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Abstract. The stabilization of a viscous interface stressed by an oscillating
magnetic field is investigated. Account is taken of the influence of free-surface
currents on the effective solidly rotating fluid column. Only azimuthal modes
are considered in the linear perturbation. The dispersion relation with or
without free-surface currents is obtained in the form of a linear Mathieu
equation with complex coefficients. It is found that there is a nonlinear relation
between the surface current density and both the stratified viscosity and the
stratified azimuthal magnetic field. The surface currents disappear on the
interface of the fluid column when the stratified magnetic field has the value of
unity. At this value, a coupled parametric resonance occurs in the absence of
angular velocity. The magnetic field plays a stabilizing role. This role increases
with increasing surface currents. The angular velocity plays a destabilizing role,
while the field frequency plays a stabilizing role and acts against the angular
velocity. The stratified viscosity plays a damping role in the presence of the
surface current density, while, in the absence of a surface current, it plays two
opposite roles corresponding to the presence or absence of the field frequency.
A set of graphs are used to illustrate the relation between the presence of free-
surface currents and both the viscosity and the azimuthal magnetic field.

1. Introduction

The investigation of the capillary instability of an infinitely long rotating
cylindrical fluid column has classical origins dating back to the time of Lord
Rayleigh (1878). This subject has been carefully and continuously studied ever
since jet propulsion became technologically feasible. More recently, the floating-
zone technique of crystal growth, described for example by Schwabe (1988), has
led to renewed interest in problems of this type.

The stability of a rigidly rotating fluid column was studied by Alterman
(1961). It was found that, under certain conditions, the rotation may have a
stabilizing or a destabilizing effect. Hocking and Michael (1959) demonstrated
that rotation has a destabilizing effect. Bauer (1983, 1984, 1989) analysed a
rigidly rotating fluid column in a variety of geometries.

The effect of a uniform axial magnetic field upon the capillary instability of
a non-rotating fluid column was addressed by Chandrasekhar (1961). Nayyar
and Trehan (1963) generalized Chandrasekhar’s method, and gave the
corresponding analysis for non-axisymmetric perturbations, which they found
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always to be stable, just as they are when the magnetic field is absent.
Srivistava and Kushwaha (1967) investigated the effect of an axial magnetic
field on the capillary instability of a non-rotating column of perfectly
conducting viscous fluid. Gupta (1964) investigated the capillary instability of
a non-rotating fluid column carrying an axial current both with and without an
axial magnetic field. Verma and Verma (1965) considered the capillary
instability of a rotating fluid column carrying an axial current in a twisted
magnetic field. Terhan et al. (1965) generalized the earlier work of Nayyar and
Terhan (1963) to investigate the effect of including the Hall current. Wilson
(1992) extended the method used by Gillis and Kaufman (1961) for a rigidly
rotating column of viscous fluid to include the presence of a uniform axial
magnetic field.

The phenomena of parametric resonance arises in many branches of physics
and engineering. Donnelly (1969) found experimentally that cylindrical Couette
flow can be stabilized somewhat by having the velocity of the inner wall
oscillate about a mean value. The stability of a liquid jet under a time-
dependent electric field was investigated by Mohamed and Nayyar (1970) and
Mohamed et al. (1985). More recently, El-Dib (1996) carried out a stability
analysis of an oscillating liquid column subjected to periodic rigid-body
rotation. A Mathieu equation with a parametric imaginary damping term was
obtained and analyzed. El-Dib and Moatimid (1994) and Moatimid and El-Dib
(1994) developed a theoretical analysis to investigate the effect of periodic
rotation of a cylindrical liquid jet under the influence of an axially and radially
constant electric field.

In the present work, we extend the method used by El-Dib (1997) for a
rigidly rotating column of a weakly viscous fluid to include the presence of a
surface current density on the fluid interface. The fluid column is held by
capillary forces in the presence of an azimuthal periodic magnetic field. We are
concerned with the influence of surface currents on the stability of non-
axisymmetric disturbances. The main objective of this study is to illustrate the
relation between the presence of the surface current density and both the fluid
viscosity and the azimuthal magnetic field.

The paper is organized as follows. In the first part, we formulate the model
developed in the absence of free-surface currents. The relation between the
surface current density and the azimuthal magnetic field is illustrated
numerically in the second part. The basic equations governing the flow are
presented in Sec. 2. The boundary conditions used in the hydromagnetic field
model are described in Sec. 3. The linearized equations are highlighted in Sec.
4. Section 5 is devoted to the study of the case where there are no surface
currents at the surface of separation. The effect of an interface with a surface
current density is examined in Sec. 6. Numerical estimations and conclusions
are illustrated in Secs 5.2, 6.1 and 6.3.

2. Problem statement and basic equations

We consider the motion of a homogeneous magnetized fluid column of infinite
extent. The column is assumed to have a viscous interface. In its equilibrium
configuration, the interfacial surface is a circular cylinder of radius R. The
column performs a rigid-body rotation, in a weightless condition, with a
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constant angular velocity Ω
"

about its axis of symmetry. The fluid of the
column has density ρ

"
and magnetic permeability µ

"
. The column is embedded

in a rotating unbounded fluid having density ρ
#
, magnetic permeability µ

#
and

a constant angular velocity Ω
#
. The fluids are homogeneous, incompressible and

non-conducting, and exhibit interfacial tension. The tension forces act as
restoring forces to the otherwise damped oscillations of the interfacial surfaces.

The system is subjected to an azimuthal periodic magnetic field with a
forcing frequency ω4 :

H¯H
j
cosωh t eθ, j¯ 1, 2, (2.1)

where eθ is the unit vector in the θ direction. In the equilibrium configuration,
we shall be concerned with two cases :

(A) there are no free-surface currents at the unperturbed interface;

(B) the interface supports free-surface currents.

In formulating Maxwell’s equations, we assume that the magneto-quasistatic
approximation is valid for the system (Melcher 1963). Accordingly Maxwell’s
equations reduce to

¡[µH¯ 0, (2.2)

¡¬H¯
1

2
3

4

0 in case A,

J
f

in case B,
(2.3)

where J
f
is the surface current density (see Melcher 1963, p. 41, equation 3.51).

In accordance with the validity of the quasistatic approximation, a stream
function ψ(r, θ, t) can be introduced such that the total magnetic field is given
by

H¯
1

r

¦ψ

¦θ
e
r
®0¦ψ

¦r
®H

j
cosωh t1 eθ, (2.4)

where ψ(r, θ, t) is the increment in the magnetic field. Clearly, the stream
function ψ guarantees that (2.2) is satisfied, while the remaining bulk equation
(¡¬H¯ 0) shows that the function ψ satisfies Laplace’s equation

~#ψ¯ 0. (2.5)

Because the fluid is supposed to be non-conducting, the magnetic forces only
act on interfaces. Their contribution appears in the normal component of the
stress term in the boundary condition at the surface of separation. However, in
the bulk, the volume equation is ¡("

#
µH#)¯ 0, and so there is no contribution

– there is an impulse at the boundaries, which is treated as a modification to the
interfacial pressure: πh ¯P"

#
µH#, where P is the hydrostatic pressure. Thus the

equation governing the behaviour for a non-rotating frame of reference for
viscous fluids is

