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We consider the boundary Hardy–Hénon equation

−Δu = (1 − |x|)αup, x ∈ B1(0),

where B1(0) ⊂ R
N (N � 3) is a ball of radial 1 centred at 0, p > 0 and α ∈ R. We

are concerned with the estimate, existence and nonexistence of positive solutions of
the equation, in particular, the equation with Dirichlet boundary condition. For the
case 0 < p < (N + 2)/(N − 2), we establish the estimate of positive solutions. When
α � −2 and p > 1, we give some conclusions with respect to nonexistence. When
α > −2 and 1 < p < (N + 2)/(N − 2), we obtain the existence of positive solution
for the corresponding Dirichlet problem. When 0 < p � 1 and α � −2, we show the
nonexistence of positive solutions. When 0 < p < 1, α > −2, we give some results
with respect to existence and uniqueness of positive solutions.
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1. Introduction

This paper is devoted to the study of positive solutions of the following elliptic
equation

−Δu = (1 − |x|)αup, x ∈ B1(0), (1.1)

where p > 0, α ∈ R, and B1(0) ⊂ R
N (N � 3) denotes a ball of radius 1 centred at

0. We will establish some estimate, existence and nonexistence of positive solutions
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of (1.1). In particular, we are interested in the existence and uniqueness of positive
solutions of the following Dirichlet problem{−Δu = (1 − |x|)αup, x ∈ B1(0),

u = 0, |x| = 1. (1.2)

In the equation (1.1), it is clear that d(x, ∂B1(0)) = 1 − |x| for x ∈ B1(0). This
weight function (1 − |x|)α is singular or vanishing on the boundary of B1(0) when
α �= 0.

Over the last few decades, the following elliptic equation

−Δu = a(x)up in Ω, (1.3)

where Ω is a domain in R
N , has been extensively studied under various assumptions.

When a(x) ≡ 1, the equation is the well-known Lane–Emden equation. For the case,
there was a great deal of work such as the existence, nonexistence, symmetry and
uniqueness of positive solutions. For example, some interesting results in [5, 10] are
related to the symmetry of positive solutions of (1.3) with Ω = R

N . If a(x) = |x|α
and 0 ∈ Ω, the equation (1.3) is called Hardy–Hénon equation. When α � −2 and
p > 1, the Hardy–Hénon equation (1.3) has no positive solutions in any domain Ω
containing the origin (see [6]). For the case α > −2 and p < (N + 2 + 2α)/(N − 2),
the Hardy–Hénon equation (1.3) with Ω = R

N has no positive radial solution (refer
to [14]). In addition, Du and Guo in [8] investigated the Hardy–Hénon equation
(1.3) for the case p < 0 and α > −2. When a(x) = −d(x, ∂Ω)α, there were much
well-known study with respect to boundary blow-up solution (also called large solu-
tion) of (1.3), for instance, the existence and uniqueness of large solution, and
blow-up rate of large solution of (1.3) (see [7]). When a(x) = |x|α and Ω = B1(0),
Cao–Peng–Yan [4] analysed the profile of ground state solution and proved the
existence of multi-peaked solutions with their asymptotic behaviour for equation
(1.3) subject to Dirichlet boundary condition.

In this paper, we are more interested in

the case: the weight function a(x) = (1 − |x|)α and Ω = B1(0).

In fact, the weight function a(x) = d(x, ∂Ω)α(= d(x)α). Clearly, for the case α > 0,
(1 − |x|)α converges to zero as |x| → 1, and for the case α < 0, (1 − |x|)α blows up
as |x| → 1. Corresponding to the boundary Hardy potential 1/d(x)2, the equation
(1.1) is called boundary Hardy–Hénon equation in this paper in order to distinguish
from the well-known Hardy–Hénon equations.

Some elliptic equations with coefficient function d(x) were extensively considered.
Especially, for the Hardy potential 1/d(x)2, there are many interesting problems
and results. The well-known Hardy constant and Hardy inequality were established
in [3, 12]. For elliptic equations with such Hardy potential, in [1], Bandle, Moroz
and Reichel considered

−Δu = λ
u

d(x)2
− d(x)αup in Ω, (1.4)

and gave some classification of positive solutions under conditions p > 1, α > −2,
and λ � 1/4. For the case λ > 1/4, α > −2 and p > 1, the uniqueness and asymp-
totic behaviour of positive solutions of (1.4) were obtained in [9]. In [2], Bandle
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and Pozio investigated the equation (1.4) with the sublinear term. More recently,
in [13] Mercuri and Santos analysed the quantitative symmetry breaking of ground
states for the following weighted Emden–Fowler equations{

−Δu = Vα(|x|)|u|p−1u, x ∈ B1(0),
u = 0, x ∈ ∂B1(0),

(1.5)

where B1(0) ⊂ R
N (N � 1), p ∈ (1, 2∗ − 1) with 2∗ = 2N/(N − 2) if N � 3 and

2∗ = +∞ if N = 1, 2, and Vα (α > 0) defined as:

(i) for R ∈ (0, 1), Vα(r) = (1 − (r/R))α if r ∈ [0, R) and Vα(r) = (1 − ((1 − r)/
(1 −R)))α if r ∈ [R, 1];

(ii) for R = 0, Vα(r) = rα if r ∈ [0, 1]; for R = 1, Vα(r) = (1 − r)α if r ∈ [0, 1].

In [13], some interesting quantitative results in regard to (1.5) were presented, for
example, [13, proposition 1.8], which indicate that for the positive ground state
solution uα of (1.5) with α > 0, R = 1 and N � 3 (i.e. (1.2)), there exist positive
constants C1 and C2 such that C1α

2/(p−1) � maxx∈B(0,1) uα(x) � C2α
2/(p−1) for

large α. In contrast to [13, proposition 1.8], our theorem 1.3 is to establish the
existence of positive solutions for (1.2) with α > −2 and p ∈ (1, 2∗ − 1).

In consideration of above interesting work, in this article, we consider the
following equation

−Δu = d(x)αup in Ω.

For convenience and brevity, we mainly study the special domain B1 := B1(0),
that is equation (1.1). We will investigate the estimate, existence and nonexistence
of positive solutions of (1.1) and (1.2) in view of the weight function (1 − |x|)α.
Throughout this paper, unless otherwise stated, a solution u of (1.2) is referred
to classical solution, that is u ∈ C2(B1) ∩ C(B̄1). For all conclusions in this paper,
we need the condition N � 3, which plays an important role in some proofs, so we
assume always N � 3 throughout this paper.

