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Abstract

We prove that the annihilating-ideal graph of a commutative semigroup with unity is, in general, not
weakly perfect. This settles the conjecture of DeMeyer and Schneider [‘The annihilating-ideal graph of
commutative semigroups’, J. Algebra 469 (2017), 402–420]. Further, we prove that the zero-divisor graphs
of semigroups with respect to semiprime ideals are weakly perfect. This enables us to produce a large class
of examples of weakly perfect zero-divisor graphs from a fixed semigroup by choosing different semiprime
ideals.
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1. Introduction

The notion of a zero-divisor graph was introduced by Beck [5] in 1988 to study colour-
ings of commutative rings. He proved that the zero-divisor graphs of reduced rings
are weakly perfect, that is, the chromatic number χ is equal to the clique number ω.
He conjectured that the zero-divisor graphs of commutative rings are weakly perfect.
However, Anderson and Naseer [1] provided a counterexample settling the conjecture
negatively. Anderson and Livingston introduced and studied a modified version of the
zero-divisor graph, which has only nonzero zero-divisors of the ring (see [4]). The
concept of a zero-divisor graph has since then been extended to noncommutative rings
(see [22]), semigroups (see [8, 9]) and partially ordered sets (see [12, 13, 18]).

In ring theory, the structure of a ring R is closely related to the behaviour of ideals.
In the theory of zero-divisor graphs, a natural line of inquiry is to replace elements
of the ring R by ideals. This gives rise to a zero-divisor graph on the set of ideals
of R. This graph was introduced and studied by Behboodi and Rakeei [6, 7] and is
called the annihilating-ideal graph of a commutative ring. Let R be a commutative
ring (semigroup) with unity. The annihilating-ideal graph AG(R) of R is a simple
undirected graph whose vertex set V(AG(R)) is the set of nonzero ideals with nonzero
annihilator. That is, a nonzero ideal I belongs to V(AG(R)) if and only if there exists a
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nonzero ideal J of R such that IJ = (0) and two distinct vertices I and J are adjacent if
and only if IJ = (0). In [7], Behboodi and Rakeei posed the following conjecture about
annihilating-ideal graphs of commutative rings. (It is known [7, Corollary 2.11] that
Conjecture 1.1 is true in the case when R is reduced.)

CONJECTURE 1.1. For every commutative ring R with unity, χ(AG(R)) = ω(AG(R)).

Recently, DeMeyer and Schneider [9, Theorem 22] proved that the annihilating-ideal
graphs of reduced semigroups are weakly perfect and posed an analogue of Conjecture
1.1 for the annihilating-ideal graphs of commutative semigroups.

CONJECTURE 1.2. For every commutative semigroup S, χ(AG(S)) = ω(AG(S)).

In this paper, we prove that the zero-divisor graphs of semigroups with respect to
semiprime ideals are weakly perfect. This result enables us to produce a large class of
examples of weakly perfect zero-divisor graphs from a fixed semigroup with respect
to different semiprime ideals. In particular, if we take (0) to be a semiprime ideal in
a commutative ring (semigroup) S, we obtain the results of Beck [5, Theorem 3.8],
Behboodi and Rakeei [7, Corollary 2.11] and DeMeyer and Schneider [9, Theorem
22]. Also, we settle Conjecture 1.2 negatively for the annihilating-ideal graph of
commutative semigroups by giving an example of an annihilating-ideal graph of a
nonreduced semigroup. Finally, we consider a partial order on a reduced semigroup
and give the relation between the minimal prime ideals of a reduced semigroup S and
the minimal prime ideals of S treated as a poset.

2. Zero-divisor graphs associated to semigroups

Throughout, we assume that S is a commutative semigroup with 0 and 1.
We begin with the necessary definitions and terminology. The vertex set of the

zero-divisor graph G(R) of a commutative ring R with unity is the set of all nonzero
zero-divisors and two vertices x and y are adjacent if xy = 0. Based on this definition,
the result of Beck [5] for reduced commutative rings takes the following form.