9ρ ¦
¦t

Vρ(V[¡)V¡πh :¯ η~#V, (2.6)

where V is the fluid velocity vector and η is the viscosity coefficient.
In the rotating frame of reference, the Coriolis term 2Ω¬V is usefully

introduced in the equation of motion. V¯ (uh , vh ,wh ), with uh ¯u, vh ¯ v and wh ¯ 0,
is the total velocity of a fluid particle inside and outside the fluid column,
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where (u, v, 0) are the perturbation velocity components. Consequently, the
kinematic boundary condition at the interface for a moving fluid particle is
given by

¦ξ

¦t
¯u

j
(r¯R) (2.7)

However, in the present work, the Kelvin–Helmholtz model is adopted, so that
the total velocity vector V is represented by V¯ (uh , vh ,w4 ) with u4 ¯u, vh ¯ v

!
v

and w4 ¯ 0, where v
!
¯ rΩ is the unperturbed velocity. Consequently, the

equation of motion is (2.6) and the kinematic boundary condition (2.7) is
modified to

¦ξ

¦t
¯u

j
®Ω

j

¦ξ

¦θ
(r¯R) (2.8)

In this work, we confine our analysis to weak viscous effects. These effects are
believed to be significant only within a thin vortical surface layer, so that the
motion elsewhere in the liquid column may reasonably be assumed to be
irrotational. Thus the viscous effects are introduced through the normal
damped stress term in the boundary condition at the surface of separation.

In view of the weakly viscous approximation, which is considered here, the
governing equations for the bulk fluid phases are

¦uh
¦t

uh
¦uh
¦r


vh
r

¦uh
¦θ

®
vh #
r

¯®
1

ρ

¦P

¦r
, (2.9)

¦vh
¦t

uh
¦vh
¦r


vh
r

¦vh
¦θ


vh uh
r

¯®
1

ρr

¦P

¦θ
, (2.10)

¦wh
¦t

uh
¦wh
¦r


vh
r

¦wh
¦θ

¯®
1

ρ

¦P

¦z
, (2.11)

where cylindrical polar coordinates (r, θ, z) are used. The continuity equation
¡[V¯ 0 takes the form

¦uh
¦r


1

r

¦vh
¦θ


¦wh
¦z


uh
r
¯ 0. (2.12)

Owing to the assumption that the fluid performs irrotational motion, the
velocity may be expressed as the gradient of a velocity potential φ(r, θ, t),
which, owing to the incompressibility condition ¡[V¯ 0, is a solution of
Laplace’s equation

~#φ(r, θ, t)¯ 0. (2.13)

In the equilibrium state, the pressure is given by

P(!)
j

¯ "
#
ρ
j
r#Ω#

j
C

j
, (2.14)

where the superscript (0) refers to the equilibrium state, and C
j
, j¯ 1, 2, are

constants of integration. From the continuity of the normal stress at the
interface, we find the jump in the pressure to be zero, whence

C
"
®C

#
¯

T

R
"

#
R#(ρ

#
Ω#

#
®ρ

"
Ω#

"
)®"

#
(µ

"
H#

"
®µ

#
H#

#
) cos#ωh t, (2.15)
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3. Boundary conditions

For the system adopted here, the following two types of boundary conditions
are appropriate : conditions at an infinite distance from the system and
conditions at the dividing surface. The former express the requirements that
the magnetic field and the velocity vector tend to zero at infinity. The
interfacial boundary conditions that must be satisfied at the surface r¯R are
as follows:

(1) At the boundary between two fluids, the fluid and magnetic stresses must
balance. The stress balance will be written using stress tensor form, and the
derivation will follow that of Melcher (1963):

Oσ
ij
Pn

j
¯®T(¡[n)n

i
, (3.1)

where O P represents the jump from region 1 to region 2, n
i
and n

j
are the

components of a unit vector n, and T is the surface-tension coefficient. The
components of these stresses consist of the hydrodynamic pressure, viscous
stresses and magnetic stresses :

σ
rr

¯®P"
#
µ(H#

r
®H#θ)2η

¦uh
¦r

, (3.2)

σθθ ¯®P®"
#
µ(H#

r
®H#θ)2η0uhr

1

r

¦vh
¦θ1 , (3.3)

σ
rθ

¯µH
r
Hθη91r

¦uh
¦θ

r
¦
¦r0

vh
r1: , (3.4)

with σ
ii

the normal stress and σ
rθ

the shear stress.

(2) The kinematic boundary condition due to continuity at the surface is
assumed.

(3) The normal component of the magnetic displacement is assumed to be
continuous at the interface.

(4) The continuity of the tangential component of the magnetic field is assumed
in the case where there are no free-surface currents at the interface.

(5) Owing to the presence of surface currents on the column interface, the
tangential component of the magnetic field is discontinuous. Therefore the
continuity of the tangential stress is assumed (Melcher 1963).

4. Linearized equations

To test the stabilization of the column system, the column radius will be
assumed to be perturbed about its equilibrium value. The column radius is now
given by

r¯Rξ(θ, t), (4.1)
where

ξ(θ, t)¯γ(t) eimθ (0% θ% 2π). (4.2)

Here γ(t) is an unknown function of time t, representing the amplitude of the
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perturbations in the column radius, and the integer m is the azimuthal
wavenumber. The limiting case of very long longitudinal wavelength is
considered here, so that the dependence of the variables on z will be neglected.

The equations of motion and boundary conditions given previously will be
solved for these perturbations under the assumption that the perturbations are
small ; that is, all equations and boundary conditions will be linearized in the
perturbation quantities. The form of the azimuthal variation for all the other
perturbation variables will be the same as that of the radius description (4.2).
The perturbation bulk variables are functions of both the azimuthal and the
radial coordinates as well as time. Accordingly, the linearized velocity potential
φ and the stream function ψ are governed by the following equations:

0r# ¦#

¦r#
r

¦
¦r

®m#1φ¯ 0, (4.3)

0r# ¦#

¦r#
r

¦
¦r

®m#1ψ¯ 0, (4.4)

The increment of the pressure π(r, θ, t) is given by

π(r, θ, t)¯®ρ0¦φ

¦t
®

2iΩ

m
r
¦φ

¦r
imΩφ1 . (4.5)

Equation (4.3) has to be solved with the following appropriate kinematic
boundary condition:

¦φ
j

¦r
¯

¦ξ

¦t
imΩ

j
ξ (r¯R) (4.6)

Thus the velocity potentials φ
j
(r, θ, t), j¯ 1, 2, inside and outside the fluid

column are given by

φ
"
(r, θ, t)¯

R

m 0
r

R1
m0dγ

dt
imΩ

"
γ1 eimθ (r%R), (4.7)

φ
#
(r, θ, t)¯®

R

m 0
R

r 1
m0dγ

dt
imΩ

#
γ1 eimθ (r&R). (4.8)

In solving (4.4), with the appropriate boundary conditions, we shall deal
with two different cases, depending on whether or not the unperturbed interface
supports free-surface currents.

