X) ∪ mnl(X)) = #mxl(X) + #mnl(X) ≥ 6.
Therefore #BX ≤ 3.

https://doi.org/10.1017/S0013091519000385 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000385


270 N. Cianci and M. Ottina

We will analyze three cases which correspond to the possible cardinalities of the
subset BX .

Case 1 : #BX = 1. Let b be the only element of BX . Let n = #mnl(X), α = #F̂b

and β = #Ûb. By Proposition 2.3, α ≥ 2 and β ≥ 2. Let R ⊆ X × X be the order rela-
tion of X and let S = R∩ (mnl(X) × mxl(X)). Let S1 = R∩ (Ûb × F̂b), S2 = R∩ (Ûb ×
(mxl(X) − F̂b)) and S3 = R∩ ((mnl(X) − Ûb) × mxl(X)). Clearly, S1, S2 and S3 are
pairwise disjoint and S = S1 ∪ S2 ∪ S3.

Note that #S1 = αβ. Also, if z ∈ Ûb, then F̂z � Fb since z is not a beat point of X.
Hence F̂z ∩ (mxl(X) − F̂b) 	= ∅ for all z ∈ Ûb. Thus #S2 ≥ β. On the other hand, from
Proposition 2.3, we obtain that #S3 ≥ 2#(mnl(X) − Ûb) = 2(n − β). Therefore

#S ≥ αβ + β + 2(n − β) ≥ αβ + 2 + 2(n − β).

Proceeding in a similar way, we also obtain that

#S ≥ αβ + 2 + 2#(mxl(X) − F̂b) = αβ + 2 + 2(8 − n − α).

Hence

#S ≥ αβ + 2 + 2max{n − β, 8 − n − α}
≥ αβ + 2 + (n − β) + (8 − n − α) = αβ + 10 − α − β.

Thus we obtain that

χ(X) = 9 − (#S + α + β) + αβ ≤ 9 − αβ − 10 + αβ = −1.

Hence X is not weakly contractible. Therefore this case is not possible.

Case 2 : #BX = 2. Without loss of generality, we may assume that #mxl(X) = 3 and
#mnl(X) = 4. Let b1 and b2 be the elements of BX .

We will prove that BX is an antichain. Indeed, if b1 < b2, then #F̂b1 ≥ #F̂b2 + 2 ≥ 4
by Lemma 3.1 and Proposition 2.3. Thus F̂b1 = {b2} ∪ mxl(X). Let c ∈ mnl(X) ∩ Ub1 .
Then Fb1 ⊆ F̂c ⊆ X − mnl(X) = BX ∪ mxl(X) = Fb1 . Hence F̂c = Fb1 and then c is a
beat point of X, which contradicts our assumptions. Therefore BX must be an antichain.

Since BX is an antichain, we obtain that h(X) = 2 and that F̂b1 ∪ F̂b2 ⊆ mxl(X) and
Ûb1 ∪ Ûb2 ⊆ mnl(X). For j ∈ {1, 2}, let αj = #F̂bj

and βj = #Ûbj
. Note that αj ≥ 2 and

βj ≥ 2 for all j ∈ {1, 2} by Proposition 2.3. As in the previous case, let R ⊆ X × X be
the order relation of X and let S = R∩ (mnl(X) × mxl(X)). Note that the number of
1-chains of X that contain b1 is α1 + β1 and that the number of 1-chains of X that
contain b2 is α2 + β2. Thus

χ(X) = 9 − (α1 + β1 + α2 + β2 + #S) + α1β1 + α2β2 = 7 − #S +
2∑

j=1

(αj − 1)(βj − 1).

We will analyze two subcases.

Case 2.1 : #(F̂b1 ∩ F̂b2) = 1. Since #mxl(X) = 3, we obtain that α1 = α2 = 2 and F̂b1 ∪
F̂b2 = mxl(X). Let a be the only point of F̂b2 − F̂b1 .
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We will now prove that β2 ≤ 3. Suppose that β2 > 3. Since #mnl(X) = 4, we obtain
that β2 = 4 and Ûb2 = mnl(X). Thus Ûa = Ub2 and hence a is a beat point of X, which
entails a contradiction. Therefore β2 ≤ 3.