THEOREM 2.1. Let R be a reduced commutative ring with unity and let G(R) be its
zero-divisor graph. Then ω(G(R)) = χ(G(R)) = #{minimal prime ideals of R}.

One of our aims is to identify the essential features of this result and adapt it to
semigroups. A noteworthy feature is that the primary decomposition of ideals can
still be achieved for semigroups so far as questions about the colouring of associated
graphs are concerned. Recently, Anderson and Badawi [2] introduced the notion of a
multiplicative prime subset of R. We next recall the notions of ideal, prime ideal and
semiprime ideal in a semigroup.

DEFINITION 2.2. Let S be a semigroup. If a is an element of S, then the smallest ideal
containing a is called the principal ideal generated by a. As in rings, this ideal is
aS = {as | s ∈ S}, the set of multiples of a. The zero ideal will be denoted (0).
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A nonempty subset I of S is called an ideal if sx ∈ I for every x ∈ I and s ∈ S.
A proper ideal I of S is said to be a prime ideal of S if, for ab ∈ I, either a ∈ I or
b ∈ I. For a nonempty subset A ⊆ S, the annihilator of A, denoted ann(A), is given by
ann(A) = {x ∈ S | xa = 0 for all a ∈ A}.

Note that the product, union and intersection of ideals of S will again be an ideal of
S, and that each nonzero ideal must necessarily be composed of a union of principal
ideals. The concept of a semiprime ideal of a commutative ring with unity can be
found in Rav [21].

DEFINITION 2.3. Let S be a semigroup. We say that a proper ideal I of S is semiprime
if a2 ∈ I implies that a ∈ I.

There are many examples of semiprime ideals. Let R be a commutative ring with
unity and let S = R be a semigroup with a multiplication induced by the multiplication
of R.

(1) Every prime ideal is a semiprime ideal.
(2) The union of prime ideals is a semiprime ideal.
(3) Any radical ideal is a semiprime ideal.
(4) The nilradical of R is a semiprime ideal.
(5) The set of zero-divisors Z(R) of R is a semiprime ideal. This can be seen as

follows. It is easy to see that Z(R) is an ideal of the semigroup (R, ·). Now, if
a2 ∈ Z(R), then ∃ x � 0 such that a2x = 0. If ax = 0, then a ∈ Z(R). If ax � 0,
then, as a(ax) = 0, we must have a ∈ Z(R).

(6) If U(R) is the set of units of R, then R \ U(R) is a semiprime ideal.

In [23], Redmond introduced the zero-divisor graph of a commutative ring R with
unity with respect to an ideal I. We consider this definition when I is an ideal of a
semigroup S.

DEFINITION 2.4. Let S be a semigroup and let I be an ideal of S. We associate to the
semigroup S a simple undirected graph GI(S) with the vertex set

V(GI(S)) = {x ∈ S | x � I and xy ∈ I for some y � I}

and two vertices a and b in V(GI(S)) are adjacent if and only if ab ∈ I.

REMARK 2.5. We note that if I = (0), then GI(S) is the usual zero-divisor graph G(S)
associated to the semigroup S. Let R be a commutative ring with unity and let S = R
be the semigroup with respect to the multiplication of R. In this case, if we let I = (0),
then GI(R) is the usual zero-divisor graph of R, denoted G(R).

It is clear that the set of all ideals of S forms a semigroup under the multiplication
of ideals. Hence, if A(S) is the semigroup of all annihilating-ideals of S under the ideal
multiplication, then the annihilating-ideal graph of S is the zero-divisor graph ofA(S).
We denote this graph by AG(S).

With this preparation, we are ready to prove the first main result of the paper.
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THEOREM 2.6. Let I be a semiprime ideal of S. If ω(GI(S)) < ∞, then GI(S) is
a weakly perfect graph. In general, however, GI(S) is not weakly perfect. Thus,
Conjecture 1.2 is not true.