5. Case A: no free-surface currents at the column interface

This section deals with the case where the unperturbed interface r¯R is
assumed to support no free-surface currents, so that in the equilibrium
configuration, H

"
¯H

#
¯H

!
. The appropriate magnetic boundary conditions

that must be satisfied at the surface r¯R are as follows:

(1) the tangential component of the magnetic field is continuous at the
interface; therefore

¦ψ
"

¦r
®

¦ψ
#

¦r
¯ 0 (r¯R) ; (5.1)
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(2) the normal component of the magnetic displacement is continuous at the
interface; therefore

0µ"

¦ψ
"

¦θ
®µ

#

¦ψ
#

¦θ 1®
¦ξ

¦θ
(µ

"
®µ

#
)H

!
cosωh t¯ 0. (r¯R). (5.2)

With these boundary conditions, the solutions of Laplace’s equation (4.4) yield
the distribution of the stream function inside and outside the column as

ψ
"
(r, θ, t)¯

µ
"
®µ

#

µ
"
µ

#

0 rR1
m

γ(t)H
!
cosωh t eimθ (r%R), (5.3)

ψ
#
(r, θ, t)¯®

µ
"
®µ

#

µ
"
µ

#

0 rR1
−m

γ(t)H
!
cosωh t eimθ (r&R). (5.4)

It is well known that for inviscid fluids, the presence of a jump in the
tangential stress is equivalent to continuity of the normal component of the
magnetic field, since there are no free surface currents at the interface. In
contrast, in the presence of viscosity, there is no such equivalence. Therefore it
is necessary to take account of this boundary condition, which was neglected
before. There are two further linearized boundary conditions: the continuity of
the tangential stress and the discontinuity of the normal stress, which is related
to the value of the surface-tension force. These conditions are respectively

1

r

¦ξ

¦θ
(Oσ

rr
P®OσθθP)Oσ

rθ
P¯ 0 (r¯R) (5.5)

Oσ
rr
P¯®

T

r
~#ξ(θ, t) (r¯R) (5.6)

In view of the relations (3.1)–(3.4), the linearized tangential and normal stress
components respectively reduce to

0µ"

¦ψ
"

¦θ
®µ

#

¦ψ
#

¦θ 1H
!
cosωh t®

¦ξ

¦θ
(µ

"
®µ

#
)H#

!
cos#ωh t

2η
"

¦
¦θ 0

¦φ
"

¦r
®

1

r
φ
"1®2η

#

¦
¦θ 0

¦φ
#

¦r
®

1

r
φ
#1¯ 0 (r¯R), (5.7)

π
"
®π

#
¯R(ρ

#
Ω#

#
®ρ

"
Ω#

"
) ξ

T

R#

(m#®1) ξ®0µ"

¦ψ
"

¦r
®µ

#

¦ψ
#

¦r 1H
!
cosωh t

2η
"

¦#φ
"

¦r#
®2η

#

¦#φ
"

¦r#
(r¯R). (5.8)

These conditions can be used to determine the dispersion relation that describes
the behaviour of the surface wave. Substituting both the stream function
ψ

j
(r, θ, t) and the velocity potential φ

j
(r, θ, t) as obtained from the appropriate

boundary conditions into (5.7), we obtain

[η
#
(m1)®η

"
(m®1)]

dγ

dt
im[η

#
Ω

#
(m1)®η

"
Ω

"
(m®1)]γ¯ 0, (5.9)
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Although the continuity of the tangential stress is satisfied identically in
inviscid fluids, (5.9) fails to be satisfied in the presence of viscosity, for

η
#
(m1)®η

"
(m®1)¯ 0, Ω

"
¯Ω

#
& 0.

Consequently, the tangential stress makes no contribution in the case of low
viscosity. Otherwise, the continuity of the tangential stress must be taken into
account.

The normal stress component in terms of the perturbation amplitude γ(t) is

d#γ

dt#


2

R#(ρ
"
ρ

#
)
²m[η

#
(m1)η

"
(m®1)]

iR#[ρ
#
Ω

#
(m1)ρ

"
Ω

"
(m®1)]´

dγ

dt


1

R#(ρ
"
ρ

#
) (

m(m#®1)T

R
®mR#[ρ

#
Ω#

#
(m1)ρ

"
Ω#

"
(m®1)]

2im#[η
#
Ω

#
(m1)η

"
Ω

"
(m®1)]

m#(µ
#
®µ

"
)#Η#

!

(µ
#
µ

"
)

cos#ωh t*γ¯ 0, (5.10)

which is a second-order differential equation of Mathieu type with complex
coefficients. In the limiting case for a non-rotating fluid column, the above
equation reduces to the damping Mathieu equation with real coefficients. For
non-vanishing angular velocity Ω

j
, the damped Mathieu equation can also be

obtained. This may be accomplished by using (5.9) to eliminate the coefficients
of the imaginary terms appearing in (5.10). This approach leads to a single
damped Mathieu equation, which represents the dispersion relation and
controls the behaviour of the viscous effects in surface-wave instability. Thus
the system will be governed by the following equation:

d#γ

dt#
α

dγ

dt
(δQH#

!
cos#ωh t)γ¯ 0, (5.11)

where

δ¯
m

ρ
"
ρ

#

((m#®1)T

R$


2Ω

"
Ω

#
(ρ

"
η
#
®ρ

#
η
"
) (m#®1)

η
#
(m1)®η

"
(m®1)


[ρ

#
Ω#

#
(m1)®ρ

"
Ω#

"
(m®1)] [η

#
(m1)η

"
(m®1)]

η
#
(m1)®η

"
(m®1) * ,

α¯
4m(m#®1) (Ω

#
®Ω

"
) η

"
η
#

R#(ρ
"
ρ

#
) [η

#
Ω

#
(m1)®η

"
Ω

"
(m®1)]

,

Q¯
m#µ*

R#(ρ
"
ρ

#
)
, µ*¯

(µ
#
®µ

"
)#

µ
#
µ

"

.

Equation (5.11) has a growth-rate solution, and stability requires positive
values of the damped term. The periodic solution arises when the damped term
vanishes. In the case of equal angular velocities, we can obtain a periodic

https://doi.org/10.1017/S0022377801001003 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377801001003


Viscous interface instability in a rotating fluid column 9

solution even in the presence of viscosity. The Mathieu equation (5.11) then
reduces to

d#γ

dt#
(δ

!
QH#

!
cos#ωh t)γ¯ 0, (5.12)

where

δ
!
¯

m

ρ
"
ρ

#

((m#®1)T

R$

Ω#
!
[ρ

#
(m1)ρ

"
(m®1)]* , (5.13)

Although the viscosity coefficients η
"
and η

#
have disappeared from (5.12), we

conclude that this equation still governs the behaviour of the viscous fluid
interface in the marginal state where Ω

"
¯Ω

#
¯Ω

!
.

Note that in the case of a static magnetic field, both the angular velocity and
the magnetic field make no contribution in the stabilized problem. In the case
of non-vanishing field frequency ω4 , stability occurs when the following
inequality is satisfied:

H%
!
Q#16(ωh #®δ

!
)QH#

!
32δ

!
(ωh #®δ

!
)" 0. (5.14)

This stability criterion reduces to the problem of the bounded regions of the
Mathieu functions, as given in McLachlan (1964). It is observed that this
condition is trivially satisfied when ωh #& δ

!
, for arbitrary Q and H#

!
. In terms of

the magnetic field H#
!
, the above stability condition (5.14) takes the form

(H#
!
®H$

"
) (H#

!
®H$

#
)" 0, (5.15)

where

H$

",#
¯

8

Q
[®(ωh #®δ

!
)³o(ωh #®δ

!
) (ωh #®$

#
δ
!
)] . (5.16)

The stable regions are characterized by the following conditions:

H#
!
"H$

"
and H#

!
!H$

#
(H$

"
"H$

#
). (5.17)

From Floquet theory (McLachlan 1964), the region bounded by the two
branches for the transition curves H$

"
and H$

#
is the unstable region; the area

outside these curves is the stable region. Thus the width of the unstable region
is measured by the difference H$

"
®H$

#
. The effect of the angular velocity Ω

!
on

this width is determined from the sign of

¦
¦Ω

!

