Combinatorics, Probability and Computing (2000) 9, 97–104. Printed in the United Kingdom © 2000 Cambridge University Press

A Sufficient Condition for a Graph to be the Core of a Class 2 Graph

J. K. DUGDALE and A. J. W. HILTON

Department of Mathematics, University of Reading, Whiteknights, Reading RG6 6AX, England

Received 13 July 1998; revised 9 September 1998

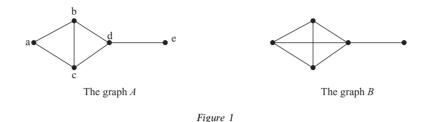
The core of a graph G is the subgraph G_{Δ} induced by the vertices of maximum degree. We define the deleted core D(G) of G. We extend an earlier sufficient condition due to Hoffman [7] for a graph H to be the core of a Class 2 graph, and thereby provide a stronger sufficient condition. The new sufficient condition is in terms of D(H). We show that in some circumstances our condition is necessary; but it is not necessary in general.

1. Introduction

In this note all graphs will be simple, so they will have no loops or multiple edges. The *chromatic index* $\chi'(G)$ of a graph G is the least value of k such that E(G) can be coloured with k colours so that no two adjacent edges receive the same colour. Vizing [9] showed that $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of G; the graphs G satisfying $\chi'(G) = \Delta(G)$ are called *Class 1*, and those satisfying $\chi'(G) = \Delta(G) + 1$ are called *Class 2*.

The core G_{Δ} of a graph G is the subgraph induced by the vertices of maximum degree. Every graph H is the core of a Class 1 graph (we can, using Vizing's theorem, say more: every graph H with $\Delta(H) \ge 1$ is the core of a Class 1 graph of degree $\Delta(H) + 1 - we$ need only add $\Delta(H) + 1 - d_H(v)$ pendent edges to each vertex v of H to create a Class 1 graph of maximum degree $\Delta(H) + 1$ with core H). But not every graph is the core of a Class 2 graph. For example, Fournier [6] showed that no forest is the core of a Class 2 graph, and Hoffman [7] showed that the graph A of Figure 1 cannot be the core of a Class 2 graph. By contrast, the graph B of Figure 1 can be the core of a Class 2 graph. In [4], Chetwynd, Hilton and Hoffman showed that every graph G with minimum degree $\delta(G)$ satisfying $\delta(G) \ge 2$ can be the core of a Class 2 graph.

We call a graph G satisfying $|E(G)| > \Delta(G)\lfloor \frac{1}{2}|V(G)|\rfloor$ overfull. It is easy to see that an overfull graph must be Class 2. The result of Chetwynd, Hilton and Hoffman [4] was proved by showing that every graph G with $\delta(G) \ge 2$ is the core of an overfull graph. This result was carried a step further by Hoffman [7], who looked for a graph H having



G as its core such that a given subset *S* of V(G) is of the form $S = V(G) \cap V(K)$, where *K* is an overfull subgraph with $\Delta(K) = \Delta(H)$. Hoffman's result was as follows.

Theorem 1.1. Let *H* be a graph and let $S \subset V(H)$. Then there is a graph *J* having *H* as its core and containing an overfull subgraph *K* with $\Delta(K) = \Delta(J)$ and $V(K) \cap V(J) = S$ if and only if

$$2 + \gamma_H(S) \leq \delta_H(S) < |S|,$$

where $\gamma_H(S)$ is the number of edges of H with exactly one end in S and $\delta_H(S)$ is the minimum degree (in H) of the vertices of S.

A fundamental lemma proved in [2] that follows from Vizing's Adjacency Lemma [9] (see also [5]) and lies behind Fournier's result, and also much of this paper, is the following. Here, for $v \in V(G)$, we let $d_G^{\Delta}(v)$ be the number of vertices of G of degree $\Delta = \Delta(G)$ to which v is adjacent. If there is no risk of ambiguity, we sometimes simplify this to $d^{\Delta}(v)$.

Lemma 1.2. Let G be a graph and let $v \in V(G)$ satisfy $d_G^{\Delta}(v) \leq 1$. Then if $\Delta(G-v) = \Delta(G)$ then $\chi'(G-v) = \chi'(G)$.

