
J. Inst. Math. Jussieu (2020) 19(5), 1573–1600

doi:10.1017/S1474748018000488 c© Cambridge University Press 2018

1573

RECOVERY OF NON-COMPACTLY SUPPORTED COEFFICIENTS
OF ELLIPTIC EQUATIONS ON AN INFINITE WAVEGUIDE

YAVAR KIAN
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Abstract We consider the unique recovery of a non-compactly supported and non-periodic perturbation

of a Schrödinger operator in an unbounded cylindrical domain, also called waveguide, from boundary

measurements. More precisely, we prove recovery of a general class of electric potentials from the partial
Dirichlet-to-Neumann map, where the Dirichlet data is supported on slightly more than half of the

boundary and the Neumann data is taken on the other half of the boundary. We apply this result in

different contexts including recovery of some general class of non-compactly supported coefficients from
measurements on a bounded subset and recovery of an electric potential, supported on an unbounded

cylinder, of a Schrödinger operator in a slab.
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1. Introduction

Let � be an unbounded open set of R3 taking the form � := ω×R, with ω a C2 bounded

open set of R2. We associate with every point x ∈ � the coordinate x = (x ′, x3), where

x3 ∈ R and x ′ := (x1, x2) ∈ ω. For q ∈ L∞(�) such that 0 is not in the spectrum of −1+ q
with Dirichlet boundary condition, we introduce the following boundary value problem

(BVP): {
(−1+ q)v = 0, in �,

v = f, on 0 := ∂�.
(1.1)

Recall that 0 = ∂ω×R and that the outward unit normal vector ν to 0 takes the form

ν(x ′, x3) = (ν
′(x ′), 0), x = (x ′, x3) ∈ 0,

where ν′ is the outward unit normal vector of ∂ω. From now on, we denote by ν both

exterior unit vectors normal to ∂ω and to 0. We fix θ0 ∈ S1
:= {y ∈ R2

; |y| = 1} and we

introduce the θ0-illuminated (respectively, θ0-shadowed) face of ∂ω as

∂ω−θ0
:= {x ∈ ∂ω; θ0 · ν(x) 6 0} (respectively, ∂ω+θ0

= {x ∈ ∂ω; θ0 · ν(x) > 0}). (1.2)

https://doi.org/10.1017/S1474748018000488 Published online by Cambridge University Press

mailto:yavar.kian@univ-amu.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1474748018000488&domain=pdf
https://doi.org/10.1017/S1474748018000488
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Here and in the remaining part of this text, we denote by x · y :=
∑k

j=1 x j y j the Euclidean

scalar product of any two vectors x := (x1, . . . , xk) and y := (y1, . . . , yk) of Rk , for k ∈ N∗,
and we put |x | := (x · x)1/2.

We fix G a portion of 0 taking the form G := G ′×R, where G ′ is an arbitrary open

set of ∂ω containing ∂ω−θ0
and consider K = K ′×R with K ′ an arbitrary open set of ∂ω

containing ∂ω+θ0
. The main goal of this paper consists of proving unique determination of

q from the knowledge of the partial Dirichlet-to-Neumann (DN) map

3q : f 7→ ∂νv|G , (1.3)

where ∂ν is the normal derivative and supp( f ) ⊂ K .

1.1. Physical motivations

Let us recall that the problem under consideration in this paper is related to the

so-called electrical impedance tomography (EIT) and its several applications in medical

imaging and others. Note that the specific geometry of an infinite cylinder or closed

waveguide can be considered for problems of transmission to long distance or transmission

through particular structures, where the length-to-diameter ratio is really high, such as

nanostructures. In this context, the problem addressed in this paper can correspond to the

unique recovery of an impurity perturbing the guided propagation (see [11, 26]). Let us

also observe that in Corollary 1.4, we show how one can apply our result to the problem

stated in a slab, which is frequently used for modeling propagation in shallow-ocean

acoustics (e.g. [1]), for coefficients supported in an infinite cylinder.

1.2. Known results

Since the pioneering work of [7], interest has grown in the Calderón or the EIT problem. In

[47], Sylvester and Uhlmann provided one of the first and most important results related

to this problem. They proved, in dimension n > 3, the unique recovery of a smooth

conductivity from the full DN map. Since then, many authors have extended this result

in several ways. The determination of an unknown coefficient from partial knowledge

of the DN map was first addressed by Bukhgeim and Uhlmann in [6] and extended by

Kenig, Sjöstrand and Uhlmann in [29] to the recovery of a potential from restriction of

data to the back and the front face illuminated by a point lying outside the convex hull

of the domain. Note that the result of [29] requires an overlap between the portion of the

boundary where the measurements are made and the support of the test functions. In

[28], Kenig and Salo removed this condition. We mention also the work of Isakov [25], who

has considered this problem with inputs and measurements on the same portion of the

boundary. In dimension two, similar results with full and partial data have been stated in

[5, 22, 23]. Moreover, without being exhaustive, we refer to the work of [8, 9, 15, 36, 43, 44]

dealing with the stability issue associated with this problem and some results inspired

by this approach for other partial differential equations (PDEs) stated in [13, 20, 31–33].

Let us remark that all the above-mentioned results have been proved in a bounded

domain. It appears that only a small number of mathematical papers deal with inverse

BVPs in an unbounded domain. Combining results of unique continuation with complex
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geometric optics (CGO) solutions and a Carleman estimate borrowed from [6], Li and

Uhlmann proved in [40] the unique recovery of compactly supported electric potentials

of the stationary Schrödinger operator in a slab from partial boundary measurements. In

[37], the authors extended this result to magnetic Schrödinger operators and [10] treated

the stability issue for this inverse problem. We mention also [38, 39] dealing with more

general Schrödinger equations, the work of [48] for bi-harmonic operators and the recovery

of an embedded object in a slab treated by [21, 45]. More recently, [16, 17] proved the

stable recovery of coefficients periodic along the axis of an infinite cylindrical domain.

Finally, we mention [3, 4, 18, 27, 30, 34, 35] dealing with determination of non-compactly

supported coefficients appearing in different PDEs from boundary measurements.

1.3. Statement of the main result and applications

In order to state the main result of this article, we start by recalling some results borrowed

from [6, 16, 17] related to the well-posedness of the BVP (1.1) in the space H1(�) :=
{u ∈ L2(�); 1u ∈ L2(�)} with the norm

‖u‖2H1(�) := ‖u‖
2
L2(�)

+‖1u‖2L2(�)
.

Since � is unbounded, for X = ω or X = ∂ω and any s > 0, we define the space H s(X ×R)
by

H s(X ×R) := L2(X; H s(R))∩ L2(R; H s(X)).

We define also H−s(0) to be the dual space of H s(0). Combining [6, Lemma 1.1] with

[16, Lemma 2.2], we deduce that the map

T0u := u|0 (respectively, T1u := ∂νu|0), u ∈ C∞0 (R
3)

extends into a bounded operator T0 : H1(�)→ H−
1
2 (0) (respectively, T1 : H1(�)→

H−
3
2 (0)). We set the space

H(0) := T0 H1(�) = {T0u; u ∈ H1(�)},

and note from [16, Lemma 2.2] that T0 is bijective from B := {u ∈ L2(�); 1u = 0} onto

H (0). Thus, with reference to [6, 42], we consider

‖ f ‖H(0) := ‖T −1
0 f ‖H1(�) = ‖T

−1
0 f ‖L2(�). (1.4)

Note that [16, Lemma 2.2] is a consequence of [16, Lemma 2.1] and in [16, Lemma 2.1]

we use the formula

〈1G, F〉L2(�) = 〈G,1F〉L2(�) , F ∈ H2
0 (�), G ∈ H1(�), (1.5)

where H2
0 (�) denotes the closure of C∞0 (�) in H2(�). Since � is unbounded, the functions

lying in H2(�) or in H1(�)may have complicated behavior, and formula (1.5) needs some

clarifications. Let us show (1.5). For this purpose, fix (Fn)n>1 a sequence of functions lying

in C∞0 (�) that converges to F with respect to H2(�) and note that

〈1G, Fn〉L2(�) = 〈1G, Fn〉D′(�),C∞0 (�) = 〈G,1Fn〉D′(�),C∞0 (�) = 〈G,1Fn〉L2(�) , n > 1.
(1.6)
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Moreover, applying the Cauchy–Schwarz inequality, we get

〈1G, Fn〉L2(�)−〈1G, F〉L2(�) 6 ‖1G‖L2(�)‖Fn − F‖L2(�) 6 ‖1G‖L2(�)‖Fn − F‖H2(�),

〈G,1Fn〉L2(�)−〈G,1F〉L2(�) 6 ‖G‖L2(�)‖1(Fn − F)‖L2(�) 6 ‖1G‖L2(�)‖Fn − F‖H2(�).

Combining this with the fact that

lim
n→∞
‖Fn − F‖H2(�) = 0,

we deduce (1.5) from (1.6) by sending n→∞. This proves (1.5).

We define also HK (0) := { f ∈ H(0) : supp( f ) ⊂ K }. Then, in view of [16, Proposition

1.1], assuming that 0 is not in the spectrum of −1+ q with Dirichlet boundary condition

on �, for any f ∈H (0) we deduce that the BVP (1.1) admits a unique solution v ∈

L2(�). Moreover, the DN map 3q : f 7→ T1v|G is a bounded operator from HK (0) into

H−
3
2 (G).

