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1. Introduction

The well-known Paley–Wiener–Schwartz theorem for the Fourier transform on Euclidean
space R

n characterizes the Fourier image of the space C∞
c (Rn) of compactly supported

smooth functions. The image is the space of entire functions ϕ ∈ O(Cn) with decay of
exponential type. The theorem has a counterpart, also well known and also called the
Paley–Wiener–Schwartz theorem, where smooth functions are replaced by distributions,
and where the exponential decay condition is replaced by a similar exponential condition
of slow growth (see [16, Theorem 7.3.1]). The theorem for smooth functions was gen-
eralized to the Fourier transform of a reductive symmetric space G/H in [9]. It is the
purpose of the present paper to establish an analogue of the theorem for distributions in
the same spirit and generality.

In the more restricted case of a Riemannian symmetric space G/K, where H = K

is compact, a Paley–Wiener theorem for K-invariant smooth functions was obtained by
work of Helgason and Gangolli [13,14], and for general smooth functions by Helgason
[15]. A counterpart for distributions was given by Eguchi, Hashizume and Okamoto
in [12]. A different proof of the latter result is given in [11].

Another important special case is that of a reductive Lie group, considered as a sym-
metric space. In this case the Paley–Wiener theorem of [9] specializes to a theorem
of Arthur [1], which describes the Fourier image of the space of compactly supported
K-finite smooth functions on G (K being a maximal compact subgroup). The theorem
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for distributions, which is obtained in the present paper, is new in this ‘group case’. The
specialization to the group case is described in [8], to which we refer for further details.

The Paley–Wiener theorem of [9] describes the Fourier image of the space of K-finite
compactly supported smooth functions by an exponential type condition, combined with
a set of so-called Arthur–Campoli conditions. In the present theorem the exponential
type condition is replaced by a condition of slow growth which is similar to its Euclidean
analogue, whereas the additional Arthur–Campoli conditions remain the same as in [9].
The precise statement of our main result is given in Theorem 4.6, and its proof is given
in §§ 5–13. The main tool in the proof is a Fourier inversion formula, through which a
function is determined from its Fourier transform by means of certain ‘residual’ operators.
Given a function ϕ in the conjectured image space, we construct the distribution f ,
which is the candidate for the inverse Fourier image, by means of this formula. The
proof that f has compact support and transforms to ϕ is carried out by regularization
with a Dirac sequence. The mentioned inversion formula is generalized to distributions in
Corollary 13.2, after the proof of Theorem 4.6. Finally, in §§ 14–15 we discuss the topology
on the image space by which the Fourier transform becomes a topological isomorphism.

For general background about harmonic analysis and Paley–Wiener theorems on reduc-
tive symmetric spaces we refer to the survey articles [2,19].

2. Notation

As in [9] we use the notation and basic assumptions from [3, §§ 2, 3, 5, 6] and [4, § 2].
Only the most essential notions will be recalled.

Let G be a real reductive Lie group of Harish-Chandra’s class, and let H be an open
subgroup of the group of fixed points for an involution σ. Then X = G/H is a reductive
symmetric space. Let K be a maximal compact subgroup of G, invariant under σ, and let
θ denote the corresponding Cartan involution. Let g denote the Lie algebra of G, which
decomposes in ±1 eigenspaces for σ and θ as g = h + q = k + p. Then h and k are the
Lie algebras of H and K. Let aq be a maximal abelian subspace of q ∩ p, and choose a
positive system Σ+ for the root system Σ of aq in g. This positive system determines a
parabolic subgroup P of G, which will be fixed throughout the paper. We also fix a finite-
dimensional unitary representation (τ, Vτ ) of K. The normalized Eisenstein integrals
associated with these choices are denoted by E◦(ψ : λ) : X → Vτ , where ψ ∈ ◦C and
λ ∈ a∗

qC
, as in [3, p. 283]. Here ◦C = ◦C(τ) is the finite-dimensional Hilbert space defined

in [3, equation (5.1)]. The Eisenstein integrals depend linearly on the parameter ψ in this
space, and as functions on X they belong to the space C∞(X : τ) of smooth Vτ -valued
functions on X which are τ -spherical, that is, which satisfy the transformation rule

f(kx) = τ(k)f(x), k ∈ K, x ∈ X. (2.1)

The adjoint of the linear map ψ �→ E◦(ψ : −λ̄ : x) is denoted by E∗(λ : x) (see [4,
equation (2.3)]), and the Fourier transform for the K-type τ on G/H is then defined by

Ff(λ) =
∫

X

E∗(λ : x)f(x) dx ∈ ◦C (2.2)
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for λ ∈ a∗
qC

and for f in the space C∞
c (X : τ) of compactly supported functions in

C∞(X : τ) (see [9, equation (2.1)]). Here dx is an invariant measure on G/H, normalized
as in [3, § 3].

The normalized Eisenstein integrals E◦(ψ : λ : x) depend meromorphically on the
parameter λ ∈ a∗

qC
, in a uniform way with respect to the parameters ψ and x. The

nature of this meromorphic dependence is crucial. It can be described as follows. By a
real Σ-configuration in a∗

qC
we mean a locally finite collection H of affine hyperplanes Y

in a∗
qC

of the form Y = {λ | 〈λ, αY 〉 = sY }, where αY ∈ Σ and sY ∈ R. Let d : H → N

be an arbitrary map. For ω ⊂ a∗
qC

we write

H(ω) = {Y ∈ H | Y ∩ ω �= ∅}

and, if the set H(ω) is finite,

πω,d(λ) =
∏

Y ∈H(ω)

(〈λ, αY 〉 − sY )d(Y ).

Let V be an arbitrary complete locally convex vector space. The linear space of mero-
morphic functions ϕ : a∗

qC
→ V , such that πω,dϕ is holomorphic on ω for all bounded open

sets ω ⊂ a∗
qC

, is denoted M(a∗
q,H, d, V ). It follows from [9, Lemma 2.1] and [4, Proposi-

tion 3.1] that there exist a real Σ-configuration H and a map d : H → N such that the
normalized Eisenstein integrals λ �→ E◦(ψ : λ) belong to M(a∗

q,H, d, C∞(X) ⊗ Vτ ) for
all ψ ∈ ◦C.

Clearly, the dualized Eisenstein integrals E∗(λ : x) have the same type of meromorphic
dependence on λ. We define H = H(X, τ) and d = dX,τ : H → N as in [9, § 2]. Then H
is a real Σ-configuration, and the map E∗ : λ �→ E∗(λ) satisfies

E∗ ∈ M(a∗
q,H, d, C∞(X) ⊗ V ∗

τ ⊗ ◦C). (2.3)

Moreover, H(X, τ) and dX,τ are minimal with respect to this property.