PROOF. Suppose that ω(GI(S)) = n. Then there exists a clique C = {x1, x2, . . . , xn} of
GI(S). Note here that xi � I, as xi ∈ V(GI(S)). We recall the familiar notation (I : x) =
{y ∈ S | xy ∈ I}. Clearly, it is an ideal in S.

Claim 1. (I : xi) � (I : xj) for i � j.
Suppose on the contrary that (I : xi) = (I : xj) with i � j. Since the xi’s form a

clique, we have xixj ∈ I for i � j. Hence, xj ∈ (I : xi) = (I : xj). So, x2
j ∈ I. But, since

I is semiprime, this gives xj ∈ I, which is a contradiction.

Claim 2. (I : xi) is a prime ideal of S for all i.
Clearly, (I : xi) � S for any xi. It is easy to see that (I : xi) is an ideal. We now

show that (I : xi) is a prime ideal of S. On the contrary, suppose that ab ∈ (I : xi) and
a, b � (I : xi). Then axi � I and bxi � I. Hence, axi, bxi ∈ V(GI(S)). Now, consider the
set C′ = {x1, . . . , xi−1, axi, bxi, xi+1, . . . , xn}. We show that C′ is a clique in GI(S) of size
n + 1. To do this, we first show that all the elements of C′ are distinct.

Suppose that axi = bxi. Since ab ∈ (I : xi), we have abxi ∈ I and so abxi = a2xi ∈ I.
Since I is an ideal, a2x2

i ∈ I, that is, (axi)2 ∈ I. Since I is semiprime, this gives axi ∈ I,
contradicting our assumption that a � (I : xi). Thus, axi � bxi.

Next, suppose that axi = xj with i � j. In this case x2
j = axixj ∈ I. As I is semiprime,

this gives xj ∈ I, again a contradiction.
Finally, suppose that axi = xi. In this case, since abxi ∈ I, we have bxi ∈ I, that is,

b ∈ (I : xi), contradicting our initial assumption that b � (I : xi). Hence, axi � xi.
Thus, all the vertices of C′ are distinct, showing that |C′| = n + 1. Clearly, C′ forms

a clique of size n + 1, which is a contradiction since ω(GI(S)) = n. This shows that
(I : xi) is a prime ideal of S for all i.

Claim 3. (I : xi) is minimal among all prime ideals of S containing I.
Suppose on the contrary that Q is any prime ideal of S with I ⊆ Q � (I : xi). Then

there exists y ∈ (I : xi) such that y � Q. But then yxi ∈ I ⊆ Q, so xi ∈ Q � (I : xi), since
Q is prime. So, xi ∈ (I : xi) and hence x2

i ∈ I. Again, since I is semiprime, xi ∈ I, which
is a contradiction. Thus, (I : xi) is minimal, as claimed.

Claim 4. I =
⋂n

i=1(I : xi) and this decomposition is irredundant.
Clearly, I ⊆ (I : xi) for all i and hence I ⊆ ⋂n

i=1(I : xi). To prove the opposite
inclusion, suppose, if possible, that I �

⋂n
i=1(I : xi). Then there exists t ∈ ⋂n

i=1(I : xi)
such that t � I. Hence, txi ∈ I for all i. Consider the set C′′ = {t, x1, x2, . . . , xn}. We
show that C′′ is a clique in GI(S) of size n + 1. In order to show that C′′ is of size
n + 1, it is enough to show that t � xi for any i. So, suppose that t = xi for some i.
Since txi ∈ I for all i, we get x2

i = txi ∈ I. Now, I is semiprime, so xi ∈ I, which is
a contradiction. Hence, t � xi for all i, showing that all elements of C′′ are distinct.
Since txi ∈ I for all i, it is clear that C′′ is indeed a clique of size n + 1, contradicting
ω(GI(S)) = n. Thus, I =

⋂n
i=1(I : xi). To show that this decomposition is irredundant,
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suppose if possible that
⋂n

j=1,j�i(I : xj) ⊆ (I : xi) for some i. Since (I : xi) is prime,
we get (I : xk) ⊆ (I : xi) for some k � i with 1 ≤ k ≤ n. As (I : xi) is minimal, we get
(I : xi) = (I : xk), contradicting Claim 1. Hence, the decomposition is irredundant.

