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(e-mail: snoha@fpv.umb.sk)
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Abstract. Let M2 be a compact connected two-dimensional manifold, with or without
boundary, and let f :M2

→M2 be a continuous map. We prove that if M ⊆M2 is a
minimal set of the dynamical system (M2, f ) then either M =M2 or M is a nowhere
dense subset of M2. Moreover, we add a shorter proof of the recent result of Blokh,
Oversteegen and Tymchatyn, that in the former caseM2 is a torus or a Klein bottle.

1. Introduction
A compact metric space X with a continuous map f : X → X can be viewed as a
dynamical system in which the orbit of a point x ∈ X is defined to be the set Orb f (x) =

{x, f (x), f 2(x), . . .}. The most fundamental dynamical systems are the minimal ones.
These are systems which have no non-trivial subsystems. More precisely, a system (X, f )

is called minimal if there is no proper subset M ⊆ X which is non-empty, closed and
f -invariant (i.e. f (M) ⊆ M). In such a case we also say that the map f itself is minimal.
Clearly, a system (X, f ) is minimal if and only if the orbit of every point x ∈ X is dense
in X . The classification, i.e. the full topological characterization, of compact metric spaces
admitting minimal maps is a well-known open problem in topological dynamics. As a
trivial example of a space which does not admit any minimal map let us mention any non-
degenerate space with fixed/periodic point property. Probably the best-known examples of
minimal systems are periodic orbits, irrational rotations on the tori and odometers (adding
machines) on the Cantor set. For topological properties of minimal maps see [15], and for
a survey on spaces admitting/not admitting minimal maps see [5]. For the special case of
minimal maps on two-dimensional manifolds see [3].
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Usually a dynamical system is not minimal. However, the basic and well-known fact
due to Birkhoff is that any compact dynamical system (X, f ) has minimal subsystems
(M, f |M ). Such (closed) sets M are called minimal sets of f or, more precisely, of (X, f ).

The problem of understanding the behaviour of all points of a given system under
forward iteration and, in particular, finding all minimal sets of the system is central in
topological dynamics. It seems that Dowker [7] was the first to study the topological
structure of minimal sets (of homeomorphisms). Since then it has been a topic of constant
interest. Much is known in this direction on spaces with dimension at most one. It is
folklore that if X is a compact zero-dimensional space, f : X → X is continuous and
M ⊆ X is its minimal set, then M is either a finite set (a periodic orbit of f ) or a
Cantor set. This is in fact a characterization, because also conversely, whenever M ⊆ X
is a finite or a Cantor set then there is a continuous map f : X → X such that M is a
minimal set of f . Among one-dimensional spaces, the characterization of minimal sets is
known for graphs (i.e. for one-dimensional compact connected polyhedra)—minimal sets
on graphs are characterized as finite sets, Cantor sets and unions of finitely many pairwise
disjoint simple closed curves, see [2] or [18]. On dendrites (i.e. on locally connected
continua which contain no simple closed curve) the problem is very difficult and the full
characterization of minimal sets has been found just recently, see [1].

However, with the exception of maps of zero- and some one-dimensional spaces, the
dynamics of arbitrary continuous maps has not been extensively studied. This is quite
understandable because continuity puts little restriction on maps of spaces of dimension
higher than one. Therefore any substantial study of continuous maps of higher dimensional
spaces requires some restriction. In topological dynamics such a restriction is usually the
assumption that the map is a homeomorphism. For instance the study of minimal sets is
then much easier. In fact, if (X, h) is a dynamical system and h is a homeomorphism,
then the boundary of a minimal set M is h-invariant (and closed), hence is equal to the
set M or is empty. Thus, a minimal set of a homeomorphism either has empty interior
(i.e. it is nowhere dense in X ) or it is a clopen subset of X . Consequently, if X is
connected, then the homeomorphism h has only nowhere dense minimal sets, with one
possible exception when the whole space X is minimal for h. It is well known that
among the compact connected two-dimensional manifolds the latter case may happen only
on the torus and the Klein bottle. (Any homeomorphism on a compact manifold with
non-zero Euler characteristic has a periodic point, hence only the torus and the Klein
bottle need to be checked; the case of the torus is trivial; for an example of a minimal
homeomorphism on the Klein bottle see [8, 21].) By a two-dimensional manifold or, in
short, by a 2-manifold we mean a separable metric space such that every one of its points
has a neighbourhood homeomorphic either to the (two-dimensional) Euclidean plane or to
the closed half-plane. Thus, by manifolds we mean both manifolds without boundary and
manifolds with boundary. If we consider just one of these two kinds of manifolds we will
always state it explicitly.

Until relatively recently it was not known whether there exist minimal maps on
2-manifolds which are not homeomorphisms. The first examples of non-invertible minimal
maps on the torus were found in [15] (where ideas from [22] were developed), while such
examples on the Klein bottle are not available in the literature as far as we know.
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Then a natural question appeared whether some other 2-manifolds, different from the
torus and the Klein bottle, also admit minimal (not necessarily invertible) maps. Blokh et al
in [3] proved that in fact among compact connected 2-manifolds there are no other spaces
admitting minimal maps. This can be reformulated by saying that on compact connected
2-manifolds the whole manifold is a minimal set for an appropriate continuous map if and
only if it is a torus or a Klein bottle. No other non-trivial result on minimal sets on 2-
manifolds has been discovered so far. Our paper brings a new one. We have proved the
following theorem.