(H$

"
®H$

#
)¯

4(6δ
!
®5ωh #)

Qo(ωh #®δ
!
) (ωh #®$

#
δ
!
)

¦δ
!

¦Ω
!

. (5.18)

A positive sign of this quantity means that an increase in the angular velocity
increases the size of the unstable region. It is easy to show that the sign of this
quantity depends on the term 6δ

!
®5ωh #. Thus an increase in the size of the

unstable region with increasing Ω
!

requires that

6δ
!
®5ωh #" 0.

Using (4.13), the above condition reduces to

Ω#
!
"

ρ
"
ρ

#

6m[ρ
#
(m1)ρ

"
(m®1)] 95ωh #®

6m

ρ
"
ρ

#

(m#®1)T: , (5.19)

It is clear that the above inequality is trivially satisfied in the absence of the
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Figure 1. Stability diagram for a system having ρ
"
¯ 0±879 g cm−$, ρ

#
¯ 0±99823 g cm−$,

T¯ 35 dyn cm−" and µ*¯ 148. The graph indicates the transition curve H$

"
given by (5.16),

while the transition curve H$

#
has negative values. The region labelled S is the stable region.

The region labelled by U is the unstable region.
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Figure 2. Stability diagram for the same system as in Fig. 1, but with ω4 ¯ 5 Hz.

field frequency ω4 , which shows the destabilizing role of the angular velocity Ω
!
.

The presence of the frequency ω4 retards this destabilizing influence. As the
values of the frequency ω4 increases larger values of Ω

!
are required to produce

the same destabilizing effect.
A numerical illustration of the stability condition (5.14) is shown in Figs 1–3

for a system having ρ
"
¯ 0±879 g cm−$, ρ

#
¯ 0±99823 g cm−$, T¯ 35 dyn cm−"

and µ*¯ 148.
It is apparent from these figures that an increase in the magnetic field H#

!
as

well as an increase in the column radius R has a stabilizing influence. This
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Figure 3. Stability diagram for the same system as in Fig. 1, with the angular velocity
and azimuthal wavenumber are held fixed (Ω¯ 10 and m¯ 2).

stabilizing role is affected by increasing angular velocity Ω, azimuthal
wavenumber m and field frequency ω4 .

It is readily seen from Fig. 1 that there is a zone of stability bounded by the
transition curve H$

"
for m¯ 2 and ω4 ¯ 20 Hz. The calculation has been done,

varying Ω from 0 s−" to 25 s−" with step 5 s−". This stable zone decreases in size
as the angular velocity Ω is increased. It is observed that for small values of Ω,
the transition curve intersects the R axis. On increasing Ω, the stable zone
contracts, and leaves the R axis. This shows the destabilizing influence of Ω on
the stability criteria.

In Fig. 2, we plot the magnetic field H#
!

versus the column radius R for the
same system as in Fig. 1, but with ω4 ¯ 5 Hz. The transition curve H$

"
is given

for m¯ 1,…, 6. The stability region decreases in size as R is increased. As m is
increased, larger values of H#

!
are needed to produce the same stability

configuration. This shows the destabilizing influence of increasing m.
The diagram shown in Fig. 3 is for the same system as in Fig. 1, with the

angular velocity and azimuthal wavenumber held fixed (Ω¯ 10 s−" and m¯ 2),
with the field frequency ω4 being varied from 5 Hz to 30 Hz with step 5 Hz.
Inspection of this graph shows that increasing ω4 increases the size of the stable
zone. It can be seen that the field frequency ω4 plays a counteracting role to the
angular velocity Ω.

In this section, the stability behaviour has been examined for matching
angular velocities. As the angular velocities are matched, the viscosity
coefficients η

"
and η

#
disappear from the stability condition (5.14). It can be

seen that this condition does not hold for the corresponding case in the inviscid
problem. Therefore the viscosity contribution is associated with the presence of
a difference in angular velocities. The field frequency then plays a stabilizing
role, while increasing the azimuthal wavenumber m and equal angular velocities
have a destabilizing influence.
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5.1. Stability behaviour due to a non-vanishing damping term α

A singular case occurs when the denominators of both coefficients δ and α have
zero value. This means that there exists a critical value of the stratified
viscosity η (¯ η

"
}η

#
) that leads to this singular case. That is,

η¯
m1

m®1
and η¯

m1

Ω(m®1)
, m1 1, Ω¯

Ω
"

Ω
#

.

Such singularities disappear in the case of periodic solutions, i.e. in the case of
a non-rotating fluid column or when the angular velocities are equal.

We shall deal with the non-singular case, ignoring the critical values of η.
Therefore, as the coefficient α has non-zero values in (5.11), a growth-rate
disturbance occurs. There are many books that have treated (5.11) (see e.g.
Grimshaw 1990). The small and positive coefficient α is described as a function
of the coefficient of the period term.

In a static magnetic field, (5.11) reduces to

d#γ

dt#
α

dγ

dt
(δQH#

!
)γ¯ 0, (5.20)

which is a linear differential equation with constant coefficients, and can be
satisfied by a growth rate solution having the form γ¯ exp (σiω) t. The
stability will depend on the sign of σ (the real part). If it is positive then the
amplitude of the disturbance increases with time, and the flow is unstable; if it
is negative then the flow is stable ; and if it has a zero value then there is
marginal stability. Both σ and ω are real constants and satisfy the following
equations:

σ#®ω#ασ(δQH#
!
)¯ 0, 2σα¯ 0.

Elimination of the parameter σ yields

ω#¯ δQH#
!
®"

%
α#. (5.21)

The assumption that ω is real imposes the following stability condition:

δQH#
!
®"

%
α#" 0, (5.22)

with the necessary condition that α is positive. Thus the region of stability in
the static case is given by

H#
!
"H$

!
¯

1

4Q
(α#®4δ). (5.23)

The presence of the damping term α in the stability analysis that is given above
leads us to estimate the contribution of the viscosity in the stability criteria.
Therefore a non-dimensional parameter η* is introduced such that η

j
¯ η*ηh

j
,

and then α¯ η*αh . The dependence of the transition curve H$

!
with respect to

η* is given by

¦H$

!