3. The Fourier transform of a distribution

The concept of ‘distributions’ used in this paper is that of generalized functions. By this
we mean the following. A generalized function on a smooth manifold X is a continuous
linear form on the space of compactly supported smooth densities on X. We denote
by C−∞(X) the space of generalized functions on X, and by C−∞

c (X) the subspace
of generalized functions with compact support. If a nowhere vanishing smooth density
dx is given on X, then the multiplication with dx induces linear isomorphisms of the
spaces C−∞(X) and C−∞

c (X) onto the topological linear duals of C∞
c (X) and C∞(X),

respectively. If f ∈ C−∞(X) and φ ∈ C∞
c (X), or if f ∈ C−∞

c (X) and φ ∈ C∞(X), then
we write, accordingly, ∫

X

φ(x)f(x) dx = f dx(φ). (3.1)

Let X = G/H, as in § 2, be equipped with the invariant measure dx. Then dx is a
nowhere vanishing smooth density. For f ∈ C−∞(X) the continuity of f dx, as a linear
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form on C∞
c (X), can be expressed as follows. Let X1, . . . , Xn be a linear basis for g, and

for α = (α1, . . . , αn) a multi-index let Xα = Xα1
1 · · ·Xαn

n ∈ U(g). Then for each compact
Ω ⊂ X there exist constants C, k such that∣∣∣∣

∫
X

φ(x)f(x) dx

∣∣∣∣ � C sup
|α|�k, x∈Ω

|LXαφ(x)| (3.2)

for all φ ∈ C∞(X) with support in Ω.
For each positive number M we denote by C−∞

M (X) the space of generalized functions
with support in the compact set K exp BMH. Here BM is the closed ball in aq centred
at 0 and of radius M . In view of the generalized Cartan decomposition G = KAqH we
have C−∞

c (X) =
⋃

M C−∞
M (X).

A generalized function on X with values in Vτ is called τ -spherical if it satisfies (2.1).
We denote by C−∞(X : τ) the space of τ -spherical generalized functions on X, and by
C−∞

c (X : τ) and C−∞
M (X : τ) the subspaces of τ -spherical distributions with compact

support, respectively with support in K exp BMH.
If f ∈ C−∞(X : τ) and φ ∈ C∞

c (X)⊗V ∗
τ , or if f ∈ C−∞

c (X : τ) and φ ∈ C∞(X)⊗V ∗
τ ,

then equation (3.1) still has a natural interpretation. Via this pairing (3.1) we have thus
established linear isomorphisms of C−∞(X : τ) and C−∞

c (X : τ) with the topological
linear duals of C∞

c (X : τ∗) and C∞(X : τ∗), respectively.
Having established (3.1) in this generality we can define the Fourier transform Ff(λ)

for f ∈ C−∞
c (X : τ) and λ ∈ a∗

qC
by the very same formula (2.2) by which it was defined

for f ∈ C∞
c (X : τ). The Fourier transform Ff(λ) is a ◦C-valued meromorphic function

of λ, and it follows from (2.3) that

Ff ∈ M(a∗
q,H(X, τ), dX,τ , ◦C).

4. The distributional Paley–Wiener space

Recall the following definitions from [9].

Definition 4.1. Let H be a real Σ-configuration in a∗
qC

, and let d ∈ N
H. By P(a∗

q,H, d)
we denote the linear space of functions ϕ ∈ M(a∗

q,H, d) with polynomial decay in the
imaginary directions, that is

νω,n(ϕ) := sup
λ∈ω+ia∗

q

(1 + |λ|)n‖πω,d(λ)ϕ(λ)‖ < ∞ (4.1)

for all compact ω ⊂ a∗
q and all n ∈ N. The union of these spaces over all d : H → N is

denoted P(a∗
q,H).

The space P(a∗
q,H, d) is a Fréchet space with the topology defined by means of the

seminorms νω,n in (4.1).

We recall the following result from [9, Lemma 3.7].

Lemma 4.2. The Fourier transform is continuous:

F : C∞
c (X : τ) → P(a∗

q,H(X, τ), dX,τ ) ⊗ ◦C.
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For R ∈ R we define ā∗
q(P, R) = {λ ∈ a∗

qC
| ∀α ∈ Σ+ : Re〈λ, α〉 < R}.

Definition 4.3. Let H = H(X, τ) and d = dX,τ . Let π = πā∗
q(P,0),d. For each M > 0 we

define PWM (X : τ) as the space of functions ϕ ∈ P(a∗
q,H, d) ⊗ ◦C for which

(i) Lϕ = 0 for all L ∈ ACR(X : τ),

(ii) supλ∈ā∗
q(P,0)(1 + |λ|)ne−M |Re λ|‖π(λ)ϕ(λ)‖ < ∞ for each n ∈ N

(see [9, Definition 3.1] for the definition of ACR(X : τ)). Furthermore, the Paley–Wiener
space PW(X : τ) is defined as

PW(X : τ) =
⋃

M>0

PWM (X : τ).

The main result of [9], Theorem 3.6, asserts that the Fourier transform is a linear
isomorphism of C∞

M (X : τ) onto PWM (X : τ) for each M > 0, and hence also of
C∞

c (X : τ) onto PW(X : τ).
We now introduce the following definitions. If Ω is a topological space, we denote

by C(Ω) the collection of compact subsets ω ⊂ Ω, and by N (Ω) the set of maps
n : C(Ω) → N.

Definition 4.4. Let H be a real Σ-configuration in a∗
qC

, and let d ∈ N
H, n ∈ N (a∗

q).
By P∗(a∗

q,H, d, n) we denote the linear space of functions ϕ ∈ M(a∗
q,H, d) with at most

polynomial growth of order n in the imaginary directions, that is

ν∗
ω,n(ϕ) := sup

λ∈ω+ia∗
q

(1 + |λ|)−n(ω)‖πω,d(λ)ϕ(λ)‖ < ∞ (4.2)

for all ω ∈ C(a∗
q). The union

⋃
n P∗(a∗

q,H, d, n) is denoted by P∗(a∗
q,H, d), and the union⋃

d P∗(a∗
q,H, d) is denoted by P∗(a∗

q,H).
The space P∗(a∗

q,H, d, n) is a locally convex topological vector space with the topology
defined by means of the seminorms ν∗

ω,n in (4.2). This topological vector space is discussed
further in § 15, where it is shown to be Fréchet under a natural condition on the map n.
However, this property is not needed at present.

Definition 4.5. Let H = H(X, τ) and d = dX,τ . For each M > 0 we define PW∗
M (X : τ)

as the space of functions ϕ ∈ P∗(a∗
q,H, d) ⊗ ◦C for which

(i) Lϕ = 0 for all L ∈ ACR(X : τ),

(ii) supλ∈ā∗
q(P,0)(1 + |λ|)−ne−M |Re λ|‖π(λ)ϕ(λ)‖ < ∞ for some n ∈ N.

The Paley–Wiener space PW∗(X : τ) is then defined by

PW∗(X : τ) =
⋃

M>0

PW∗
M (X : τ).

It is clear that PWM (X : τ) ⊂ PW∗
M (X : τ) for all M > 0 and that PW(X : τ) ⊂

PW∗(X : τ).
We can now state our main theorem.
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Theorem 4.6. The Fourier transform F is a linear isomorphism of C−∞
M (X : τ) onto

the Paley–Wiener space PW∗
M (X : τ) for each M > 0, and hence also of C−∞

c (X : τ)
onto PW∗(X : τ).

The proof will be given in the course of the following §§ 5–13.

5. An estimate

Let a real Σ-configuration H in a∗
qC

and a map d : H → N be given. Let ΠΣ(a∗
q) denote

the set of polynomials on a∗
qC

which are products of functions of the form λ �→ 〈α, λ〉 − s

with α ∈ Σ and s ∈ C. Let V be a finite-dimensional normed vector space.

Lemma 5.1. Let ω0 ⊂ ω1 ⊂ a∗
q, and assume that H(ω1) is finite. Assume also that for

some δ > 0 the open set
ω = {λ + µ | λ ∈ ω0, |µ| < δ},

is contained in ω1 and satisfies H(ω) = H(ω0) (for example, this condition is fulfilled if
ω0 is compact and contained in the interior of ω1).