THEOREM A. LetM2 be a compact connected two-dimensional manifold, with or without
boundary, and let f :M2

→M2 be a continuous map. If M ⊆M2 is a minimal set of the
dynamical system (M2, f ) then either M =M2 or M is nowhere dense inM2.

While we had been trying to prove this theorem, the paper [3] appeared where Blokh,
Oversteegen and Tymchatyn proved the result (already mentioned above Theorem A) that
if M =M2 thenM2 is a 2-torus or a Klein bottle. They in fact proved slightly more.

THEOREM B. [3] Suppose that f :M2
→M2 is a minimal map of a 2-manifold

(compact or not, with or without boundary). Then f is a monotone map with tree-like
point inverses and M2 is either a finite union of tori or a finite union of Klein bottles
which are cyclically permuted by f .

We state this result as a theorem, because our methods developed in the present paper,
together with some ideas from [3], enabled us to find a new, shorter proof of it (see §4).
Though [3] was an inspiration for us, neither our proof of Theorem A nor that of Theorem B
uses the results of [3].

We wish to emphasize that to find a full topological characterization of minimal sets
on compact, connected 2-manifolds is a very difficult task. Of course, some examples of
‘strange’ minimal sets of continuous maps on 2-manifolds are scattered in the literature
(e.g. the Sierpinski curve on the 2-torus, see [5]) and one can also think of embedding
known one-dimensional minimal systems into a 2-manifold. But all this is far from giving
a characterization. To illustrate the problems we encounter here, notice that though non-
degenerate sets with fixed point property are trivially non-minimal (a fact which could
be useful when trying to characterize minimal sets), we are in fact unable to describe all
such sets on 2-manifolds—recall at least the long-standing open problem in the continuum
theory whether each non-separating plane continuum has the fixed point property, see
[9, pp. 299 and 404]. We believe that the following weaker version of this problem,
suggested by Auslander, could be interesting for both topologists and dynamists.

CONJECTURE. No non-degenerate non-separating plane continuum admits a minimal
map.

In the present paper we study minimal sets on compact, connected 2-manifolds. Notice
that on compact disconnected 2-manifolds one can have a minimal set which, though being
different from the whole manifold, has non-empty interior. Consider for instance a disjoint
union of two 2-tori, with an irrational rotation on one of them (so, this torus is a minimal
set) and the identity on the other one.
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It would be interesting to study minimal maps on non-compact connected 2-manifolds.
Note that such a whole manifold is never a minimal set. To see this, recall Gottschalk’s
classical result [13] saying that a metric space which is locally compact but not compact
does not admit any minimal map (in particular, this applies to non-compact manifolds).
However, let us mention that it may be highly non-trivial to check whether such a space
admits a homeomorphism with all full orbits dense. (By a full orbit of a point x under
a homeomorphism h we mean the set {hn(x) : n ∈ Z}, i.e. the union of the forward and
the backward orbits of x .) The difficulties appear due to non-compactness—recall that if
a homeomorphism in a compact metric space has all full orbits dense that it also has all
forward orbits dense, see [13]. The most famous result in this direction is that from [17]
saying that a two-dimensional sphere with finitely many points removed does not admit
any homeomorphism with all full orbits dense. For examples of (necessarily non-compact)
metric spaces admitting homeomorphisms with all full orbits dense but not admitting
minimal maps, see [5].

Since on manifolds a general theorem by Fathi and Herman [11] ties the existence of
minimal diffeomorphisms to the existence of locally free diffeomorphisms, we in particular
know that for instance all the odd-dimensional spheres admit minimal diffeomorphisms.
We find the following problem challenging.

Problem. Prove or disprove that, for n ≥ 3, on compact connected n-dimensional
manifolds proper minimal sets with non-empty interior exist.

The paper is organized as follows. In §2 we recall some key facts and notions we will
use in the proofs. We also introduce some terminology. In §3 we prove auxiliary technical
results on continuous endomorphisms of 2-manifolds without boundary. Finally, in §4 we
prove Theorems A and B.

2. Preliminaries from topology and topological dynamics
The topological terminology used in the paper is mostly that from [24]; see also [6, 9, 16,
20]. We are going to recall here some less well-known definitions and to fix some standing
assumptions and some ad hoc terminology and notation. We assume that all spaces under
consideration are compact metric (though some of the definitions and results we are going
to recall work in more general spaces, see [24]).

2.1. Monotone-light decomposition. A continuum is a compact connected set. A
continuous map g : X → Y is light if, for each y ∈ Y , f −1(y) is totally disconnected. A
continuous map m : X → Y is monotone if, for each y ∈ Y , the set m−1(y) is a continuum
(we may equivalently ask that m−1(y) be connected since X and Y are compact metric
spaces). We will strongly use the fact that if f : X → Y is a continuous map of compact
metric spaces then there exist a compact metric space Z , a monotone map m : X → Z
and a light map g : Z → Y such that f = g ◦ m (so called monotone-light factorization or
decomposition, see [24, 4.1, p. 141] or [20, Theorem 13.3]).