By using blow-up method and some analysis technique we can obtain the
following estimate of positive solutions of (1.1).

Theorem 1.1.

(i) If 1 < p < (N + 2)/(N − 2), α > −2, then there exists C = C(N, p, α) such
that any positive solution u of (1.1) satisfies

u(x) � C(1 − |x|)−((2+α)/(p−1)), x ∈ B1. (1.6)

(ii) If 0 < p < 1 and α > −2, then there exists C = C(N, p, α) such that any
positive solution u of (1.1) satisfies

u(x) � C(1 − |x|)−((2+α)/(p−1)), x ∈ B1. (1.7)

For the case α � −2, some results on nonexistence of positive solutions of (1.1)
are established, which are contained in the following theorem.
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Theorem 1.2.

(i) Let p > 1 and α � −2. Then (1.1) has no positive solutions with a positive
lower bound.

(ii) Let p > 1 and α+ p+ 2 � 0. Then (1.1) has no positive solutions.

(iii) Let 1 < p < (N + 2)/(N − 2) and p+ 1 + α < 0. Then (1.1) has no positive
solutions.

For the Dirichelt problem (1.2), under α > −2 and subcritical nonlinear term,
we can obtain the existence of positive classical solutions.

Theorem 1.3. Let −2 < α and 1 < p < (N + 2)/(N − 2). Then the problem (1.2)
has a positive solution.

For the sublinear case 0 < p < 1, together with some estimate of positive solutions
and some analysis, we can obtain the following two results of nonexistence.

Theorem 1.4. Let 0 < p < 1 and 1 + p+ α < 0. Then (1.2) has no positive
solutions in C1(B̄1).

Theorem 1.5. Let 0 < p � 1 and α � −2. Then (1.1) has no positive solutions.

Finally, by using the subsolution and supersolution method, the existence of
positive solution is established for the case 0 < p < 1 and α > −2, and by the
maximum principle and Hopf’s Lemma, we can establish the uniqueness of positive
solutions. Concretely, we have the following theorem.

Theorem 1.6.

(i) Suppose that α > −2 and p < 1. Then (1.2) has a positive classical solution.
Moreover, if p � 0, the positive solution of (1.2) is unique.

(ii) Suppose that ψ ∈ C1(B̄1) is a nonnegative function, α � 0 and 0 < p < 1.
Then the following problem{−Δu = (1 − |x|)αup, x ∈ B1,

u = ψ, |x| = 1, (1.8)

has a unique positive solution in C2(B1) ∩ C1(B̄1).

At the end of introduction, we point out that it is challenging to deal with the
existence and nonexistence of positive solutions for the more general problem

−Δu = a(x)up in Ω,

where Ω is a bounded and smooth domain, and a(x) ∈ C(Ω) satisfies

c1d(x)α � a(x) � c2d(x)α in Ω,

with d(x) = d(x, ∂Ω) and constants ci > 0 (i = 1, 2). Due to the limited length of
the paper, for the more general case we will develop some other technique and
methods to establish the similar results to this paper in the near future.
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The rest of this paper is organized as follows. In § 2 we mainly consider the
equation (1.1) with the superlinear nonlinear term. Firstly, we give estimate of
positive solutions, i.e., lemma 2.2, and then give the proof of theorem 1.2. We
also establish the estimate of positive radial solutions under small perturbation,
i.e., lemma 2.3, and then complete the proof of theorem 1.3. In § 3, we study the
existence and nonexistence of positive solutions to (1.1) with sublinear nonlinear
term. We establish the estimate of positive solutions, i.e., lemma 3.2. Finally, we
prove theorems 1.4–1.6.

2. The case p > 1

The following lemma can be found in [14], which will be used for the estimate of
positive solutions.

Lemma 2.1. Let N � 3, 1 < p < (N + 2)/(N − 2), and μ ∈ (0, 1]. Let a ∈ Cμ(B̄1)
satisfy

‖a‖Cμ(B̄1) � C1 and a(x) � C2, x ∈ B̄1,

for some constants C1, C2 > 0. There exists C > 0, depending only on
μ,C1, C2, p,N , such that, for any nonnegative classical solution u of

−Δu = a(x)up, x ∈ B1,

u satisfies

|u(x)| p−1
2 + |∇u(x)|((p−1)/(p+1)) � C

(
1 +

1
1 − |x|

)
, x ∈ B1. (2.1)

Be based on lemma 2.1, the following lemma 2.2 can be derived.

Lemma 2.2. Let 1 < p < (N + 2)/(N − 2). There exists C = C(N, p, α) such that
any nonnegative solution u of (1.1) satisfies

u(x) � C(1 − |x|)−((2+α)/(p−1)) and

|∇u(x)| � C(1 − |x|)−((p+1+α)/(p−1)), 1/2 � |x| < 1. (2.2)

Proof. Let x0 be an arbitrary point in B1. We define a function by

U(x) = d(x0, ∂B1)((2+α)/(p−1))u

(
x0 +

d(x0, ∂B1)
2

x

)
, x ∈ B1.

Then U satisfies

−ΔU = a(x;x0)Up, x ∈ B1,

where

a(x;x0) =
d
(
x0 + d(x0,∂B1)

2 x, ∂B1

)α

4d(x0, ∂B1)α
.
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Clearly, for any x ∈ B1, we have that

a(x;x0) � 1
2α+2

as α � 0

and

a(x;x0) � 3α

22+α
as α < 0.

We claim that for all x0 satisfying |x0| � 1/2,

‖a(·;x0)‖C1(B̄1) � C, (2.3)

where C depends only on α. In fact, for any x ∈ B1 and x0 ∈ B1, a(x;x0) can be
written by

a(x;x0) =
1
4
·
⎛
⎝1 −

∣∣∣x0 + 1−|x0|
2 x

∣∣∣
1 − |x0|

⎞
⎠

α

.

It follows that for α � 0

4a(x;x0) =

⎛
⎝1 −

∣∣∣x0 + 1−|x0|
2 x

∣∣∣
1 − |x0|

⎞
⎠

α

�
(

3(1 − |x0|)/2
1 − |x0|

)α

=
(

3
2

)α

.