Let p ∈ ΠΣ(a∗
q), n ∈ Z and M � 0 be given. There exists a constant C > 0 such that

sup
ω0+ia∗

q

(1 + |λ|)ne−M |Re(λ)|‖πω0,d(λ)ϕ(λ)‖

� C sup
ω1+ia∗

q

(1 + |λ|)ne−M |Re(λ)|‖πω1,d(λ)p(λ)ϕ(λ)‖ (5.1)

for all ϕ ∈ M(a∗
q,H, d, V ).

Proof. We first prove the result under the assumption that d = 0 on H(ω1). Then
πω0,d = πω1,d = 1 and every function from M(a∗

q,H, d, V ) is holomorphic on the open set
ω + ia∗

q.
It suffices to prove the estimate for p(λ) = 〈α, λ〉−s, with α ∈ Σ and s ∈ C. We choose

a number δ < 1 with the properties mentioned above, and fix µ ∈ a∗
q such that |µ| < δ

and c := 〈α, µ〉 > 0. Then for every λ ∈ ω0 + ia∗
q and 0 < r � 1, we have, by Cauchy’s

integral formula,

ϕ(λ) =
1

2πi

∫
|z|=r

ϕ(λ + zµ)
z

dz =
1

2πi

∫
|z|=r

p(λ + zµ)ϕ(λ + zµ)
(p(λ) + cz)z

dz.

If |p(λ)| > 2c/3, we fix r = 1/3, and if |p(λ)| � 2c/3, we fix r = 1. In all cases we have
|p(λ)+cz| � c/3 for |z| = r. Using the above integral formula we thus obtain the estimate

(1 + |λ|)n‖ϕ(λ)‖ � 3
c
(1 + |λ|)n sup

|z|=r

‖[pϕ](λ + zµ)‖.

We now observe that, for all λ ∈ a∗
qC

and z ∈ C, |z| � 1,

(1 − δ)(1 + |λ|) � 1 + |λ| − δ � 1 + |λ + zµ|
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and hence

(1 + |λ|)n‖ϕ(λ)‖ � 3
c(1 − δ)n

sup
|z|=r

(1 + |λ + zµ|)n‖[pϕ](λ + zµ)‖.

Since |Re(λ + zµ)| � |Re λ| + δ for all z with |z| = r we further obtain

(1 + |λ|)ne−M |Re(λ)|‖ϕ(λ)‖ � 3eMδ

c(1 − δ)n
sup
|z|=r

(1 + |λ + zµ|)ne−M |Re(λ+zµ)|‖[pϕ](λ + zµ)‖.

Now (5.1) follows, and we can proceed to the general case.
From ω0 ⊂ ω1 it follows that πω1,d = qπω0,d with q ∈ ΠΣ(a∗

q). Define d′ : H → N by
d′ = d on H \ H(ω0) and d′ = 0 on H(ω0). By application of the first part of the proof,
with pq, ω and d′ in place of p, ω1 and d, there exists a constant C > 0 such that for
every function ψ ∈ M(a∗

q,H, d′, V ), we have

sup
ω0+ia∗

q

(1 + |λ|)ne−M |Re(λ)|‖ψ(λ)‖ � C sup
ω+ia∗

q

(1 + |λ|)ne−M |Re(λ)|‖q(λ)p(λ)ψ(λ)‖. (5.2)

Let now ϕ ∈ M(a∗
q,H, d, V ). Then ψ = πω0,dϕ belongs to M(a∗

q,H, d′, V ), so that (5.2)
holds. This estimate remains valid if the supremum in the right-hand side is taken over
the bigger set ω1 + ia∗

q. Since πω1,d = qπω0,d, the required estimate (5.1) follows. �

6. The Fourier transform maps into PW∗(X : τ )

We have already seen that Ff ∈ M(a∗
q,H(X, τ), dX,τ ) ⊗ ◦C for f ∈ C−∞

c (X : τ). In
order to show that ϕ = Ff belongs to the Paley–Wiener space we must verify both the
estimate (4.2) for some n ∈ N (a∗

q), and the conditions (i) and (ii) of Definition 4.5.
Let f ∈ C−∞

M (X : τ). The following estimate for Ff , from which both (4.2) and (ii)
follow easily by application of Lemma 5.1, will now be established. Let R ∈ R, then there
exists a polynomial p ∈ ΠΣ(a∗

q) and a constant n ∈ N such that

sup
λ∈ā∗

q(P,R)
(1 + |λ|)−ne−M |Re λ|‖p(λ)Ff(λ)‖ < ∞. (6.1)

The verification of (6.1) is based on the following estimate for the Eisenstein integral
(see [4, Lemma 4.3]). There exists a polynomial p ∈ ΠΣ(a∗

q) and for each u ∈ U(g) a
constant n ∈ N such that

sup
x∈XM ,λ∈ā∗

q(P,R)
(1 + |λ|)−ne−M |Re λ|‖p(λ)E∗(λ : u; x)‖ < ∞ (6.2)

for all M > 0.
Let τX : X → R be the map defined by τX(kaH) = ‖log a‖ for k ∈ K, a ∈ Aq.

It is easily seen that τX(k exp Y H) = ‖Y ‖ for k ∈ K, Y ∈ p ∩ q, hence it follows
from [18, Proposition 7.1.2] that τX is smooth on the open subset of X where τX > 0.
For x ∈ X we have x ∈ XM if and only if τX(x) � M .
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Let h ∈ C∞(R) be an arbitrary smooth function satisfying h(s) = 1 for s � 1
2 and

h(s) = 0 for s � 1. Then the function

ϕλ(x) = h(|λ|(τX(x) − M))p(λ)E∗(λ : x)

is smooth and coincides with p(λ)E∗(λ : x) in a neighbourhood of XM . Hence

p(λ)Ff(λ) =
∫

X

ϕλ(x)f(x) dx, (6.3)

and hence by (3.2)
‖p(λ)Ff(λ)‖ � C sup

|α|�k, x∈X

‖LXαϕλ(x)‖

with constants C and k independent of λ. It follows from the Leibniz rule that

‖LXαϕλ(x)‖

is bounded by a constant times the product of

sup
|β|�k

|h(|λ|(τX(Xβ ; x) − M))|

and
sup

|β|�k

‖p(λ)E∗(λ : Xβ ; x)‖.

The former factor is bounded by a constant times (1 + |λ|)k and it vanishes outside
XM+|λ|−1 . By (6.2) the second factor is estimated on this set by a constant times

(1 + |λ|)ne(M+|λ|−1)|Re λ| � (1 + |λ|)ne1+M |Re λ|

so that the desired estimate (6.1) follows.
It remains to be established that LFf = 0 for L ∈ ACR(X : τ). Recall that E∗(λ : ·)

is meromorphic in λ with values in C∞(X : τ∗) ⊗ ◦C, and that by definition an element
L ∈ M(a∗

qC
, Σ)∗

laur ⊗ ◦C∗ with real support belongs to ACR(X : τ) if and only if it
annihilates λ �→ E∗(λ : ·). The Fourier transform Ff(λ) ∈ ◦C is obtained by applying
the linear form f dx ∈ C∞(X : τ∗)′ to E∗(λ : ·) ∈ C∞(X : τ∗) ⊗ ◦C. We claim that the
applications of L and f dx commute, so that

LFf = L(f dx(E∗(· : ·))) = f dx(LE∗(· : ·)) = 0.