This result is most useful, for if one wishes to know $\chi'(G)$, then one need only find a suitable vertex v to be deleted, and then the problem is reduced to finding $\chi'(G-v)$. Quite often this procedure can be iterated, and thus an unmanageable graph G is reduced to a manageable graph, say $G \setminus \{v_1, \ldots, v_r\}$. This technique was employed by Chetwynd and Hilton in [2, 3] and was formalized by Hoffman and Rodger [8]; it has been employed many times since.

An extension of this lemma to the case when an edge is removed instead of a vertex is also true [2].

Lemma 1.3. Let G be a graph and let u and v be adjacent vertices, joined by an edge e.

- (i) If $\Delta(G) = \Delta(G w)$ and $d_G^{\Delta}(w) \leq 1$ then $\chi'(G w) = \chi'(G)$.
- (ii) If $\Delta(G) = \Delta(G e)$ and $d_G^{\Delta}(w) + d(u) \leq \Delta$ then $\chi'(G e) = \chi'(G)$.

Suppose that a graph H is the core G_{Δ} of a graph G. In this paper we use Lemma 1.3 to define the deleted core D(H) of H. Roughly speaking, this is the graph that one obtains from H by repeatedly removing vertices and edges as permitted by Lemma 1.3. We then

98

99

show that if the deleted core D(H) of H satisfies certain specified conditions, then it is possible for the graph G to be Class 2.

Although the converse is not true in general, we show that it is true if $|V(D(H))| \leq 4$. An intriguing question is whether a minor variation of our condition can be found which would be both necessary and sufficient for a graph H to be the core of a Class 2 graph. Although this might seem to be unlikely, we recall that we do have a necessary and sufficient condition for a graph H to be the core of a critical graph: call a graph G critical if G is connected, Class 2, and $\chi'(G-e) < \chi'(G)$ for each edge $e \in E(G)$. Chetwynd, Hilton and Hoffman [7] proved the following.

Theorem 1.4. Let H be a graph. Then H is the core of a critical graph if and only if $\delta(H) \ge 2$.

2. Some useful results

We first note that, with the aid of both parts of Lemma 1.3, we can prove the following further analogue of Lemma 1.2.

Theorem 2.1. Let G be a graph and let $w \in V(G)$. Suppose that $\Delta(G - w) = \Delta(G)$. If $d_G(w) \leq \Delta(G) - 1$ and the neighbours of w in G_{Δ} are u_1, u_2, \ldots, u_s , with $d_G^{\Delta}(u_i) \leq i$ $(1 \leq i \leq s)$, then $\chi'(G - w) = \chi'(G)$.

Proof. Let e_i join u_i to w $(1 \le i \le s)$. Since $d_G^{\Delta}(u_1) + d_G(w) \le \Delta$, by Lemma 1.3(ii), $\chi'(G - e_1) = \chi'(G)$. Then $d_{G-e_1}(w) \le \Delta - 2$, so $d_{G-e_1}^{\Delta}(u_2) + d_{G-e_1}(w) \le \Delta$. Proceeding inductively in this way we find that, for $1 \le i \le s - 1$, $d_{G\setminus\{e_1,e_2,\dots,e_i\}}(w) \le \Delta - i - 1$ and $\chi'(G\setminus\{e_1,\dots,e_i\}) = \chi'(G)$. Then $d_G^{\Delta}\setminus\{e_1,e_2,\dots,e_i\}(u_{i+1}) + d_{G\setminus\{e_1,\dots,e_i\}}(w) \le \Delta$, so by Lemma 1.3(ii), $\chi'(G\setminus\{e_1,\dots,e_{i+1}\}) = \chi'(G)$ $(1 \le i \le s - 1)$. Eventually we find that $d_{G\{e_1,e_2,\dots,e_s\}}^{\Delta}(w) = 0$, so by Lemma 1.3(i), $\chi'((G\setminus\{e_1,\dots,e_s\}) - w) = \chi'(G\setminus\{e_1,\dots,e_s\}) - w = G - w$, so $\chi'(G - w) = \chi'(G)$.

We also note the following results (see [2] for a proof of Lemmas 2.2 and 2.3, and [1, 3] for a proof of Lemma 2.4).

Lemma 2.2. If G has at most two vertices of maximum degree, then G is Class I.