As α < 0, we have

4a(x;x0) =

⎛
⎝1 −

∣∣∣x0 + 1−|x0|
2 x

∣∣∣
1 − |x0|

⎞
⎠

α

�
(

(1 − |x0|)/2
1 − |x0|

)α

=
(

1
2

)α

.

In addition, it is clear that

|Dia(x;x0)| =

∣∣∣∣∣∣∣
α

8

⎛
⎝1 −

∣∣∣x0 + 1−|x0|
2 x

∣∣∣
1 − |x0|

⎞
⎠

α−1

· x
i
0 + 1−|x0|

2 xi

|x0 + 1−|x0|
2 x|

∣∣∣∣∣∣∣ ,
where xi and xi

0 denote the i-th component of x and x0 respectively. So, if α � 1
and |x0| � 1/2, then we obtain that

|Dia(x;x0)| � 1
4
·
(

3
2

)α−1

· α
8
·
∣∣∣∣∣x

i
0 + 1−|x0|

2 xi

x0 + 1−|x0|
2 x

∣∣∣∣∣ � α

32

(
3
2

)α−1

, ∀x ∈ B1.

If α < 1 and |x0| � 1/2, then we have that

|Dia(x;x0)| � 1
4
·
(

3
2

)α−1

· |α|
8

·
∣∣∣∣∣x

i
0 + 1−|x0|

2 xi

x0 + 1−|x0|
2 x

∣∣∣∣∣ � |α|
32

(
1
2

)α−1

, ∀x ∈ B1.

Therefore, applying lemma 2.1, we have

U(0) + |∇U(0)| � C.
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Further, we obtain

u(x0) � Cd(x0, ∂B1)−((2+α)/(p−1)),

|∇u(x0)| � Cd(x0, ∂B1)−((p+1+α)/(p−1)).

By the arbitrariness of x0 and d(x0, ∂B1) = 1 − |x0|, we can obtain the desired
conclusion. �

Applying lemmas 2.1 and 2.2, we can present a proof of theorem 1.1 (i).

Proof of theorem 1.1 (i). On the one hand, by lemma 2.2 there is C = C(N, p, α)
such that any positive solution u of (1.1) satisfies

u(x) � C(1 − |x|)− 2+α
p−1 , x ∈ B1\B1/2.

On the other hand, noticing that 1
2 � 1 − |x| � 1, ∀x ∈ B1/2 and that by lemma 2.1

there exists C = C(N, p, α) such that |u(x)| � C, ∀x ∈ B1/2 for any positive
solution u of (1.1), we know that there is C = C(N, p, α) such that

u(x) � C(1 − |x|)− 2+α
p−1 , x ∈ B1/2.

The proof is completed. �

Next, we are going to prove theorem 1.2 by analysing the corresponding integral
average of positive solutions and together with lemma 2.2.

Proof of theorem 1.2. We argue indirectly by assuming that u ∈ C2(B1) is a posi-
tive solution of (1.1). Using spherical coordinates to write u(x) = u(r, θ) with r = |x|
and θ = x

|x| , we have

urr +
N − 1
r

ur +
1
r2

ΔSN−1u = −(1 − r)αup, r ∈ (0, 1). (2.4)

Let

ũ(r) =
1

|SN−1|
∫

SN−1
u(r, θ) dθ.

From the above equation for u(r, θ) it follows that

ũrr +
N − 1
r

ũr = − (1 − r)α

|SN−1|
∫

SN−1
u(r, θ)p dθ. (2.5)

So, we have

(rN−1ũ′(r))′ < 0 for r ∈ (0, 1).

Therefore, it is clear that rN−1ũ′ is decreasing, and hence has a limit m ∈
[−∞,+∞) as r → 1−. In addition, by Jensen’s inequality for (2.5) we obtain

−(rN−1ũ′)′ � (1 − r)αrN−1ũp for r ∈ (0, 1). (2.6)

We firstly prove the conclusion (i). We divide the proof into two cases for clarity.
Suppose that u has a positive lower bound.
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Case 1. Suppose that m � 0. Then

rN−1ũ′(r) > m for r ∈ (0, 1).

Therefore, ũ′(r) > 0 holds for all r ∈ (0, 1). So, we can assume ũ(r) → m1 > 0 as
r → 1−. Take r1 ∈ (0, 1) such that ũ(r) > m1/2 for all r ∈ (r1, 1). From (2.6) it
follows that for r ∈ (r1, 1)

rN−1
1 ũ′(r1) − rN−1ũ′(r) = −

∫ r

r1

(τN−1ũ′(τ))′ dτ

�
∫ r

r1

(1 − τ)ατN−1ũ(τ)p dτ � 2−prN−1
1 mp

1

∫ r

r1

(1 − τ)α dτ.

Hence, we have

rN−1
1 ũ′(r1) � 2−prN−1

1 mp
1

∫ r

r1

(1 − τ)α dτ.

Letting r → 1−, in view of α � −2, we obtain a contradiction.
Case 2. m ∈ [−∞, 0). For the case, there exist r∗ > 0 and m2 > 0 such that

rN−1ũ′(r) < −m2 for all r ∈ (r∗, 1),

and hence there is m∗ ∈ (0,m2] such that

ũ′(r) < −m∗ for r ∈ (r∗, 1).

Since u has a positive lower bound, we can assume

ũ(r) → m3 ∈ (0,∞) as r → 1−.

Clearly,

ũ(r) > m3 for all r ∈ (r∗, 1).

From (2.6) it follows that

rN−1
∗ ũ′(r∗) − rN−1ũ′(r) � mp

3

∫ r

r∗
(1 − τ)ατN−1 dτ for r ∈ (r∗, 1).

Further, we have

−rN−1ũ′(r) � mp
3

∫ r

r∗
(1 − τ)ατN−1 dτ � mp

3r
N−1
∗

∫ r

r∗
(1 − τ)α dτ for r ∈ (r∗, 1).

So, we obtain

ũ′(r) � −mp
3r

N−1
∗ r1−N

∫ r

r∗
(1 − τ)α dτ � −mp

3r
N−1
∗

∫ r

r∗
(1 − τ)α dτ for r ∈ (r∗, 1).

Integrating the above inequality from r∗ to r, we see

ũ(r) − ũ(r∗) � −mp
3r

N−1
∗

∫ r

r∗

(∫ t

r∗
(1 − τ)α dτ

)
dt.

https://doi.org/10.1017/prm.2021.25 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.25


526 X. Cheng et al.

By the condition α � −2, the right-hand side converges to −∞ as r → 1−.
Therefore, we obtain a contradiction, and hence complete the proof of the
conclusion (i).