2.2. Order of a point, and cyclic elements. For a subset Y of a space X , we denote the
boundary of Y by Bd Y . We denote by ord(p, X) the order of a point p in a continuum X
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(in the sense of Menger-Urysohn, see [16, §51, I, p. 274]). It is defined as follows. Let n

stand for a cardinal number. We write ord(p, X) ≤ n provided that, for every open set U
containing p, there exists an open set V such that p ∈ V ⊆ U and card Bd V ≤ n. We
write ord(p, X) = n provided that ord(p, X) ≤ n and for each cardinal number m < n the
condition ord(p, X) ≤ m does not hold. Points of order 1 in a continuum X are called end
points and points of order at least 3 are called ramification points of X (notice that when a
ramification point p has a neighbourhood which is a dendrite then the space really locally
‘ramifies’ in p). We will use the notation E(X) and R(X) for the set of all end points and
ramification points of X , respectively.

A point p of a set M separates M between some two points a and b of the component
C of M containing p if M \ {p} = Ma ∪ Mb where Ma and Mb are mutually separated
(i.e. are disjoint and both open) and contain a and b, respectively. If M is a connected set
then p ∈ M is called a cut point of M if M \ {p} is not connected.

Let X be a locally connected continuum. Two points a, b ∈ X are called conjugate
provided no point separates a and b in X . If a point p ∈ X is neither a cut point nor an end
point of X , there exists a point of X other than p which is conjugate to p—in such a case the
set consisting of p together with all points of X conjugate to p is called a simple link of X .
An equivalent definition is that a simple link is a non-degenerate subcontinuum which is
maximal with respect to the property of containing no cut point of itself. The cut points
and end points of X are called degenerate cyclic elements and the simple links are called
true cyclic elements of X . True cyclic elements of X are identical with maximal cyclic
subsets of X , i.e. with non-degenerate maximal (with respect to the inclusion) cyclically
connected subsets of X (a set C is called cyclically connected provided every two points
of C lie together on some simple closed curve in C). Hence every simple closed curve is a
subset of a true cyclic element. Every point of X belongs to at least one cyclic element—
in fact every point is either a degenerate cyclic element or a point of a single true cyclic
element of X . Any two different true cyclic elements can intersect in at most one point
and in such a case this point is a cut point of X . There are only countably many true cyclic
elements in X and if there are infinitely many of them then their diameters go to zero, i.e.
the true cyclic elements of a locally connected continuum form a so-called null family of
sets, see [24, 4.2, p. 71] or [16, Theorem 9, p. 315].

2.3. Dendrites, cactoids and generalized cactoids. Recall that dendrites are locally
connected continua which contain no simple closed curve. We will use the facts that every
dendrite has the fixed point property and every subcontinuum of a dendrite is a dendrite.
Note that, by [20, Theorem 10.7], a non-degenerate continuum X is a dendrite if and only
if each point of X is either a cut point of X or an end point of X . A continuum having the
property that all of its points have a neighbourhood whose closure is a dendrite is called a
local dendrite. Equivalently, a local dendrite is a locally connected continuum containing
only finitely many simple closed curves (see [16, Theorem 4, p. 303]). For more properties
of dendrites and local dendrites see [16, 20, 24].

If every true cyclic element of a locally connected continuum X is a 2-sphere then X
is called a cactoid. We emphasize that any dendrite is a cactoid, since it has no
true cyclic element. Any cactoid which is not a dendrite is homeomorphic with the
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boundary of a bounded connected open set in R3 and any dendrite is embeddable in R2,
see [24, pp. 76–77]. So, cactoids are metrizable (in [19] a cactoid is already defined as a
subspace of R3). By Moore’s theorem [19], cactoids are characterized as those compact
metric spaces which can be obtained as a quotient space S2/D, where S2 is the 2-sphere
and D is an upper semicontinuous (usc) decomposition of S2 into continua. Equivalently,
cactoids may be characterized as those compact metric spaces which are monotone images
of the 2-sphere, see [24, 2.2, p. 171 and 3.3, p. 175]. In fact, for compact metric spaces, usc
decompositions into continua are equivalent to monotone maps, see [24, 4.1, p. 127]—in
particular, for a monotone map from S2 onto a compact metric space, the family of the
preimages of points forms a usc decomposition of S2 into continua; and conversely, for
every usc decomposition D of S2 into continua, the map sending any point from S2 into
the element of S2/D containing that point is monotone, the preimages of points being just
the elements of D.

If every true cyclic element of a locally connected continuum X is a (compact
connected) 2-manifold without boundary and only a finite number of these are different
from a 2-sphere then X is called a generalized cactoid. Any cactoid is a generalized
cactoid. Every generalized cactoid is a monotone image of a compact connected two-
dimensional manifold without boundary, see [23] (the converse is not true—such an image
may be slightly more complicated, see below).

2.4. Monotone images of 2-manifolds, and tree-like continua. The following classical
result (see [23, Corollary]) plays a key role in the present paper.