The main result of this paper can be stated as follows.

Theorem 1.1. Let q1, q2 ∈ L∞(�) be such that q1− q2 ∈ L1(�) and 0 is not in the

spectrum of −1+ q j , j = 1, 2, with Dirichlet boundary condition on �. Then the

condition

3q1 = 3q2 (1.7)

implies q1 = q2.

From the main result of this paper, stated in Theorem 1.1, we deduce three other

results related to other problems stated in an unbounded domain. The first application

that we consider corresponds to the Calderón problem stated in the unbounded domain

�. In order to state this problem, for a∗ ∈ (0,+∞) and a0 ∈ W 2,∞(�) satisfying a0 > a∗,
we introduce the set of functions

A := {a ∈ C1(�)∩W 1,∞(�)∩ H2
loc(�) : a > a∗, 1

(
a

1
2

)
−1

(
a

1
2
0

)
∈ L1(�)∩ L∞(�)}

and, for a ∈ A, the BVP {
−div(a∇u) = 0, in �,

u = f, on 0.
(1.8)

Recall that for any a ∈ A and any f ∈ H
1
2 (0), the BVP (1.8) admits a unique solution

u ∈ H1(�). Moreover, the full DN map associated with (1.8), defined by f 7→ aT1u is

a bounded operator from H
1
2 (0) to H−

1
2 (0). We define the partial DN map associated

with (1.8) by

Σa : H
1
2 (0)∩ a−

1
2 (HK (0)) 3 f 7→ aT1u|G , (1.9)

where a−
1
2 (HK (0)) := {a−

1
2 f ; f ∈ HK (0)}. The first application of Theorem 1.1 claims

unique recovery of a conductivity a ∈ A, from the knowledge of Σa . It is stated as follows.

Corollary 1.2. Let ω be connected and pick a j ∈ A, for j = 1, 2, obeying

a1(x) = a2(x), x ∈ 0 (1.10)

https://doi.org/10.1017/S1474748018000488 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000488


Recovery of non compactly supported coefficients of elliptic equations 1577

and

∂νa1(x) = ∂νa2(x), x ∈ K ∩G. (1.11)

Then the condition Σa1 = Σa2 implies a1 = a2.

For our second application we consider the recovery of potentials that are known in the

neighborhood of the boundary outside a compact set. In the spirit of [2], we can improve

Theorem 1.1 in a quite important way in that case. More precisely, we fix R > 0 and

we consider γ1 an arbitrary open subset of K ′× (−∞,−R), γ2 an open subset of ∂ω×

(−∞,−R), γ ′1 an open subset of K ′× (R,+∞) and γ ′2 an open subset of ∂ω× (R,+∞).
Then, we consider the partial DN map given by

3∗q,R : {h ∈ H(0) : supp(h) ⊂ (K ′×[−R, R])∪ γ1 ∪ γ
′

1} 3 f 7→ T1v|(∂ω×[−R,R])∪γ2∪γ
′

2
,

with v the solution of (1.1). Our second application can be stated as follows.

Corollary 1.3. Let ω be connected, R > 0, δ ∈ (0, R), q1, q2 ∈ L∞(�) be such that

q1− q2 ∈ L1(�) and 0 is not in the spectrum of −1+ q j , j = 1, 2, with Dirichlet boundary

condition on �. We fix ω1,∗, ω2,∗, two arbitrary C2 open and connected subsets of

ω satisfying ∂ω ⊂ (∂ω1,∗ ∩ ∂ω2,∗). We consider also � j,∗, j = 1, 2, two C2 open and

connected subsets of � such that

ω1,∗× (−∞,−R) ⊂ �1,∗ ⊂ ω1,∗× (−∞, δ− R),

ω2,∗× (R,+∞) ⊂ �2,∗ ⊂ ω2,∗× (R− δ,+∞)

and we assume that

q1(x) = q2(x), x ∈ �1,∗ ∪�2,∗. (1.12)

Then the condition 3∗q1,R
= 3∗q2,R

implies q1 = q2.

In our third application we consider the recovery of potentials, supported in an infinite

cylinder, appearing in a stationary Schrödinger equation on a slab. More precisely, for

L > 0, we consider the set O := {x = (x1, x2, x3) ∈ R3
: x1 ∈ (0, L)}; then assuming that

q ∈ L∞(O) and that 0 is not in the spectrum of−1+ q with Dirichlet boundary condition

on O, we consider the problem
(−1+ q)v = 0, in O,

v|x1=0 = 0,
v|x1=L = f.

(1.13)

Fixing r > 0, ∂O+ := {(L , x2, x3) : x2, x3 ∈ R} and

∂O−,r := {(0, x2, x3) : x2 ∈ (−r, r), x3 ∈ R},

we associate with this problem the partial DN map

Nq,r : H
1
2 (∂O+) 3 f 7→ −∂x1v|∂O−,r .

Then, we prove the following result.
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Corollary 1.4. Let q1, q2 ∈ L∞(O) be such that q1− q2 ∈ L1(O) and 0 is not in the

spectrum of −1+ q j , j = 1, 2, with Dirichlet boundary condition on O. Moreover, assume

that there exists r ∈ (0,+∞) such that

q1(x1, x2, x3) = q2(x1, x2, x3) = 0, (x1, x2, x3) ∈ {(y1, y2, y3) ∈ O : |y2| > r}. (1.14)

Then, for any R > r , the condition

Nq1,R = Nq2,R (1.15)

implies q1 = q2.

1.4. Comments about the main result and the applications

To our best knowledge this is the first paper proving recovery of coefficients that are

neither compactly supported nor periodic for elliptic equations in unbounded domains

from boundary measurements. Indeed, beside the present paper it seems that only these

two cases have been addressed so far (see [16, 17, 37, 40]).

Like several other papers, the main tools in our analysis are suitable solutions of

the equation also called complex geometric optics solutions combined with Carleman

estimates. It has been proved by [16, 17, 37, 40] that for compactly supported or periodic

coefficients one can apply unique continuation or Floquet decomposition in order to

transform the problem on an unbounded domain into a problem on a bounded domain.

Then, one can use the CGO solutions for the problem on the bounded domain in order

to prove the recovery of the coefficients under consideration. For a more general class

of coefficients, one cannot apply such arguments and the construction of CGO solutions

for the problem on unbounded domains seems unavoidable. The main difficulty in the

construction of such CGO solutions for unbounded domains comes from the fact that

the CGO solutions should admit some kind of decay in order to be square integrable in

the domain. It seems that this condition is not fulfilled by any CGO solution considered

so far. In this paper, using a suitable localization in space, that propagates along the

infinite direction of the unbounded cylindrical domain, we introduce, for what seems to

be the first time, CGO solutions that can be directly applied to the inverse problem on

the unbounded domain. This is an important difference from previous related works and

it allows also to derive results like Corollary 1.3 where the recovery of non-compactly

supported coefficients is proved by means of measurements on a bounded subset of the

unbounded boundary. In addition to the specific property of the principal part of our CGO

solutions, we prove the extension of several arguments, required for our construction, to

the unbounded domain such as Carleman estimate and construction of the decaying

remainder term (see §§ 2–4). For these extensions, we use several arguments such as

separation of variables and suitable Fourier decomposition of operators.

Note that Theorem 1.1 is related to a Carleman estimate with linear weight that we

prove by taking advantage of the cylindrical shape of our domain. This property has

already been observed by [28] for bounded domains.

Let us mention that the arguments used for the construction of the CGO solutions work

only if the unbounded domain has one infinite direction (or a cylindrical shape). This

approach fails if the unbounded domain has more than one infinite direction like the slab.
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However, following the approach of [37, 40], by means of unique continuation properties

we prove in Corollary 1.4 the recovery of coefficients supported in an unbounded

cylinder. Here the cylinder can be arbitrary and this result extends that of [37, 40]

to non-compactly supported coefficients. Note also that, combining the density results

stated in Lemma 6.1, used for the proof of Corollary 1.3, with Corollary 1.4, one can

check that the data used by [37, 40] for the recovery of compactly supported coefficients

allow to recover a more general class of coefficients supported in an infinite cylinder and

known in the neighborhood of the boundary outside a compact set.

In the main result of this paper, stated in Theorem 1.1, we show that the partial

DN map 3q allows to recover coefficients q which are equivalent modulo integrable

functions to a fixed bounded function. This last condition is not fulfilled by the class

of potentials, periodic along the axis of the cylindrical domain, considered by [16, 17].

However, combining Theorem 1.1 with [16, 17], one can conclude that the partial DN

map 3q allows to recover the class of coefficients q considered in the present paper as

well as potentials q which are periodic along the axis of �.

Let us remark that in a similar way to [37, 40], with a suitable choice of admissible

coefficients q, it is possible to formulate (1.13) with q replaced by q − k2 and k2 taking

some suitable value in the absolute continuous spectrum of the operator −1+ q with

Dirichlet boundary condition. In this context, (1.13) admits a unique solution satisfying

the Sommerfeld radiation condition on the infinite directions of the domain. Assuming

that q is chosen in such a way that these conditions are fulfilled for (1.1) and (1.13), one

can adapt the argument of the present paper to this problem. In this paper we do not

consider such extension of our main result which requires a study of the forward problem.

Let us also observe that like in [37, 40], Corollary 1.4 can be formulated with different

kinds of measurements on the side x1 = 0 and x1 = L of ∂O.

