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Abstract. The basic features of obliquely propagating dust-ion-acoustic (DIA) sol-
itary waves, and their multi-dimensional instability in a magnetized multi-ion dusty
plasma containing hot adiabatic inertia-less electrons, cold positive and negative
ions, and negatively charged static dust have been theoretically investigated by the
reductive perturbation method, and the small-k perturbation expansion technique.
The combined effects of electron adiabaticity, external magnetic field (obliqueness),
and negative ions, which are found to significantly modify the basic properties
(speed, amplitude, width, and instability) of small but finite-amplitude DIA solitary
waves, are explicitly examined. It is also found that the instability criterion and
the growth rate are significantly modified by the external magnetic field, the
propagation directions of both the nonlinear waves and their perturbation modes,
and the presence of negative ions. The implications of our results in space and
laboratory dusty plasmas are briefly discussed.

1. Introduction
Dust is ubiquitous in most space and astrophysical plasma systems, such as mo-
lecular clouds, protostellar disks, interstellar and circumstellar clouds, asteroid
zones, planetary atmospheres, interstellar media, cometary tails, nebula, Earth’s
ionosphere, etc. (Geortz 1989; Mendis and Horanyi 1991; Mendis and Rosenberg
1994; Pieper and Goree 1996; Birk et al. 1996; Copp et al. 1997; Shukla et al.
1997, 1999; Rosenberg and Shukla 2002; Kourakis et al. 2005; Vranjes et al. 2005;
Rosenberg and Merlino 2007). Dust particles are not neutral, but are charged
either negatively or positively depending on the ambient plasma environments
(Geortz 1989; Mendis and Rosenberg 1994; Verheest 2000; Shukla and Mamun
2002). Therefore, electrostatic and electromagnetic modes and associated instabilit-
ies in dusty magnetoplasmas have received a remarkable renewed interest because
of their vital role in understanding the dynamics and fragmentation of molecular
clouds, the star formation, the galactic structure and its evolution, the magnetic
reconnection, the spoke formation of Saturn’s rings, etc. (Horanyi and Mendis 1985,
1986; Geortz 1989; Northrop 1992; Mendis and Horanyi 1991; Montmerle 1991;
Ciolek and Mouschovias 1993; Mendis and Rosenberg 1994; Nakano et al. 1996).
It was first theoretically shown (Shukla and Silin 1992) that due to the conser-

vation of equilibrium charge density ne0 + nd0Zd = ni0 , and the strong inequality
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ne0 � ni0 (where ni0 , ne0 , and nd0 are the ion, electron, and dust number densities,
respectively, Zd is the number of electrons residing on the dust grain surface, and e
is the magnitude of the electronic charge) a dusty plasma (with negatively charged
static dust) supports low-frequency dust-ion-acoustic (DIA) waves with phase speed
much smaller (larger) than the electron (ion) thermal speed. The dispersion relation
of the linear DIA waves is (Shukla and Silin 1992) ω2 = (ni0/ne0)k2C2

i /(1+k2λ2
De),

where Ci = (kBTe0/mi)1/2 is the ion-acoustic speed (with Te0 being the electron
temperature at equilibrium and mi being the ion mass, kB being the Boltzmann
constant) and λDe = (kBTe0/4πne0e

2)1/2 is the electron Debye radius. When a
long wavelength limit (viz. kλDe � 1) is considered, the dispersion relation for the
DIA waves becomes ω = (ni0/ne0)1/2kCi. This form of spectrum is similar to
the usual ion-acoustic wave spectrum for a plasma with ni0 = ne0 and Ti0 � Te0
(where Ti0 is the ion temperature at equilibrium). However, in dusty plasmas we
usually have ni0 � ne0 and Ti0 � Te0 . Therefore, a dusty plasma cannot support
the usual ion-acoustic waves, but support the DIA waves of Shukla and Silin
(1992). The DIA waves have also been experimentally observed (Barkan et al.
1996). The linear properties of the DIA waves in dusty plasmas are now well
understood from both theoretical and experimental points of view (Shukla and
Silin 1992; Barkan et al. 1996; Shukla and Rosenberg 1999; Shukla and Mamun
2002). The nonlinear features of the (DIA) waves have also received a great deal
of interest when considering the understanding of the basic properties of localized
electrostatic perturbations in space and laboratory dusty plasmas (Bharuthram
and Shukla 1992; Barkan et al. 1996; Nakamura et al. 1999; Nakamura and Sharma
2001; Shukla and Mamun 2002, 2003; El-Labany and El-Shamy 2004. The DIA
solitary waves (SWs) have also been investigated by several authors (Bharuthram
and Shukla 1992; Mamun and Shukla 2002a,b, 2005; Rahman et al. 2007), but
these works are valid only for an unmagnetized dusty plasma with cold ions and
isothermal (Maxwellian) electrons. Recently, Mamun (2008) has investigated the
basic properties of one-dimensional DIA SWs in an unmagnetized adiabatic dusty
plasma, which contains non-inertial adiabatic electrons, inertial adiabatic ions,
and negatively charged static dust. On the other hand, Sayed et al. (2008) have
studied the DIA SWs in unmagnetized multi-ion dusty plasma containing inertia-
less isothermal electrons, cold inertial positive and negative ions, and negatively
charged static dust. It is well known that the effects of the external magnetic
field and obliqueness, which have not been considered in the earlier investigations
(Bharuthram and Shukla 1992; Mamun and Shukla 2002a,b, 2005; Rahman et al.
2007; Mamun 2008; Sayed et al. 2008), drastically modify the basic properties of the
ion-acoustic SWs (Shukla and Yu 1978; Lee and Kan 1981; Witt and Lotko 1983).
Therefore, in our present work, we consider a magnetized multi-ion dusty plasma
containing non-inertial hot adiabatic electrons, cold positive and negative ions, and
negatively charged static dust, and study the properties of the obliquely propagat-
ing DIA SWs and their multi-dimensional instability in such a magnetized dusty
plasma.
This paper is organized as follows. The basic equations governing the magnet-