This claim is easily verified with the lemma below.

Lemma 6.1. Let L ∈ M(a∗
qC

, Σ)∗
laur be a Σ-Laurent functional on a∗

qC
, and let ϕ ∈

M(a∗
qC

, Σ, V ), where V is a complete locally convex space. For each continuous linear
form ξ on V , the function ξ ◦ ϕ belongs to M(a∗

qC
, Σ) and the following identity holds

L(ξ ◦ ϕ) = ξ(Lϕ).

Proof. We refer to [6, § 10] for notation. We may assume that L is supported in a
single point a ∈ a∗

qC
. If ψ ∈ Oa(a∗

qC
, V ) then ξ ◦ ψ ∈ Oa(a∗

qC
) and u(ξ ◦ ψ) = ξ(uψ)

for u ∈ S(a∗
qC

). The proof is now straightforward from [6, Definition 10.1] (see also
Remark 10.2 therein). �
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7. Distributional wave packets

Recall that if ϕ : ia∗
q → ◦C is continuous and satisfies the estimate

sup
λ∈ia∗

q

(1 + |λ|)n‖ϕ(λ)‖ < ∞ (7.1)

for each n ∈ N, then we define the wave packet J ϕ ∈ C∞(X : τ) by

J ϕ(x) =
∫

ia∗
q

E◦(ϕ(λ) : λ : x) dλ. (7.2)

The wave packet is related to the Fourier transform by

〈J ϕ, g〉 = 〈ϕ, Fg〉

for all g ∈ C∞
c (X : τ), that is,

∫
X

〈J ϕ(x), g(x)〉 dx =
∫

ia∗
q

〈ϕ(λ),Fg(λ)〉 dλ. (7.3)

The brackets in the latter equation refer to the sesquilinear inner products on the finite-
dimensional Hilbert spaces Vτ and ◦C, respectively.

The transform J can be extended as follows to all continuous functions ϕ : ia∗
q → ◦C

satisfying an estimate
sup

λ∈ia∗
q

(1 + |λ|)−n‖ϕ(λ)‖ < ∞, (7.4)

for some n ∈ N. For such a function ϕ we define the distributional wave packet J ϕ ∈
C−∞(X : τ) by requiring (7.3) for all g ∈ C∞

c (X : τ). It follows from the estimate (7.4)
together with Lemma 4.2, that the integral on the right-hand side of (7.3) is well defined
and depends continuously on g, so that an element in C−∞(X : τ) is defined by this
equation.

In particular, since for each ϕ ∈ PW∗(X : τ) the restriction ϕ|ia∗
q

is well defined and
satisfies (7.4) for some n, we thus have a well defined linear map

J : PW∗(X : τ) → C−∞(X : τ).

8. The Fourier transform is injective

The injectivity is established in the following theorem.

Theorem 8.1. There exists an invariant differential operator D ∈ D(G/H) which is
formally self-adjoint, injective as an operator C−∞

c (X) → C−∞
c (X) and which satisfies

DJ Ff = J FDf = Df (8.1)

for all f ∈ C−∞
c (X : τ).

In particular, the Fourier transform F : C−∞
c (X : τ) → PW∗(X : τ) is injective.
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The proof will be given after the following lemma.

Lemma 8.2. Let ϕ : ia∗
q → ◦C be a continuous function satisfying (7.1) for all n ∈ N.

Then ∫
X

〈f(x),J ϕ(x)〉 dx =
∫

ia∗
q

〈Ff(λ), ϕ(λ)〉 dλ (8.2)

for all f ∈ C−∞
c (X : τ).

Proof. By taking adjoints in the estimate (6.2) a similar estimate is derived for the
Eisenstein integral E◦(λ : x) and its derivatives with respect to x. It follows that the
definition (7.2) of J ϕ allows an interpretation as an integral over ia∗

q with values in
the Fréchet space C∞(X : τ). In the left-hand side of (8.2) we apply f dx to J ϕ. By
continuity we may then take f dx inside the integral over ia∗

q and obtain

∫
X

〈f(x),J ϕ(x)〉 dx =
∫

ia∗
q

∫
X

〈f(x), E◦(ϕ(λ) : λ : x)〉 dxdλ,

which, by definition of E∗(λ : x), exactly equals the right-hand side of (8.2). �

Proof of Theorem 8.1. It follows from [3, Theorem 14.1, Proposition 15.2, Lemma
15.3] that there exists an invariant differential operator D ∈ D(G/H) which is formally
self-adjoint, injective as an operator C∞

c (X) → C∞
c (X) and which satisfies (8.1) for all

f ∈ C∞
c (X : τ). Since D = D∗, one obtains (8.1) for f ∈ C−∞

c (X : τ) by transposition
using (7.3) and (8.2). Finally, it follows from Lemma 8.3 below that D is injective on the
space of generalized functions as well. The injectivity of F is an immediate consequence
of (8.1) and the injectivity of D. �

Lemma 8.3. Let D ∈ D(G/H). If D is injective C∞
c (X) → C∞

c (X) then D is injective
C−∞

c (X) → C−∞
c (X).

Proof. Recall that for φ ∈ C∞
c (G) and f ∈ C−∞(X) we define L(φ)f ∈ C∞(X) by

L(φ)f(x) =
∫

G

φ(g)f(g−1x) dg.

The integral can be interpreted as a C−∞(X)-valued integral in the variable x, or it can
be defined as the transpose of the operator L(φ∨) : C∞

c (X) → C∞
c (X). In any case,

L(φ)f is a smooth function on G and it is compactly supported when f has compact
support. Furthermore, L(φ) commutes with every invariant differential operator D.

Let φj ∈ C∞
c (G), j ∈ N, be an approximative unit, then it is well known that L(φj)f

converges weakly (in fact, also strongly) to f , for each f ∈ C−∞(X).
After these preparations the proof of the lemma is simple. If f ∈ C−∞

c (X) and Df = 0
then D(L(φj)f) = L(φj)Df = 0 and hence L(φj)f = 0 for all j. Hence f = 0. �
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9. Generalized Eisenstein integrals and Fourier transforms

Let F ⊂ ∆, where ∆ is the set of simple roots for Σ+. We will use the notation
of [9, § 5] and [7, § 9]. In particular, AF denotes the finite-dimensional Hilbert space and
E◦

F (ν : x) ∈ Hom(AF , Vτ ) denotes the generalized Eisenstein integral defined in equa-
tions (5.5), (5.6) of [9], for ν ∈ a∗

FqC
and x ∈ X. The generalized Eisenstein inte-

gral is a meromorphic Hom(AF , Vτ )-valued function of ν, with singularities along a real
Σr(F )-configuration of hyperplanes in a∗

FqC
(see [7, Lemma 9.8]). Here Σr(F ) is the set

of all non-zero restrictions to aFq of elements in Σ. For F = ∅ the generalized Eisenstein
integral E◦

F (ν : x) is identical with the normalized Eisenstein integral E◦(λ : x).
The corresponding generalized Fourier transform is defined by

FF f(ν) =
∫

X

E∗
F (ν : x)f(x) dx ∈ AF

for ν ∈ a∗
FqC

, f ∈ C∞
c (X : τ), where E∗

F (ν : x) = E◦
F (−ν̄ : x)∗ ∈ Hom(Vτ ,AF ). The

generalized Fourier transform is a meromorphic AF -valued function of ν,
It is a remarkable property of the generalized Eisenstein integral E◦

F (ν : x) that it
can be obtained from the ordinary Eisenstein integral E◦(λ : x) by applying a suitable
operator in the variable λ. More precisely, we have the following result.