Claim 5. If I has two irredundant decompositions I =
⋂n

i=1(I : xi) =
⋂m

j=1(I : yj), then
n = m and, for any i, (I : xi) = (I : yj) for some j.

Without loss of generality, assume that m < n. For each j ∈ {1, . . . , m}, we have
⋂n

i=1(I : xi) ⊆ (I : yj). As (I : yj) is prime, (I : xkj ) ⊆ (I : yj) for some kj ∈ {1, . . . , n}.
From the minimality of (I : yj), it follows that (I : yj) = (I : xkj ). So, I =

⋂m
j=1(I : yj) =⋂m

j=1(I : xkj ). Since m < n, this contradicts the fact that I =
⋂n

i=1(I : xi) is an irredun-
dant decomposition of I. Hence, m = n and, for any i, (I : xi) = (I : yj) for some j.

Claim 6. χ(GI(S)) = n.
Let us denote (I : xi) by Pi. We, now, consider a vertex colouring (given by Beck

[5]) of GI(S) as follows. For x ∈ V(GI(S)), define f (x) = min{i | x � Pi}. We show
that f is indeed a proper colouring of GI(S), that is, for x adjacent to y, we show
that f (x) � f (y). Take x adjacent to y, that is, x, y � I and xy ∈ I. Since x � I, we
have x � Pi for some i. Let f (x) = k, so that x � Pk and x ∈ Pj for 1 ≤ j ≤ k − 1.
Now, we claim that f (y) � k. Suppose on the contrary that f (y) = k. Then y � Pk =

(I : xk), that is, yxk � I. Also, xxk � I since x � Pk. Thus, xxk, yxk ∈ V(GI(S)). Put
C′′′ = {x1, . . . , xk−1, xxk, yxk, xk+1, . . . , xn}. It is easy to see that C′′′ is a clique of size
n + 1. This contradicts ω(GI(S)) = n and hence f is indeed a proper colouring. Thus,
ω(GI(S)) = χ(GI(S)), showing that GI(S) is a weakly perfect graph.

We, now, present a counterexample to Conjecture 1.2. This example is motivated by
Example 2.5 in Joshi and Sarode [14].

Consider the commutative semigroup S = {0, a, b, c, d, e, f , 1} with multiplication
given by:

(1) f x = 0 for all x ∈ S \ {1};
(2) x2 = f for all x ∈ S \ {0, 1, f };
(3) ab = bc = cd = de = ae = 0 and ac = ad = bd = be = ce = f .

The annihilating-ideals of S are shown in Table 1.
The zero-divisor graph G(S) and the annihilating-ideal graph AG(S) of the semi-

group S are shown in Figure 1. It is easy to verify that

4 = χ(AG(S)) = χ(G(S)) � ω(AG(S)) = ω(G(S)) = 3. �

TABLE 1. Annihilating-ideals of S.

(a) (b) (c) (d) (e) ( f )
(b)
⋃

(e) (a)
⋃

(c) (b)
⋃

(d) (c)
⋃

(e) (a)
⋃

(d)
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FIGURE 1. Neither of the graphs G(S) and AG(S) is weakly perfect.

Clearly, in a reduced semigroup (or ring), the ideal (0) is semiprime. Hence, we
have the following corollaries.