¦η*
¯

αh #
2Q

η*" 0. (5.24)

This means that the unstable region bounded by the curve H$

!
is increased in

size as η* is increased, which shows that an increase in the viscosity parameter
has a destabilizing influence.
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For a non-zero field frequency ω4 , Grimshaw (1990) examined, using a
perturbation technique, the first unstable region, which occurs near δ¯
(ωh #"

%
α#)®"

#
QH#

!
. On the boundaries of this unstable region, there are periodic

solutions of (5.11) of period 2π. The stability condition is thus given by

3Q#H%
!
16(δ®ωh #)QH#

!
16(δ®ωh #)#16ωh #α#" 0. (5.25)

The presence of a positive damped term has not altered the position of the
stability boundary for the undamped Mathieu equation in the stability diagram
in the (δ,Q) plane. For each fixed α" 0, in the (δ,Q) plane, there is a hyperbola
bounding the unstable region. These boundaries are described by

Hh $
",#

¯
4

3Q
[2(ωh #®δ)³o(ωh #®δ)#®3ωh #α#]. (5.26)

The two transition curves Hh $
"

and Hh $
#

will meet when the field frequency ω4 is
such that the square root in (5.26) is zero, and thus, when the parameter α is
zero, the curves meet when ωh #¯ δ. The nearness of ω4 to δ"/# produces the
resonance case (Nayfeh and Mook 1979). Since the parameter δ"/# represents the
disturbance frequency for (5.20) as αU 0 and H

!
U 0, it is clear that the viscous

damping term α decreases the size of the unstable region that is sandwiched
between the boundaries Hh $

"
and Hh $

#
. We may further examine the behaviour of

the unstable region between the transition curves Hh $
"

and Hh $
#
. Thus

¦
¦η*

(Hh $
"
®Hh $

#
)¯

®8ωh #αh #η*

Qo(ωh #®δ)#®3ωh #α#

! 0. (5.27)

This means that the size of the unstable zone decreases as η* is increased, which
shows the stabilizing influence of increasing η*. Therefore it is apparent that
there is a change of the viscosity mechanism in the presence of the field
frequency ω4 .

5.2. Numerical illustration in the presence of the damping term α

A numerical investigation has been carried out of the stability conditions (5.23)
and (5.25) in the absence and in the presence of the field frequency ω4
respectively. The data for the graphs are the same as in Fig. 1, with Ω

"
¯ 10 s−",

Ω
#
¯ 8 s−", ηh

"
¯ 0±8 g cm−" s−", ηh

#
¯ 0±3 g cm−" s−" and a field frequency ωh ¯

10 Hz. The results are displayed in Figs 4–6. Part (a) of each figure is for the
case in which the field is independent of the time, while part (b) is for the case
with a non-zero field frequency ω4 .

In Fig. 4, graphs in the plane (H#
!
,R) are plotted for three values of the

viscosity parameter η*: 0, 5 and 10. The inviscid transition curves intersect the
R axis. In Fig. 4(a), the intersection lies at R¯ 0±5075002 cm, while in Fig. 4(b),
it occurs at R¯ 0±4891101 cm and represents the resonance point that is
present for ω4 #E δ (Nayfeh and Mook 1979). A damping role is observed for non-
zero η*. Inspection of these graphs show that there are two different roles
appearing for the variation of η*. There is a destabilizing influence with a
damping role in the stable area where the static field is present, as shown in Fig.
4(a). Owing to the presence of the field frequency ω4 , there is a stabilizing
influence associated with a damping role in the unstable zone, as shown in
Fig. 4(b).
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Figure 4. (a) The (H#
!
,R) plane for the stability condition (5.23). The data are the same as

in Fig. 1, with Ω
"
¯ 10 s−", Ω

#
¯ 8 s−", η4

"
¯ 0±8 g cm−" s−", η4

#
¯ 0±3 g cm−" s−" and the field

frequency ω4 ¯ 10 Hz. The curves are as follows: D, η*¯ 0 (the inviscid case) ; X, η*¯ 5;
E, η*¯ 10. (b) is for the same system as in (a), except that the graphs are for the stability
condition (5.25) ; the curves are labelled as in (a).

The damping parameter α is affected by the angular velocity Ω
j
, and for α to

be non-zero, we must have Ω
"
1Ω

#
. Therefore a non-dimensional parameter Ω*

will be introduced such that Ω
"
¯Ω*Ωh

"
and Ω

#
¯Ω*Ωh

#
. The effect of varying Ω*

(Ω*¯ 1, 2 and 3) is displayed in Fig. 5, where η* is held fixed (equal to 5 in Fig.
5(a) and equal to zero in Fig. 5(b)). In Fig. 5(a), we find that the parameter Ω*
plays the same role as the parameter η*, i.e. it has a destabilizing effect with a
damping role in the stable zone in the case where the field is independent of
time. Moreover, the intersection of the transition curve with the R axis in the
case of η*¯ 0 is affected by changes in the value of Ω*. In Fig. 5(b), the
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Figure 5. The (H#
!
,R) plane for the same system as in Fig. 4(a), with η* is held fixed equal

to 5: D, Ω*¯ 1; E, Ω*¯ 2; , Ω*¯ 3. (b) is for the same stability condition as in Fig. 4(b),
with η* held fixed equal to zero; the curves are labelled as in (a).

resonance point is affected by an increase in Ω*, and is shifted in the direction
of decreasing R. It is located at R¯ 0±4891101 cm, 0±3166288 cm and
0±2429199 cm for Ω*¯ 1, 2 and 3 respectively. Again a stabilizing effect with a
damping role in the unstable zone is found in the presence of the field frequency
ω4 . At this point, we can say that both the viscosity parameter η* and the
angular velocity Ω* have changed their roles in the presence of the field
frequency ω4 . Proceeding from this, we can infer the effects of an increase in ω4
on the stability criteria in the presence of the damping term α. The viscous
damping term α# in the stability condition (5.25) is multiplied by the parameter
ω4 #. This shows that an increase of ω4 increases the stabilizing role played by η*.
Thus the frequency ω4 plays a stabilizing role, in agreement with the previous
results as shown in Fig. 3.
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Figure 6. (a) The (H#
!
,R) plane for the same system as in Fig. 4(a), except that here

ω4 ¯ 20 Hz. (b) As Fig. 4(b), except that here ω4 ¯ 20 Hz.

In Fig. 6, the (H#
!
,R) plane is shown for the same system as in Fig. 4, except

that here ω4 ¯ 20 Hz. In Fig. 6(a), m has the values m¯ 2, 3 and 4, while in Fig.
6(b), the calculations are for m¯ 1 and 2. Inspection of these graphs shows that
the stable region is increased in size as m is changed from 1 to 2. This stabilizing
influence is not affected by the presence or absence of ω4 . On the other hand, the
presence of the parameter α leads to an opposite effect compared with that
shown in Fig. 2. It can be noted in Fig. 6(b) that there is stability for the system
when m is greater than 2, while in Fig. 6(a), we can see that there is stability
when m¯ 1. The (H#

!
,R) plane is divided into a stable region and an unstable

region when m¯ 2. An increase in m increases the size of the stable region.
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6. Case B: a viscous conducting interface supporting free-surface
currents

This section is concerned with the presence of free-surface currents J
f

on the
interface r¯R, so that H

"
1H

#
. At the interface r¯R, the magnetic boundary

conditions that have to be satisfied can be summarized as follows. Owing to the
presence of surface currents at the surface of separation, the continuity of the
tangential field is irrelevant and only the continuity of the tangential stress
(5.5) is applicable, while the continuity of the normal component of the
displacement (5.2) still holds. Applying these boundary conditions to the bulk
solution given by Laplace’s equation (4.4), keeping in mind that H

"
1H

#
, we

obtain

ψ
"
(r, θ, t)¯

1

mµ
"
(H

#
®H

"
) cosωh t 0

r

R1
m(2i[η

"
(m®1)®η

#
(m1)]

dγ

dt

®m[2η
"
Ω

"
(m®1)®2η

#
Ω

#
(m1)

iµ
"
H

"
(H

"
®H

#
) cos#ωh t]γ* eimθ (r%R), (6.1)

ψ
#
(r, θ, t)¯

®1

mµ
#
(H

#
®H

"
) cosωh t 0

R

r 1
m(2i[η

"
(m®1)®η

#
(m1)]

dγ

dt

®m[2η
"
Ω

"
(m®1)®2η

#
Ω

#
(m1)

iµ
#
H

#
(H

"
®H

#
) cos#ωh t]γ* eimθ (r&R). (6±2)

It is clear that the stream function ψ depends on the column radius, the angular
velocity, the viscosity and the magnetic field.