THEOREM 1. (Roberts and Steenrod [23]) The family of compact metric spaces which are
monotone images of compact connected two-dimensional manifolds without boundary is
composed of just those spaces each of which can be obtained from a generalized cactoid
by performing, consecutively, finitely many (possibly zero) times the operation of the
identification of just two points.

Definition 2. Let a compact metric space K be a monotone image of a compact connected
2-manifold M2 without boundary, i.e. K = γ (G) where G is a generalized cactoid and γ

just makes identifications within a finite subset of G (and is the identity elsewhere). The
γ -images of true cyclic elements of G are said to be true atoms of K . A point z ∈ K is
said to be a dendritic point, if z has an open neighbourhood whose closure is a dendrite.
The set of all dendritic points of K will be denoted by K‡.

Given K , we will always work with a fixed G. (In general it is not determined uniquely;
we emphasize that the notion of a true atom of K does not depend on the choice of G—
in fact, one can see that T is a true atom of K if and only if it is a subset of K which
can be obtained from a compact connected 2-manifold without boundary by finitely many
identifications as in Theorem 1.) Since M2 is a locally connected metric continuum, so
is K . Notice also that the set K‡ is open in K . The true atoms of K obviously form a
null family. Every true atom of K is a cyclically connected subset of a true cyclic element
of K . A true cyclic element of K can contain infinitely many of the true atoms of K .
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LEMMA 3. A point z ∈ K is dendritic if and only if there exists an open neighbourhood
of z disjoint with every true atom of K .

Proof. One implication is trivial. To prove the non-trivial one, let an open neighbourhood
U of z be disjoint with every true atom of K . We may assume that this neighbourhood U
is small enough to have the property that even its closure U does not intersect any true
atom of K . Further, owing to the local connectedness of K we may assume that U is
connected, hence U is connected. Thus U is a continuum which does not contain any
point belonging to the γ -image of a true cyclic element of the generalized cactoid G.
Since all points of G which do not belong to the true cyclic elements of G are cut points or
end points of G, V := γ −1(U ) is a compact set consisting of such points only. Therefore
each component C of V , being a continuum consisting of cut points and end points (of G
and hence also of C), is a dendrite. Thus the continuum U is obtained from a family of
pairwise disjoint dendrites by making finitely many identifications. Hence this family of
dendrites is finite, which implies that U is a local dendrite. Then the point z ∈ U ⊆ U has a
neighbourhood (in the topology of K ) whose closure is a dendrite. Hence z is dendritic. 2

We will need to know when the monotone image of a compact connected 2-manifold
without boundary is homeomorphic to the original manifold. Roberts and Steenrod
answered this question in [23, Theorems 1 and 4].

THEOREM 4. (Roberts and Steenrod [23]) Let M2 be a compact connected 2-manifold
without boundary and let G be a usc decomposition of M2 into continua. For g ∈ G,
let R(g) denote the mod 2 one-dimensional Betti number of the set g. Then the following
are equivalent:
(a) the quotient spaceM2/G is homeomorphic toM2; and
(b) G contains at least two elements and R(g) = 0 for each g ∈ G.

In the terminology from [6] and [9], a compact subset C of a space X is a cell-like
set in X if for each neighbourhood U of C the inclusion iU : C → U is homotopic to
a constant. Cell-likeness is equivalent to having trivial shape, i.e. the shape of a point.
Recall that a continuum has trivial shape if it is the intersection of a decreasing sequence of
compact absolute retracts. A subset K of an n-manifold without boundaryMn is a cellular
set provided there exists a sequence of n-cells C1, C2, . . . in Mn such that Int Ci ⊃ Ci+1

and K =
⋂

i Ci . Since the n-cells, being homeomorphic images of closed n-discs, are
compact absolute retracts, each cellular subset of Mn is cell-like. The converse holds for
n = 2 but not for n ≥ 3. For at most one-dimensional metric compacta, being cell-like
is equivalent to being tree-like. A continuum is tree-like if it is the inverse limit of an
inverse sequence of trees. An equivalent definition is that it is an at most one-dimensional
continuum of trivial shape.

Using these facts, one can slightly reformulate a lemma due to Roberts and Steenrod as
follows.

LEMMA 5. (Roberts and Steenrod [23]) Let M2 be a compact 2-manifold without
boundary and g be a continuum on M2 with zero mod 2 one-dimensional Betti number.
Then g is cell-like (hence tree-like provided it is at most one-dimensional).
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2.5. Almost one-to-one maps. Recall that a map f : X → Y is called quasi-interior (or
feebly open or almost open) if, for every non-empty open set U in X , the interior of f (U )

is non-empty. For a map f : X → Y denote by D f the set of points x ∈ X such that
f −1( f (x)) = x and by R f the set of points y ∈ Y such that the set f −1(y) is a singleton.
Clearly f (D f ) = R f and f −1(R f ) = D f . A map f : X → Y of compact metric spaces is
called almost one-to-one if the set D f is dense in X or, equivalently (see [4, Lemma 2.7]),
if R f is dense in f (X) and f is quasi-interior as a map from X to f (X).

One of the main ingredients of our proofs will be the following theorem.

THEOREM 6. (Blokh et al [4]) Suppose that f : M → N is a light and almost one-to-one
map from an n-manifold M into a connected n-manifold N. Then f |M\∂ M : M \ ∂ M → N
is an embedding. In particular, if M is a closed manifold, then f is a homeomorphism.