Now, we prove the conclusion (ii). As the arguments of the proof for conclusion
(i), we can derive a contradiction for the case 1. For the case 2, we have that

ũ′(r) < −m∗ for r ∈ (r∗, 1), and ũ(r) → m3 ∈ [0,+∞) as r → 1−.

If m3 �= 0 holds, we can obtain a contradiction as the arguments for case 2 in the
proof of (i). Now, we assume m3 = 0. By the differential mean value theorem, there
holds

ũ(r) � m∗(1 − r) for r ∈ (r∗, 1).

From (2.6) it follows that for r ∈ (r∗, 1)

rN−1
∗ ũ′(r∗) − rN−1ũ′(r) � mp

∗

∫ r

r∗
(1 − τ)α+pτN−1 dτ.

Hence, we see

−ũ′(r) � mp
∗r

1−N

∫ r

r∗
(1 − τ)α+pτN−1 dτ � mp

∗

∫ r

r∗
(1 − τ)α+pτN−1 dτ.

Therefore, we obtain that

ũ(r∗) − ũ(r) � mp
∗r

N−1
∗

∫ r

r∗

∫ t

r∗
(1 − τ)α+p dτ dt.

Since α+ p+ 2 � 0, letting r → 1−, we can derive a contradiction.
For the proof of the conclusion (iii), it suffices to deduce a contradiction for the

case m3 = 0 as the proof of conclusion (ii). Since 1 < p < (N + 2)/(N − 2) holds,
together with lemma 2.2, (2.5) and (2.6), we have

(1 − r)αrN−1ũp � −(rN−1ũ′)′ � rN−1(1 − r)αC(1 − r)−((2+α)/(p−1))p in (0, 1),

where C > 0 is a positive constant. So, we obtain

rN−1(1 − r)αC(1 − r)−((2+α)/(p−1))p � mp
∗(1 − r)αrN−1(1 − r)p in (r∗, 1).

Therefore, we have

(1 − r)−((2+α)/(p−1))p−p � mp
∗
C

in (r∗, 1).

By the condition p+ 1 + α < 0, it is clear that −((2 + α)/(p− 1))p− p > 0, and
hence we can deduce a contradiction. �

In order to obtain the existence of positive solution of (1.2), we need to consider
the corresponding perturbation problem, which has no singularity at the boundary,
and establish the estimate of its solutions.
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Lemma 2.3. Suppose that 1 < p < (N + 2)/(N − 2), α > −2, ε0 > 0 and ε ∈ (0, ε0].
Then there exists C > 0 depending only on α, p, ε0, N such that any positive radial
solution uε ∈ C2(B1) ∩ C1(B̄1) of{−Δu = (1 + ε− |x|)αup, x ∈ B1(0),

u = 0, |x| = 1 (2.7)

satisfies

‖∇uε‖L∞(B1) + ‖uε‖L∞(B1) � C. (2.8)

Proof. We divide the proof into two steps.
Step 1. We prove that

‖uε‖L∞(B1) � C,

where C > 0 depends only on α, p, ε0, N . We use indirect method to prove the
conclusion. Suppose that the assertion is false. Then there is a sequence of solutions
uk, εk and Pk ∈ B1 such that

Mk = max
x∈B̄1

uk(x) = uk(Pk) → +∞ as k → ∞.

Since uk is a radially symmetric function, by the maximum principle we claim
Pk = 0. In fact, if Pk �= 0, then the symmetric property implies that there exists
Qk ∈ B1 such that uk takes minimum at Qk and |Pk| > |Qk|. So, we see

0 � −Δuk(Qk) = (1 + εk − |Qk|)αuk(Qk)p > 0.

This is a contradiction.
Without loss of generality, we assume εk → ε̃ ∈ [0, ε0]. We define

Uk(y) =
1
Mk

uk(M−((p−1)/2)
k y).

Then Uk satisfies

−ΔUk =
(
1 + εk − |M−(p−1)/2)

k y|
)α

Up
k

with 0 � Uk � 1 and Uk(0) = 1. By the standard arguments of elliptic equations,
we can extract a subsequence of {Uk} converging to a function U in C2

loc(R
N ),

which satisfies

−ΔU = (1 + ε̃)αUp in R
N and U(0) = 1.

Since 1 < p < (N + 2)/(N − 2), this contradicts the corresponding Liouville-type
results [11].

Step 2. We prove that

‖∇uε‖L∞(B1) � C,

where C > 0 depends only on α, p, ε0, N . By step 1, we assume that ‖uε‖L∞(B1) � C
for any ε ∈ (0, ε0]. Since uε is radially symmetric, we also denote uε(r) = uε(x) as
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|x| = r. For the case α � 0, according to the regularity of elliptic equations, the
conclusion can be obtained directly.

Now, we consider the case −2 < α < 0. We still use indirect method to
prove it. Suppose that the assertion is false. Then, there exist εk ∈ (0, ε0] and
positive solution uk of (2.7) with ε = εk such that

‖∇uk‖L∞(B1) → ∞ as k → ∞.

Since u′k(0) = 0 and

−rN−1u′k(r) =
∫ r

0

(1 + εk − τ)ατN−1uk(τ)p dτ,

we can deduce u′k(r) < 0 for all r ∈ (0, 1]. Let rk ∈ (0, 1] be the minimum point
of u′k. From the interior estimate of elliptic equations it follows that {rk} has a
subsequence, which converges to 1. Without loss of generality, we assume rk → 1
as k → ∞. Hence, we have

−u′k(rk) → +∞ (k → ∞).

From the equation (2.7), it follows that

−u′k(r) = r1−N

∫ r

0

τN−1(1 + εk − τ)αuk(τ)p dτ.

By α > −2, we can take a small constant η > 0 such that α+ 1 − η > −1. By the
differential mean value theorem, it follows that

uk(r) � (1 − r)|u′k(rk)| for any r ∈ (0, 1).

Therefore, we have

|u′k(rk)| � r1−N
k

∫ rk

0

τN−1(1 − τ)αuk(τ)p dτ

� r1−N
k

∫ rk

0

(1 − τ)αuk(τ)1−ηuk(τ)p+η−1 dτ

� (1 + o(1))|u′k(rk)|1−ηCp+η−1

∫ rk

0

(1 − τ)α+1−η dτ.