ized multi-ion dusty plasma system are given in Sec. 2. The Zakharov–Kuznetsov
(ZK) equation is derived by employing a reductive perturbation method in Sec. 3.
The stationary SW solution of the ZK equation and its basic features are studied
in Sec. 4. The instability criterion is analyzed in Sec. 5. Finally, a brief discussion
is presented in Sec. 6.
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2. Governing equations
We consider a fully ionized collisionless magneto dusty plasma consisting of cold
positive and negative ions, hot adiabatic inertia-less electrons, and negatively
charged static dust in the presence of an external static magnetic field B0 = B0 ẑ.
The nonlinear dynamics of the DIA waves in this plasma system is described by

∂Ni

∂T
+ ∇ · (NiUi) = 0, (2.1)

∂Ui
∂T

+ (Ui · ∇)Ui = −∇ψ + ΩciUi × ẑ, (2.2)

∂N−i
∂T

+ ∇ · (N−iU−i) = 0, (2.3)

∂U−i
∂T

+ (U−i · ∇)U−i = σ∇ψ − σΩciU−i × ẑ, (2.4)

∂Ne

∂T
+ ∇ · (NeUe) = 0, (2.5)

0 = ∇ψ − ΩciUe × ẑ − 1
Ne

∇Pe, (2.6)

∂Pe
∂T

+ Ue · ∇Pe + γePe∇ · Ue = 0, (2.7)

∇2ψ = μNe − Ni + μ−N−i − μd, (2.8)

where Ni, Ne, N−i are the positive ion, electron and negative ion number densities
normalized by their equilibrium values ni0 , ne0 , n−i0, respectively,Ui,Ue,U−i are the
positive ion, electron, negative ion fluid velocities, respectively, normalized by the
ion-acoustic speed Ci, ψ is the electrostatic wave potential normalized by kBTe0/e,
μ = ne0/ni0 , μ− = (Z−in−i0)/ni0 , Z−i is the number of electrons residing on the
negative ion, σ = (Z−imi)/m−i withm−i is the negative ion mass, and μd = 1− μ−
μ−. γe = Ce

p/Ce
v, where Ce

p (C
e
v) is the specific heat of the electron fluid at constant

pressure (volume). Also Ωci is the ion cyclotron frequency normalized by the ion
plasma frequency ωpi = (4πe2ni0/mi)1/2 , and Pe is the electron pressure normalized
by ne0kBTe0 . The time variable T is normalized by the ion plasma period ω−1

pi , and
the space variable is normalized by the Debye radius λD = (kBTe0/4πe2ni0)1/2 .

3. Derivation of ZK equation
We now follow the reductive perturbation technique and construct a weakly nonlin-
ear theory for the electrostatic waves with a small but finite amplitude, which leads
to a scaling of the independent variables through the stretched coordinates (Laedke
and Spatschek 1982; Infeld 1985) X = ε1/2x, Y = ε1/2y, Z = ε1/2(z − VpT ), and
τ = ε3/2T , where ε is a small parameter measuring the weakness of the dispersion,
Vp is the unknown wave phase speed (to be determined later). It may be noted here
that X, Y , and Z are all normalized by the Debye radius (λD), τ is normalized
by the ion plasma period (ω−1

pi ), and Vp is normalized by the ion-acoustic speed
(Ci). We can now expand the perturbed quantities about their equilibrium values
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in powers of ε as (Laedke and Spatschek 1982, Infeld 1985)

3Ns = 1 + εN (1)
s + ε2N (2)

s + · · · , Usz = εU (1)
sz + ε2U (2)

sz + · · · , (3.1)

Usx = ε3/2U (1)
sx + ε2U (2)

sx + · · · , Usy = ε3/2U (1)
sy + ε2U (2)

sy + · · · , (3.2)

Pe = 1 + εP (1)
e + ε2P (2)

e + · · · , ψ = εψ(1) + ε2ψ(2) + · · · , (3.3)

where s = i stands for positive ion, s = −i stands for negative ion, and s = e stands
for electron species.
We now use the stretched coordinates and (3.1)–(3.3) in (2.1)–(2.8), and develop

equations in various powers of ε. To the lowest order in ε, i.e., equating the coef-
ficients of ε3/2 from the continuity, momentum, and pressure equations, one can
obtain the first-order continuity equations, pressure equations, and x, y, and z
components of the momentum equations, which in turn give