1.5. Outline

This paper is organized as follows. In § 2, we start by considering the CGO solutions,

without boundary conditions, for the problem in an unbounded cylindrical domain. For

the construction of these solutions we combine different arguments such as localization of

the CGO solutions along the axis of the waveguide and some arguments of separation of

variables. Then, in the spirit of [6], we introduce in § 3 a Carleman estimate with linear

weight stated in an infinite cylindrical domain. Using this Carleman estimate, we build

in § 4 CGO solutions vanishing on some parts of the boundary. In § 5, we combine all

these results in order to prove Theorem 1.1. Finally, § 6 is devoted to the applications of

the main result stated in Corollaries 1.2–1.4.

2. CGO solutions without conditions

In this section we introduce the first class of CGO solutions of our problem without

boundary conditions. These CGO solutions correspond to some specific solutions u ∈
H2(�) of −1u+ qu = 0 in � for q ∈ L∞(�). More precisely, we start by fixing θ ∈ S1

:=

{y ∈ R2
: |y| = 1}, ξ ′ ∈ θ⊥ \ {0}, with θ⊥ := {y ∈ R2

: y · θ = 0}, ξ := (ξ ′, ξ3) ∈ R3, with
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ξ3 6= 0. Then, we consider η ∈ S2
:= {y ∈ R3

: |y| = 1} defined by

η =
(ξ ′,−

|ξ ′|2

ξ3
)√

|ξ ′|2+
|ξ ′|4

ξ2
3

.

In particular, we have

η · ξ = (θ, 0) · ξ = (θ, 0) · η = 0. (2.16)

We fix also χ ∈ C∞0 (R; [0, 1]) such that χ = 1 on a neighborhood of 0 in R and, for ρ > 1,

we consider solutions u ∈ H2(�) of −1u+ qu = 0 in � taking the form

u(x ′, x3) = e−ρθ ·x
′
(

eiρη·xχ
(
ρ−

1
4 x3

)
e−iξ ·x

+wρ(x)
)
, x = (x ′, x3) ∈ �. (2.17)

Here the remainder term wρ ∈ H2(�) satisfies the decay property

ρ−1
‖wρ‖H2(�)+ ρ‖wρ‖L2(�) 6 Cρ

7
8 , (2.18)

with C independent of ρ. This construction can be summarized in the following way.

Theorem 2.1. There exists ρ0 > 1 such that, for all ρ > ρ0, the equation −1u+ qu = 0
admits a solution u ∈ H2(�) of the form (2.17) with wρ satisfying the decay property

(2.18).

Remark 2.2. Comparing to CGO solutions on bounded domains, the main difficulty in the

construction of CGO solutions in our context comes from the fact that � is not bounded

and the CGO solutions should be square integrable. This means that the usual principal

parts of the CGO solutions considered by [6, 29, 47], taking the form e−ρθ ·x
′

eiρη·x e−iξ ·x

in our context, are incompatible with the square integrability property. This is the main

reason why we introduce the new expression involving the cut-off χ that allows to localize

such expressions. The main difficulty in our choice consists in using this expression to

localize without losing the decay property stated in (2.18). This will be done by assuming

that the principal part of the CGO solutions given by

e−ρθ ·x
′

eiρη·xχ
(
ρ−

1
4 x3

)
e−iξ ·x

propagates in some suitable way along the axis of the waveguide with respect to the large

parameter ρ.

Clearly, u solves −1u+ qu = 0 if and only if wρ solves

P−ρwρ = −qwρ − eρθ ·x
′

(−1+ q)e−ρθ ·x
′

eiρη·xχ
(
ρ−

1
4 x3

)
e−iξ ·x , (2.19)

with Ps , s ∈ R, the differential operator defined by

Ps := −1− 2sθ · ∇ ′− s2, (2.20)

where ∇ ′ = (∂x1 , ∂x2)
T . We need to consider here a solution of this equation in the

unbounded domain � that satisfies the decay property (2.18). For bounded domains,
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the construction of such solutions is well known and goes back to [47]. Moreover, for

potentials q admitting a decay of the form |x3|
−1 along the axis of the waveguide, one

can construct solutions of (2.19) satisfying the decay property (2.18), by applying [47,

Theorem 2.3]. In this section we introduce a different construction which can be applied

to any q ∈ L∞(�). More precisely, we take advantage of the cylindrical shape of � to

make a Fourier decomposition of (2.19). Then we apply results on bounded domains in

order to construct wρ with the required decay property.

In order to define a suitable set of solutions of (2.19), we start by considering the

following equation

P−ρ y(x) = F(x), x ∈ �. (2.21)

Again, here we deal with an equation on the unbounded domain �, but this equation

can be decomposed, by means of Fourier transform, into a family of equations stated on

the bounded domain ω. More precisely, taking the Fourier transform with respect to x3,

denoted by Fx3 , on both sides of this identity we get

Pk,−ρ yk = Fk, k ∈ R, (2.22)

with Fk(x ′) = Fx3 F(x ′, k), yk(x ′) = Fx3 y(x ′, k) and

Pk,−ρ = −1
′
+ 2ρθ · ∇ ′− ρ2

+ k2.

Here 1′ = ∂2
x1
+ ∂2

x2
and Fx3 is defined by

Fx3 h(x ′, k) := (2π)−
1
2

∫
R

h(x ′, x3)e−ikx3 dx3, h ∈ L1(�).

We fix also pk,−ρ(ζ ) = |ζ |
2
+ 2iρθ · ζ + k2

− ρ2, ζ ∈ R2, k ∈ R, such that, for Dx ′ = −i∇ ′,
we have pk,−ρ(Dx ′) = Pk,−ρ . Combining this decomposition with properties of solutions

of (2.22) on the bounded domain ω, we will complete the construction of the expression

wρ . This will be done, by applying first some results of [12, 19, 24] about solutions of

PDEs with constant coefficients, given by the following.

Lemma 2.3. For every ρ > 1 and k ∈ R there exists a bounded operator

Ek,ρ : L2(ω)→ L2(ω)

such that:

Pk,−ρEk,ρF = F, F ∈ L2(ω), (2.23)

‖Ek,ρ‖B(L2(ω)) 6 Cρ−1, (2.24)

Ek,ρ ∈ B(L2(ω); H2(ω)) (2.25)

and

‖Ek,ρ‖B(L2(ω);H2(ω))+‖k
2 Ek,ρ‖B(L2(ω)) 6 Cρ, (2.26)

with C > 0 depending only on ω.
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Proof. In view of [12, Theorem 2.3] (see also [19, Theorem 10.3.7]), one can find a

bounded operator Ek,ρ ∈ B(L2(ω)), defined by means of fundamental solutions associated

with Pk,−ρ (see [19, § 10.3]), satisfying (2.23). Moreover, for

p̃k,−ρ(ζ ) :=

∑
α∈N2

|∂αζ pk,−ρ(ζ )|
2

 1
2

, ζ ∈ R2,

and for all differential operators Q(Dx ′) with Q a polynomial such that Q(ζ )
p̃k,−ρ (ζ )

is

bounded, we get Q(Dx ′)Ek,ρ ∈ B(L2(ω)) and there exists a constant C depending only

on ω such that

‖Q(Dx ′)Ek,ρ‖B(L2(ω)) 6 C sup
ζ∈R2

|Q(ζ )|
p̃k,−ρ(ζ )

. (2.27)

Since

p̃k,−ρ(ζ ) >
√
|I∂ζ1 pk,−ρ(ζ )|2+ |I∂ζ2 pk,−ρ(ζ )|2 = 2ρ, ζ ∈ R2,

(2.27) implies

‖Ek,ρ‖B(L2(ω)) 6 C sup
ζ∈R2

1
p̃k,−ρ(ζ )

6 Cρ−1

and (2.24) is fulfilled. In addition, for all ζ ∈ R2, assuming that k2
+ |ζ |2 > 2ρ2, we have

p̃k,−ρ(ζ ) > |Rpk,−ρ(ζ )| = k2
+ |ζ |2− ρ2 >

k2
+ |ζ |2

2
.

Thus, we get

sup
ζ∈R2

|ζ |2+ k2

p̃k,−ρ(ζ )
6 sup

k2+|ζ |2>2ρ2

|ζ |2+ k2

p̃k,−ρ(ζ )
+ sup

k2+|ζ |262ρ2

|ζ |2+ k2

p̃k,−ρ(ζ )
6 2+ 2ρ2 sup

ζ∈R2

1
p̃k,−ρ(ζ )

6 3ρ.

Then, in view of [12, Theorem 2.3], we deduce (2.25) with

‖Ek,ρ‖B(L2(ω);H2(ω))+‖k
2 Ek,ρ‖B(L2(ω)) 6 C sup

ζ∈R2

1+ |ζ |2+ k2

p̃k,−ρ(ζ )
6 Cρ

which implies (2.26).

Applying this lemma, we will define suitable solutions of (2.21) which will be given by

an operator isometric to the direct sum of the operators Ek,ρ , k ∈ R.

Lemma 2.4. For every ρ > 1 there exists a bounded operator

Eρ : L2(�)→ L2(�)

satisfying the conditions:

P−ρEρF = F, F ∈ L2(�), (2.28)

‖Eρ‖B(L2(�)) 6 Cρ−1, (2.29)
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Eρ ∈ B(L2(�); H2(�)) (2.30)

and

‖Eρ‖B(L2(�);H2(�)) 6 Cρ, (2.31)

with C > 0 depending only on �.