Lemma 2.3. Let G be a connected graph with three vertices of maximum degree. Then G is Class 2 if and only if G has three vertices of degree |V(G)| - 1, and the remaining vertices have degree |V(G)| - 2.

Lemma 2.4. Let G be a connected graph with four vertices of maximum degree. Then G is Class 2 if and only if either

- (i) G has 4 vertices of degree |V(G)| 1, |V(G)| 5 vertices of degree |V(G)| 2, and one vertex of degree |V(G)| 3, or
- (ii) G has a cut edge whose removal separates G into G_1 and G_2 , where $\Delta(G_1) = \Delta(G)$, and G_1 either satisfies (i) or is the graph of Lemma 2.3, or
- (iii) G has 4 vertices of degree |V(G)| 2, and |V(G)| 4 vertices of degree |V(G)| 3.

3. The deleted core of a graph

We first define a deleted core D(H) of a graph H. The definition of H is iterative, and it is not clear immediately from the definition that it is uniquely defined. However, we show in Lemma 2.3 that it is uniquely defined.

Let $d \ge \Delta(H)$. First from H define H^{*d} to be the graph obtained from H as follows. To each vertex $v \in V(H)$, adjoin $d - d_H(v)$ pendent edges. Then H^{*d} has vertices of degrees 1 and d, and H is the core of H^{*d} , that is, $H = H_{\Delta}^{*d}$. Write $J = H^{*d}$. J is a particular graph with core H. Also, let G be an arbitrary graph with core H and with $\Delta(G) = \Delta(J) = d$.

Set $J_0 = J_\Delta$ and $G_0 = G$. If $J_0(=H)$ contains a vertex v such that $d_j^\Delta(v) = 0$ or 1, then let f_1 be such a vertex, and let $J_1 = J_0 \setminus \{f_1\}$ and $G_1 = G_0 \setminus \{f_1\}$. Otherwise, if J_0 contains an edge e = uv with $d_J(u) < \Delta(J)$ and $d_J^\Delta(v) + d_J(u) \leq \Delta(J)$, then let f_1 be such an edge and let $J_1 = J_0 \setminus \{f_1\}$ and $G_1 = G_0 \setminus \{f_1\}$. Otherwise put $J_1 = J_0$ and $G_1 = G_0$ and define a deleted core D(H) of H to be $J_{0\Delta} = J_\Delta = H$. Then, if $\Delta(J_1) = \Delta(J)$ then $\Delta(G_1) = \Delta(G)$ and, by Lemma 1.3 (part (i) or (ii)), G_1 is Class 1 if and only if G is Class 1. If $\Delta(J_1) < \Delta(J)$ then $\Delta(G_1) = \Delta(J_1) < \Delta(J) = \Delta(G)$, and, by Lemma 2.2, G is Class 1.