N
(1)
i =

1
V 2
p

ψ(1) , N
(1)
−i = − σ

V 2
p

ψ(1) , N (1)
e =

1
γe

ψ(1) , (3.4)

U
(1)
ix = − 1

Ωci
∂ψ(1)

∂Y
, U

(1)
iy =

1
Ωci

∂ψ(1)

∂X
, U

(1)
iz =

1
Vp

ψ(1) , (3.5)

U
(1)
−ix = − 1

Ωci
∂ψ(1)

∂Y
, U

(1)
−iy =

1
Ωci

∂ψ(1)

∂X
, U

(1)
−iz = − σ

Vp
ψ(1) , (3.6)

U (1)
ex = U (1)

ey = 0, U (1)
ez =

1
γe

Vpψ
(1) , P (1)

e = ψ(1) . (3.7)

Equating the coefficients of ε from Poisson’s equation, we get

μN (1)
e = N

(1)
i − μ−N

(1)
−i . (3.8)

Using (3.4) in (3.8), we get the linear dispersion relation

Vp =

√
γe(1 + μ−σ)

μ
. (3.9)

The first two equations of (3.5) and (3.6) are also satisfied by the next higher
(second) order continuity equations. Similarly, to the next higher order of ε, we
obtain the second order x and y components of the momentum equations and
Poisson’s equation as

U
(2)
ix =

Vp
Ω2
ci

∂2ψ(1)

∂Z∂X
, U

(2)
iy =

Vp
Ω2
ci

∂2ψ(1)

∂Z∂Y
, (3.10)

U
(2)
−ix = −

Vp
σΩ2

ci

∂2ψ(1)

∂Z∂X
, U

(2)
−iy = −

Vp
σΩ2

ci

∂2ψ(1)

∂Z∂Y
, (3.11)

U (2)
ex = U (2)

ey = 0, (3.12)[
∂2

∂X2 +
∂2

∂Y 2 +
∂2

∂Z2

]
ψ(1) = μN (2)

e − N
(2)
i + μ−N

(2)
−i . (3.13)
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Following the same procedure one can obtain the next higher order continuity
equations, pressure equations, and the z component of momentum equations as

∂ψ(1)

∂τ
− V 3

p
∂N

(2)
i

∂Z
+ V 2

p
∂U

(2)
iz

∂Z
+

2
Vp

ψ(1) ∂ψ(1)

∂Z
+

V 3
p

Ω2
ci

[
∂3ψ(1)

∂Z∂X2 +
∂3ψ(1)

∂Z∂Y 2

]
= 0,

(3.14)

∂ψ(1)

∂τ
− V 2

p
∂U

(2)
iz

∂Z
+ Vp

∂ψ(2)

∂Z
+

1
Vp

ψ(1) ∂ψ(1)

∂Z
= 0, (3.15)

∂ψ(1)

∂τ
+

V 3
p

σ

∂N
(2)
−i

∂Z
−

V 2
p

σ

∂U
(2)
−iz

∂Z
− 2σ

Vp
ψ(1) ∂ψ(1)

∂Z
+

V 3
p

σ2Ω2
ci

[
∂3ψ(1)

∂Z∂X2 +
∂3ψ(1)

∂Z∂Y 2

]
= 0,

(3.16)

∂ψ(1)

∂τ
+

V 2
p

σ

∂U
(2)
−iz

∂Z
+ Vp

∂ψ(2)

∂Z
− σ

Vp
ψ(1) ∂ψ(1)

∂Z
= 0, (3.17)

∂ψ(1)

∂τ
− γeVp

∂N
(2)
e

∂Z
+ γe

∂U
(2)
ez

∂Z
+

2Vp
γe

ψ(1) ∂ψ(1)

∂Z
= 0, (3.18)

∂P
(2)
e

∂Z
− ∂ψ(2)

∂Z
− 1

γe
ψ(1) ∂ψ(1)

∂Z
= 0, (3.19)

∂ψ(1)

∂τ
− Vp

∂P
(2)
e

∂Z
+ γe

∂U
(2)
ez

∂Z
+ Vp

[
1 +

1
γe

]
ψ(1) ∂ψ(1)

∂Z
= 0. (3.20)

Now, using (3.4)–(3.20), we can readily obtain

∂ψ(1)

∂τ
+ ABψ(1) ∂ψ(1)

∂Z
+

1
2
A

∂

∂Z

[
∂2

∂Z2 + D

(
∂2

∂X2 +
∂2

∂Y 2

)]
ψ(1) = 0, (3.21)

where

A =
V 3
p

1 + μ−σ
,

B =
1
2

[
3

V 4
p

− μ(2 − γe)
γ2
e

− 3μ−σ2

V 4
p

]
,

D = 1 +
1

Ω2
ci

+
μ−

σΩ2
ci

.

(3.22)

The equation (3.21) is known as the Zakharov–Kuznetsov (ZK) equation or the
Korteweg–de Vries (KdV) equation in three dimensions.