Here ∂ M denotes the (manifold) boundary of the manifold M and a closed manifold
means a compact, connected manifold without boundary.

2.6. Facts from topological dynamics. We will repeatedly use the fact that, by
[15, Theorems 2.4 and 2.7], every minimal map in a compact metric space is quasi-interior
and almost one-to-one.

A system (X, f ) is totally minimal if (X, f n) is minimal for all n = 1, 2, . . . (here f n

is the nth iterate of f ). Minimality of f on a connected space implies its total minimality,
see [25, Theorem 3.1].

Suppose that f : X → X is a continuous map of compact metric spaces. Then f is
minimal if and only if no proper, closed non-empty subset A of X is such that f (A) ⊇ A
(see for instance [3, Lemma 3.10]).

3. Continuous endomorphisms of compact connected 2-manifolds without boundary
In this section we adopt the following hypotheses and notation.

Standing hypotheses and notation for §3. Throughout the section, M2 denotes a
compact connected two-dimensional manifold without boundary and f :M2

→M2 is
a continuous selfmap of M2; f = g ◦ m denotes the monotone-light factorization of f .
Thus the monotone image K = m(M2) ofM2 is a space which can be written in the form
K = γ (G) where G is a generalized cactoid and γ just makes identifications within a finite
subset of G. Recall that the γ -images of true cyclic elements of G are said to be true atoms
of K . Next, M ⊆M2 will denote a minimal set of the dynamical system (M2, f ).

Since f |M : M → M is an almost one-to-one map (see §§2.5 and 2.6), both m|M : M →

m(M) and g|m(M) : m(M) → M are also continuous almost one-to-one maps. (Observe
that while g|m(M) is light, m|M need not be monotone and therefore f |M = g|m(M) ◦ m|M

is not the monotone-light factorization of f |M in general.)

LEMMA 7. Let M be a connected minimal set of the dynamical system (M2, f ). Let
O ⊆ M be an open set in M2 (hence open in M) such that m(O) is open and connected
in K = m(M2). Then m(O) is not a dendrite.

https://doi.org/10.1017/S0143385707000740 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000740


Minimal sets on 2-manifolds 871

Proof. Suppose on the contrary that m(O) is a dendrite. The set m(O) is connected and so
the usual notion of an end point applies to it. Since this set is open, from the definition of
an end point it follows that each end point of m(O) is also an end point of K . The same is
true for every ramification point of m(O). We distinguish two cases:

Case 1. The set m(O) has no end point. Since m(O) is a subset of the dendrite m(O),
we can find an ordinary point z in m(O) (that is ord(z, K ) = 2). Owing to the local
connectedness of m(O), such z cannot be an accumulation point for R(K ) (otherwise
the open set m(O) would contain an end point, a contradiction). Hence, we can find an
open connected subset 3 ⊆ m(O) which is disjoint withR(K ) ∪ E(K ). Since every point
of 3 is ordinary, 3 = (a, b) is an open arc in K (see [16, Theorem 5, p. 293]).

However, we are going to show that the existence of such 3 contradicts the fact that
m|M is an almost one-to-one map. Indeed, fix a closed disc B ⊆O with m(B) ⊆ (a, b).
The set m(B) is closed, connected and, by minimality of f |M , not a singleton. Thus there
are points α 6= β in (a, b) with m(B) = [α, β]. Choose preimages xα, xβ ∈ B of α, β and
fix any x ∈ B, x 6= xα, xβ . If m(x) = α or β then x /∈ Dm|M (in the notation from §2.5).
Otherwise choose a simple closed curve 0 ⊆ B passing through xα, xβ and x . Since m(0)

covers (at least) twice the interval [α, β], again x /∈ Dm|M . Hence Dm|M is not dense in M
which contradicts the fact that m|M is almost one-to-one.

Case 2. The set m(O) has at least one end point. Choose some z ∈ E(m(O)) = E(K ) ∩

m(O). Then, owing to the local connectedness of m(O) and by the definition of the end
points, we can find a sufficiently small open connected neighbourhood U ⊆ m(O) of z
such that card BdK U = 1, that is BdK U = {w} for some w ∈ K . Let X := U = U ∪ {w}.
Then X is a connected subset of the dendrite m(O) (notice that, by the boundary bumping
theorem [20, Theorem 5.4], the closure U would be connected even if U were not
assumed to be connected) and therefore X itself is a dendrite. Next, the minimality of
f |M = g ◦ m|M : M → M implies the minimality of h := m ◦ g|m(M) : m(M) → m(M)

and so h j (w) ∈ U for some positive integer j . Now, since M is connected, the map
f j

: M → M is minimal. Then h j
: m(M) → m(M) is also minimal, owing to the

semiconjugacy m ◦ f j
= h j

◦ m (or to the connectedness of m(M)). Define a selfmap
p : X → X by p(x) = h j (x) if h j (x) ∈ X and p(x) = w otherwise. We are going to
show that p is continuous. To this end notice that p = ϕ ◦ h j where ϕ : m(M) → X
is defined by ϕ(x) = x if x ∈ X and ϕ(x) = w otherwise. So it is sufficient to show
that ϕ is continuous. Consider the maps ϕ1 : X → X and ϕ2 : m(M) \ U → X defined by
ϕ1(x) = x (the identity) and ϕ2(x) = w (a constant map). Notice that these two maps are
continuous, coincide on the intersection of their domains (which is in fact just the singleton
{w}) and their domains are closed in the domain of ϕ. Since ϕ(x) = ϕ1(x) if x ∈ X and
ϕ(x) = ϕ2(x) if x ∈ m(M) \ U , the continuity of ϕ follows.