Since α+ 1 − η > −1 and η > 0, we can obtain

|u′k(rk)| � K|u′k(rk)|1−η for all k,

where K is a positive constant. This contradicts |u′k(rk)| → ∞ (k → ∞). �

Next, we prove theorem 1.3 by using Nehari manifold method and together with
lemma 2.3.
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Proof of theorem 1.3. Case 1. −2 < α � 0. Consider the following problem⎧⎨
⎩−Δu =

(
1 +

1
n
− |x|

)α

|u|p−1u, x ∈ B1(0),

u = 0, |x| = 1.
(2.9)

Define a functional by

Fn(u) =
1
2

∫
B1

|∇u|2 dx− 1
p+ 1

∫
B1

(
1 +

1
n
− |x|

)α

(u+)p+1 dx, u ∈ H1
0 (B1),

where u+ = max{u, 0}.
We will show that Fn has a radially symmetric critical point in H1

0 (B1). We
denote the norm in H1

0 (B1) by

‖u‖ =
(∫

B1

|∇u|2 dx
)1/2

, u ∈ H1
0 (B1).

Let

X = {u ∈ H1
0 (B1) : u is a radially symmetric function }.

Clearly, for any given n, Fn satisfies the condition of mountain-pass lemma in X.
By the theory of critical points on symmetric function space, Fn has a critical point,
which is a radially symmetric function in H1

0 (B1). By the standard arguments, we
assume that un is a nontrivial nonnegative solution of (2.9), and un is a radially
symmetric function.

By the regularity and strong maximum principle, it follows that un ∈ C2(B1) ∩
C1(B̄1) and un > 0. From lemma 2.3, there exists C > 0 such that for all n

‖un‖C1(B̄1) � C.

By the regularity of elliptic equations, {un} is bounded in C2+μ
loc (B1), where μ ∈

(0, 1). In view of Arzela–Ascoli theorem, without loss of generality, we assume un →
u in C2

loc(B1). So, we can obtain that u ∈ C2(B1) ∩ C(B̄1) is a radially symmetric
solution of (1.2).

We claim that u is a nontrivial solution. Without loss of generality, we assume
that un → u in C1

loc(B1). Suppose that u ≡ 0 holds. Since un → u in C(B̄1), we
have

‖un‖L∞(B1) = o(1) (n→ ∞).

From the equations for un and un+1, it follows that

−Δ(un+1 − un) =
(

1 +
1

n+ 1
− |x|

)α

up
n+1 −

(
1 +

1
n
− |x|

)α

up
n

>

(
1 +

1
n
− |x|

)α

(up
n+1 − up

n)

=
(

1 +
1
n
− |x|

)α

(un+1 − un)wn(x), x ∈ B1,
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where ‖wn‖L∞(B1) = o(1) (n→ ∞). So, we have⎧⎨
⎩−Δ(un+1 − un) −

(
1 +

1
n
− |x|

)α

wn(x)(un+1 − un) > 0, x ∈ B1(0),

un+1 − un = 0, |x| = 1.
(2.10)

Denote by λ1[b(x), ω] the first eigenvalue of{−Δφ+ b(x)φ = λφ, x ∈ ω,
φ = 0, x ∈ ∂ω.

When b(x) = − 1
4 (1 + 1

n − |x|)−2, by lemma 2.3 in [9] it follows that

λ1[b(x), B1] > 0.

Since ‖wn‖L∞(B1) is sufficiently small for sufficiently large n, by α > −2 it follows
that (

1 +
1
n
− |x|

)α

wn(x) � 1
4

(
1 +

1
n
− |x|

)−2

in B1.

So, we have

λ1

[
−
(

1 +
1
n
− |x|

)α

wn(x), B1

]
> 0 for large n.

Together with (2.10) and the strong maximum principle, we obtain

un+1(x) > un(x) in B1 for large n.

This contradicts un → 0 in C(B̄1) as n→ ∞.
Case 2. Suppose α > 0. Define a functional F in H1

0 (B1(0)) by

F (u) =
1
2

∫
B1

|∇u|2 dx− 1
p+ 1

∫
B1

(1 − |x|)α(u+)p+1 dx.

By the mountain pass lemma and the standard arguments, F has a positive critical
point v ∈ H1

0 (B1(0)). In view of 1 < p < (N + 2)/(N − 2) and α > 0, together with
the regularity of elliptic equations, v ∈ C2(B1) ∩ C1(B̄1) is a positive solution of
(1.2). �

3. The case 0 < p � 1

Here, we firstly establish the following Liouville-type result and estimate of positive
solutions, which should be useful for some estimates of positive solutions of some
sublinear or negative exponent problems. We are not sure whether the following
result is new, but we did not find it in some existing references, and here the
method of study is basic.
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Theorem 3.1. Suppose that p < 1, γ < 2, ε > 0 and a(x) � ε|x|−γ in R
N . For the

differential inequality

−Δv � a(x)vp in R
N , (3.1)

the following conclusions hold:

(i) for 0 � γ < 2, (3.1) has no positive classical solutions;

(ii) for γ < 0, any positive solution v ∈ C2(RN\{0}) of (3.1) satisfies

v(x) � C|x|(2−γ)/(1−p) for all x �= 0,

where C depends only on ε, γ, p.

Proof. We firstly prove the conclusion (i). For 0 � γ < 2, we suppose that (3.1)
has a positive classical solution v. We are going to deduce a contradiction. For any
positive integer n, we consider the following problem{−Δw = cnw

p, x ∈ Bn(0),
w = mn, x ∈ ∂Bn(0), (3.2)

where mn = min|x|�n v(x) and cn = inf |x|�n a(x). Clearly, mn and v can act as
a subsolution and supersolution of (3.2). By the supersolution and subsolution
method, (3.2) has a minimal positive solution vn in the interval [mn, v]. This means
that for any positive solution w of (3.2) with mn � w � v must satisfy w(x) � vn(x)
in Bn(0). In fact, vn is the limit of the iteration sequence with the initial value mn.
Take K > 0 such that

|cnsp − cnt
p| � K|s− t| for all s, t ∈ [mn,Mn],

where Mn = max|x|�n v(x). Let w1 be the unique positive solution of{−Δw +Kw = Kmn + cnm
p
n, x ∈ Bn(0),

w = mn, x ∈ ∂Bn(0).