4. SW solution of the ZK equation
To study the properties of the SWs propagating in a direction making an angle δ
with the Z-axis, i.e. with the external magnetic field and lying in the (Z–X) plane,
we first rotate the coordinate axes (X,Z) through an angle δ, keeping the Y -axis
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fixed. Thus, we transform our independent variables to

ζ = X cos δ − Z sin δ, η = Y, ξ = X sin δ + Z cos δ, t = τ. (4.1)

This transformation of these independent variables allows us to write the ZK
equation in the form

∂ψ(1)

∂t
+ δ1ψ

(1) ∂ψ(1)

∂ξ
+ δ2

∂3ψ(1)

∂ξ3 + δ3ψ
(1) ∂ψ(1)

∂ζ
+ δ4

∂3ψ(1)

∂ζ3 + δ5
∂3ψ(1)

∂ξ2∂ζ

+ δ6
∂3ψ(1)

∂ξ∂ζ2 + δ7
∂3ψ(1)

∂ξ∂η2 + δ8
∂3ψ(1)

∂ζ∂η2 = 0, (4.2)

where

δ1 = AB cos δ, δ2 = 1
2 A(cos3 δ + D sin2 δ cos δ), δ3 = −AB sin δ,

δ4 = − 1
2 A(sin3 δ + D sin δ cos2 δ),

δ5 = A[D(sin δ cos2 δ − 1
2 sin3 δ) − 3

2 sin δ cos2 δ],

δ6 = −A[D(sin2 δ cos δ − 1
2 cos3 δ) − 3

2 sin2 δ cos δ],

δ7 = 1
2 AD cos δ, δ8 = − 1

2 AD sin δ.

(4.3)

We now look for a steady-state solution of this ZK equation in the form

ψ(1) = ψ0(Z), (4.4)

where

Z = ξ − u0 T̃ , t = T̃ ,

in which u0 is a constant speed normalized by the ion-acoustic speed (Ci). Using
this transformation, we get

∂

∂ξ
=

∂

∂Z
,

∂

∂t
=

∂

∂T̃
− u0

∂

∂Z
,

∂

∂ζ
→ 0,

∂

∂η
→ 0. (4.5)

Therefore, from (4.2), we can write

dψ0

dT̃
− u0

dψ0

dZ
+ δ1ψ0

dψ0

dZ
+ δ2

d3ψ0

dZ3 = 0. (4.6)

At stationary state (dψ0/dT̃ ) → 0. So, we can write the ZK equation in steady-state
form as

−u0
dψ0

dZ
+ δ1ψ0

dψ0

dZ
+ δ2

d3ψ0

dZ3 = 0. (4.7)

Now, using the appropriate boundary conditions, viz., ψ(1) → 0, (dψ(1)/dZ) → 0,
(d2ψ(1)/dZ2) → 0 as Z → ±∞, the SW solution of this equation is given by

ψ0(Z) = ψm sech2(κZ), (4.8)

where ψm = 3u0/δ1 is the amplitude and κ =
√

u0/4δ2 is the inverse of the width
of the SWs. It is clear from (3.9), (3.22), and (4.3) that as A > 0, depending on
whether B is positive or negative, the SWs will be associated with either positive
potential (ψm > 0) or negative potential (ψm < 0). Therefore, there exists SWs
associated with positive (negative) potential when B > 0 (B < 0).
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Figure 1. The B = 0 surface plot (i.e. the variation of μ with μ− and σ for γe = 1) above
which ψm > 0 and below which ψm < 0.

Figure 2. The B = 0 surface plot (i.e. the variation of μ with γe and σ for μ− = 0.6) above
which ψm > 0 and below which ψm < 0.

Figures 1 and 2 represent a B = 0 surface plot showing the variation of μ with
μ− and σ (γe and σ). This two figures indicate that the upper (lower) region of the
surface corresponds toB > 0 (B < 0), i.e. they correspond to the positive (negative)
DIA SWs. Figure 1 shows that the critical value of μ (which is 0.439 for μ− = 0.3
and σ = 0.4) increases as the values of both μ− and σ increase. Figure 2 shows that
the critical value of μ (which is 0.214 for γe = 1.5 and σ = 0.2) decreases as the value
of γe increases, and the critical value of μ increases (decreases) with the increasing
value of σ for a lower (higher) value of γe. It is observed from (3.9), (3.22), (4.3),
and ψm = 3u0/δ1 that the amplitude (ψm ) is a nonlinear function of δ, μ, μ−, σ,
and γe. The variations of ψm (for positive and negative potentials) with δ, μ, μ−,
σ, and γe are shown in Figs 3–8. Figure 3 shows the variation of the amplitude
of the positive solitary potential (ψm > 0) with δ and μ− for μ = 0.7, u0 = 1.0,
σ = 0.2, and γe = 1.0. This shows that the amplitude increases with increasing
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Figure 3. The variation of the amplitude of the positive solitary potential (ψm > 0) with δ
and μ− for μ = 0.7, u0 = 1.0, σ = 0.2, and γe = 1.0.