Lemma 9.1. There exists a Laurent functional L ∈ M(a∗⊥
FqC

, ΣF )∗
laur ⊗ Hom(AF , ◦C)

with real support, such that

E◦
F (ν : x) = L[E◦(ν + · : x)]

for ν ∈ a∗
FqC

.

Proof. This follows immediately from [7, Lemma 9.7] with ψ in a basis for the finite-
dimensional space AF . �

By taking adjoints it follows from Lemma 9.1 that there exists a Laurent functional
LF ∈ M(a∗⊥

FqC
, ΣF )∗

laur ⊗ Hom(◦C,AF ) with real support such that

E∗
F (ν : x) = LF [E∗(ν + · : x)].

Let such a Laurent functional, denoted by LF , be fixed in the sequel. It follows immedi-
ately that

FF f(ν) = LF [Ff(ν + ·)]. (9.1)

In order to study the consequences of (9.1) for the generalized Fourier transform, we need
the following result.

Lemma 9.2. Let H be a real Σ-configuration in a∗
qC

, and let F ⊂ ∆ be given. Let
L ∈ M(a∗⊥

FqC
, ΣF )∗

laur have real support. There exists a real Σr(F )-configuration HF in
a∗

FqC
and for every map d : H → N a map d′ : HF → N such that the following two

conditions hold.
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(a) The operator L∗ defined by L∗ψ(ν) = L[ψ(ν + ·)] for ν ∈ a∗
FqC

maps M(a∗
q,H, d)

continuously into M(a∗
Fq,HF , d′).

(b) The operator L∗ restricts to a continuous linear map P(a∗
q,H, d) → P(a∗

Fq,HF , d′),
where P(a∗

q,H, d) and P(a∗
Fq,HF , d′) are defined in Definition 4.1.

Proof. Let HF and d′ be as in [6, Corollary 11.6 (b)]. Then L∗ maps M(a∗
q,H, d) con-

tinuously into M(a∗
Fq,HF , d′). The assertion (b) is given in [9, Lemma 6.1 (v)], with a

proof following [5, Lemmas 1.10, 1.11]. �

We fix a Σr(F )-hyperplane configuration H(X, τ, F ) as HF in Lemma 9.2, where we
take H = H(X, τ) and L = LF . In addition, we fix a map dX,τ,F : H(X, τ, F ) → N as d′,
where we take d = dX,τ . It follows from (a) that

E∗
F (ν : x) ∈ M(a∗

Fq,H(X, τ, F ), dX,τ,F ) ⊗ Hom(Vτ ,AF ).

Furthermore, the following result is obtained from (b), (9.1) and Lemma 4.2.

Lemma 9.3. The generalized Fourier transform is continuous:

FF : C∞
c (X : τ) → P(a∗

Fq,H(X, τ, F ), dX,τ,F ) ⊗ AF .

10. Generalized wave packets and Fourier inversion

Let HF = H(X, τ, F ). For ϕ ∈ P(a∗
Fq,HF ) ⊗ AF we introduce the generalized wave

packet

JF ϕ(x) =
∫

εF +ia∗
Fq

E◦
F (ν : x)ϕ(ν) dµa∗

Fq
(ν), (10.1)

where the element εF ∈ a
∗+
Fq and the measure dµa∗

Fq
on εF +ia∗

Fq are as defined in [4, p. 42].
The definition is justified by the following estimate, for which we refer to [4, Lemma 10.8].
Let ω ⊂ a∗

Fq be compact. There exists a polynomial on a∗
Fq, p ∈ Π(aFq), for each u ∈ U(g)

a number n ∈ N, and for each x a constant C, locally uniform in x, such that

‖p(ν)E◦
F (ν : u; x)‖ � C(1 + |ν|)n (10.2)

for all ν ∈ ω + ia∗
Fq (see also [7, Proposition 18.10], where a stronger result is given). It

follows that for εF ∈ a
∗+
Fq sufficiently close to 0, the integral (10.1) is independent of εF

and converges locally uniformly in x. Moreover, the resulting function JF ϕ belongs to
C∞(X : τ).

The Fourier inversion formula of [4] now takes the form

f(x) =
∑
F⊂∆

cF

∫
εF +ia∗

Fq

E◦
F (ν : x)LF [Ff(ν + ·)] dµa∗

Fq
(ν) =

∑
F⊂∆

cF JF (LF∗Ff)(x)

(10.3)
for f ∈ C∞

c (X : τ) (see [9, Theorem 8.3]), where the asterisk on LF as in Lemma 9.2
indicates that it acts by

LF∗ϕ(ν) = LF [ϕ(ν + ·)]
for ϕ ∈ M(a∗

q,H). The cF are explicitly given constants. The explicit expression cF =
|W |t(a+

Fq) is not relevant for the proof of Theorem 4.6.
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11. Generalized distribution wave packets

We shall see later that the inversion formula (10.3) is valid also for distributions. For this
purpose we need to extend the generalized wave packet map JF : P(a∗

Fq,HF ) ⊗ AF →
C∞(X : τ) to a map P∗(a∗

Fq,HF ) ⊗ AF → C−∞(X : τ). Here P∗(a∗
Fq,HF ) is defined as

P∗(a∗
q,H) in Definition 4.4, but with a∗

Fq in place of a∗
q and HF = H(X, τ, F ) in place

of H.
In analogy with the definition of the distributional wave packet J ϕ given in § 7, we

use an adjoint relation with FF . For this purpose we introduce the sesquilinear pairing

P(a∗
Fq,HF ) × P∗(a∗

Fq,HF ) → C

given by

〈ϕ, ψ〉ε =
∫

εF +ia∗
Fq

〈ϕ(λ), ψ(−λ̄)〉 dµa∗
Fq

(λ) (11.1)

for εF ∈ a
∗+
Fq sufficiently close to zero. The pairing 〈· , ·〉 inside the integral is the standard

sesquilinear pairing C × C → C. The condition on εF guarantees that the domain of
integration is disjoint from the singular locus of the integrand; moreover, by Cauchy’s
theorem the integral is independent of the precise location of εF .

For d : HF → N and n ∈ N (a∗
Fq) the spaces P(aFq,HF , d) and P∗(aFq,HF , d, n) are

defined and topologized as in § 4. The following lemma is obvious from these definitions.

Lemma 11.1. For each pair d1, d2 : HF → N and every n ∈ N (a∗
Fq), the pairing (11.1)

restricts to a continuous sesquilinear pairing of P(aFq,HF , d1) and P∗(aFq,HF , d2, n).

The pairing (11.1) is extended to AF -valued functions on a∗
FqC

in the obvious fashion.
It is then easily seen by Fubini’s theorem and (10.2) that

〈JF ϕ, f〉 = 〈ϕ, FF f〉ε (11.2)

for ϕ ∈ P(a∗
Fq,HF ) ⊗ AF , f ∈ C∞

c (X : τ).
The generalized distribution wave packet JF ϕ ∈ C−∞(X : τ) is defined for functions

ϕ ∈ P∗(a∗
Fq,HF ) ⊗ AF by (11.2) for all f ∈ C∞

c (X : τ). The definition is justified by
Lemmas 9.3 and 11.1.