By the maximum principle, we obtain w1(x) > mn in Bn(0). By the uniqueness of
solutions and invariant property of rotations for the operator Δ, it follows that w1

is a radially symmetric function. Let w2 be the unique positive solution of{−Δw +Kw = Kw1 + cnw
p
1 , x ∈ Bn(0),

w = mn, x ∈ ∂Bn(0).

By the maximum principle, we obtain w2(x) � w1(x) inBn. By using the uniqueness
and invariant property of rotations for the operator Δ again, it follows that w2 is
a radially symmetric function. Successively, by wk+1 denote the unique positive
solution of {−Δw +Kw = Kwk + cnw

p
k, x ∈ Bn(0),

w = mn, x ∈ ∂Bn(0).

Similarly, any term of the iteration sequence {wk} is a radially symmetric function.
By the standard arguments, vn(x) := limk→∞ wk(x) is a minimal positive solution
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of (3.2) in the interval [mn, v]. Clearly, vn is radially symmetric. By the maximum
principle, it is easy to show that vn is the minimal positive solution in [mn, v].

For convenience, by λ(n) and ψn denote the first eigenvalue and the first
eigenfunction of

{−Δψ = λψ, x ∈ Bn(0),
ψ(x) = 0, |x| = n.

So, we have

∫
Bn

λ(n)ψnvn +
∫
|x|=n

mn
∂ψn

∂ν
= cn

∫
Bn

vp
nψn.

By Hopf’s lemma, we have ∂ψn/∂ν < 0 on ∂Bn, where ν is the outer unit normal
vector. Therefore, we obtain

∫
Bn

ψnvn[λ(n) − cnv
p−1
n ] > 0.

By the maximum principle and the symmetric property, the origin is the maximum
point of vn. So, there holds

vn(0) �
(

cn
λ(n)

)1/(1−p)

.

It is well-known that λ(1) = n2λ(n). By a(x) � ε|x|−γ , it follows that

cn � εn−γ .

Hence, we have

vn(0) �
(

cn
λ(n)

)1/(1−p)

�
(
εn2−γ

λ(1)

)1/(1−p)

.

So, we obtain

v(0) �
(
εn2−γ

λ(1)

)1/(1−p)

.

Letting n→ ∞, we obtain a contradiction. Therefore, the conclusion (i) is proved.
Now, we prove the conclusion (ii). Suppose that v ∈ C2(RN\{0}) is any positive

solution of (3.1) with γ < 0. Let xR be an arbitrary point, where R > 0 and |xR| =
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2R. Denote

m̃R = min
|x−xR|� 3

2 R
v(x), c̃R = inf

|x−xR|<R
a(x).

We consider the Dirichlet problem{−Δϑ = c̃Rϑ
p, x ∈ BR(xR),

ϑ = m̃R, x ∈ ∂BR(xR). (3.3)

Similar to the proof of (i), it follows that (3.3) has a minimal solution ηR(x) in
[m̃R, v]. Denote

ṽR(x) = ηR(x+ xR) for x ∈ BR(0).

Then we have

ṽR(x) � v(x+ xR) for x ∈ BR(0).

By the similar arguments of (i), it follows that

ṽR(0) �
(

c̃R
λ(R)

)1/(1−p)

,

where λ(R) denotes the first eigenvalue of −Δ with Dirichlet boundary condition
on BR. By a(x+ xR) � ε|x+ xR|−γ , it follows that

c̃R � εR−γ .

So, we can obtain that

v(xR) �
(
εR2−γ

λ(1)

)1/(1−p)

.

By the arbitrariness of xR, it follows that

v(x) �
(

ε

22−γλ(1)

)1/(1−p)

|x|(2−γ)/(1−p) for all x �= 0. �

In order to establish the lower estimate of positive solutions of (1.1). We need
the following lemma.

Lemma 3.2. Let N � 3, p < 1, and μ ∈ (0, 1). Let a ∈ Cμ(B̄1) satisfy

a(x) � C, x ∈ B̄1,

for some constants C > 0. Then for any positive classical solution u of

−Δu = a(x)up, x ∈ B1,

u satisfies

|u(0)| �
(

C

λ1(B1)

)1/(1−p)

, x ∈ B1, (3.4)

where λ1(B1) is the first eigenvalue of −Δ with Dirichlet boundary condition on
B1(0).
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Proof. Fix a small positive constant δ > 0. For any large positive integer n, we
consider {−Δw = Cwp, x ∈ B1−δ(0),

w =
1
n
, |x| = 1 − δ.

(3.5)

Let e satisfy

−Δe = 1 in B1, e = 0 on ∂B1.

Then we can take a large constant M > 0 such that

−Δ(Me) = M > CMpep in B1

and

Me >
1
n

as |x| � 1 − δ.

So, ( 1
n ,Me) is a pair of subsolution and supersolution of (3.5). As the arguments

in the proof of theorem 3.1, (3.5) has a minimal positive solution in [ 1
n ,Me], and

denote it by wn. Clearly, wn is a radial function. By the iteration method and
maximum principle, it follows that

wn+1(x) � wn(x) for all x ∈ B1−δ,

where wn+1 is the minimal solution in [(1/(n+ 1)),Me] of (3.5) with w = 1/(n+ 1)
on |x| = 1 − δ. By the maximum principle, the origin is the maximum value point
of wn. Let φδ > 0 and λδ be the first eigenfunction and the first eigenvalue of{−Δφ = λ1φ, x ∈ B1−δ,

φ = 0, |x| = 1 − δ.

So, for any n, we have∫
|x|<1−δ

λδwnφδ dx+
∫
|x|=1−δ

wn
∂φδ

∂ν
= C

∫
|x|<1−δ

wp
nφδ.

Hence we see ∫
|x|<1−δ

wnφδ[λδ − Cwp−1
n ] > 0.

By the maximum principle, it follows that the origin is the maximum point of wn.
Therefore we obtain

wn(0) >
(
C

λδ

)1/(1−p)

.

By the monotone property of {wn} in n, wδ := limn→∞ wn is well-defined in B1−δ

and wδ(0) > 0. By the regularity and the strong maximum principle, wδ is a positive
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radially symmetric function in B1−δ. Clearly, wδ satisfies{−Δwδ = Cwp
δ , x ∈ B1−δ,

wδ = 0, |x| = 1 − δ

and

wδ(0) �
(
C

λδ

)1/(1−p)

.