Proof. In light of Lemma 2.3, we can introduce Eρ on L2(�) given by

EρF := � 3 (x ′, x3) 7→ F−1
k (Ek,ρFx3 F(·, k))(x ′, x3).

Clearly (2.23) implies (2.28). In addition, we get

‖EρF‖2L2(�)
=

∫
R
‖Ek,ρFx3 F(·, k)‖2L2(ω)

dk

and from (2.24) we find

‖EρF‖2L2(�)
6 C2ρ−2

∫
R
‖Fx3 F(·, k)‖2L2(ω)

dk = C2ρ−2
‖F‖2L2(�)

.

This proves (2.29). According to (2.25)–(2.26), we have Eρ ∈ B(L2(�); H2(�)) and, for

all F ∈ L2(�), we obtain

‖EρF‖2H2(�)
6 C ′

∫
R

[
‖Ek,ρFx3 F(·, k)‖2H2(ω)

+‖k2 Ek,ρFx3 F(·, k)‖2L2(ω)

]
dk

6 C ′C2ρ2
∫
R
‖Fx3 F(·, k)‖2L2(ω)

dk = C ′C2ρ2
‖F‖2L2(�)

,

with C ′ depending only on ω. This proves (2.30)–(2.31).

Using this last result, we can build geometric optics solutions of the form (2.17).

Proof of Theorem 2.1. Note first that

−eρθ ·x
′

(−1+ q)e−ρθ ·x
′

eiρη·xχ
(
ρ−

1
4 x3

)
e−iξ ·x

= −

(
(|ξ |2+ q)χ

(
ρ−

1
4 x3

)
− 2iη3ρ

3
4χ ′

(
ρ−

1
4 x3

)
+ 2iξ3ρ

−
1
4χ ′

(
ρ−

1
4 x3

)
−ρ−

1
2χ ′′

(
ρ−

1
4 x3

))
eiρη·x e−iξ ·x . (2.32)

On the other hand, we have∫
R
|χ
(
ρ−

1
4 x3

)
|
2 dx3 = ρ

1
4

∫
R
|χ(t)|2dt

and we deduce that

‖χ
(
ρ−

1
4 x3

)
‖L2(�) = ‖χ‖L2(R)|ω|

1
2 ρ

1
8 .

In the same way, one can check that

‖χ
(
ρ−

1
4 x3

)
‖L2(�)+‖χ

′

(
ρ−

1
4 x3

)
‖L2(�)+‖χ

′′

(
ρ−

1
4 x3

)
‖L2(�) 6 Cρ

1
8 ,

https://doi.org/10.1017/S1474748018000488 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000488


1584 Y. Kian

with C depending only on ω and χ . Combining this with (2.32), we find

‖− eρθ ·x
′

(−1+ q)e−ρθ ·x
′

eiρη·xχ
(
ρ−

1
4 x3

)
e−iξ ·x

‖L2(�)

= C
(
(|ξ |2+‖q‖L∞(�))ρ

1
8 + 2|η3|ρ

7
8 + 2|ξ3|ρ

−
1
8 + ρ−

3
8

)
6 Cρ

7
8 , (2.33)

with C > 0 depending on ω, ξ and ‖q‖L∞(�). In view of Lemma 2.4, equation (2.19) can

be written in the following way:

wρ = −Eρ
(

qwρ + eρθ ·x
′

(−1+ q)e−ρθ ·x
′

eiρη·xχ
(
ρ−

1
4 x3

)
e−iξ ·x

)
,

with Eρ ∈ B(L2(�)) defined in Lemma 2.4. To this end, we will apply a fixed point

argument to the map

L : L2(�)→ L2(�),

G 7→ −Eρ
[
qG+ eρθ ·x

′

e−iρη·x (−1+ q)e−ρθ ·x
′

eiρη·xχ
(
ρ−

1
4 x3

)
e−iξ ·x

]
.

Indeed, in view of (2.29) and (2.33), we have

‖Lw‖L2(�) 6 Cρ−
1
8 +Cρ−1

‖w‖L2(�), w ∈ L2(�),

‖Lw1−Lw2‖L2(�) 6 ‖Eρ[q(w1−w2)]‖L2(�) 6 Cρ−1
‖w1−w2‖L2(�), w1, w2 ∈ L2(�),

with C depending on ω, ξ and ‖q‖L∞(�). Therefore, there exists ρ0 > 1 such that for

ρ > ρ0 the map L admits a unique fixed point wρ in {w ∈ L2(�) : ‖w‖L2(�) 6 1}. In

addition, conditions (2.29)–(2.31) imply that wρ ∈ H2(�) fulfills (2.18). This completes

the proof of Theorem 2.1.

3. Carleman estimate

In this section we establish a Carleman estimate for the Laplace operator in the

unbounded cylindrical domain �. Before the statement of this result, we will show how

one can extend some applications of the classical Green formula for H2 functions into

the infinite cylindrical domain �. Note that functions G ∈ H2(�) may have complicated

behaviors on the cross section ω×{x3} as |x3| → +∞. However, using the fact that H2(�)

embedded continuously into the spaces

H k(Rx3; H2−k(ω)) := {H ∈ L2(�) : x3 7→ H(·, x3) ∈ H k(R; H2−k(ω))}1, k = 0, 1, 2,

we can show the following extension of applications of the Green formula already

considered in [16].

1Here, for H ∈ L2(�) and for a.e. x3 ∈ R, H(·, x3) denotes the function ω 3 x ′ 7→ H(x ′, x3).
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Lemma 3.1. For an F,G ∈ H2(�), the traces F|∂�,G|∂�, ∂νF|∂�, ∂νG|∂� are well defined

as elements of L2(∂�)2 and we have∫
�

1FG dx =
∫
∂�

∂νFGdσ(x)−
∫
∂�

F∂νGdσ(x)+
∫
�

1G F dx, (3.34)∫
�

∂2
x3

F∂αx ′G dx = −
∫
�

∂x3 F∂x3∂
α
x ′G dx, α ∈ N2, |α| 6 1. (3.35)

Proof. Since H2(�) embedded continuously into L2(Rx3; H2(ω)) the traces x3 7→

F(·, x3)|∂ω and x3 7→ ∂νF(·, x3)|∂ω are well defined as elements of L2(Rx3; L
2(∂ω)) =

L2(∂�). This proves the first claim of the lemma. Now let us prove (3.34)–(3.35). For

this purpose, let us first remark that for F compactly supported one can apply the

Green formula into a bounded neighborhood of supp(F)∩� in � in order to prove

(3.34)–(3.35). This proves that (3.34)–(3.35) hold true for F ∈ {T|� : T ∈ C∞0 (R
3)}. Now

let us consider the case of functions F which are not compactly supported. Following the

proof of [35, Lemma 2.7], we can define the extension operator P : H2(�) −→ H2(R3)

which is bounded and satisfies

P(H)|� = H, H ∈ H2(�).

Then, applying the density of C∞0 (R
3) in H2(R3), we consider the sequence (ϕn)n>1 lying

in C∞0 (R
3) such that

lim
n→∞
‖ϕn − P F‖H2(R3) = 0.

In particular we have

‖ϕn − F‖H2(�) = ‖ϕn − P F‖H2(�) 6 ‖ϕn − P F‖H2(R3), n > 1,

which implies that

lim
n→+∞

‖ϕn − F‖H2(�) = 0. (3.36)

This proves that

lim
n→+∞

‖ϕn − F‖L2(�) = lim
n→+∞

‖1ϕn −1F‖L2(�) = 0. (3.37)

Moreover, using the continuity of the map

L2(Rx3; H2(ω)) 3 T 7→ T|∂� ∈ L2(∂�), L2(Rx3; H2(ω)) 3 T 7→ ∂νT|∂� ∈ L2(∂�),

and the fact that

‖T ‖2L2(Rx3 ;H
2(ω))
=

∫
R

∫
ω

∑
α∈N2,
|α|62

|∂αx ′T (x
′, x3)|

2 dx ′ dx3

=

∫
�

∑
α∈N2,
|α|62

|∂αx ′T (x
′, x3)|

2 dx 6 ‖T ‖2H2(�)
, T ∈ H2(�),

2Actually using the fact that � = ω×R and the fact that ω is a bounded subset of R2, in a similar way

to [41, Theorem 8.3, Chapter 1], we can prove that F|∂� ∈ H
3
2 (∂�) and ∂ν F|∂� ∈ H

1
2 (∂�). This can be

proved by following the proof of [41, Theorem 8.3, Chapter 1] with local coordinates considered only
with respect to the part x ′ ∈ ω of variables x = (x ′, x3) ∈ ω×R = �.
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we obtain

‖ϕn − F‖L2(∂�) 6 C‖ϕn − F‖L2(Rx3 ;H
2(ω)) 6 C‖ϕn − F‖H2(�), n > 1,

‖∂νϕn − ∂νF‖L2(∂�) 6 C‖ϕn − F‖L2(Rx3 ;H
2(ω)) 6 C‖ϕn − F‖H2(�), n > 1,

with C > 0 independent of n. Combining this with (3.36), we obtain

lim
n→+∞

‖ϕn − F‖L2(∂�) = lim
n→+∞

‖∂νϕn − ∂νF‖L2(∂�) = 0. (3.38)

Now using the fact that ϕn , n ∈ N, is compactly supported, we can apply the Green

formula to get∫
�

1ϕnG dx =
∫
∂�

∂νϕnGdσ(x)−
∫
∂�

ϕn∂νGdσ(x)+
∫
�

1Gϕn dx, n > 1. (3.39)

Moreover, applying the Cauchy–Schwarz inequality, we find∣∣∣∣∫
�

1ϕnG dx −
∫
�

1FG dx
∣∣∣∣ 6 ‖1ϕn −1F‖L2(�)‖G‖L2(�),∣∣∣∣∫

�

ϕn1G dx −
∫
�

F1G dx
∣∣∣∣ 6 ‖ϕn − F‖L2(�)‖1G‖L2(�),∣∣∣∣∫

∂�

ϕn∂νGdσ(x)−
∫
∂�

F∂νGddσ(x)
∣∣∣∣ 6 ‖ϕn − F‖L2(∂�)‖∂νG‖L2(∂�),∣∣∣∣∫

∂�

∂νϕnGdσ(x)−
∫
∂�

∂νFGddσ(x)
∣∣∣∣ 6 ‖∂νϕn − ∂νF‖L2(∂�)‖G‖L2(∂�).