In order to examine the behaviour of the surface current density in the
stabilized problem, we assume the following equilibrium configuration:

H
"
¯

H

H®1
J
f
, H

#
¯

1

H®1
J
f
, (6.3)

where H is the stratified magnetic field intensity (H3H
"
}H

#
). Employing

similar techniques to those used in case A to construct the characteristic
equation, we find that the surface waves are governed by

d#γ

dt#
2(a

"
ib

"
)
dγ

dt
(a

#
2ib

#
qJ#

f
cos#ωh t)γ¯ 0, (6.4)

where

a
"
¯

2m

R#(ρ
"
ρ

#
) (H®1)

[Hη
#
(m1)®η

"
(m®1)], (6.5)

a
#
¯

m

(ρ
"
ρ

#
) (

(m#®1)T

R$

®[ρ
#
Ω#

#
(m1)ρ

"
Ω#

"
(m®1)]* , (6.6)

b
"
¯

1

(ρ
"
ρ

#
)
[ρ

#
Ω

#
(m1)ρ

"
Ω

"
(m®1)], (6.7)
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b
#
¯

2m#

R#(ρ
"
ρ

#
) (H®1)

[Hη
#
Ω

#
(m1)®η

"
Ω

"
(m®1)], (6.8)

q¯
m#(µ

"
H#µ

#
)

R#(ρ
"
ρ

#
) (H®1)#

. (6.9)

Equation (6.4) is a second-order equation of Mathieu type with complex
coefficients.

6.1. Stability behaviour for a viscous fluid column without rotation

The effect of the surface current density on a viscous fluid can be analysed in
the limiting case as the angular velocity Ω

j
vanishes; (6.4) then reduces to

d#γ

dt#
(4m[Hη

#
(m1)®η

"
(m®1)]

R#(ρ
"
ρ

#
) (H®1) * dγ

dt
9m(m#®1)T

R$(ρ
"
ρ

#
)
qJ#

f
cos#ωh t:γ¯ 0,

(6.10)

which is a damped Mathieu equation with real coefficients. It is clear that there
is a critical value for the stratified magnetic field for which the damping term
is absent; this critical value is given by

H
c
¯

η(m®1)

m1
, (6.11)

where η is the stratified viscosity (η3 η
"
}η

#
). In the case where there is no

frequency ω4 , the stability analysis for Eq. (6.10) imposes the following
condition (as in case A):

J#
f
"J*, (6.12)

provided that the damping term has positive values, where

J*¯
1

mR(µ
"
H#µ

#
) (

4m

R(ρ
"
ρ

#
)
[Hη

#
(m1)®η

"
(m®1)]#®(H®1)#(m#®1)T*.

(6.13)

It is clear that the stability condition is trivially satisfied in the absence of
viscosity η

j
. The presence of η

j
produces an unstable region bounded by the

curve J*. On the other hand, instability can be produced for values of H far from
H

c
. This unstable region increases in size as η

j
is increased. At the critical value

H
c
of the stratified magnetic field, there is stability for all values of the surface

current, i.e. the surface current J
f
makes no contribution in this case. It is easy

to show that as the column radius R is increased, the destabilizing role of
viscosity is decreased and so the site of the unstable region that is bounded by
J* is decreased.

In the presence of the field frequency ω4 , the stability boundaries have the
form

J$

",#
¯

4(H®1)

3m#(µ
"
H#µ

#
) 02(H®1) 9R#(ρ

"
ρ

#
)ωh #®

m

R
(m#®1)T:

³((H®1)#9R#(ρ
"
ρ

#
)ωh #®

m

R
(m#®1)T:#

®48ωh #m#[Hη
#
(m1)®η

"
(m®1)]#*"/#1 , (6.14)
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Figure 7. The transition curves (6.14) are plotted in the (J#
f
,H) plane for a system having

η
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¯ 14, µ
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¯ 9, R¯ 1±5 cm, m¯ 2 and ω4 ¯ 20 Hz.

20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

S1

U1

S0

U2

S2

H

Jf
2

Figure 8. As in Fig. 7, but with ω4 ¯ 30 Hz.

where the stability criterion for the damped Mathieu equation (6.10) is given by
(5.25) (Grimshaw 1990). Thus the stable region is characterized by

J#
f
"J$

"
or J#

f
!J$

#
(J$

"
"J$

#
). (6.15)

The transition curves (6.14) are plotted in the (J#
f
,H) plane for a sample case.

The results of the calculations are shown in Figs 7–11 for a system having
η
"
¯ 0±8 g cm−" s−", η

#
¯ 0±3 g cm−" s−", ρ

"
¯ 0±879 g cm−$, ρ

#
¯ 0±99823 g cm−$,

T¯ 35 dyn cm−", µ
"
¯ 14, µ

#
¯ 9, R¯ 1±5 cm, m¯ 2 and ωh ¯ 20 Hz.
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Figure 9. As in Fig. 7, but with R¯ 2 cm.
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Figure 10. As in Fig. 7, but with m¯ 3.

It is readily seen from Fig. 7 that a coupled parametric resonance occurs in
the neighbourhood of the point H¯ 1. The coupled resonance point depends on
the specific values of m, η

"
and η

#
. It is observed that this coupled resonance

occurs at η
#
(m1)¯ η

"
(m®1) and H¯ 1. The resonance regions are labelled U

"
and U

#
. The resonance region U

"
and the stable region S

"
are present for the

range H! 1, while the resonance region U
#
and the stable region S

#
appear in

the area characterized by H" 1. The two unstable regions bound a stable zone
that occurs at H¯ 1 and is labelled S

!
. It can be seen that the surface current

J#
f

is more strongly stabilizing for H! 1 than for H" 1. The strongest
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Figure 11. As in Fig. 7 but with the values of the viscosity parameters η
"

and η
#

interchanged, so that η
#
" η

"
.

stabilizing effect occurs at H¯ 1. It is clear from this calculation that the
surface currents will disappear on the interface at H¯ 1. In addition, the
azimuthal magnetic field plays a stabilizing role, in agreement with case A. This
stabilizing role of the magnetic field increases as J#

f
is increased. However, a

dual role of the influence of the surface current density J#
f

is observed in this
calculation.