Finally, in view of the fixed point property of dendrites, there is c ∈ U = U ∪ {w} such
that p(c) = c. Observe that c 6= w because p(w) ∈ U 63 w. Now, if it were c ∈ U and
h j (c) /∈ U , then it would be p(c) = w 6= c. Therefore we have c ∈ U and h j (c) ∈ U .
This implies that c = p(c) = h j (c) and thus c is a fixed point of h j , a contradiction with
minimality of h j . 2
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LEMMA 8. Let M be a connected minimal set of the dynamical system (M2, f ). Let
two open sets W1, W2 be such that W1 ⊆ W2 ⊆ Int M, both m(W1) and m(W2) are open
in K and m(W1) is connected. Then m(W1) is a connected 2-manifold without boundary
(possibly non-compact).

Proof. First, we claim that:
(i) m(W2) ∩ K‡ = ∅.
Suppose on the contrary that m(W2) contains a dendritic point. Since m(W2) is assumed
to be open and dendrites are locally connected, m(W2) contains an open connected set V
whose closure is a dendrite. Put O := m−1(V ) ∩ W2. Then the set O ⊆ M is open inM2.
Moreover, m(O) = V (use the definition of O and the inclusion m(W2) ⊇ V ). Since V
is open and connected in K and m(O) = V is a dendrite, we have a contradiction with
Lemma 7.

Furthermore, we claim that:
(ii) every compact set A ⊆ m(W2) intersects only a finite number of true atoms of K .
Suppose on the contrary that some A does not satisfy this. Then, by a compactness
argument, there exists a point α ∈ A such that any neighbourhood of α intersects infinitely
many of the true atoms of K . Hence, since m(W2) is open and the true atoms of K form a
null family, there exists an infinite sequence of true atoms of K inside m(W2). In this way,
we have proved the existence of a topological 2-sphere S2

⊆ m(W2) ⊆ m(M) (since K
is obtained from the generalized cactoid G after identifying only a finite number of its
points). In view of Theorem 6, the map g|S2 : S2

→M2 is a homeomorphism (hence a
surjection). This implies, on the one hand, that M = f (M) = g(m(M)) ⊇ g(S2) =M2

(hence M =M2) and, on the other hand, that M2 is a topological 2-sphere. This
contradicts the fact that a 2-sphere does not admit any minimal map (every continuous
selfmap of a 2-sphere has a fixed point or a periodic point of period 2).

Now, take an open set U with m(W1) ⊆ U ⊆ U ⊆ m(W2). By (i) and (ii), U does not
contain any dendritic point of K and intersects only a finite number of true atoms of K ;
denote them by Ai = γ (Gi ), i = 1, . . . , k (here Gi are some of the true cyclic elements
of G, i.e. compact connected 2-manifolds without boundary). Then, by Lemma 3, every
point from U belongs to some of these finitely many true atoms, i.e. U ⊆

⋃k
i=1 γ (Gi ).

In consequence, U can be viewed as an open subset of such a subspace of K which is of
the form 0(

⊔k
i=1 G∗

i ) where
⊔k

i=1 G∗

i is a disjoint sum of compact connected 2-manifolds
without boundary and 0 just makes some identifications within a finite set P of their points
(i.e. for every p ∈ P there exists p′

∈ P , p′
6= p, such that 0(p) = 0(p′)).

Suppose that U contains a point from 0(P). Then U , being open, contains a finite
wedge sum

∨r
j=1 D j of open discs (r ≥ 2). For each of the discs D j , the restriction

g|D j : D j →M2 is an embedding by virtue of Theorem 6. This means that, except for
one point, every point from the non-empty open subset

⋂r
j=1 g(D j ) ⊆ M has at least r

preimages under g in U and hence also at least r preimages under f in M , contradicting
the fact that the quasi-interior surjective map f |M : M → M is almost one-to-one.

Thus we have proved that U ∩ 0(P) = ∅ whence we get that the connected set m(W1) is
a subset of only one of the true atoms A1, . . . , Ak . We may assume that this true atom is
A1 = 0(G∗

1). The set m(W1) ⊆ A1 is closed and disjoint with the finite set 0(P) ∩ A1.
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By removing, if necessary, from A1 a sufficiently small open neighbourhood of the
set 0(P) ∩ A1 we get a compact connected 2-manifold V2 such that m(W1) ⊆ V2

⊆

A1 \ 0(P) (V2 is a manifold with boundary if 0(P) ∩ A1 6= ∅). Since m(W1) is open
in the topology of K , it does not intersect the (possibly empty) boundary of V2. Therefore
m(W1) is a 2-manifold without boundary (possibly non-compact). By the assumption, it is
also connected. 2

As an important consequence of Lemma 8, we get a considerably shorter proof of
Theorem 3.16 and Corollary 3.17 from [3].