Combining this with (3.37)–(3.38) and sending n→∞ in (3.39), we obtain (3.34). In a

similar way, using the fact that ϕn , n ∈ N, is compactly supported we obtain∫
�

∂2
x3
ϕn∂

α
x ′G dx = −

∫
�

∂x3ϕn∂x3∂
α
x ′G dx, α ∈ N2, |α| 6 1. (3.40)

Moreover, we have∣∣∣∣∫
�

∂2
x3
ϕn∂

α
x ′G dx −

∫
�

∂2
x3

F∂αx ′G dx
∣∣∣∣ 6 ‖∂2

x3
(ϕn − F)‖L2(�)‖∂

α
x ′G‖

6 ‖ϕn − F‖H2(�)‖∂
α
x ′G‖L2(�),∣∣∣∣∫

�

∂x3ϕn∂x3∂
α
x ′G dx −

∫
�

∂x3 F∂x3∂
α
x ′G dx

∣∣∣∣ 6 ‖∂x3(ϕn − F)‖L2(�)‖∂x3∂
α
x ′G‖

6 ‖ϕn − F‖H2(�)‖∂x3∂
α
x ′G‖L2(�).

Combining this with (3.36) and sending n→∞ in (3.40) we obtain (3.35). This completes

the proof of the lemma.

Our Carleman inequality, which is similar to [6, Lemma 2.1] for unbounded cylindrical

domains, takes the following form.
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Proposition 3.2. Let θ ∈ S1. Then, there exists d > 0 depending only on ω such that the

estimate

8ρ2

d

∫
�

e−2ρθ ·x ′
|u(x)|2 dx + 2ρ

∫
∂ω+θ ×R

e−2ρθ ·x ′θ · ν|∂νu(x)|2dσ(x)

6
∫
�

e−2ρθ ·x ′
|1u(x)|2 dx + 2ρ

∫
∂ω−θ ×R

e−2ρθ ·x ′
|θ · ν||∂νu(x)|2dσ(x) (3.41)

holds for every u ∈ H2(�) satisfying u|0 = 0.

Proof. We fix u ∈ H2(�) satisfying u|0 = 0. We decompose the operator e−ρθ ·x
′

1eρθ ·x
′

into three terms P ′++ P3
++ P−, with

P ′+ := 1
′
+ ρ2 and P− := 2ρθ · ∇ ′, P3

+ := ∂
2
x3
,

where we recall that 1′ (respectively, ∇ ′) denotes the Laplace (respectively, gradient)

operator with respect to x ′ ∈ ω. Thus, fixing v(x) := e−ρθ ·x
′

u(x), we get∫
�

e−2ρθ ·x ′
|1u(x)|2 dx

=

∫
�

|e−ρθ ·x
′

1eρθ ·x
′

v(x)|2 dx

=

∫
�

|(P ′++ P3
++ P−)v(x)|2 dx

=

∫
�

|(P ′++ P3
+)v(x)|

2 dx +
∫
�

|P−v(x)|2 dx + 2R〈P3
+v, P−v〉L2(�)+ 2R〈P ′+v, P−v〉L2(�),

and it follows∫
�

|P−v(x)|2 dx + 2R〈P ′+v, P−v〉L2(�) 6
∫
�

e−2ρθ ·x ′
|1u(x)|2 dx − 2R〈P3

+v, P−v〉L2(�).

(3.42)

In addition, applying (3.35), we obtain

2R〈P3
+v, P−v〉L2(�) = −ρ

∫
R

∫
ω

∇
′
· (|∂x3v(x)|

2θ) dx ′ dx1

= −ρ

∫
0

|∂x3v(x)|
2θ · ν(x)dσ(x) = 0. (3.43)

Here we apply the fact that ∂x3v ∈ L2(Rx3; H1(ω)) and the fact that the condition

v|0 = 0 implies ∂x3v|0 = 0. Since v ∈ H2(�), for a.e. x3 ∈ R, the function v(·, x3) := x ′ 7→
v(x ′, x3) ∈ H2(ω) satisfies v(·, x3)|∂ω = 0 and we can apply [6, Lemma 2.1] and deduce

that there exists d > 0 depending on ω such that, for a.e. x3 ∈ R, we have

8ρ2

d

∫
ω

|v(x ′, x3)|
2 dx ′+ 2ρ

∫
∂ω

e−2ρθ ·x ′θ · ν(x ′)|∂νeρθ ·x
′

v(x ′, x3)|
2dσ(x ′)

6
∫
ω

|P−v(x ′, x3)|
2 dx ′+ 2R

∫
ω

P ′+v(x
′, x3)P−v(x ′, x3) dx ′.
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It follows

8ρ2

d

∫
ω

|e−ρθ ·x
′

u(x ′, x3)|
2 dx ′+ 2ρ

∫
∂ω

e−2ρθ ·x ′θ · ν(x)|∂νu(x ′, x3)|
2dσ(x ′)

6
∫
ω

|P−v(x ′, x3)|
2 dx ′+ 2R

∫
ω

P ′+v(x
′, x3)P−v(x ′, x3) dx ′.

Thus, using the fact that u, v ∈ H2(�) ⊂ L2(Rx3; H2(ω)), we can integrate both sides of

this inequality with respect to x3 ∈ R and get

8ρ2

d

∫
�

|e−ρθ ·x
′

u(x ′, x3)|
2 dx ′ dx3+ 2ρ

∫
0

e−2ρθ ·x ′θ · ν(x)|∂νu(x ′, x3)|
2dσ(x ′) dx3

6
∫
�

|P−v(x ′, x3)|
2 dx ′ dx3+ 2R

∫
�

P ′+v(x
′, x3)P−v(x ′, x3) dx ′ dx3. (3.44)

Putting (3.42)–(3.44) together, we end up getting (3.41).

Combining (3.41) with the fact that

|1u|2 6 2
(
|(−1+ q)u|2+‖q‖2L∞(�)|u|

2
)
,

we get(
4ρ2

d
−‖q‖2L∞(�)

)∫
�

e−2ρθ ·x ′
|u(x)|2 dx + ρ

∫
∂ω+θ ×R

e−2ρθ ·x ′θ · ν|∂νu(x)|2dσ(x)

6
∫
�

e−2ρθ ·x ′
|(1+ q)u(x)|2 dx + ρ

∫
∂ω−θ ×R

e−2ρθ ·x ′
|θ · ν||∂νu(x)|2dσ(x).

As a consequence we obtain the following estimate.

Corollary 3.3. For M > 0, let q ∈ L∞(�) satisfy ‖q‖L∞(�) 6 M. Then, assuming that

the conditions of Proposition 3.2 are fulfilled, we find

2ρ2

d

∫
�

e−2ρθ ·x ′
|u(x)|2 dx + ρ

∫
∂ω+θ ×R

e−2ρθ ·x ′θ · ν|∂νu(x)|2dσ(x)

6
∫
�

e−2ρθ ·x ′
|(1+ q)u(x)|2 dx + ρ

∫
∂ω−θ ×R

e−2ρθ ·x ′
|θ · ν||∂νu(x)|2dσ(x), (3.45)

for ρ > ρ1 := M(d/2)
1
2 + 1.

4. CGO solutions vanishing on parts of the boundary

We fix q ∈ L∞(�) and for all y ∈ S1, r > 0, we set

∂ω+,r,y = {x ∈ ∂ω : ν(x) · y > r}, ∂ω−,r,y = {x ∈ ∂ω : ν(x) · y 6 r}.

We recall that ν denotes both exterior unit vectors normal to ∂ω and to ∂�. In the spirit

of [29], we will apply the Carleman estimate (3.41) in order to build solutions u ∈ H1(�)
to {

−1u+ qu = 0 in �,

u = 0, on ∂ω+,ε/2,−θ ×R, (4.46)
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taking the form

u(x ′, x3) = eρθ ·x
′

e−iρη·x
(
χ
(
ρ−

1
4 x3

)
+ zρ(x)

)
, x = (x ′, x3) ∈ �. (4.47)

Here θ ∈ {y ∈ S1
: |y− θ0| 6 ε} and the remainder term zρ ∈ e−ρθ ·x

′

eiρη·x H1(�) satisfies

the boundary condition

zρ(x ′, x3) = −χ
(
ρ−

1
4 x3

)
, (x ′, x3) ∈ ∂ω+,ε/2,−θ ×R

and the decay property

‖zρ‖L2(�) 6 Cρ−
1
8 , (4.48)

with C depending on K ′, � and any M > ‖q‖L∞(�). Recalling that

(∂ω \ K ′) ⊂ (∂ω \ ∂ω−,ε,−θ ) = ∂ω+,ε,−θ ,

one can check that (4.46) implies supp(T0u) ⊂ K (recall that for v ∈ C∞0 (�), T0v = v|0).