We will now prove that mxl(X) ⊆ Fc for all c ∈ Ûb1 . Let c ∈ Ûb1 . If b2 > c, then Fc ⊇
Fb1 ∪ Fb2 ⊇ mxl(X). If b2 ≯ c, then Fb1 ⊆ F̂c ⊆ {b1} ∪ mxl(X) = Fb1 ∪ {a}. And since c

is not a beat point of X, we obtain that F̂c = Fb1 ∪ {a} and hence mxl(X) ⊆ Fc.
Since mxl(X) ⊆ Fc for all c ∈ Ûb1 and applying Proposition 2.3, we obtain that

#S ≥ 3#Ûb1 + 2#(mnl(X) − Ûb1) = 3β1 + 2(4 − β1) = β1 + 8.

Thus

χ(X) = 7 − #S +
2∑

j=1

(αj − 1)(βj − 1) ≤ 7 − β1 − 8 + β1 − 1 + β2 − 1 = β2 − 3 ≤ 0

and hence X is not weakly contractible.

Case 2.2 : #(F̂b1 ∩ F̂b2) ≥ 2. By Lemma 3.3, #(Ûb1 ∩ Ûb2) ≤ 1. Since β1 ≥ 2 and β2 ≥ 2,
we obtain that Ûb1 − Ûb2 	= ∅ and Ûb2 − Ûb1 	= ∅.

We will now prove that α1 = α2 = 2 and that mxl(X) ⊆ Fc for all c ∈ (Ûb1 − Ûb2) ∪
(Ûb2 − Ûb1). Let c ∈ Ûb1 − Ûb2 . We have that Fb1 ⊆ F̂c ⊆ {b1} ∪ mxl(X). Since c is not
a beat point of X, we obtain that F̂c 	= Fb1 and thus mxl(X) � Fb1 , which implies that
α1 = 2 since #mxl(X) = 3. Then #(mxl(X) − Fb1) = 1, and since F̂c 	= Fb1 , we obtain
that mxl(X) ⊆ Fc. In a similar way, we obtain that α2 = 2 and that mxl(X) ⊆ Fc for all
c ∈ Ûb2 − Ûb1 .

Thus, applying Proposition 2.3, we obtain that #S ≥ 3 + 3 + 2 + 2 = 10. On the other
hand, note that β1 + β2 ≤ 5 since #(Ûb1 ∩ Ûb2) ≤ 1. Hence

χ(X) = 7 − #S +
2∑

j=1

(αj − 1)(βj − 1) ≤ 7 − 10 + β1 − 1 + β2 − 1 = β1 + β2 − 5 ≤ 0.

Therefore X is not weakly contractible.

Case 3 : #BX = 3. Note that #mxl(X) = #mnl(X) = 3. Let b1, b2 and b3 be the
elements of BX .

Suppose that BX is a chain. Without loss of generality, we may assume that b1 < b2 <
b3. Applying Lemma 3.1 and Proposition 2.3, we obtain that

#F̂b1 ≥ #F̂b2 + 2 ≥ #F̂b3 + 4 ≥ 6,

but this cannot be possible since F̂b1 ⊆ {b2, b3} ∪ mxl(X). Thus BX is not a chain.
We will now prove that BX is an antichain. Assume the contrary. Since BX is neither

a chain nor an antichain, without loss of generality, we may assume that b1 and b3

are incomparable and that b1 and b2 are comparable. In addition, considering Xop, if
necessary, we may suppose that b1 < b2.

https://doi.org/10.1017/S0013091519000385 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000385


272 N. Cianci and M. Ottina

Note that b2 ≮ b3 since BX is not a chain. Hence F̂b2 ⊆ mxl(X). By Proposition 2.3,
#F̂b2 ≥ 2. Let a1 and a2 be distinct elements of F̂b2 and let a3 be the remaining maximal
element of X. By Lemma 3.1, #F̂b1 ≥ #F̂b2 + 2 ≥ 4, and since b1 and b3 are incomparable,
it follows that F̂b1 = {b2, a1, a2, a3} and F̂b2 = {a1, a2}.