COROLLARY 9. [3] Assume that f :M2
→M2 is a minimal map. Then f is monotone

with R( f −1(x)) = 0 whenever x ∈M2, hence f has tree-like point inverses. Moreover,
M2 is either the 2-torus or the Klein bottle.

Proof. Applying Lemma 8 to the situation W1 = W2 = M =M2 we get that K =

m(M2) = m(W1) is a connected (and obviously compact) 2-manifold without boundary.
Therefore, by Theorem 6, g is a homeomorphism. This implies, on the one hand, that
m(M2) is homeomorphic to M2 and, on the other hand, that the family of point inverses
of f coincides with the family of point inverses of m, whence we get that f is monotone.

The point inverses of m form a usc decomposition of M2 into continua (we discussed
this general fact in §2.3). Since f is minimal, their interiors are empty. Thus they are at
most one-dimensional continua. Since m(M2) is homeomorphic to M2, from Theorem 4
we get that R(m−1(z)) = 0 whenever z ∈ m(M2). Equivalently, R( f −1(x)) = 0 whenever
x ∈M2. By Lemma 5, each point inverse of f is tree-like. Therefore, by [6, Theorem 25.1
and Corollary 1A], f can be approximated by homeomorphisms. Now use the fact that
for a given manifold M2 with non-zero Euler characteristic there is r such that every
homeomorphism M2

→M2 has a periodic point with period at most r (see [12] or [14,
Corollary 9]). So, if M2 is neither the 2-torus nor the Klein bottle, then f is a uniform
limit of a sequence (hn)∞n=1 of homeomorphisms such that hn has a periodic point with
period at most r . Then using compactness and passing to a subsequence we get that also f
has a periodic point with period at most r , which contradicts the minimality of f . 2

4. Proofs of Theorems A and B
In this section we still use the standing hypotheses and notation from §3 except for
the assumption that the manifold under consideration has no boundary (we will always
explicitly say what kind of manifolds we have in mind).

We first prove Theorem A for manifolds without boundary.

THEOREM 10. Let M2 be a compact connected 2-manifold without boundary and let
f :M2

→M2 be a continuous map. If M ⊆M2 is a minimal set of the dynamical system
(M2, f ) then either M =M2 or M is nowhere dense inM2.

Proof. Let M 6=M2. We wish to prove that the (closed) set M is nowhere dense. Suppose
on the contrary that Int M 6= ∅. Since we are on a manifold, the assumption Int M 6= ∅

gives that M has a connected component with non-empty interior. Then the minimality
of f |M implies that M has finitely many components which are cyclically permuted
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by f and the restriction of f k to each of them is totally minimal, k being the number
of components. Hence without loss of generality we may assume that the minimal set M is
connected. The set Bd M is a non-empty closed proper subset of M and so the minimality
of M implies that 1 := Bd M \ f (Bd M) 6= ∅ (see §2.6).

Fix q ∈ Bd M \ f (Bd M) and choose two open discs D1 ⊆ D1 ⊆ D2 centred at q and
disjoint with f (Bd M). Fix j ∈ {1, 2}. The set f −1(D j ∩ M) is disjoint with Bd M
and so each of its components is contained either in Int M or in M2

\ M (note that
M2

= Int(M2
\ M) ∪ Int M ∪ Bd M). Since f (M) = M , q has a preimage p ∈ f −1(q)

in Int M . The component C j of f −1(D j ∩ M) containing p is a subset of Int M .
Moreover, C j is open in M2. In fact, if x ∈ C j ⊆ Int M then f (x) ∈ D j ∩ M and there
is an open disc B centred at x such that it holds both B ⊆ Int M and f (B) ⊆ D j . Hence
f (B) ⊆ D j ∩ M . Since x belongs to connected sets C j and B, also C j ∪ B is connected.
Since f (C j ∪ B) ⊆ D j ∩ M , by the definition of C j we have B ⊆ C j . Hence both C1

and C2 are open neighbourhoods of p.
Notice that C1 ⊆ C2 and f (C1) ⊆ D1 ⊆ D2. Hence C1 ⊆ f −1(D2 ∩ M) and since C1 is

connected and intersects the component C2 of the set f −1(D2 ∩ M), it holds that C1 ⊆ C2.
Since for j = 1, 2 the set C j is open (inM2) and is a component of the f -preimage of a

set, it consists of the whole components of f -preimages of points. Therefore, since m just
collapses to points the components of f -preimages of points fromM2, also the set m(C j )

is open (in K ). By Lemma 8, m(C1) is a connected 2-manifold without boundary. In
consequence, by Theorem 6, the light almost one-to-one map g|m(C1) : m(C1) →M2 is an
embedding. Hence, due to the classical invariance of domain theorem, g(m(C1)) = f (C1)

is open in M2. This contradicts the facts that the set f (C1) is a subset of M and contains
the point q ∈ Bd M . 2

Now we present a trick which shows how, when proving our main results, the case of
manifolds with boundary can be converted to the case of manifolds without boundary.