The main result of this section can be stated as follows.

Theorem 4.1. Let q ∈ L∞(�), θ ∈ {y ∈ S1
: |y− θ0| 6 ε}. For all ρ > ρ1, one can find a

solution u ∈ H1(�) of (4.46) taking the form (4.47) with zρ satisfying (4.48). Here ρ1
denotes the constant introduced at the end of Corollary 3.3.

To establish the existence of such solutions of (4.46) we recall some preliminary tools

and an intermediate result. We consider first some weighted spaces. We set s ∈ R,

θ ∈ {y ∈ S1
: |y− θ0| 6 ε} and we denote by γ the function

γ (x) = |θ · ν(x)|, x ∈ 0.

We define the spaces Ls(�) and, for all non-negative measurable functions g on 0, the

spaces Ls,g,± by

Ls(�) = e−sθ ·x ′L2(�), Ls,g,± = { f : esθ ·x ′g
1
2 (x) f ∈ L2(ω±,θ ×R)}

with the norm

‖u‖s =
(∫

�

e2sθ ·x ′
|u|2 dx

) 1
2
, u ∈ Ls(�),

‖u‖s,g,± =

(∫
∂ω±,θ×R

e2sθ ·x ′g(x)|u|2dσ(x ′) dx3

) 1
2

, u ∈ Ls,g,±.

We consider also the space

D0 = {v|� : v ∈ C2
0(R

3), v|0 = 0}

and, in light of Corollary 3.3, an application of the Carleman estimate (3.45) to any

h ∈ D0 yields

ρ‖h‖ρ + ρ
1
2 ‖∂νh‖ρ,γ,− 6 C(‖(−1+ q)h‖ρ +‖∂νh‖ρ,ργ,+), ρ > ρ1. (4.49)
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We define also the space

M = {((−1+ q)v|�, ∂νv|∂ω+,θ×R) : v ∈ D0}

and consider it as a subspace of Lρ(�)× Lρ,ργ,+. Combining the Carleman estimate

(4.49) with a classical application of the Hahn Banach theorem (see [29, Proposition 7.1]

and [16, Lemma 3.2] for more details) to a suitable linear form defined on M, we obtain

the following intermediate result.

Lemma 4.2. We fix ∂ω∗
−,θ = {x ∈ ∂ω : θ · ν(x) < 0}. Given ρ > ρ1, with ρ1 the constant

of Corollary 3.3, and

v ∈ L−ρ(�), v− ∈ L−ρ,γ−1,−,

there exists y ∈ L−ρ(�) such that the following conditions:

(1) −1y+ qy = v in �,

(2) y|∂ω∗
−,θ×R = v−,

(3) ‖y‖−ρ 6 C(ρ−1
‖v‖−ρ + ρ

−
1
2 ‖v−‖−ρ,γ−1,−) with C depending on �, M > ‖q‖L∞(�),

are fulfilled.

Armed with this lemma we are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. We need to consider zρ satisfying
zρ ∈ L2(�)

(−1+ q)(eρθ ·x
′

e−iρη·x zρ) = −(−1+ q)eρθ ·x
′

e−iρη·xχ
(
ρ−

1
4 x3

)
in �

zρ = −χ
(
ρ−

1
4 x3

)
on ∂ω+,ε/2,−θ ××R.

(4.50)

We choose ψ ∈ C∞0 (R
2) satisfying supp(ψ)∩ ∂ω ⊂ {x ∈ ∂ω : θ · ν(x) < −ε/3} and ψ = 1

on {x ∈ ∂ω : θ · ν(x) < −ε/2} = ∂ω+,ε/2,−θ . Then, we fix

v−(x ′, x3) = −eρθ ·x
′

e−iρη·xχ(ρ−
1
4 x3)ψ(x ′), x ∈ ∂ω−,θ ×R.

Using the fact that v−(x) = 0 for

x ∈ {x ∈ 0 : θ · ν(x) > −ε/3}×R

we deduce that v− ∈ L−ρ,γ−1,−. Set also

v(x) = −(−1+ q)eρθ ·x
′

e−iρη·xχ
(
ρ−

1
4 x3

)
, x ∈ �.

In view of Lemma 4.2, we can find h ∈ H1(�) such that{
(−1+ q)h = v in �,

h(x) = v−(x), x ∈ ∂ω−,θ ×R.

Thus, zρ = e−ρθ ·x
′

eiρη·x h will fulfill (4.50). Repeating some arguments similar to

Theorem 2.1, we obtain∥∥∥e−ρθ ·x
′

(−1+ q)eρθ ·x
′

e−iρη·xχ
(
ρ−

1
4 x3

)∥∥∥
L2(�)

6 Cρ
7
8 ,
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with C depending only on ω and M > ‖q‖L∞(�). Combining this with condition (3) of

Lemma 4.2 we get

‖zρ‖L2(�) = ‖h‖−ρ 6 C
(
ρ−1
‖v‖−ρ + ρ

−
1
2 ‖v−‖−ρ,γ−1,−

)
6 C

(
ρ−

1
8 + ρ−

1
2 ‖ψγ−

1
2 ‖L2(∂ω−,θ )

‖χ
(
ρ−

1
4 ·

)
‖L2(R)

)
6 C

(
ρ−

1
8 + ρ−

3
8 ‖ψγ−

1
2 ‖L2(∂ω−,θ )

‖χ‖L2(R)

)
6 Cρ−

1
8 ,

with C depending only on � and ‖q‖L∞(�). This proves estimate (4.48). Since

e−ρθ ·x
′

eiρη·x zρ = h ∈ H1(�), u defined by (4.47) is lying in H1(�) and is a solution of

(4.46). This completes the proof of Theorem 4.1.

5. Uniqueness result

In this section we will complete the proof of Theorem 1.1. We fix q = q2− q1 on � and we

extend it by q = 0 on R3
\�. We assume that the constant ε given in the beginning of § 4

is chosen in such a way that for any θ ∈ {y ∈ S1
: |y− θ0| 6 ε} we have ∂ω−,ε,θ ⊂ G ′. We

consider ρ > max(ρ0, ρ1) and fix θ ∈ {y ∈ S1
: |y− θ0| 6 ε}, ξ := (ξ ′, ξ3) ∈ R3 satisfying

ξ3 6= 0 and ξ ′ ∈ θ⊥ \ {0}. In light of Theorem 2.1, we can pick u1 ∈ H2(�) solving −1u1+

q1u1 = 0 on � of the form (2.17) with wρ satisfying (2.18). In addition, according to

Theorem 4.1, we can fix u2 ∈ H1(�) a solution of (4.46), with q = q2, taking the form

(4.47) with e−ρθ ·x
′

eiρη·x zρ ∈ H1(�) satisfying (4.48). Fix w1 ∈ H1(�) solving{
−1w1+ q1w1 = 0 in �,

T0w1 = T0u2.
(5.51)

It is clear that u = w1− u2 solves{
−1u+ q1u = (q2− q1)u2 in �,

u(x) = 0 on ∂�.
(5.52)

Using the fact that (q2− q1)u2 ∈ L2(�), in light of [14, Lemma 2.2], we have u ∈ H2(�).

Then, applying (3.34), we find∫
�

(q2− q1)u2u1 dx = −
∫
�

1uu1 dx +
∫
�

q1uu1 dx = −
∫
0

∂νuu1 dσ(x)+
∫
0

∂νu1u dσ(x).

On the other hand, we have u|0 = 0 and, combining (1.7) with the fact that suppT0u2 ⊂

K , we deduce that ∂νu|G = 0. It follows that∫
�

qu2u1 dx = −
∫
0\G

∂νuu1 dσ(x). (5.53)

In view of (2.18), by interpolation, we have

‖wρ‖L2(0) 6 C‖wρ‖
H

9
16 (�)

6 C
(
‖wρ‖L2(�)

) 23
32
(
‖wρ‖H2(�)

) 9
32 6 Cρ

7
16 .
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Thus, applying the Cauchy–Schwarz inequality, we obtain∣∣∣∣∫
0\G

∂νuu1 dσ(x)
∣∣∣∣ 6 ∫

R

∫
∂ω+,ε,θ

|∂νue−ρx ′·θ
(

eiρη·xχ
(
ρ−

1
4 x3

)
e−iξ ·x

+wρ(x)
)
|dσ(x ′) dx3

6 C

(∫
∂ω+,ε,θ×R

|e−ρx ′·θ∂νu|2dσ(x)

) 1
2 (
‖χ
(
ρ−

1
4 ·

)
‖L2(R)+‖wρ‖L2(0)

)

6 Cρ
7

16

(∫
∂ω+,ε,θ×R

|e−ρx ′·θ∂νu|2dσ(x)

) 1
2

for some C independent of ρ. This estimate and the Carleman estimate (3.45) imply∣∣∣∣∫
�

(q2− q1)u2u1 dx
∣∣∣∣2

6 Cρ
7
8

∫
∂ω+,ε,θ×R

|e−ρx ′·θ∂νu|2dσ(x)

6 ε−1Cρ
7
8

∫
∂ω+,θ×R

|e−ρx ′·θ∂νu|2|ν · θ |dσ(x)

6 ε−1Cρ−
1
8

(∫
�

|e−ρx ′·θ (−1+ q1)u|2 dx
)

6 ε−1Cρ−
1
8

(∫
�

|e−ρx ′·θqu2|
2 dx

)
6 ε−1Cρ−

1
8

(
‖q‖L∞(�)‖χ‖L∞(R)

∫
�

|q(x)| dx +‖q‖2L∞(�)‖zρ‖
2
L2(�)

)
, (5.54)

where C > 0 is a constant independent of ρ. Applying the fact that q ∈ L1(�), we deduce

that

lim
ρ→+∞

∫
�

qu2u1 dx = 0. (5.55)

Moreover, we have∫
�

qu1u2 dx =
∫
R3
χ2(ρ−

1
4 x3)q(x)e−iξ ·x dx +

∫
�

Y (x) dx +
∫
�

Z(x) dx,

with Y (x) = q(x)e−iρη·x zρ(x)wρ(x) and

Z(x) = q(x)χ
(
ρ−

1
4 x3

) [
zρe−i x ·ξ

+wρe−iρη·x
]
.