In Fig. 8 we show a similar diagram to that in Fig. 7, but with the applied
frequency ω4 changed to 30 Hz. The resonance point that occurs at H¯ 1 is not
affected by the change in ω4 . The increase in ω4 affects only the resonance regions.
It is apparent from a comparison of Figs 7 and 8 that as ω4 is increased, the
stable regions S

"
and S

#
that lie outside the resonance regions become larger,

while the stable zone S
!
that lies between the unstable regions U

"
and U

#
becomes

smaller. In contrast, the widths of the unstable regions decrease. The same
behaviour is observed on slightly increasing the fluid column radius R to 2 cm
as shown in Fig. 9. This clearly illustrates the effect of increases both in the
frequency ω4 and in the fluid radius R. This phenomenon was not observed in
case A.

In Fig. 10, we show a similar graph to that in Fig. 7, but with the azimuthal
wavenumber m changed to 3. Owing to the increase in m, the unstable regions
U

"
and U

#
leave the H axis, producing a damping effect. The three stable

regions S
!
, S

"
and S

#
become connected. In contrast, the width of the

unstable region U
"
increases while the width of the unstable region U

#
decreases.

The region U
"

leaves the H axis more rapidly than the region U
#

does. The
stabilizing role of an increase in the azimuthal wavenumber m was also
observed in case A, in the presence of the damping parameter.

In Fig. 11, we show a similar stability diagram to that in Fig. 7, except that
the values of the viscosity parameters η

"
and η

#
are interchanged so that now

η
#
" η

"
. Here the damping role of viscosity is clearer than in the case of η

"
" η

#
.

The role of damping in the region U
#

is more significant than in the region

https://doi.org/10.1017/S0022377801001003 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377801001003


22 Y. O. El-Dib

U
"
. The three stable regions S

!
, S

"
and S

#
become connected and increase in size

as the unstable zones leave the H axis. A comparison between Figs 7 and 11
shows that the surface current density plays a more strongly stabilizing role
when the viscosity of the outer fluid is greater than that of the inner one.

6.2. Stability configuration for a rotating fluid column

When the angular velocity Ω is non-zero, we must study the full Mathieu
equation (6.4). In what follows, we shall distinguish between two cases. The first
case is that of a static magnetic field. The second is concerned with the
contribution of ω4 to the stability criteria.

In dealing with a static magnetic field, the field frequency ω4 is put equal to
zero in (6.4). Hence the solution of the resulting characteristic equation has an
exponential form exp (σh t). The disturbance parameter σ4 satisfies the following
dispersion relation:

σh #2(a
"
ib

"
)σh (a

#
2ib

#
qJ#

f
)¯ 0. (6.16)

Zahreddine and Elshehawey (1988) established necessary and sufficient
conditions for the stability of (6.16) :

a
"
" 0, a#

"
(a

#
qJ#

f
)2a

"
b
"
b
#
®b#

#
" 0. (6.17)

In terms of the surface current density J
f
, the above stability conditions are

J#
f
"

R#(H®1)#

m(µ
"
H#µ

#
) [H(m1)®η(m®1)]# 0m(ρ

"
ρ

#
) [HΩ

#
(m1)®ηΩ

"
(m®1)]#

®2[H(m1)®η(m®1)] [HΩ
#
(m1)®ηΩ

"
(m®1)]

¬[ρ
#
Ω

#
(m1)ρ

"
Ω

"
(m®1)]®[H(m1)®η(m®1)]#

¬((m#®1)T

R$

®[ρ
#
Ω#

#
(m1)ρ

"
Ω#

"
(m®1)]*1 , (6.18)

provided that H"H
c
. In the limiting case as Ω

"
¯Ω

#
¯Ω, the above stability

condition reduces to

J#
f
"J$

!
¯

R#(H®1)#

m(µ
"
H#µ

#
) 9(ρ"

®ρ
#
)Ω#®

(m#®1)T

R$
: . (6.19)

Inspection the above stability condition shows that the angular velocity Ω

plays a destabilizing role, and an increase in Ω increases the size of the unstable
region bounded by the curve J$

!
, in the case of ρ

"
" ρ

#
. In the case of ρ

#
" ρ

"
,

the angular velocity Ω has an effect on the stability.
Another dramatic aspect of the stability behaviour in the presence of the

frequency ω4 will now be presented. We shall deal with the periodic solutions of
the Mathieu equation (6.4). For periodic solutions, a stability analysis can be
performed using the marginal state treatment. Marginal stability holds trivially
in the inviscid case. To obtain the marginal state for rotating viscous flow, two
conditions must be satisfied: a necessary condition

d#γ

dt#
2ib

"

dγ

dt
(a

#
qJ#

f
cos#ωh t)γ¯ 0, (6.20)
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Figure 12. The graph illustrates the stability condition (6.24) for a system of fluid radius
R¯ 0±5 cm, field frequency ω4 ¯ 30 Hz, stratified viscosity η¯ 5, azimuthal wavenumber
m¯ 2 and angular velocities Ω

"
¯ 10 s−" and Ω

#
¯ 8 s−". The fluid densities and permeabilities

are as in Fig. 7.

and a sufficient condition

a
"

dγ

dt
ib

#
γ¯ 0. (6.21)

It is worthwhile observing that the equation governing the marginal state can
be formulated by combining the necessary condition (6.20) with the sufficient
condition (6.21) into a single condition.

To obtain the combination between the necessary condition and the sufficient
condition, we need to rewrite (6.20) using (6.21) in order to introduce an
undamped Mathieu equation. Clearly, a singularity occurs owing to the
vanishing of the coefficient a

"
. There is a singular case similar to what occurs in

case A when the stratified magnetic intensity H¯ 1 (i.e. in the absence of
surface currents). The condition a

"
¯ 0 means that this singularity arises at a

critical value of the stratified magnetic intensity H
c
given by (6.11).

If the special value H
c
is excluded, the undamped Mathieu equation can be

formulated from (6.20) and (6.21) in the form

d#γ

dt#
(∆qJ#

f
cos#ωh t)γ¯ 0, (6.22)

where

∆¯
m

(ρ
"
ρ

#
) (

(m#®1)T

R$

®[ρ
#
Ω#

#
(m1)ρ

"
Ω#

"
(m®1)]


2[ρ

#
Ω

#
(m1)ρ

"
Ω

"
(m®1)] [HΩ

#
(m1)®ηΩ

"
(m®1)]

H(m1)®η(m®1) * . (6.23)
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In the case of non-vanishing field frequency ω4 , stability occurs when the
following inequality is satisfied:

q#J%
f
16(ωh #®∆) qJ#

f
32∆(ωh #®∆)" 0, (6.24)

namely
(J#

f
®J$$

"
) (J#

f
®J$$

#
)" 0, (6.25)

where

J$$

",#
¯

8

q
[®(ωh #®∆)³o(ωh #®∆) (ωh #®$

#
∆)]. (6.26)

The transition curves J$$

"
and J$$

#
should start from the point H¯ 1 and from

the point satisfying ωh #¯∆, which represents the resonance point. There exists
another starting point satisfying ∆¯ 0. Therefore, in the (J#

f
,H) plane, the

transition curves will intersect the H axis at three points, given by H¯ 1 and
H¯λ