For any positive classical function u satisfying

−Δu = a(x)up, x ∈ B1,

when n is sufficiently large, it follows that{−Δu = a(x)up � Cup, x ∈ B1−δ,

u(x) >
1
n
, |x| = 1 − δ.

So, we obtain that

wn(x) � u(x) in B1−δ.

Therefore, we have

u(0) � wδ(0) �
(
C

λδ

)1/(1−p)

.

Letting δ → 0+, we can obtain (3.4). �

The conclusion (ii) in theorem 1.1 can be expressed by the following theorem.

Theorem 3.3. Let N � 3, α > −2 and p < 1. Then there exists C = C(N, p, α)
such that any nonnegative solution u of (1.1) satisfies

u(x) � C(1 − |x|)−((2+α)/(p−1)) for all x ∈ B1. (3.6)

Proof. Let x0 be an arbitrary point in B1. We define a function by

U(x) = (1 − |x0|)(2+α)/(p−1)u

(
x0 +

1 − |x0|
2

x

)
, x ∈ B1.

Then U satisfies

−ΔU = a(x)Up, x ∈ B1,

where

a(x) =
1
4
·
(

1 − |x0 + 1−|x0|
2 x|

1 − |x0|

)α

.

Clearly, for any x ∈ B1, we have

a(x) � 1
2α+2

as α � 0
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and

a(x) � 3α

2α+2
as − 2 < α < 0.

Therefore, applying lemma 3.2, we have

U(0) � C.

Hence,

(1 − |x0|)(2+α)/(p−1)u(x0) � C.

By the arbitrariness of x0, we can obtain (3.6). �

Proof of theorem 1.4. Suppose that u ∈ C1(B̄1) is a positive solution of (1.2). By
Hopf’s Lemma, there exist c1, c2 > 0 such that

c1(1 − |x|) � u(x) � c2(1 − |x|) in B1.

By the condition 1 + p+ α < 0, it follows that −((2 + α)/(p− 1)) < 1. By
theorem 3.3, we see that

C(1 − |x|)−((2+α)/(p−1)) � u(x) � c2(1 − |x|) in B1.

This is impossible, and hence we obtain a contradiction. �

Remark 3.4. In fact, under the condition of theorem 1.4, problem (1.2) has no
positive solution u ∈ C1(B1) ∩ C(B̄1), which has differential points on ∂B1.

Proof of theorem 1.5. We prove this conclusion by using the indirect method.
Suppose that (1.1) has a positive solution u.

Case 1. p ∈ (0, 1). According to theorem 3.3 and α � −2, there is a positive
constant C > 0 such that

u(x) � C for all x ∈ B1(0).

Denote

ũ(r) :=
1

|SN−1|
∫

SN−1
u(r, θ) dθ,

and then ũ satisfies

−(rN−1ũ′(r))′ � Cp(1 − r)αrN−1 in (0, 1),

As the arguments of the proof of the conclusion (i) in theorem 1.2, we can derive a
contradiction.

https://doi.org/10.1017/prm.2021.25 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.25


Estimate, existence and nonexistence of positive solutions 537

Case 2. p = 1. For such case, there holds

−Δu � u

(1 − |x|)2 in B1(0).

This implies that the first eigenvalue λ1(n) of⎧⎪⎨
⎪⎩
−Δφ = λ

φ

(1 − |x|)2 , x ∈ B1−(1/n)(0),

φ = 0, |x| = 1 − 1
n
.

is larger than 1. This is a contradiction to limn→∞ λ1(n) = 1
4 , which can be found

in [9]. �

Remark 3.5. In fact, when the conditions p < 0 and α � −2 hold, we can also
prove that (1.1) has no positive solutions in C2(B1) ∩ C(B̄1). Suppose that u ∈
C2(B1) ∩ C(B̄1) is a positive solution of (1.1). For this case, by the equation and
f(t) = tp is convex in t, we also can obtain

(rN ũ′(r))′ < 0 and − (rN−1ũ′)′ � (1 − r)αrN−1ũp in (0, 1). (3.7)

So we obtain rN−1ũ′(r) → m ∈ [−∞,+∞) as (r → 1). Ifm < 0 holds, by the similar
argument in the proof of theorem 1.2 there exist r∗ > 0, m∗ > 0 and m1 � 0 such
that

ũ(r) → m1 (r → 1) and ũ′(r) < −m∗ in (r∗, 1).

Therefore, we can choose a small constant ε > 0 such that ũ(r)p � ε in (r∗, 1). By
integral for the second inequality in (3.7), it follows that

ũ(r) − ũ(r∗) � −εrN−1
∗

∫ r

r∗

(∫ r

r∗
(1 − τ)α

)
dt.

By α � −2, letting r → 1, we can derive a contradiction. If m � 0 holds, then there
holds ũ′(r) > 0 in (0, 1). Since u ∈ C(B̄1) is a positive function, ũ(r)p � m0 for all
r ∈ (0, 1), where m0 is a positive constant. For any fixed r1 ∈ (0, 1), we obtain that
for r ∈ (r1, 1)

ũ′(r1) � m0

∫ r

r1

(1 − τ)α dτ.

In view of α � −2, letting r → 1, we can see a contradiction.

Remark 3.6. When p = 1, there exists a unique α > −2 such that (1.2) has a
positive solution. In fact, let λ1(n, α) be the first eigenvalue of{−Δφ = λ(1 − |x|)αφ, x ∈ B1−(1/n)(0),

φ = 0, |x| = 1 − 1
n
.

It is well-known that limn→∞ λ1(n,−2) = 1
4 and λ1(n, 0) > 5 for sufficiently large

n (refer to [9]). By the continuity property and monotone property of the first
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eigenvalue for weigh functions, we can choose γ > −2 satisfying 1 > λ1(n, γ) > 1
2 for

large n, and hence there exists a unique αn ∈ (γ, 0) such that λ1(n, αn) = 1. Clearly,
{αn} is an increasing sequence in n. Then it is clear that α̃ := limn→∞ αn ∈ (γ, 0).
By the regularity of elliptic equations, for the case α = α̃, (1.2) with p = 1 has
positive solutions.

Finally, we prove the existence and uniqueness of positive solutions of (1.8).

Proof of theorem 1.6. Step 1 We show the existence of positive solutions of (1.2)
for the conclusion (i). Denote the first eigenfunction and eigenvalue by φ1 and
λ1(B1) of

−Δφ = λφ in B1, φ = 0 on ∂B1.