Now observe that F̂b3 ⊆ {b2, a1, a2, a3} since b1 and b3 are incomparable. We claim that
F̂b3 is not path-connected. Indeed, if b3 < b2, then, proceeding as in the previous para-
graph, we obtain that F̂b3 = {b2, a1, a2, a3}, which is not path-connected. And if b3 ≮ b2,
then F̂b3 ⊆ mxl(X) and hence F̂b3 is a discrete subspace and #F̂b3 ≥ 2 by Proposition 2.3.
Thus F̂b3 is not path-connected.

By Proposition 2.3, #(Ûb1 ∩ mnl(X)) ≥ 2. Let c1 and c2 be distinct elements of Ûb1 ∩
mnl(X) and let c3 be the remaining minimal element of X. Since c1 < b1 and c1 is not
a beat point of X, we obtain that {b1, b2, a1, a2, a3} = Fb1 � F̂c1 ⊆ X − mnl(X). Hence
F̂c1 = {b1, b2, b3, a1, a2, a3}. In a similar way, F̂c2 = {b1, b2, b3, a1, a2, a3}.

From Proposition 2.2 we obtain that H1(F̂c1) ∼= H1(F̂c1 , Fb1) ∼= H̃0(F̂b3) 	= 0 since
F̂b3 is not path-connected. Applying Proposition 2.2 again, we obtain that H2(X) ∼=
H2(X,Fc2) ∼= H1(F̂c1) ⊕ H1(F̂c3) 	= 0 and hence X is not weakly contractible. Therefore
BX must be an antichain.

Since BX is an antichain, we obtain that h(X) = 2. For j ∈ {1, 2, 3}, let αj = #F̂bj
and

βj = #Ûbj
. Note that αj ≥ 2 and βj ≥ 2 for all j ∈ {1, 2, 3} by Proposition 2.3. As in the

previous cases, let R ⊆ X × X be the order relation of X and let S = R∩ (mnl(X) ×
mxl(X)). Thus

1 = χ(X) = 9 −
( 3∑

j=1

αj +
3∑

j=1

βj + #S
)

+
3∑

j=1

αjβj = 6 − #S +
3∑

j=1

(αj − 1)(βj − 1).

Hence

#S = 5 +
3∑

j=1

(αj − 1)(βj − 1) ≥ 8.

Thus #S = 8 or #S = 9 and hence
3∑

j=1

(αj − 1)(βj − 1) ∈ {3, 4}. Therefore at least five

of the numbers α1, α2, α3, β1, β2 and β3 are equal to 2 and the remaining one might be
2 or 3. Without loss of generality and considering Xop, if necessary, we may assume that
α1 = α2 = α3 = 2.

Claim 1. #(F̂bk
∩ F̂bl

) = 1 for all k, l ∈ {1, 2, 3} with k 	= l.

Suppose that there exist k, l ∈ {1, 2, 3} with k 	= l such that #(F̂bk
∩ F̂bl

) = 2. With-
out loss of generality, we may assume that #(F̂b1 ∩ F̂b2) = 2. Thus #(Ûb1 ∩ Ûb2) ≤ 1
by Lemma 3.3. And since #mnl(X) = 3, we obtain that #(Ûb1 ∩ Ûb2) = 1. Hence
β1 = β2 = 2 and Ûb1 ∪ Ûb2 = mnl(X).