PROPOSITION 11. Let M2 be a compact connected 2-manifold with boundary and f :

M2
→M2 be continuous. Then there exist a compact connected 2-manifold N 2 without

boundary and a continuous map F :N 2
→N 2 such thatM2

⊆N 2 and f = F |M2 . Thus,
(M2, f ) is a subsystem of (N 2, F).

Proof. The boundary of M2 consists of a finite number of simple closed curves
S1, S2, . . . , Sk (denote their union by S). Put M2

1 =M2
× {1} with the topology

coming from M2. Now glue the 2-manifolds M2 and M2
1 along the corresponding

components of their boundary. Namely, define on M2
∪M2

1 the decomposition D whose
elements are the sets {s, (s, 1)} (s ∈ S) and the remaining singletons. Then the quotient
space N 2

:= (M2
∪M2

1)/D is obviously a compact connected 2-manifold N 2 without
boundary containing a homeomorphic copy of M2. We may think of M2 as being a
subset of N 2 if we adopt the convention that to denote the points of N 2 we keep the
notation coming from M2 and M2

1. Thus, M2
⊆N 2 and some points of N 2 are of the

form x where x ∈M2, some are of the form (x, 1) where x ∈M2 and for each s ∈ S,
the points s and (s, 1) are identical. Now define ϕ :N 2

→M2 by ϕ(x) = ϕ(x, 1) = x for
every x ∈M2. This is obviously a continuous map. Then the composition F := f ◦ ϕ is a
continuous map N 2

→N 2 which is an extension of f . 2
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COROLLARY 12. Let M2 be a compact connected 2-manifold with boundary and let
f : M2

→M2 be a continuous map. Then all the minimal sets of the system (M2, f )

are nowhere dense inM2.

Proof. Let A be a minimal set of the system (M2, f ). By Proposition 11 there exists a
compact connected 2-manifoldN 2 without boundary and a continuous map F :N 2

→N 2

such that (M2, f ) is a subsystem of (N 2, F). Since M2 is a proper subset of N 2, A is a
proper minimal set in (N 2, F). By Theorem 10, A ⊆M2 is nowhere dense in N 2. Since
M2

⊆N 2 are 2-manifolds, A is nowhere dense also inM2. 2

Now we easily get our main result. For convenience we repeat its statement here.

THEOREM A. LetM2 be a compact connected two-dimensional manifold, with or without
boundary, and let f :M2

→M2 be a continuous map. If M ⊆M2 is a minimal set of the
dynamical system (M2, f ) then either M =M2 or M is nowhere dense inM2.

Proof. Use Theorem 10 and Corollary 12. 2

Using Corollaries 9 and 12 one can now prove Theorem B in a similar way as in [3].
For completeness we give a proof here.

THEOREM B. [3] Suppose that f :M2
→M2 is a minimal map of a 2-manifold

(compact or not, with or without boundary). Then f is a monotone map with tree-like
point inverses and M2 is either a finite union of tori or a finite union of Klein bottles
which are cyclically permuted by f .

Proof. Non-compact manifolds do not admit minimal maps (see Introduction). So M2

is compact. If it is also connected, Corollary 12 gives that it has no boundary and so
one can apply Corollary 9. Therefore assume that the (compact) manifold M2 is not
connected. Owing to the minimality of f , M2 has finitely many connected components
C1, . . . , Cn which are cyclically permuted by f (a component C j is mapped onto the
next one, C j+1(mod n)). Denote f j = f |C j , j = 1, . . . , n. Fix one of the components C j .
Since f n

|C j : C j → C j is minimal, by Corollary 12 the compact connected 2-manifold
C j has no boundary. Then, by Corollary 9, C j is either a 2-torus or a Klein bottle and
f n

|C j is monotone. Moreover, f −n(x) is tree-like for every x ∈ C j . Therefore, by [6,
Theorem 25.1 and Corollary 1A], f n

|C j can be approximated by homeomorphisms. Since
sufficiently close maps on C j are homotopic (see, e.g., [10, 2.P.24, 3.2.5 and 5.S.2]), we
find that f n

|C j is a homotopy equivalence and induces an isomorphism on homology:
( f n

|C j )∗ : H∗(C j ) → H∗(C j ). Now, from ( f n
|C j )∗ = ( f j+n−1(mod n))∗ ◦ · · · ◦ ( f j )∗ we

get that ( f j )∗ is an injection (monomorphism) and ( f j+n−1(mod n))∗ is a surjection
(epimorphism). Since j is an arbitrary integer (mod n) here, we obtain that ( f j )∗ :

H∗(C j ) → H∗(C j+1(mod n)) is an isomorphism. In consequence, the components C j and
C j+1(mod n) are homeomorphic. Next, notice that the monotonicity of f n proved above
implies the monotonicity of f . In fact, every point inverse f −1(x) = f n−1( f −n(x)), being
a continuous image of a connected set, is connected. The monotonicity of f j implies
(see §2.3) that the family { f −1

j (x) : x ∈ C j+1(mod n)} is a usc decomposition of C j into
continua. Hence, by Theorem 4, for each continuum g in this family we have R(g) = 0.
Therefore, by Lemma 5, f j has tree-like point inverses. 2
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