Figure 4. The variation of the amplitude of the positive solitary potential (ψm > 0) with σ
and μ for μ− = 0.4, u0 = 1.0, δ = 20◦, and γe = 1.0.

values of both of δ and μ−. Figure 4 shows the variation of the amplitude of the
positive solitary potential (ψm > 0) with σ and μ for μ− = 0.4, u0 = 1.0, δ = 20◦,
and γe = 1.0. This shows that the amplitude increases (decreases) with increasing
values of σ (μ). Figure 5 shows the variation of the amplitude of the positive solitary
potential (ψm > 0) with σ and γe for μ = 0.9, u0 = 1.0, μ− = 0.4, and δ = 10◦. This
figure indicates that the amplitude decreases as the value of γe increases. Figure 6
shows the variation of the amplitude of the negative solitary potential (ψm < 0)
with δ and μ− for σ = 0.8, u0 = 1.0, μ = 0.2, and γe = 1.0. This shows that the
amplitude increases (decreases) as the value of δ (μ−) increases. Figure 7 shows the
variation of the amplitude of the negative solitary potential (ψm < 0) with σ and
μ for μ− = 0.5, u0 = 1.0, γe = 1.0, and δ = 20◦. This shows that the amplitude
increases (decreases) as the value of μ (σ) increases. Figure 8 shows the variation
of the amplitude of the negative solitary potential (ψm < 0) with σ and γe for
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Figure 5. The variation of the amplitude of the positive solitary potential (ψm > 0) with σ
and γe for μ = 0.9, u0 = 1.0, μ− = 0.4, and δ = 10◦.

Figure 6. The variation of the amplitude of the negative solitary potential (ψm < 0) with δ
and μ− for σ = 0.8, u0 = 1.0, μ = 0.2, and γe = 1.0.

μ = 0.01, μ− = 0.2, u0 = 1.0, and δ = 20◦. This shows that the amplitude increases
as the value of γe increases.
The magnitude of the external magnetic field has a significant effect only on the

width, and not on the amplitude of these SWs. It is found from (3.9), (3.22), (4.3),
and κ =

√
u0/4δ2 that the width (1/κ) is a nonlinear function of Ωci, δ, σ, μ, μ−,

and γe. The variations of the width (1/κ) (for positive and negative SWs) with Ωci,
δ, σ, μ, μ−, and γe are represented in Figs 9–11. Figure 9 shows how the width
(1/κ) changes with δ and Ωci for μ = 0.5, u0 = 1.0, γe = 1.0, μ− = 0.5, and σ = 0.4.
This figure shows that the width increases with δ for the lower range, i.e. from 0◦

to about 50◦, but decreases for its higher range, i.e. from about 50◦ to 90◦, and
as δ → 90◦, the width goes to 0. This also shows that the width decreases with
increasing Ωci, which is valid for δ < 90◦. Figure 10 shows how the width (1/κ)
changes with γe and μ− for Ωci = 0.2, u0 = 1.0, σ = 0.2, μ = 0.5, and δ = 20◦. This
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Figure 7. The variation of the amplitude of the negative solitary potential (ψm < 0) with σ
and μ for μ− = 0.5, u0 = 1.0, γe = 1.0, and δ = 20◦.

Figure 8. The variation of the amplitude of the negative solitary potential (ψm < 0) with σ
and γe for μ = 0.01, μ− = 0.2, u0 = 1.0, and δ = 20◦.

figure indicates that the width increases with increasing values of both γe and μ−.
Figure 11 shows how the width (1/κ) changes with μ and σ for Ωci = 0.5, u0 = 1.0,
γe = 1.0, μ− = 0.5, and δ = 20◦. This figure indicates that the width decreases with
increasing values of both μ and σ.

5. Instability analysis
We now study the instability of the obliquely propagating SW, discussed in the
previous section, by the method of small-k perturbation expansion (Rowlands 1969;
Infeld 1972, 1985; Infeld and Rowlands 1973; Das and Verheest 1989; Mamun and
Cairns 1996). We first assume that

ψ(1) = ψ0(Z) + φ(Z, ζ, η, t), (5.1)
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Figure 9. The variation of the width (Δ = 1/κ) with δ and Ωci for μ = 0.5, u0 = 1.0,
γe = 1.0, μ− = 0.5, and σ = 0.4.

Figure 10. The variation of the width (Δ = 1/κ) with γe and μ− for Ωci = 0.2, u0 = 1.0,
σ = 0.2, μ = 0.5, and δ = 20◦.

where ψ0 is defined by (4.8) and for a long-wavelength plane wave perturbation in
a direction with direction cosines, (lζ , lη , lξ ), φ is given by

φ = ϕ(Z)ei[k(lζ ζ+ lη η+ lξ Z )−ωt], (5.2)

in which l2ζ + l2η + l2ξ = 1 and, for small k, ϕ(Z) and ω can be expanded as

ϕ(Z) = ϕ0(Z) + kϕ1(Z) + k2ϕ2(Z) + · · · , (5.3)

ω = kω1 + k2ω2 + · · · . (5.4)
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Figure 11. The variation of the width (Δ = 1/κ) with μ and σ for Ωci = 0.5, u0 = 1.0,
γe = 1.0, μ− = 0.5, and δ = 20◦.