Define u = mφβ
1 , where β = (2 + α)/(1 − p). Clearly, we can choose c1, c2 > 0 such

that

c1φ1(x) � 1 − |x| � c2φ1(x) in B1(0).

When m is a small positive constant, we obtain

− Δu− (1 − |x|)αup

= −mβφβ−1
1 Δφ1 −mβ(β − 1)φβ−2

1 |∇φ1|2 − (1 − |x|)αmpφpβ
1

� mβλ1(B1)φ
β
1 −mβ(β − 1)φβ−2

1 |∇φ1|2 − cαmpφpβ+α
1

= mβφβ−2
1

[
λ1(B1)φ2

1 − (β − 1)|∇φ1|2 − cαmp−1

β

]
in B1(0),

where c is a positive constant. According to p− 1 < 0, β > 0, it holds that

−Δu− (1 − |x|)αup � 0 in B1(0).

In addition, let ū = Kφρ
1, where K > 0 and ρ > 0 are constants. We can take large

M > 0 and 0 < ρ � min{1, ((2 + α)/(1 − p))}, then by a similar calculation we have

− Δū− (1 − |x|)αūp

� Kρλ1(B1)φ
ρ
1 −mρ(ρ− 1)φrho−2

1 |∇φ1|2 − CαKpφpρ+α
1

= Kρφρ−2
1

[
λ1(B1)φ2

1 − (ρ− 1)|∇φ1|2 − CαKp−1

ρ

]
in B1(0).

So, for sufficiently large K, it follows that

−Δū− (1 − |x|)αūp � 0 in B1(0).

By the supersolution and subsolution method, and together with the regularity of
elliptic equations, (1.2) has a positive solution in C2(B1) ∩ C(B̄1).

Step 2 Prove the uniqueness of positive solution of (1.2) with p < 0 and α > −2.
By the estimate of positive solutions, there exists a constant c∗ > 0 such that for
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any positive solution u of (1.2)

u(x) � c∗φ
(2+α)/(1−p)
1 for all x ∈ B1(0).

When we take a small positive constant m satisfying m < c∗ in the step 1, then
there is a minimal positive solution v∗ in [mφβ

1 ,Kφ
ρ
1]. Suppose that v is any positive

solution of (1.2). Then we have v(x) � mφβ
1 . Therefore, min{v,Kφρ

1} is a superso-
lution of (1.2) and mφβ

1 � min{v,Kφρ
1}. So, it follows that v∗ � min{v,Kφρ

1}, and
hence we obtain v∗ � v. This implies that v∗ is a minimal positive solution. For the
uniqueness, we need to show v∗ = v. If it is not true, there exists x0 ∈ B1(0) such
that

v∗(x0) − v(x0) = min{v∗(x) − v(x) : x ∈ B1(0)} < 0.

In view of p < 0, we see

0 � −Δ(v∗ − v)(x0) = (1 − |x0|)α(v∗(x0)p − v(x0)p) > 0.

This is a contradiction.
Step 3 Prove the existence of positive solution of (1.8). Take a positive constant

δ > 0 and 1 < q < (N + 2)/(N − 2). Then the problem

−Δu = uq in B1+δ(0), u = 0 on ∂B1+δ(0)

has a positive solution, and denote it by uδ. We can choose a sufficiently large
M > 0 such that ū := Muδ satisfies

−Δū = Muq
δ � (1 − |x|)α(Muδ)p = (1 − |x|)αūp in B1,

ū(x) � u(x) in B1 and ū(x) � ψ(x) on ∂B1.

Then by the supersolution and subsolution method and the standard arguments,
there exists a minimal positive solution u∗ and a maximal positive solution u∗ of
the interval [mφβ

1 ,Muδ].
Step 4 We show the uniqueness of the positive solutions for the case α � 0 and

p ∈ (0, 1). Suppose that v is an arbitrary positive solution of (1.1). From theorem 3.3
it follows that there is a positive constant C such that

v(x) � C(1 − |x|)β in B1.

Without loss of generality, we assume m > 0 satisfying

mφ1(x)β � C(1 − |x|)β in B1(0).

So, we obtain that mφβ
1 and min{v, ū} are a pair of subsolution and supersolution

of (1.1). Therefore, we have

u∗(x) � v(x) in B1(0).

By the arbitrariness of v, u∗ is the minimal positive solution of (1.8).
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Next we show that v = u∗. For the given solution v, we can take a suitable large
M > 0 such that

Muδ(x) � v(x) in B1(0).

So we have

u∗(x) � v(x) � u∗(x) in B1(0).

By α � 0 and the regularity, u∗ and u∗ belong to C1(B̄1) ∩ C2(B1). For our aim,
it is sufficient to show u∗ = u∗. Suppose that this conclusion is false. From the
equation it follows that{−Δ(u∗ − u∗) = (1 − |x|)α[up

∗ − (u∗)p], x ∈ B1(0),
u∗ − u∗ = 0, |x| = 1.

Since u∗ � u∗ and u∗ �≡ u∗, in view of the strong maximum principle, we have

u∗(x) > u∗(x) in B1.

By Hopf’s Lemma, we see

∂(u∗ − u∗)
∂ν

< 0 on ∂B1(0),

where ν is the exterior unit normal on ∂B1(0). Multiplying the equation which u∗
satisfies by u∗ and multiplying the equation which u∗ satisfies by u∗, respectively,
and then integrating by parts the resulting identities over B1(0) , we have that∫

∂B1

ψ

[
∂u∗

∂ν
− ∂u∗

∂ν

]
=
∫

B1

(1 − |x|)αu∗u∗
[
up−1
∗ − (u∗)p−1

]
.

From the sign of the two side, we can see a contradiction. Therefore, we deduce the
uniqueness. �

Remark 3.7.

(a) In this paper, we assume always N � 3. For the case N = 2, some estimate
of positive solutions similar to lemma 2.1 should be established, which may
be a challenge.

(b) With respect to theorem 1.2 part (i), we conjecture that (1.1) has no positive
solutions when p > 1 and α � −2, but we have not known how to prove it up
to now.

(c) For the case α ∈ R, p � (N + 2)/(N − 2) and N � 3, we have still made no
progress.

(d) When domain Ω is a ball, this paper has revealed some interesting conclusions.
For a general bounded smooth domain Ω, we guess that the corresponding
conclusions should be also valid in which some new methods are perhaps
developed.
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