The following lemma is immediate from the definition.

Lemma 11.2. Let HF = H(X, τ, F ). Let d : HF → N and n ∈ N (a∗
Fq), be arbitrary.

The distributional generalized wave packet map

JF : P∗(a∗
Fq,HF , d, n) ⊗ AF → C−∞(X : τ)

is continuous, when P∗(a∗
Fq,HF , d, n) is equipped with the weak topology with respect

to the pairing (11.1), and C−∞(X : τ) is equipped with the dual topology.

It follows from Lemma 11.1 that the map is continuous also for the original topology
on P∗(a∗

Fq,HF , d, n) and the weak dual topology on C−∞(X : τ). We shall see later
(in Lemma 14.2) that it is continuous for the original topology on P∗(a∗

Fq,HF , d, n) and
the strong dual topology on C−∞(X : τ). However, this is not needed for the proof of
Theorem 4.6.
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12. Multiplication operators on the Paley–Wiener space

The main result of this subsection, Proposition 12.1, was announced jointly with Flensted-
Jensen in the survey paper [10] (see Proposition 18 therein). However, the present proof
is independent of the preceding results of that paper.

Let b be a Cartan subspace of q containing aq. Then b = bk ⊕ aq with bk = b ∩ k. Let
W (b) be the Weyl group of the restricted root system of bC in gC. Let bd denote the real
form ibk ⊕ aq of bC.

Let O(b∗
C
)W (b) denote the space of W (b)-invariant entire functions on b∗

C
, and for r > 0

let PWr(bd)W (b) denote the subspace of functions which are also rapidly decreasing of
exponential type r, that is,

sup
λ∈b∗

C

(1 + |λ|)ne−r|Re λ||ψ(λ)| < ∞

for all n ∈ N. The real part Reλ is taken with respect to the decomposition bC = bd+ibd.
Let PW(bd)W (b) denote the union over r of all the spaces PWr(bd)W (b).

Given ψ ∈ O(b∗
C
)W (b) we define a multiplication operator M(ψ) on M(a∗

qC
, ◦C) as

follows. Recall the orthogonal decomposition

◦C =
⊕
Λ∈L

◦C[Λ] (12.1)

(see [3, equation (5.14)]), where L ⊂ ib∗
k is a finite set depending on τ . We define, for

each λ ∈ a∗
qC

, an endomorphism M(ψ, λ) of ◦C by M(ψ, λ)η = ψ(λ + Λ)η for η ∈ ◦C[Λ],
and we define for each ϕ ∈ M(a∗

qC
, ◦C) a function M(ψ)ϕ ∈ M(a∗

qC
, ◦C) by

M(ψ)ϕ(λ) = M(ψ, λ)ϕ(λ)

for all λ ∈ a∗
qC

.
The motivation behind this definition is as follows. If ψ belongs to PWr(bd)W (b) then

the operator M(ψ) on M(a∗
qC

, ◦C) corresponds, via the Fourier transform F , to a linear
operator Mψ on C∞

c (X : τ), a so-called multiplier, so that

F(Mψf) = M(ψ)Ff

for all f ∈ C∞
c (X : τ). The existence of the multiplier Mψ is given a relatively elementary

proof in [10] without reference to the Paley–Wiener theorem for C∞
c (X : τ), which

was only a conjecture when that paper was written. However, with the Paley–Wiener
theorem for C∞

c (X : τ) available from [9], the existence of the multiplier is an immediate
consequence of Proposition 12.1 below.

Let D ∈ D(G/H). It follows from [3, Lemma 6.2] that

F(Df)(λ) = µ(D, λ)Ff(λ).

By the definition of the decomposition (12.1), the endomorphism µ(D, λ) of ◦C acts on
◦C[Λ] as multiplication with γ(D, λ + Λ) where

γ : D(G/H) → P (b∗
C)W (b)
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is the Harish-Chandra isomorphism. Hence

F(Df) = M(γ(D))Ff (12.2)

for f ∈ C∞
c (X : τ).

Proposition 12.1. Let ψ ∈ PW(bd)W (b). The multiplication operator M(ψ) maps the
space PW∗(X : τ) into PW(X : τ). More precisely, if r, R > 0 and ψ ∈ PWr(bd)W (b),
then M(ψ) maps PW∗

R(X : τ) into PWR+r(X : τ).

Proof. The idea of the proof is taken from [1, p. 87]. Let ψ ∈ PWr(bd)W (b), then since
L is finite there exists, for each n ∈ N a constant C > 0 such that

|ψ(λ + Λ)| � C(1 + |λ|)−ner|Re λ|

for all λ ∈ a∗
qC

and Λ ∈ L. It is now easily seen that the estimates (4.1) and (ii) in
Definition 4.3 of PWR+r(X : τ) are satisfied by M(ψ)ϕ for ϕ ∈ PW∗

R(X : τ). Only the
annihilation by ACR(X : τ) in Definition 4.3 (i) remains to be verified.

Let ϕ ∈ M(a∗
qC

, Σ, ◦C) be a function annihilated by all L ∈ ACR(X : τ), and let
ψ ∈ O(b∗

C
)W (b). We claim that then M(ψ)ϕ is also annihilated by all L ∈ ACR(X : τ).

Let L ∈ ACR(X : τ) and assume first that ψ is a polynomial. Then there exists
an invariant differential operator D ∈ D(G/H) such that ψ = γ(D). It follows from
(12.2) that L(M(ψ)Ff) = L(F(Df)) = 0 for all f ∈ C∞

c (X : τ). By [6, p. 674], there
exists a Laurent functional L′ ∈ M(a∗

qC
, Σ)∗

laur ⊗ ◦C∗ such that L(M(ψ)φ) = L′φ for
all φ ∈ M(a∗

qC
, Σ, ◦C). Moreover, suppL′ ⊂ suppL. Hence L′ ∈ ACR(X : τ) by [9,

Lemma 3.8], and we conclude that L(M(ψ)ϕ) = L′ϕ = 0.
Consider now the case of a general function ψ ∈ O(b∗

C
)W (b). We expand ψ in its Taylor

series around 0, and denote by ψk the sum of the terms up to degree k. Then ψk → ψ,
uniformly on compact sets, from which it follows that L(M(ψk)ϕ) → L(M(ψ)ϕ). Each
ψk is a W (b)-invariant polynomial, hence L(M(ψk)ϕ) = 0. It follows that L(M(ψ)ϕ) = 0.

�

13. The Fourier transform is surjective

Let ϕ ∈ PW∗
M (X : τ) be given. Inspired by equation (10.3) we define

f =
∑
F⊂∆

cF JF (LF∗ϕ) ∈ C−∞(X : τ), (13.1)

where LF is chosen as in § 9 (see (9.1)). For (13.1) to make sense we need that LF∗ϕ

belongs to the space P∗(a∗
Fq,HF ) ⊗ AF on which JF was defined (see (11.2)). This is

secured by the following lemma.