Applying the decay estimate given by (2.18) and (4.48), we obtain∫
�

|Y (x)| dx 6 ‖wρ‖L2(�)‖zρ‖L2(�) 6 Cρ−
1
4 ,∫

�

|Z(x)| dx 6 ‖q‖L2(�)‖χ
(
ρ−

1
4 ·

)
‖L∞(R)(‖wρ‖L2(�)+‖zρ‖L2(�))

6 C‖q‖
1
2
L∞(�)‖q‖

1
2
L1(�)
‖χ‖L∞(R)ρ

−
1
8 ,
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with C independent of ρ. Combining this with (5.55), we deduce that

lim
ρ→+∞

∫
R3
χ2(ρ−

1
4 x3)q(x)e−iξ ·x dx = 0.

On the other hand, since q ∈ L1(R3) and χ(0) = 1, by the Lebesgue dominated

convergence theorem, we find

lim
ρ→+∞

∫
R3
χ2(ρ−

1
4 x3)q(x)e−iξ ·x dx =

∫
R3

q(x)e−iξ ·x dx .

This proves that, for all θ ∈ {y ∈ S1
: |y− θ0| 6 ε}, all ξ ′ ∈ R2

\ {0} orthogonal to θ and

all ξ3 ∈ R \ {0}, we have

F
[
Fx3q(·, ξ3)

]
(ξ ′) = (2π)−1

∫
R2

Fx3q(x ′, ξ3)e−iξ ′·x ′ dx ′ = 0. (5.56)

Since q ∈ L1(R3), ξ3 7→ Fx3q(·, ξ3) is continuous from R to L1(R2) and

|Fx3q(·, ξ3)| 6 (2π)−
1
2

∫
R
|q(·, x3)| dx3,

by the Fubini and the Lebesgue dominated convergence theorem, we deduce that (5.56)

holds for all ξ ′ ∈ R2 orthogonal to θ and all ξ3 ∈ R. Now using the fact that for any

ξ3 ∈ R, Fx3q(·, ξ3) is supported on ω which is compact, we deduce, by analyticity of

F
[
Fx3q(·, ξ3)

]
, that Fx3q(·, ξ3) = 0. This proves that q = 0 which completes the proof of

Theorem 1.1.

6. Applications

In this section we will prove the three applications of Theorem 1.1 stated in

Corollaries 1.2–1.4.

6.1. Application to the Calderón problem

This subsection is devoted to the proof of Corollary 1.2. Applying the Liouville transform,

we deduce that for u the solution to (1.8), v := a
1
2 u solves the following BVP:{

(−1+ qa)v = 0, in �,

v = a
1
2 f, on 0,

where qa := a−
1
21(a

1
2 ). In addition, one can check that

Σa f = a
1
23qa a

1
2 f − a

1
2

(
∂νa

1
2

)
f, f ∈ H

1
2 (0)∩ a

−
1
2

1 (HK (0)),

where Σa is defined by (1.9). Combining this with (1.10)–(1.11), we find that

Σa j f = a
1
2
1 3q j a

1
2
1 f − a

1
2
1

(
∂νa

1
2
1

)
f|G , j = 1, 2, f ∈ H

1
2 (0)∩ a

−
1
2

1 (HK (0)),
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where, we denote by q j the potential qa j , j = 1, 2. Consequently, the condition Σa1 = Σa2

implies

(3q1 −3q2) f = a
−

1
2

1 (Σa1 −Σa2)a
−

1
2

1 f = 0, f ∈ a
1
2
1 H

1
2 (0)∩ (HK (0)).

In particular, this proves that 3q1 = 3q2 . Since a j ∈ A, j = 1, 2, it is clear that q j ∈

L∞(�) and q1− q2 ∈ L1(�). Then, according to Theorem 1.1, we have q1 = q2. Fixing

y := a
1
2
1 − a

1
2
2 ∈ H2

loc(�) we deduce that y satisfies{
(−1+ q1)y = −a

1
2
2 (q1− q2) = 0, in �,

y|K∩G = ∂ν y|K∩G = 0.

Combining this with results of unique continuation for elliptic equations (e.g. [46,

Theorem 1]) we obtain y = 0 and we deduce that a1 = a2. This completes the proof

of Corollary 1.2.

6.2. Recovery of coefficients that are known in the neighborhood of the

boundary outside a compact set

This subsection is devoted to the proof of Corollary 1.3. For this purpose, we assume

that the conditions of Corollary 1.3 are fulfilled. Let us also introduce the following sets

of functions

Sq := {u ∈ L2(�) : −1u+ qu = 0, supp(T0u) ⊂ K }, Qq := {u ∈ L2(�) : −1u+ qu = 0},

Sq,γ1,γ
′

1
:= {u ∈ L2(�) : −1u+ qu = 0, supp(T0u) ⊂ (K ′×[−R, R])∪ γ1 ∪ γ

′

1},

Qq,γ2,γ
′

2
:= {u ∈ L2(�) : −1u+ qu = 0, supp(T0u) ⊂ (∂ω×[−R, R])∪ γ2 ∪ γ

′

2}.

We consider first the following result of density for these spaces.

Lemma 6.1. The space Qq1,γ2,γ
′

2
(respectively, Sq2,γ1,γ

′

1
) is dense in Qq1 (respectively, Sq2)

for the topology induced by L2(� \ (�1,∗ ∪�2,∗)).

Proof. Due to the similarity of these two results, we consider only the proof of the

density of Qq1,γ2,γ
′

2
in Qq1 . For this purpose, assume the contrary. Then, there exist

g ∈ L2(� \ (�1,∗ ∪�2,∗)) and v0 ∈ Qq1 such that∫
�\(�1,∗∪�2,∗)

gv dx = 0, v ∈ Qq1,γ2,γ
′

2
, (6.57)

∫
�\(�1,∗∪�2,∗)

gv0 dx = 1. (6.58)

From now on, we extend g by 0 to �. Let y ∈ H2(�) be the solution of{
(−1+ q1)y = g, in �,

y = 0, on 0.
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Then, for any v ∈ H2(�)∩ Qq1,γ2,γ
′

2
, (3.34) and (6.57) imply

0 =
∫
�

gv dx = −
∫
∂ω×[−R,R]

∂ν yv dσ(x)−
∫
γ2

∂ν yv dσ(x)−
∫
γ ′2

∂ν yv dσ(x).

Allowing v ∈ H2(�)∩ Qq1,γ2,γ
′

2
to be arbitrary, we deduce that

∂ν y(x) = 0, x ∈ (∂ω×[−R, R])∪ γ2 ∪ γ
′

2. (6.59)

Therefore, y satisfies {
(−1+ q1)y = 0 in �1,∗,

y|γ2 = ∂ν y|γ2 = 0

and the unique continuation property for elliptic equations implies that y|�1,∗ = 0. In the

same way, we can prove that y|�2,∗ = 0 and we deduce that

y|∂� j,∗ = ∂ν y|∂� j,∗ = 0, j = 1, 2.

Combining this with (6.59), we obtain

y(x) = ∂ν y(x) = 0, x ∈ ∂(� \ (�1,∗ ∪�2,∗)) = 0∗.