Let a1 and a2 be the elements of F̂b1 ∩ F̂b2 and let a3 be the remaining maximal element
of X. Note that Ua1 ⊇ mnl(X) and Ua2 ⊇ mnl(X).
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Suppose that {a1, a2} ⊆ Fb3 . Then #(Ûb1 ∩ Ûb3) ≤ 1 and #(Ûb2 ∩ Ûb3) ≤ 1 by
Lemma 3.3. And since #mnl(X) = 3, we obtain that β3 = 2, #(Ûb1 ∩ Ûb3) = 1 and
#(Ûb2 ∩ Ûb3) = 1. Hence |K(X − {a3})| is homeomorphic to S2, which contradicts
Lemma 3.2. Thus {a1, a2} � Fb3 .

Hence, a3 ∈ F̂b3 . Since α1 = α2 = 2, we obtain that b1 ≮ a3 and b2 ≮ a3. And since
a3 is not a beat point of X, we obtain that Ub3 � Ûa3 ⊆ {b3} ∪ mnl(X). But #Ub3 ≥ 3.
Thus #Ub3 = 3, β3 = 2 and Ûa3 = {b3} ∪ mnl(X). Hence S = mnl(X) × mxl(X). Thus

χ(X) = 6 − #S +
3∑

j=1

(αj − 1)(βj − 1) = 6 − 9 + 3 = 0,

which entails a contradiction. This proves Claim 1.
Observe that, from Claim 1, we obtain that X − mnl(X) is homeomorphic to the

following space.

• • •

• • •

Claim 2. If k, l ∈ {1, 2, 3} are distinct elements such that βk = βl = 2, then #(Ûbk
∩

Ûbl
) = 1.

Suppose that there exist distinct elements k, l ∈ {1, 2, 3} such that βk = βl = 2 and
#(Ûbk

∩ Ûbl
) = 2. Let m be the remaining element of {1, 2, 3}, let c1 and c2 be the ele-

ments of Ûbk
∩ Ûbl

and let c3 be the remaining element of mnl(X). Note that mxl(X) ⊆
Fc1 ∩ Fc2 . If {c1, c2} ⊆ Ûbm

, then |K(X − {c3})| is homeomorphic to S2, which contra-
dicts Lemma 3.2. Thus {c1, c2} � Ûbm

. Hence βm = 2 and c3 ∈ Ubm
. If either c3 < bk

or c3 < bl, then mxl(X) ⊆ Fc3 . Otherwise, since c3 is not a beat point of X, we obtain
that Fbm

� F̂c3 ⊆ {bm} ∪ mxl(X). As #Fbm
= 3, it follows that F̂c3 = {bm} ∪ mxl(X)

and hence mxl(X) ⊆ Fc3 . Thus mxl(X) ⊆ Fc3 in any case.
Hence S = mnl(X) × mxl(X). Thus

χ(X) = 6 − #S +
3∑

j=1

(αj − 1)(βj − 1) = 6 − 9 + 3 = 0,

which entails a contradiction. This proves Claim 2.
Now, let a1, a2 and a3 be the only elements of F̂b1 ∩ F̂b2 , F̂b1 ∩ F̂b3 and F̂b2 ∩ F̂b3 ,

respectively. Without loss of generality, we may assume that β1 = β3 = 2. Thus #(Ûb1 ∩
Ûb3) = 1 by Claim 2. Let c1, c2 and c3 be the only elements of Ûb1 − Ûb3 , Ûb1 ∩ Ûb3 and
Ûb3 − Ûb1 , respectively.

If β2 = 2, then #(Ûb2 ∩ Ûb1) = 1 and #(Ûb2 ∩ Ûb3) = 1 by Claim 2. Then X is
homeomorphic to the following space.
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• • •

• • •

• • •

Hence |K(X)| is homotopy equivalent to S1 and then X is not weakly contractible.
Thus β2 = 3 and hence X is homeomorphic to the space of Figure 1. �

Acknowledgements. This research was partially supported by grants M015 (2013–
2015) and M044 (2016–2018) of SeCTyP, UNCuyo. The first author was also partially
supported by a CONICET doctoral fellowship.

References
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