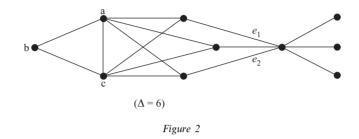
If f_1 was selected, then we iterate this procedure. In general, for $i \ge 0$, suppose that $J_0, J_1, \ldots, J_i, G_0, G_1, \ldots, G_i$ and $f_1, f_2, \ldots, f_i \in E(J_\Delta) \cup (J_\Delta)$ have been selected, and that $J_j = J_{j-1} \setminus \{f_j\}$ and $G_j = G_{j-1} \setminus \{f_j\}$, for $1 \leq j \leq i$. Put $J_i = J \setminus \{f_1, \dots, f_i\}$ and $G_i = G \setminus \{f_1, \ldots, f_i\}$. If $\Delta(J_i) = \Delta(J)$ and $J_{\Delta} \setminus \{f_1, \ldots, f_i\}$ contains a vertex v such that $d_{i}^{\Delta}(v) = 0$ or 1, then we let f_{i+1} be such a vertex and let $J_{i+1} = J_i \setminus \{f_{i+1}\}$. We also let $G_{i+1} = G_i \setminus \{f_{i+1}\}$. Otherwise, if $\Delta(J_i) = \Delta(J)$ and $J_{\Delta} \setminus \{f_1, \ldots, f_i\}$ contains an edge e = uv with $d_{J_i}(u) < \Delta(J)$ and $d_{J_i}(v) + d_{J_i}(u) \leq \Delta(J)$ then let f_{i+1} be such an edge and let $J_{i+1} = J_i \setminus \{f_{i+1}\}$. Also let $G_{i+1} = G_i \setminus \{f_{i+1}\}$. If $\Delta(J \setminus \{f_1, \ldots, f_i\}) < \Delta(J)$ and $J_{\Delta} \setminus \{f_1, \ldots, f_i\}$ is not the empty graph, then choose any vertex of $J_{\Delta} \setminus \{f_1, \ldots, f_i\}$ as f_{i+1} , and let $J_{i+1} = J_i \setminus \{f_{i+1}\}$. Also put $G_{i+1} = G_i \setminus \{f_{i+1}\}$. If none of these is possible, put $J_{i+1} = J_i$ and $G_{i+1} = G_i$, and define a *deleted core* D(H) of H to be $J_{\Delta} \setminus \{f_1, f_2, \dots, f_i\}$. If $\Delta(J_i) = \Delta(J_{i+1}) = \Delta(J)$ then $\Delta(G_i) = \Delta(J_i) = \Delta(J_{i+1}) = \Delta(G_{i+1}) = \Delta(G)$, and, by Lemma 1.3, G_{i+1} is Class 2 if and only if G_i is Class 2. If $\Delta(J_{i+1}) < \Delta(J_i) = \Delta(J)$ then $\Delta(G_{i+1}) < \Delta(G_i) = \Delta(G)$ and then, by Lemma 2.2, G_i is Class 1, and, working back, G is Class 1. If $\Delta(J_{i+1}) = \Delta(J_i) < \Delta(J)$ then, similarly, G is Class 1. If the deleted core is the empty graph then again, similarly, G is Class 1.

This process is iterated until it has to stop. The graph obtained finally from J_{Δ} is called a *deleted core* of H, and is denoted by D(H). It is clear from the definition that if D(H) is obtained from J_{Δ} by the removal of f_1, \ldots, f_r as described above, then either $\Delta(J_r) = \Delta(J)$ (so that $\Delta(G_r) = \Delta(G)$) or $\Delta(J_r) < \Delta(J)$ (so that $\Delta(G_r) < \Delta(G)$). In the former case, G is Class 2 if and only if G_r is Class 2. In the latter case G is Class 1.

The graph in Figure 2 is an example of a graph H in which the removal of vertices alone will not suffice to produce D(H). The edges e_1, e_2 that must be removed at some point are indicated. D(H) is induced by the vertex set $\{a, b, c\}$.

Now let us consider the question of the uniqueness of D(H).

Lemma 3.1. Let H be a graph. Then the deleted core D(H) is uniquely determined.



Proof. Let $D_a(H)$ be a deleted core obtained from H by removal in succession of elements a_1, a_2, \ldots, a_r of H, as described in the definition of D(H) (so that $V(D_a(H)) =$ $V(H) \setminus \{a_1, a_2, ..., a_r\}$ and $E(D_a(H)) = E(H) \setminus \{a_1, a_2, ..., a_r\}$; similarly, let $D_b(H)$ be a deleted core obtained from H by the removal in succession of elements b_1, \ldots, b_s of H.

If $D_a(H) = D_b(H)$ there is nothing to prove, so suppose that $D_a(H) \neq D_b(H)$. In that case we may assume that either (I) $V(D_a(H)) \setminus V(D_b(H)) \neq \phi$, or (II) $V(D_a(H)) = V(D_b(H))$ but $E(D_a(H)) \setminus E(D_b(H)) \neq \phi$. Let b_c be the element from $\{b_1, b_2, \ldots, b_s\}$ of least index such that, if b_c is a vertex, then $b_c \in V(D_a((H)) \setminus V(D_b(H)))$, and if b_c is an edge then $b_c \in E(D_a(H)) \setminus E(D_b(H))$ and $b_c = uv$, where either, in case (I), $u, v \in V(D_a(H)) \setminus V(D_b(H))$ or, in case (II), $u, v \in V(D_b(H))$. Then, since $b_1, \ldots, b_c, \ldots, b_s$ are removed from H in succession, reducing H to $D_b(H)$, either