Then, for any z ∈ C∞0 (R
3), applying the Green formula on a bounded neighborhood of

supp(z) in � \ (�1,∗ ∪�2,∗), we find∫
�\(�1,∗∪�2,∗)

z1y dx −
∫
�\(�1,∗∪�2,∗)

y1z dx = 0. (6.60)

Let us prove that (6.60) holds true for z ∈ H1(�). For this purpose, we fix z ∈ H1(�).
According to [16, Lemma 2.1], there exists a sequence (zn)n>1 lying in C∞0 (R

3) such that

lim
n→∞
‖z− zn‖L2(�) = lim

n→∞
‖1z−1zn‖L2(�) = 0. (6.61)

In light of (6.60), we have∫
�\(�1,∗∪�2,∗)

zn1y dx −
∫
�\(�1,∗∪�2,∗)

y1zn dx = 0, n > 1. (6.62)

Moreover, (6.61) implies

lim sup
n→∞

∣∣∣∣∣
∫
�\(�1,∗∪�2,∗)

zn1y dx −
∫
�\(�1,∗∪�2,∗)

z1y dx

∣∣∣∣∣
6 (lim sup

n→∞
‖z− zn‖L2(�))‖1y‖L2(�) = 0,

lim sup
n→∞

∣∣∣∣∣
∫
�\(�1,∗∪�2,∗)

y1zn dx −
∫
�\(�1,∗∪�2,∗)

y1z dx

∣∣∣∣∣
6 (lim sup

n→∞
‖1z−1zn‖L2(�))‖y‖L2(�) = 0.
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Combining this with (6.62) we deduce that (6.60) holds true for z ∈ H1(�). Therefore,

we get ∫
�\(�1,∗∪�2,∗)

gv0 dx =
∫
�\(�1,∗∪�2,∗)

(−1+ q1)yv0 dx

=

∫
�\(�1,∗∪�2,∗)

y(−1+ q1)v0 dx = 0.

This contradicts (6.58) and completes the proof of the lemma.

Armed with this lemma we are now in a position to complete the proof of Corollary 1.3.

Proof of Corollary 1.3. Let u1 ∈ Qq1,γ2,γ
′

2
and u2 ∈ Sq2,γ1,γ

′

1
. Repeating the linearization

process described in § 5 we deduce that 3∗q1,R
= 3∗q2,R

implies∫
�

(q2− q1)u1u2 dx = 0.

Then, (1.12) implies

0 =
∫
�

(q2− q1)u1u2 dx =
∫
�\(�1,∗∪�2,∗)

(q2− q1)u1u2 dx . (6.63)

Combining this with the density result of Lemma 6.1 and applying again (1.12), we obtain∫
�

(q2− q1)u1u2 dx =
∫
�\(�1,∗∪�2,∗)

(q2− q1)u1u2 dx = 0, u1 ∈ Qq1 , u2 ∈ Sq2 .

Finally, choosing u1, u2 in a similar way to § 5, we can deduce that q1 = q2. This completes

the proof of the corollary.

6.3. Recovery of non-compactly supported coefficients in a slab

In this subsection we consider Corollary 1.4. Applying the construction of CGO solutions

and the Carleman estimate of the previous sections, we will prove how one can extend the

result of [40] to coefficients supported on an unbounded cylinder. For this purpose, we

start by fixing δ ∈ (0, R− r) and ω an open smooth and connected subset of (0, L)×R
such that (0, L)× (−r − δ, r + δ) ⊂ ω ⊂ (0, L)× (−R, R). Then, we fix � := ω×R and
we consider the set of functions

Vq(�) := {u ∈ H1(�) : −1u+ qu = 0 in �},

Wq(O) := {u|� : u ∈ H1(O), −1u+ qu = 0 in O, u|x1=0 = 0},

Wq(�) := {u ∈ H1(�) : −1u+ qu = 0 in �, u|x1=0 = 0}.

Following [40, Lemma 9], one can check the following result of density.

Lemma 6.2. Let q ∈ L∞(O) be such that 0 is not in the spectrum of −1+ q with Dirichlet

boundary condition on O. Then the set Wq(O) is dense in Wq(�) with respect to the

topology of L2(�).
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In the same way, combining Lemma 6.2 with the Carleman estimate (3.45) and [40,

Lemma 10], we obtain the following important estimate.

Lemma 6.3. Let θ := (θ1, θ2) ∈ S1 be such that θ1 > 0 and assume that (1.14)–(1.15) are

fulfilled. Then we have∣∣∣∣∫
O
(q1− q2)v1v2 dx

∣∣∣∣ = ∣∣∣∣∫
�

(q1− q2)v1v2 dx
∣∣∣∣

6 Cρ−
1
2 (θ1)

−
1
2

(∫
�

|e−ρx ′·θ (q1− q2)v2|
2 dx

) 1
2

×

(∫
0∩{x1=L}

|eρx ′·θv1|
2dσ(x)

) 1
2

(6.64)

for all v1 ∈ Vq1(�) and for all v2 ∈Wq2(�).

Armed with these two results, we will complete the proof of Corollary 1.4 by choosing

suitably the solutions v j , j = 1, 2, of the equation −1v j + q jv j = 0 in �.

Proof of Corollary 1.4. From now on, we assume that the condition (1.15) is fulfilled. Let

us first start by considering the set ω̃ := {x := (x1, x2, x3) : (−x1, x2, x3) ∈ ω} ∪ω and let

us extend q2 by symmetry to ω̃×R by assuming that

q2(−x1, x2, x3) = q2(x1, x2, x3), (x1, x2, x3) ∈ ω̃×R.

Applying the results of § 2, we can consider u2 ∈ H2(ω̃×R) solving −1u2+ q2u2 = 0 in

ω̃×R and taking the form

u2(x) := eρθ ·x
′
(

e−iρη·xχ
(
ρ−

1
4 x3

)
e−i x ·ξ

+w2,ρ(x)
)
, x := (x ′, x3) ∈ ω̃×R, (6.65)

with θ := (θ1, θ2) ∈ S1 such that θ1 > 0, η, ξ ∈ R3 chosen in a similar way to the beginning

of § 2, and w2,ρ ∈ H2(ω̃×R) satisfying

ρ−1
‖w2,ρ‖H2(ω̃×R)+ ρ‖w2,ρ‖L2(ω̃×R) 6 Cρ

7
8 . (6.66)

Then, we fix v2 ∈ H2(�) defined by

v2(x1, x2, x3) := u2(x1, x2, x3)− u2(−x1, x2, x3), (x1, x2, x3) ∈ �. (6.67)

It is clear that v2 ∈Wq2(�). In the same way, we fix v1 ∈ Vq1(�):

v1(x) := e−ρθ ·x
′
(

eiρη·xχ
(
ρ−

1
4 x3

)
+w1,ρ(x)

)
, x := (x ′, x3) ∈ �, (6.68)

with w1,ρ ∈ H2(�) satisfying

ρ−1
‖w1,ρ‖H2(�)+ ρ‖w1,ρ‖L2(�) 6 Cρ

7
8 . (6.69)

Applying (6.64)–(6.69) and the fact that q1− q2 ∈ L∞(�)∩ L1(�) ⊂ L2(�), in a similar

way to § 5 we deduce that

lim
ρ→+∞

∫
�

(q1− q2)v1v2 dx = 0.
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On the other hand, we have∫
�

(q1− q2)v1v2 dx =
∫
�

(q1− q2)χ
2
(
ρ−

1
4 x3

)
e−i x ·ξ dx +

∫
�

Xρ dx, (6.70)

where

Xρ := (q1− q2)
[
e−ρθ ·x

′

u2w1,ρ +w2,ρeiρη·xχ
(
ρ−

1
4 x3

)]
− (q1− q2)e−2ρθ1x1

(
eiρη·xχ

(
ρ−

1
4 x3

)
+w1,ρ(x)

)
×

(
e−iρη·s(x)χ

(
ρ−

1
4 x3

)
e−iξ ·s(x)

+w2,ρ(s(x))
)
,

with s(x1, x2, x3) = (−x1, x2, x3). Combining this with the decay estimates (6.66), (6.69)

and using the fact that θ1x1 > 0, we deduce that

lim
ρ→+∞

∫
�

Xρ dx = 0.

Then, (6.70) and the fact that q1− q2 ∈ L1(�) imply that∫
�

(q1− q2)e−i x ·ξ dx = 0

and following the arguments used at the end of the proof of Theorem 1.1 we deduce that

q1 = q2.
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35. Y. Kian, Q. S. Phan and E. Soccorsi, Hölder stable determination of a quantum scalar
potential in unbounded cylindrical domains, J. Math. Anal. Appl. 426(1) (2015), 194–210.

36. M. V. Klibanov, Convexification of restricted Dirichlet-to-Neumann map, J. Inverse
Ill-Posed Probl. 25 (2017), 669–685.

37. K. Krupchyk, M. Lassas and G. Uhlmann, Inverse problems with partial data for
a magnetic Schrödinger operator in an infinite slab or bounded domain, Comm. Math.
Phys. 312 (2012), 87–126.

38. X. Li, Inverse boundary value problems with partial data in unbounded domains, Inverse
Problems 28 (2012), 085003.

39. X. Li, Inverse problem for Schrödinger equations with Yang–Mills potentials in a slab,
J. Differential Equations 253 (2012), 694–726.

40. X. Li and G. Uhlmann, Inverse problems on a slab, Inverse Probl. Imaging 4 (2010),
449–462.

41. J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and
Applications, vol. I (Dunod, Paris, 1968).

42. A. Nachman and B. Street, Reconstruction in the Calderón problem with partial data,
Commun. Partial Differential Equations 35 (2010), 375–390.

43. L. Potenciano-Machado, Stability estimates for a Magnetic Schrodinger operator with
partial data. Preprint, 2016, arXiv:1610.04015.

44. L. Potenciano-Machado, Optimal stability estimates for a Magnetic Schrödinger
operator with local data, Inverse Problems 33 (2017), 095001.

45. M. Salo and J. N. Wang, Complex spherical waves and inverse problems in unbounded
domains, Inverse Problems 22 (2006), 2299–2309.

46. J. C. Saut and B. Scheurer, Sur l’unicité du problème de Cauchy et le prolongement
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