COROLLARY 2.7. If S is a reduced semigroup (or ring), then G(S) is a weakly
perfect graph. Moreover, χ(G(S)) = ω(G(S)) = |Min(S)|, where Min(S) denotes the set
of minimal prime ideals over (0).

COROLLARY 2.8. If I =
⋃n

i=1 Pi, where the Pi are prime ideals, then GI(R) is weakly
perfect.

3. Correspondence for minimal prime ideals

Let S be a reduced semigroup. In this section, we show that there is a one to one
correspondence between minimal prime ideals of S and minimal primes of S treated
as a meet-semilattice. We first state some definitions.

DEFINITION 3.1. Let L be a meet-semilattice. A nonempty subset I ⊆ L is said to
be a semi-ideal if x ≤ y ∈ I implies that x ∈ I. A proper semi-ideal P of L is said
to be prime if a ∧ b ∈ P implies that a ∈ P or b ∈ P. A prime semi-ideal P ⊆ L is
said to be a minimal prime semi-ideal if there does not exist any prime semi-ideal Q
such that Q � P.

It has been a fruitful theme of research to study analogues of the concept of
zero-divisor graphs of other algebraic and ordered structures (see Nimbhorkar et al.
[19], Halas̆ and Jukl [12], Lu and Wu [18] and Joshi [13]).

Let L be a meet-semilattice with 0. Associate with L, a simple undirected graph
Γ(L), the zero-divisor graph of L, whose vertex set is the set

{x ∈ L \ {0} | x ∧ y = 0 for some nonzero y ∈ L}

and two vertices x and y are adjacent if x ∧ y = 0.

https://doi.org/10.1017/S0004972721000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721000265


368 G. S. Kadu, V. Joshi and S. Gonde [7]

On the lines of Beck’s theorem for reduced rings, Lu and Wu [18], Halaš and
Jukl [12] and Joshi [13] essentially proved the following theorem for posets. Recently,
Devhare et al. [10] proved that the complement of the zero-divisor graph Γc(P) of a
poset P is weakly perfect when ω(Γc(P)) < ∞. This gives us a large family of examples
of weakly perfect graphs.

THEOREM 3.2. Let P be a poset with 0 and assume that ω(Γ(P)) < ∞. Then the
number n of all minimal prime semi-ideals of P is finite and χ(Γ(P)) = ω(Γ(P)) = n.

Any meet-semilattice is an idempotent semigroup and, hence, a reduced semigroup
with respect to meet as the binary operation. Hence, choosing I = (0) in Theorem 2.6,
the following result is immediate.

THEOREM 3.3. Let L be a meet-semilattice with 0 and assume that ω(Γ(L)) < ∞. Then
ω(Γ(L)) = χ(Γ(L)).

Going the other way, any reduced semigroup S can be given the structure of a meet
semilattice. To this end, let S be a reduced commutative semigroup with 0 � 1. Define
a relation ≤ such that r ≤ s in S if and only if either ann(s) � ann(r) or r ≤ s in some
predetermined well-order on the set [r] = {x ∈ S | ann(r) = ann(x)}. LaGrange and Roy
[17, Remark 3.4] proved that ≤ is a partial order on S. In fact, it follows from Remark
4.8 of [16] that S is a meet-semilattice. Both the statements of the following theorem
follow from [3, Lemma 3.5(1), (2) and (5)] and [11, Theorem 3.4]. For the sake of
completeness, we provide the proof.

THEOREM 3.4. Let S be a reduced commutative semigroup. Then the following
statements are true.

(i) 〈S;≤〉 is a meet-semilattice.
(ii) For a, b ∈ S, we have ab = 0 if and only if a ∧ b = 0. Therefore, the zero-divisor

graph G(S) of a semigroup S and the zero-divisor graph Γ(S) of S (treated as a
meet-semilattice) are essentially the same, that is, Γ(S) = G(S).