Now, substituting (5.1) into (4.2) and linearizing with respect to φ, we can express
the linearized ZK equation in the form

∂φ

∂t
− u0

∂φ

∂Z
+ δ1ψ0

∂φ

∂Z
+ δ1φ

∂ψ0

∂Z
+ δ2

∂3φ

∂Z3 + δ3ψ0
∂φ

∂ζ
+ δ4

∂3φ

∂ζ3 + δ5
∂3φ

∂Z2∂ζ

+ δ6
∂3φ

∂Z∂ζ2 + δ7
∂3φ

∂Z∂η2 + δ8
∂3φ

∂ζ∂η2 = 0. (5.5)

Our main object is to find ω1 by solving the zeroth-, first-, and second-order
equations obtained from (5.2)–(5.5). The zeroth-order equation can be written,
after integration, as

(−u0 + δ1ψ0)ϕ0 + δ2
d2ϕ0

dZ2 = C, (5.6)

where C is an integration constant. It is clear from (4.7) that the homogeneous
part of this equation has two linearly independent solutions, namely

f =
dψ0

dZ
, (5.7)

g = f

∫ Z dZ

f 2 . (5.8)

Therefore, the general solution of this zeroth-order equation can be written as

ϕ0 = C1f + C2g − Cf

∫ Z g

δ2
dZ + Cg

∫ Z f

δ2
dZ, (5.9)

where C1 and C2 are two integration constants, and δ2 is defined by (4.3). Now,
evaluating all integrals, the general solution of this zeroth-order equation, for ϕ0
not tending to ±∞ as Z → ±∞, can finally be simplified to

ϕ0 = C1f. (5.10)
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The first-order equation, i.e., the equation with terms linear in k, obtained from
(5.2)–(5.5) and (5.10), can be expressed, after integration, as

(−u0 + δ1ψ0)ϕ1 + δ2
d2ϕ1

dZ2 = iC1(α1 + β1 tanh2 κZ)ψ0 + K, (5.11)

where K is another integration constant, and α1 and β1 are given by

α1 = (ω1 + lξ u0) − 1
2 ψm μ1 + 2κ2μ2 ,

β1 = 1
2 ψm μ1 − 6κ2μ2 ,

μ1 = δ1 lξ + δ3 lζ ,

μ2 = 3δ2 lξ + δ5 lζ .

(5.12)

Now, following the same procedure, the general solution of this first-order equation,
for ϕ1 not tending to ±∞ as Z → ±∞, can be written as

ϕ1 = K1f +
iC1

8δ2κ2

[
(α1 + β1)Zf +

2
3
(3α1 + β1)ψ0

]
. (5.13)

The second-order equation, i.e. the equation with terms involving k2 , obtained from
(5.5) after substituting (5.2)–(5.4), can be written as[

−u0
d

dZ
+ δ1

d

dZ
ψ0 + δ2

d3

dZ3

]
ϕ2 = iω2ϕ0 + i(ω1 + lξ u0)ϕ1 − iμ1ψ0ϕ1

+ μ3
dϕ0

dZ
− iμ2

d2ϕ1

dZ2 , (5.14)

where

μ3 = 3δ2 l
2
ξ + 2δ5 lζ lξ + δ6 l

2
ζ + δ7 l

2
η . (5.15)

The solution of this second-order equation exists if the right-hand side is orthogonal
to a kernel of the operator adjoint to the operator

−u0
d

dZ
+ δ1

d

dZ
ψ0 + δ2

d3

dZ3 . (5.16)

This kernel, which must tend to zero as Z → ±∞, is (ψ0/ψm ) = sech2(κZ). Thus
we can write the following equation determining ω1 :∫ ∞

−∞
ψ0

[
iω2ϕ0 + i(ω1 + lξ u0)ϕ1 − iμ1ψ0ϕ1 + μ3

dϕ0

dZ
− iμ2

d2ϕ1

dZ2

]
dZ = 0. (5.17)

Now, substituting the expressions for ϕ0 and ϕ1 given by (5.10) and (5.13), respect-
ively, and then performing the integration, we arrive at the following dispersion
relation:

ω1 = Ω − lξ u0 + (Ω2 − Υ)1/2 , (5.18)

where

Ω = 2
3 (ψm μ1 − 2μ2κ

2), (5.19)

Υ = 16
45 (ψ2

m μ2
1 − 3ψm μ1μ2κ

2 − 3μ2
2κ

4 + 12δ2μ3κ
4). (5.20)

It is clear from the dispersion relation (5.18) that there is always instability if
(Υ − Ω2) > 0. Thus, using (3.22), (4.3), (5.12), (5.15), (5.19), and (5.20), we can
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Figure 12. The Si = 0 surface plot (i.e. the variation of σ with δ and μ− for Ωci = 0.5,
lζ = 0.6, and lη = 0.4) above which the SWs become unstable and below which the SWs
become stable.

express the instability criterion as

Si > 0, (5.21)

with

Si = l2η [Ω2
ci + Y sin2 δ] + l2ζ [Ω

2
ci − 5

3 (Y + Ω2
ci) tan2 δ], (5.22)

Y =
σ + μ−

σ
. (5.23)