Lemma 13.1. Let H, L, HF , d and d′ be as in Lemma 9.2. For every n ∈ N (a∗
q) there

exists n′ ∈ N (a∗
Fq) such that the operator L∗ restricts to a continuous linear map

P∗(a∗
q,H, d, n) → P∗(a∗

Fq,HF , d′, n′).
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Proof. The proof is similar to the proof of Lemma 9.2 (b). �

It follows that (13.1) defines a distribution f ∈ C−∞(X : τ). We claim that f ∈
C−∞

M (X : τ) and Ff = ϕ.
Let ψj ∈ PW(bd)W

rj
be a sequence of functions such that rj → 0 for j → ∞, such

that ψj is uniformly bounded on each set of the form ω + ibd∗ with ω ⊂ bd∗ compact,
and such that ψj → 1, locally uniformly on a∗

qC
. Such a sequence can be constructed by

application of the Euclidean Fourier transform to a smooth approximation of the Dirac
measure on bd. In particular, for each Λ ∈ L, the sequence of functions ψj(· + Λ) is
uniformly bounded on each set ω + ibd∗ as above, and converges to 1, locally uniformly
on a∗

qC
.

Consider the functions ϕj := M(ψj)ϕ. It follows from Proposition 12.1 that
ϕj ∈ PWM+rj (X : τ). Hence, by the Paley–Wiener theorem of [9] there exists a unique
function fj ∈ C∞

c (X : τ), with support in XM+rj
, such that Ffj = M(ψj)ϕ.

Let d, n be such that ϕ ∈ P∗(a∗
q,H, d, n) ⊗ ◦C. Then it follows from the properties

of ψj mentioned above that Ffj = ϕj → ϕ for j → ∞ as a sequence of functions in
M(a∗

q,H, d). Moreover, the sequence is bounded as a sequence in P∗(a∗
q,H, d, n).

In view of Lemmas 9.2 and 13.1 it follows that the sequence LF∗Ffj is bounded in
P∗(a∗

Fq,HF , d′, n′) ⊗ AF and that LF∗Ffj → LF∗ϕ as a sequence in M(a∗
Fq,HF , d′).

By dominated convergence it follows that LF∗Ffj → LF∗ϕ weakly in P∗(a∗
Fq,HF , d′, n′)

with respect to the pairing (11.1). In view of Lemma 11.2 this implies that

fj =
∑
F

cF JF LF∗Ffj →
∑
F

cF JF LF ϕ = f

weakly in C−∞(X : τ). Since fj belongs to C∞
M+rj

(X : τ) for each j, we conclude that
f ∈ C−∞

M (X : τ). Moreover, it follows from the weak convergence fj → f that Ffj(λ) →
Ff(λ) for all λ outside the hyperplanes in H. Hence, Ff = ϕ as claimed.

Theorem 4.6 has now been proved.

Corollary 13.2. The Fourier inversion formula (10.3)

f =
∑
F⊂∆

cF JF LF∗Ff (13.2)

is valid for f ∈ C−∞
c (X : τ).

Proof. It was seen during the proof above that
∑

F cF JF LF∗ϕ ∈ C−∞
c (X : τ) and

ϕ = F
( ∑

F

cF JF LF∗ϕ

)

for all ϕ ∈ PW∗(X : τ). In particular, the latter identity applies to ϕ = Ff for each f ∈
C−∞

c (X : τ). The formula (13.2) then follows from the injectivity of F (Theorem 8.1). �
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14. A topological Paley–Wiener theorem

We shall equip the spaces C−∞
M (X : τ) and PW∗

M (X : τ) with natural topologies for
which the Fourier transform is an isomorphism.

On the space of generalized functions on X we use the strong dual topology, where we
regard C−∞(X) as the dual space of C∞

c (X). Recall that by definition, the strong dual
topology on C∞

c (X)∗ is the locally convex topology given by the seminorm system

pB(f) = sup
ϕ∈B

|f(ϕ)|,

where B belongs to the family of all bounded subsets of C∞
c (X). Notice that C∞

c (X) is a
Montel space, that is, it is reflexive and a subset is bounded if and only if it is relatively
compact (see [17, p. 147]).

On the space C−∞
c (X) of compactly supported generalized functions on X we use

the strong dual topology, where we regard C−∞
c (X) as the dual space of C∞(X). As

an immediate consequence of these dualities, the inclusion map C−∞
c (X) → C−∞(X) is

continuous, and multiplication by a function ψ ∈ C∞
c is continuous C−∞(X) → C−∞

c (X).
The topologies on C−∞(X) and C−∞

c (X) induce the same topology on the space
of distributions supported in a fixed compact subset Ω of X. This follows from the last
remark of the preceding paragraph, when we take as ψ any function which is identically 1
on a neighbourhood of Ω.

In particular, for each M > 0 the space C−∞
M (X : τ) of τ -spherical generalized functions

with support in XM is topologized in this fashion, as a topological subspace of C−∞(X)⊗
Vτ , or equivalently, as a topological subspace of C−∞

c (X) ⊗ Vτ .
Recall that PW∗

M (X : τ) ⊂ P∗(a∗
q,H(X, τ), dX,τ ) ⊗ ◦C, and that

P∗(a∗
q,H, d) =

⋃
n∈N (a∗

q)

P∗(a∗
q,H, d, n).

On each space P∗(a∗
q,H, d, n), where d : H → N and n ∈ N (a∗

q), the topology was defined
by means of the seminorms (4.2). On N (a∗

q) we define an order relation by n1 � n2 if and
only if n1(ω) � n2(ω) for all ω. It is easily seen that if n1 � n2 then P∗(a∗

q,H, d, n1) ⊂
P∗(a∗

q,H, d, n2) with continuous inclusion. The family of spaces P∗(a∗
q,H, d, n) indexed

by n ∈ N is thus a directed family, and we can give P∗(a∗
q,H, d) the inductive limit

topology for the union over n. The Paley–Wiener space PW∗
M (X : τ) is given the relative

topology of this space (where d = dX,τ ), tensored by ◦C.

Theorem 14.1. The Fourier transform is a topological isomorphism of C−∞
M (X : τ)

onto PW∗
M (X : τ), for each M > 0.

Proof. Only the topological statement remains to be proved. We will prove that F
is continuous with respect to the topology of C−∞

c (X) ⊗ Vτ , and that its inverse is
continuous into C−∞(X) ⊗ Vτ . Since the topologies agree on C−∞

M (X : τ), as remarked
above, this will prove the theorem.
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Let H = H(X, τ) and d = dX,τ . For the continuity of the Fourier transform

F : C−∞
c (X : τ) → P∗(a∗

q,H, d) ⊗ ◦C (14.1)

we remark that by a theorem of Grothendieck, C−∞
c is bornological, since it is the strong

dual of the reflexive Fréchet space C∞ (see [17, p. 154]). Therefore, it suffices to prove
that the Fourier transform maps every bounded set B ⊂ C−∞

c (X : τ) to a bounded set
in P∗(a∗

q,H, d) ⊗ ◦C (see [17, p. 62]). Since all such sets B are equicontinuous (see [17,
p. 127]) we may assume that there exists a continuous seminorm ν on C∞(X : τ∗) such
that

B ⊂
{

f

∣∣∣∣
∣∣∣
∫

ϕ(x)f(x) dx
∣∣∣ � ν(ϕ), ∀ϕ ∈ C∞(X : τ∗)

}
. (14.2)

As in (3.2) we may assume that the seminorm ν has the form

ν(ϕ) = C sup
|α|�k, x∈Ω

‖LXαϕ(x)‖

for some C > 0, k ∈ N and Ω ⊂ X compact. Choose M > 0 such that Ω ⊂ XM , and
let R ∈ R. It follows from (6.2) that there exists a number n ∈ N and a polynomial
p ∈ ΠΣ(a∗

q) such that

sup
λ∈ā∗

q(P,R)
(1 + |λ|)−ne−M |Re λ|ν(p(λ)E∗(λ : ·)) < ∞. (14.3)