PROOF. (i) From the above discussion, S is a poset. Now, we prove that S is a
meet-semilattice. Let a, b ∈ S. If a and b are comparable, then inf{a, b} exists and we
are done. Assume that a and b are incomparable. Consider the class [ab] determined by
ab and choose the largest element from [ab], say y, with respect to the predetermined
well-order on [ab]. Thus, ab ≤ y and ann(ab) = ann(y). We first observe that ann(a) �
ann(ab) and ann(b) � ann(ab). This can be seen as follows. There are two cases to
rule out, namely if ann(a) = ann(ab) = ann(b) and the case when ann(a) � ann(ab)
and ann(b) = ann(ab). In the first case, we obtain ann(a) = ann(b), showing that a
and b are comparable, a contradiction to the incomparability of a and b. In the
second case, we find that ann(a) � ann(b), contradicting again the incomparability
of a and b. Thus, we have ann(a) � ann(ab) and ann(b) � ann(ab). Hence, ab and y
are lower bounds of {a, b}. Now, let t be any lower bound of {a, b}, that is, t ≤ a, b.
We then have ann(a) ⊆ ann(t) and ann(b) ⊆ ann(t). Again there are two cases to
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consider, namely, when ann(a) = ann(t) = ann(b) and the case when ann(a) = ann(t)
and ann(b) � ann(t) = ann(a). In both the cases we find that a and b are comparable,
violating the incomparability of a and b. Thus, we have ann(a) � ann(t) and ann(b) �
ann(t). Further, we claim that ann(ab) ⊆ ann(t). To see this, let x ∈ ann(ab). Hence,
xab = 0, implying that xa ∈ ann(b) � ann(t). So, xat = 0, that is, xt ∈ ann(a) � ann(t).
Thus, xt2 = 0 and hence (xt)2 = 0. Now, since S is reduced, we get xt = 0, that is,
x ∈ ann(t). This shows that ann(y) = ann(ab) ⊆ ann(t). We, now, claim that a ∧ b = y.
There are two possibilities, namely, ann(ab) = ann(y) = ann(t) and ann(ab) = ann(y) �
ann(t). In the first case, we have y, t ∈ [ab]. Since y is the largest element of [ab], we
get t ≤ y. In the second case, clearly, we have t ≤ y. So, in both the cases, t ≤ y. Hence,
inf{a, b} = y, that is, a ∧ b exists and equals y. Note in particular that, when a and b are
incomparable, ab ≤ a ∧ b. Thus, S is a meet-semilattice.

(ii) Let a, b ∈ S and ab = 0. We show that a ∧ b = 0. To do this, let t be any lower
bound of a and b. Hence, ann(a) ∪ ann(b) ⊆ ann(t). Since ab = 0, we have b ∈ ann(a)
and so b ∈ ann(t). Thus, tb = 0 and so t ∈ ann(b) ⊆ ann(t). This implies that t2 = 0,
giving t = 0. This shows that a ∧ b = 0.

Conversely, we assume that a ∧ b = 0. If a and b are comparable, say a ≤ b, then
in this case a ∧ b = a = 0. This gives ab = 0. If a and b are incomparable, then, by (i)
above, ab ≤ a ∧ b = 0, so ab = 0. �

The following well-known result is due to Kist [15].

LEMMA 3.5. Let S be a reduced semigroup and P be a prime ideal of S. Then P is a
minimal prime ideal if and only if it satisfies the following condition (§).

(§) For any x ∈ P, there exists y � P such that xy = 0.

The following result is a modified version of [20, Theorem 4] by Pawar and Thakare,
which is an analogue of the above result.

LEMMA 3.6. Let L be a meet-semilattice with 0 and let P be a prime semi-ideal. Then
P is a minimal prime semi-ideal if and only if it satisfies the following condition (�).

(�) For any x ∈ P, there exists y � P such that x ∧ y = 0.

With this preparation, we are now ready to prove our main result, which relates
minimal prime ideals of a reduced semigroup S and minimal prime semi-ideals of S
treated as a meet-semilattice.