It has been observed that the γe and μ values have no any effect on whether the SWs
become stable or unstable. We have graphically obtained the parametric regimes
(values of σ, δ, μ−, Ωci, lζ , and lη ) for which the SWs become stable and unstable.
These are shown in Figs 12 and 13, which indicate that for the parameters above
(below) the surface the SWs become unstable (stable). Figure 12 represents Si = 0
surface plot showing the variation of σ with δ and μ− for Ωci = 0.5, lζ = 0.6, and
lη = 0.4. This indicates that, as the values of δ and μ− increase, the value of σ for
which the SWs become unstable increases. Figure 13 represents the Si = 0 surface
plot showing the variation of Ωci with lζ and lη for σ = 0.5, μ− = 0.5, and δ = 10◦.
This figure indicates that as the value of lζ (lη ) increases, the value of Ωci for which
the SWs become unstable increases (decreases).
If this instability criterion Si > 0 is satisfied, the growth rate Γ = (Υ − Ω2)1/2

of the unstable perturbation of these SWs is given by

Γ =
2

151/2

u0 [(Y + Ω2
ci)Si]

1/2

Ω2
ci + Y sin2 δ

. (5.24)

Equation (5.24), together with (5.22) and (5.23), clearly indicate that the growth
rate Γ of the unstable perturbation is a linear function of u0 , but a nonlinear
function of δ, Ωci, σ, μ−, lζ , and lη . The nonlinear variations of Γ with δ, Ωci,
σ, μ−, lζ , and lη are shown in Figs 14–16. Figure 14 shows how the value of Γ
changes with σ and μ− for u0 = 1.0, Ωci = 0.5, δ = 5◦, lζ = 0.5, and lη = 0.5.
This figure indicates that, as the value of μ− (σ) increases, the value of the growth
rate Γ of the unstable perturbation increases (decreases). Figure 15 shows how the
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Figure 13. The Si = 0 surface plot (i.e. the variation of Ωci with lζ and lη for σ = 0.5,
μ− = 0.5, and δ = 10◦) above which the SWs become unstable and below which the SWs
become stable.

Figure 14. The variation of Γ with σ and μ− for u0 = 1.0, Ωci = 0.5, δ = 5◦, lζ = 0.5, and
lη = 0.5.

value of Γ changes with δ and Ωci for u0 = 1.0, σ = 0.6, μ− = 0.2, lζ = 0.4, and
lη = 0.4. This figure indicates that the growth rate Γ of the unstable perturbation
decreases with increasing values of both δ and Ωci. Figure 16 shows how the value
of Γ changes with lη and lζ for u0 = 1.0, δ = 5◦, σ = 0.5, Ωci = 0.5 and μ− = 0.1.
This shows that the value of Γ increases with increasing values of both lη and lζ .

6. Discussion
We have considered a fully ionized collisionless magneto dusty plasma consisting of
cold positive and negative ions, hot adiabatic inertia-less electrons, and negatively
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Figure 15. The variation of Γ with δ and Ωci for u0 = 1.0, σ = 0.6, μ− = 0.2, lζ = 0.4, and
lη = 0.4.

Figure 16. The variation of Γ with lη and lζ for u0 = 1.0, δ = 5◦, σ = 0.5, Ωci = 0.5 and
μ− = 0.1.

charged static dust, and have studied the DIA SWs associated with both positive
and negative potentials by deriving the ZK equation. We have then analyzed their
multi-dimensional instability by the small-k perturbation expansion method. The
results that have been obtained from this investigation can be summarized as
follows.

(a) The SWsmay be associated with either positive or negative potential, depending
on the values of μ, μ−, σ, and γe.
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(b) The amplitude of the positive SWs increases with increasing values of μ−, σ,
and δ, but decreases with increasing μ and γe.

(c) The amplitude of the negative SWs increases with increasing values of μ, δ, and
γe, but decreases with increasing μ− and σ.

(d) The width of the SWs (both for positive and negative potentials) increases for
the lower range of δ (from 0◦ to about 50◦), but decreases for its higher range
(from 50◦ to about 90◦).

(e) The width of the SWs for both positive and negative potentials increases with
increasing values of γe and μ−, but decreases with increasing values of μ and σ.

(f) The magnitude of the external magnetic field B0 has no direct effect on the SW
amplitude. However, it does have a direct effect on the width of the SWs, and
we have found that, as the magnitude of B0 increases, the width of the waves
decreases, i.e. the magnetic field makes the solitary structures more spiky.

(g) The μ and γe values have no effect on either whether the SWs will be stable or
unstable nor on the growth rate of Γ of the unstable perturbation.

(h) The value of σ for which the SWs become unstable increases with increasing
values of δ and μ−, with the other parameters constant.

(i) The value of Ωci for which the SWs become unstable increases with increasing
values of lζ , but decreases with increasing values of lη , with the other parameters
constant.

(j) The growth rate Γ of the unstable perturbation decreases with increasing values
of σ and δ, but increases with increasing values of μ−, with the other parameters
constant.

(k) The value of Γ decreases for the lower range of δ (from 0◦ to about 10◦), and
increases for the higher range of δ with the increasing magnitude of the magnetic
field.

(l) The growth rate Γ increases with increasing values of both lη and lζ .