j
η(m®1)}(m1), where λ

j
1 1 and have the forms

λ
"
¯ (m(m#®1)T

R$

®m[ρ
#
Ω#

#
(m1)®ρ

"
Ω#

"
(m®1)]2mρ

#
Ω

"
Ω

#
(m1)

®ωh #(ρ
"
ρ

#
)* (m(m#®1)T

R$

m[ρ
#
Ω#

#
(m1)

®ρ
"
Ω#

"
(m®1)]2mρ

"
Ω

"
Ω

#
(m®1)®ωh #(ρ

"
ρ

#
)*−" (6.27)

λ
#
¯ ((m#®1)T

R$

®[ρ
#
Ω#

#
(m1)®ρ

"
Ω#

"
(m®1)]2ρ

#
Ω

"
Ω

#
(m1)*

¬((m#®1)T

R$

[ρ
#
Ω#

#
(m1)®ρ

"
Ω#

"
(m®1)]2ρ

"
Ω

"
Ω

#
(m®1)*−". (6.28)

At H¯ η(m®1)}(m1), the transition curves will tend to infinity, giving a
singular case. In order to allow a description of stability in the critical case H

c
,

we may rewrite the Mathieu equation (6.4) for the special value H
c
. It is clear

that the singularity can be relaxed when Ω
"
¯Ω

#
¯Ω& 0. The coefficients ∆

and q then reduce to

∆
!
¯

m

ρ
"
ρ

#

((m#®1)T

R$

Ω#[ρ
#
(m1)ρ

"
(m®1)]* , (6.29)

q
!
¯

m#[µ
#
(m1)#µ

"
η#(m®1)#]

R#(ρ
"
ρ

#
) [(m1)®η(m®1)]#

. (6.30)

It is clear that the assumption that H1 1 leads to η1(m1)}(m®1). The
situation where H¯ 1 has been investigated in case A. Note that the presence
of the surface current density J

f
leads to the appearance of viscosity

contributions, as shown in (6.30), rather than the similar situation in case A.

6.3. Numerical estimation and conclusions

The stability condition (6.24) has been calculated for a system with fluid radius
R¯ 0±5 cm, field frequency ω4 ¯ 30 Hz, stratified viscosity η¯ 5, azimuthal
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wavenumber m¯ 2, and angular velocities Ω
"
¯ 10 s−" and Ω

#
¯ 8 s−". The fluid

densities and permeabilities were as in Fig. 7. The results of calculation are
displayed in Fig. 12. The stability diagram is given by a plot of the transition
curves according to (6.26). The surface current density J#

f
is plotted as a

function of the stratified magnetic field. In this stability diagram, two stable
regions S

"
and S

#
lie between three unstable (U) regions.

The first stable zone S
"
starts from the point H¯ 1. At the exact value H¯ 1,

the azimuthal stratified field plays a stabilizing role in the absence of J#
f
. A

destabilizing influence of the field appears in the neighbourhood of H¯ 1. This
stabilizing influence decreases as J#

f
increases. This shows the stabilizing

influence of the presence of J#
f

in the neighbourhood of H¯ 1. It can be
recognized that this stable zone corresponds to the stable zone S

!
appearing in

Figs 7–9 in the absence of the angular velocity Ω
j
. The two stable regions S

"
and

S
#
that appear in these figures have disappeared in Fig. 12 owing to the presence

of Ω
j
, which shows the destabilizing influence of Ω

j
.

The second stable region S
#

in Fig. 12 appears, in the absence of J#
f
, at the

values of H satisfying the following inequality:

λ
"
η(m®1)

m1
"H"

λ
#
η(m®1)

m1
, (6.31)

where the right-hand side corresponds to the case ∆¯ 0 while the left-hand side
corresponds to ω4 #¯∆. The calculation shows that this stable region occurs for
2±577662"H" 1±867992. An increase in J#

f
leads to an increase in the size of

this stable region, so that the stratified magnetic field is more strongly
stabilizing in the presence of J#

f
. In the absence of J#

f
, the stratified field plays

a destabilizing role for H"λ
"
η(m®1)}(m1). The presence of surface currents

has constrained this destabilizing role. In contrast with the stable region S
"
, the

stable region S
#

is dependent on the stratified viscosity η. An increase in the
viscosity parameter increases the size of this region and shifts it in the direction
of increasing H.

Inspection of the graph in Fig. 12 shows that there is a singularity for the
transition curves. A major instability arises when H¯H

c
, which lies between

the two stable regions S
"
and S

#
. In this graph, the critical value of the stratified

magnetic field is H
c
¯ 1±66667. The occurrence of this singularity is dependent

on the stratified viscosity η and the azimuthal wavenumber m, while it is
independent of both the angular velocity Ω

j
and the field frequency ω4 . Very

much larger values of the surface currents are required to suppress this unstable
case.

The stability behaviour at the exact critical value of the stratified magnetic
field is amplified in Fig. 13. The transition curves (6.26) are calculated using the
parameters ∆

!
and q

!
as defined by (6.29) and (6.30) respectively. The stability

diagram shows the variation of η versus J#
f
. The results of increasing m, Ω and

ω4 on the stability criteria are shown respectively in Figs 13(a), (b) and (c). The
system has fluid densities ρ

"
and ρ

#
and permeabilities µ

"
and µ

#
as in Fig. 12.

In Fig. 13(a), three different values of m (2, 3 and 5) are considered for fixed
ω4 ¯ 40 Hz and Ω¯ 1 s−". It is found that the maximum stability occurs when
m¯ 2 at η¯ 3, which corresponds to the value of H¯ 1. This is in agreement
with the fact that stability occurs for H¯ 1. As m is increased to 3, a very large
decrease occurs in the size of the stable zone, with a shift of the point
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Figure 13. For caption see facing page.

representing the maximum stability to η¯ 2. When m is increased to 5, a very
narrow stable zone is observed, and the maximum stability is at η¯ 1±5.
However, this graph shows that an increase in the azimuthal wavenumber m,
in the presence of both J#

f
and Ω, plays a destabilizing role. The same behaviour

was observed before in case A (see Fig. 2). The opposite role is observed for
increasing m in the absence of Ω (see Fig. 10).

In Fig. 13(b), we show the plots in the (J#
f
, η) plane for different values of the

angular velocity Ω (0, 5, 10, 15 and 20 s−"), with m¯ 2 held fixed, while the
other parameters are as in Fig. 13(a). It is clear from the graph that the width
of the stable zone is affected by an increase of Ω, while the value of η
corresponding to H¯ 1 is not affected by the variation of Ω. It is found that the
size of the stable zone decreases as Ω is increased. This shows that Ω plays a
destabilizing influence on the stability, which counteracts the stabilizing
influence of J#

f
.
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Figure 13. (a) A similar stability diagram to Fig. 12, for the variation of η versus J#
f
. The

transition curves (6.26) are calculated using the parameters ∆
!
and q

!
as defined by (6.29) and

(6.30) respectively. Three different values of m are considered, with fixed ω4 ¯ 40 Hz and
Ω¯ 1 s−". (b) As in (a), but for different values of the angular velocity Ω, with fixed m¯ 2.
(c) As in (a), but for three different values of the field frequency ωh , with fixed m¯ 2 and
Ω¯ 1 s−".

In Fig. 13(c), we repeat the plot of Fig. 13(a) for three different values of the
field frequency ω4 (30 Hz, 35 Hz and 40 Hz), with fixed m¯ 2 and Ω¯ 1 s−". It
can be seen that the stable zone that lies at η¯ 3 increases in width as ω4 is
increased. The same behaviour was observed before in case A, where ω4 acts
against the angular velocity.
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