THEOREM 3.7. Let S be a reduced semigroup with 0 and 1. Let P be a nonempty subset
of S. Then P is a minimal prime ideal of S (treated as a semigroup) if and only if P is
a minimal prime semi-ideal of S (treated as a meet-semilattice under the partial order
given in Lemma 3.4).

PROOF. Let P be a minimal prime ideal of S (treated as a semigroup). First, we prove
that it is a semi-ideal of S treated as a meet-semilattice. Let x ≤ y ∈ P. We claim that
x ∈ P. Since y ∈ P, by Lemma 3.5, there exists z � P such that yz = 0. By Theorem
3.4, we have y ∧ z = 0. Therefore x ∧ z = 0. Again by Theorem 3.4, xz = 0. This gives
x ∈ P. Thus, P is a semi-ideal.
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Next, we prove that P is a prime semi-ideal. Let x ∧ y ∈ P. If x and y are comparable,
say x ≤ y, then x ∧ y = x ∈ P. If x and y are incomparable, then from the proof of
Theorem 3.4(i), xy ≤ x ∧ y ∈ P. Since P is a semi-ideal, we have xy ∈ P. Therefore,
either x ∈ P or y ∈ P, as P is a prime ideal (treated as a semigroup). This proves that
P is a prime semi-ideal of S (treated as a meet-semilattice). Minimality of a prime
semi-ideal P follows from the condition (�) of Lemma 3.6, Lemma 3.5 and Theorem
3.4(ii).

Conversely, let P be a minimal prime semi-ideal of S (treated as a meet-semilattice).
We first show that P is an ideal of a semigroup S. Let a ∈ P and r ∈ S. By the condition
(�) of Lemma 3.6, there exists c1 � P such that a ∧ c1 = 0. This gives ac1 = 0 (by
Theorem 3.4). Hence, (ar)c1 = 0, which yields (ar) ∧ c1 = 0 ∈ P. This gives ar ∈ P.
Hence, P is an ideal of S (treated as a semigroup).

Next, we claim that P is a prime ideal of a semigroup S. Let ab ∈ P. Then, by
the condition (�) of Lemma 3.6, there exists c � P such that ab ∧ c = 0. Hence, by
Theorem 3.4(ii), abc = 0. We, now, claim that if abc = 0, then a ∧ b ∧ c = 0. For
this, let t be a lower bound of {a, b, c}. Then ann(a) ⊆ ann(t), ann(b) ⊆ ann(t) and
ann(c) ⊆ ann(t). Clearly, bc ∈ ann(a) ⊆ ann(t). Hence, bct = 0, which further implies
that ct ∈ ann(b) ⊆ ann(t). Since S is reduced, we have ct = 0. Therefore, t ∈ ann(c) ⊆
ann(t) implies that t2 = 0. Thus, we have t = 0. Thus, a ∧ b ∧ c = 0 ∈ P implies that
a ∧ b ∈ P since c � P. As P is a prime semi-ideal, we have either a ∈ P or b ∈ P. This
proves that P is a prime ideal of a semigroup S. Minimality of the prime ideal P follows
from the condition (§) of Lemma 3.5, Lemma 3.6 and Theorem 3.4(ii). �

Let Min(S) denote the set of all minimal prime ideals of S treated as a semigroup
and Minp

s (S) denote the set of all minimal prime semi-ideals of S treated as a
meet-semilattice. By Theorem 3.4, Γ(S) � G(S). Using Theorem 3.3, Theorem 3.4 and
Theorem 3.7, we have the following result.

THEOREM 3.8. Let S be a reduced commutative semigroup with 0 and 1. Assume that
ω(Γ(S)) < ∞. Then

ω(Γ(S)) = χ(Γ(S)) = ω(G(S)) = χ(G(S)) = |Min(S)| = |Minp
s (S)|.
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