As δ → 90◦, the width goes to 0, and the amplitude goes to ∞. It is likely that
for large angles the assumption that the waves are electrostatic is no longer valid,
and we should look for fully electromagnetic structures.
The ranges (σ = 0 − 0.9, μ = 0 − 0.9, and μ− = 0 − 0.8) of the dusty plasma

parameters used in this numerical analysis are very wide. Therefore, the dusty
plasma parameters (viz. σ, μ, and μ−) corresponding to space (Horanyi and Mendis
1985, 1986; Geortz 1989; Mendis and Horanyi 1991; Montmerle 1991; Northrop
1992; Ciolek and Mouschovias 1993; Mendis and Rosenberg 1994; Nakano et al.
1996; Shukla and Mamun 2002) and laboratory dusty plasmas (Pieper and Goree
1996; Shukla et al. 1997; Nakamura et al. 1999) are certainly within these ranges
(viz. σ = 0−0.9, μ = 0−0.9, and μ− = 0−0.8). Therefore, our present results may be
useful for understanding the localized electrostatic disturbance in space (Horanyi
and Mendis 1985, 1986; Geortz 1989; Mendis and Horanyi 1991; Montmerle 1991;
Northrop 1992; Ciolek and Mouschovias 1993; Mendis and Rosenberg 1994; Nakano
et al. 1996; Shukla andMamun 2002) and laboratory (Pieper and Goree 1996; Shukla
et al. 1997; Nakamura et al. 1999) dusty plasmas.
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It may be mentioned here that we have used a reductive perturbation method
and a small-k perturbation expansion that are valid for small but finite-amplitude
SWs and long-wavelength perturbation modes. Since in many astrophysical situ-
ations there are extremely large-amplitude SWs and short-wavelength perturba-
tion modes, we propose to develop a more exact theory for instability analysis of
arbitrary-amplitude SWs and arbitrary-wavelength perturbation modes, through
a generalization of our present work to such waves and modes.

Acknowledgements

One of the authors (MGMA) acknowledges the financial support of National Uni-
versity (Bangladesh) and the Ministry of Education (Bangladesh) for granting his
deputation during the course of this research work.

References

Barkan, A., D’Angelo, N. and Merlino, R. L. 1996 Planet. Space Sci. 44, 239.
Bharuthram, R. and Shukla, P. K. 1992 Planet. Space Sci. 40, 973.
Birk, G. T., Copp, A. and Shukla, P. K. 1996 Phys. Plasmas 3, 3564.
Copp, A., Birk, G. T. and Shukla, P. K. 1997 Phys. Plasmas 4, 4414.
Ciolek, G. E. and Mouschovias, T. Ch. 1993 Astrophys. J. 418, 774.
Das, P. K. and Verheest, F. 1989 J. Plasma Phys. 41, 171.
El-Labany, S. K. and El-Shamy, E. F. 2004 Astrophys. Space Sci. 293, 295.
Geortz, C. K. 1989 Rev. Geophys. 27, 271.
Horanyi, M. and Mendis, D. A. 1985 Astrophys. J. 294, 357.
Horanyi, M. and Mendis, D. A. 1986 Astrophys. J. 307, 800.
Infeld, E. 1972 J. Plasma Phys. 8, 105.
Infeld, E. 1985 J. Plasma Phys. 33, 171.
Infeld, E. and Rowlands, G. 1973 J. Plasma Phys. 10, 293.
Kourakis, I., Shukla, P. K. and Morfill, G. E. 2005 New J. Phys. 7, 153.
Laedke, E. W. and Spatschek, K. H. 1982 J. Plasma Phys. 28, 469.
Lee, L. C. and Kan, J. R. 1981 Phys. Fluids 24, 430.
Mamun, A. A. 2008 Phys. Lett. A 372, 1490.
Mamun, A. A. and Cairns, R. A. 1996 J. Plasma Phys. 56, 175.
Mamun, A. A. and Shukla, P. K. 2002a IEEE Trans. Plasma Sci. 30, 720.
Mamun, A. A. and Shukla, P. K. 2002b Phys. Plasmas 9, 1468.
Mamun, A. A. and Shukla, P. K. 2005 Plasma Phys. Control. Fusion 47, A1.
Mendis, D. A. and Horanyi, M. 1991 In: Cometary Plasma Processes (AGU Monograph, 61).

Washington, D.C.: American Geophysical Union, p. 17.
Mendis, D. A. and Rosenberg, M. 1994 Annu. Rev. Astron. Astrophys. 32, 419.
Merlino, R. L. and Goree, J. 2004 Phys. Today 57, 32.
Montmerle, T. 1991 In: The Physics of Star Formation and Early Stellar Evolution (ed. C. J.

Lada and N. D. Kylafis). Dordrecht: Kluwer, p. 675.
Nakamura, Y., Bailung, H. and Shukla, P. K. 1999 Phys. Rev. Lett. 83, 1602.
Nakamura, Y. and Sharma, A. 2001 Phys. Plasmas 8, 3921.
Nakano, T., Nishi, R. and Umebayashi, T. 1996 In: The Role of Dust in the Formation of Stars
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