It now follows from (14.2) with ϕ = p(λ)E∗(λ : ·), combined with (14.3), that

sup
f∈B

sup
λ∈ā∗

q(P,R)
(1 + |λ|)−ne−M |Re λ|‖p(λ)Ff(λ)‖ < ∞. (14.4)

For each compact set ω ⊂ a∗
q we choose R ∈ R such that ω ⊂ ā∗

q(P, R) and define n(ω)
to be the number n in (14.4). By application of Lemma 5.1 it follows that the seminorm
(4.2) is uniformly bounded on F(B). With n ∈ N (a∗

q) chosen in this fashion, we thus
see that F(B) is contained and bounded in P∗(a∗

q,H, d, n) ⊗ ◦C, hence also in the union
P∗(a∗

q,H, d) ⊗ ◦C with the inductive limit topology. Thus (14.1) is continuous.
In order to establish the continuity of the inverse Fourier transform we use Corol-

lary 13.2, according to which the inverse Fourier transform is given by the finite sum
of cF times JF LF∗. The operator LF∗ is continuous from P∗(a∗

q,H(X, τ), dX,τ ) ⊗ ◦C to
P∗(a∗

Fq,H(X, τ, F ), dX,τ,F ) ⊗ AF by Lemma 13.1, and continuity of JF is established in
the lemma below. �

Lemma 14.2. The generalized wave packet operator JF is strongly continuous

P∗(a∗
Fq,H(X, τ, F ), dX,τ,F ) ⊗ AF → C−∞(X : τ)

for each F ⊂ ∆.

Proof. Let B ⊂ C∞
c (X : τ) be bounded, then FF (B) is bounded by Lemma 9.3, and it

follows from (11.2) that

pB(JF ϕ) = sup
f∈B

|〈f,JF ϕ〉| = sup
f∈B

|〈FF f, ϕ〉|.

Hence pB ◦ JF is continuous by Lemma 11.1. �
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15. Further properties of the topology

In this final section we show that P∗(a∗
q,H, d, n) is a Fréchet space, under a certain

natural condition on n ∈ N (a∗
q), and that this condition is satisfied by sufficiently many

elements n to give the same union P∗(a∗
q,H, d).

Let H be a real Σ-configuration in a∗
qC

, and let d : H → N be arbitrary. For ω ∈ C(a∗
q)

and n ∈ N (a∗
q), we denote by ν∗

ω,n the seminorm on P∗(a∗
q,H, d, n) defined in (4.2).

Definition 15.1. A function n ∈ N (a∗
q) is called regular if for every ω ∈ C(a∗

q),

n(ω) = inf{n(ω′) | ω′ ∈ C(a∗
q), ω ⊂ int(ω′)}.

The set of such functions n is denoted N0(a∗
q).

Notice that if n is regular, then n(ω1) � n(ω2) for ω1 ⊂ ω2. It is also easy to see that
if n1, n2 are regular, then so is n = max(n1, n2).

Lemma 15.2. Let n ∈ N0(a∗
q). Then P∗(a∗

q,H, d, n) is a Fréchet space.

Proof. It is easily seen that P∗
n is complete (also without the condition of regularity). We

have to show that it is metrizable. We will do this by pointing out a countable collection
of compact sets ω, such that the corresponding family of seminorms ν∗

ω,n generates the
topology.

The topology of a∗
q is locally compact and second countable. Let B be a countable basis

of open sets with compact closures. For every finite collection F ⊂ B, let

ωF =
⋃

B∈F

B̄.

Then ωF ∈ C(a∗
q). We will show that the countable family ν∗

ωF ,n generates the topology.
Indeed, let ω ∈ C(a∗

q). Then by regularity there exists ω′ ∈ C(a∗
q), with n(ω′) = n(ω),

and ω ⊂ int(ω′). If ω′′ ∈ C(a∗
q) satisfies ω ⊂ ω′′ ⊂ ω′, it follows that n(ω) = n(ω′′) =

n(ω′). We now see that we may take ω′ so that in addition πω′,d = πω,d.
For every λ ∈ ω there exists B ∈ B with λ ∈ B and B̄ ⊂ int(ω′). By compactness, there

exists a finite collection F ⊂ B such that ω ⊂ ωF ⊂ int(ω′). It follows that n(ω) = n(ωF )
and πω,d = πωF ,d. Hence

ν∗
ω,n(ϕ) = sup

ω+ia∗
q

(1 + |λ|)−n(ωF )‖πωF ,d(λ)ϕ(λ)‖

� sup
ωF +ia∗

q

(1 + |λ|)−n(ωF )‖πωF ,d(λ)ϕ(λ)‖

= ν∗
ωF ,n(ϕ)

for all ϕ. �

Proposition 15.3. For each n ∈ N (a∗
q) there exists a function n̄ ∈ N0(a∗

q) such that

P∗(a∗
q,H, d, n) ⊂ P∗(a∗

q,H, d, n̄)

with continuous inclusion.
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Proof. We define the map n̄ : C(a∗
q) → N by

n̄(ω) = inf{n(ω′) | ω′ ∈ C(a∗
q), ω ⊂ int(ω′)}.

It is easily seen that n̄ is regular.
Let ω be a compact set. Then there exists a compact neighbourhood ω1 of ω such that

n̄(ω) = n(ω1). It follows from Lemma 5.1 that there exists a constant C > 0 such that
for all ϕ ∈ M(a∗

qC
,H, d, ◦C),

ν∗
ω,n̄(ϕ) = νω,−n̄(ω)(ϕ) � Cνω1,−n̄(ω)(ϕ) = Cνω1,−n(ω1)(ϕ) = Cν∗

ω1,n(ϕ).

The result follows. �

In the above we have proved that there exists a subset N0 of N = N (a∗
q) with the

following properties (where P∗
n = P∗(a∗

q,H, d, n) for simplicity):

(a) for every n ∈ N0 the space P∗
n is Fréchet;

(b) for every n1, n2 ∈ N0 there exists n ∈ N0 such that n1 � n, n2 � n (directed
family);

(c) for every n ∈ N there exists m ∈ N0 such that P∗
n ⊂ P∗

m with continuous inclusion.

Because of these properties, the union
⋃

n∈N0
P∗

n is equal to
⋃

n∈N P∗
n = P∗(a∗

q,H, d)
and the limit topologies defined by limN0 P∗

n and limN P∗
n are equal. In particular, we

see that P∗(a∗
q,H, d) is an inductive limit of Fréchet spaces (notice however, that it is

not necessarily a strict inductive limit).

Acknowledgements. We are grateful to Erik Thomas for helpful discussions related
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References

1. J. Arthur, A Paley–Wiener theorem for real reductive groups, Acta Math. 150 (1983),
1–89.

2. E. P. van den Ban, The Plancherel theorem for a reductive symmetric space, in Lie
theory, harmonic analysis on symmetric spaces—general Plancherel theorems (ed. J.-P.
Anker and B. Ørsted), pp. 1–97 (Birkhäuser, 2005).
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16. L. Hörmander, The analysis of linear partial differential operators, Volume I (Springer,
1983).

17. H. H. Schaefer, Topological vector spaces, 2nd edn (Springer, 1999).
18. H. Schlichtkrull, Hyperfunctions and harmonic analysis on symmetric spaces (Birk-
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