- (i) $\Delta(J \setminus \{b_1, \dots, b_{c-1}\}) = \Delta(J), b_c \in V(H) \text{ and } d^{\Delta}_{J \setminus \{b_1, \dots, b_{c-1}\}}(b_c) = 0 \text{ or } 1, \text{ or}$ (ii) $\Delta(J \setminus \{b_1, \dots, b_{c-1}\}) = \Delta(J)$ and b_c is an edge $uv \in E(H)$ with $d^{\Delta}_{J \setminus \{b_1, \dots, b_{c-1}\}}(u) + d^{\Delta}_{J \setminus \{b_1, \dots, b_{c-1}\}}(u)$ $d_{J\setminus\{b_1,\ldots,b_{c-1}\}}(v) \leq \Delta(G)$, or

(iii) $\Delta(J \setminus \{b_1, \ldots, b_{c-1}\}) < \Delta(J)$ and b_c is an arbitrary vertex of $V(H) \setminus \{b_1, \ldots, b_{c-1}\}$).

In each case $b_1, \ldots, b_{c-1} \notin (V(D_a(H)) \setminus V(D_b(H))) \cup (E(D_a(H)) \setminus E(D_b(H)))$, so $V(H) \cap$ $\{b_1,\ldots,b_{c-1}\} \subseteq V(H) \cap \{a_1,\ldots,a_r\}$ and $E(H) \cap \{b_1,\ldots,b_{c-1}\} \subseteq E(H) \cap \{a_1,\ldots,a_r\}$. If (i) is true and $\Delta(J) = \Delta(J \setminus \{a_1, \dots, a_r\})$, we have a contradiction since $d^{\Delta}_{J \setminus \{a_1, \dots, a_r\}}(b_c) \leq d^{\Delta}_{J \setminus \{a_1, \dots, a_r\}}(b_c)$ $d^{\Delta}_{J\setminus\{b_1,\dots,b_{c-1}\}}(b_c) = 0$ or 1 so $d^{\Delta}_{J\setminus\{a_1,\dots,a_r\}}(b_c) = 0$ or 1, and so b_c is a vertex of $D_a(H)$ that is eligible to be chosen as the next vertex to be removed under case (i). If (i) is true and $\Delta(J) > \Delta(J \setminus \{a_1, \ldots, a_r\})$, we again have a contradiction, since b_c is a vertex of $D_a(H)$ that is eligible to be removed under case (iii). If (iii) is true, then we have the same contradiction, since b_c is a vertex eligible to be removed under case (iii).

If (ii) is true and $b_c = uv$, where $u, v \in V(D_a(H)) \setminus V(D_b(H))$, then either $\Delta(J) =$ $\Delta(J \setminus \{a_1, \dots, a_r\})$, in which case we have a contradiction since $d^{\Delta}_{J \setminus \{a_1, \dots, a_r\}}(u) + d_{J \setminus \{a_1, \dots, a_r\}}(v) \leq d_{J \setminus \{a_1, \dots, a_r\}}(v)$ $d^{\Delta}_{J\setminus\{b_1,\dots,b_{c-1}\}}(u) + d_{J\setminus\{b_1,\dots,b_{c-1}\}}(v) \leq \Delta(J)$, so e is an edge of $D_a(H)$ that is eligible to be removed under case (ii), or $\Delta(J) > \Delta(J \setminus \{a_1, \ldots, a_r\})$, in which case we have a contradiction since u and v are both eligible to be removed under case (iii). If (ii) is true and $b_c = uv$, where $u, v \in V(D_a(H))$, then we have a contradiction since $d^{\Delta}_{J\setminus\{a_1,...,a_r\}}(u) + d_{J\setminus\{a_1,...,a_r\}}(v) \leqslant d^{\Delta}_{J\setminus\{b_1,...,b_{c-1}\}}(u) + d_{J\setminus\{b_1,...,b_{c-1}\}}(v) \leqslant \Delta(J), \text{ so that } b_c \text{ is an } b_c \in \mathcal{A}(J), \text{ so that } b_c \in \mathcal{A}(J), \text{ so } b_c \in \mathcal{A}(J), \text{ so that } b_c \in \mathcal{A}(J), \text{ so that } b_c \in \mathcal{A}(J), \text{ so } b_c \in \mathcal$ edge of $D_a(H)$ that is eligible to be removed under case (ii).

It must therefore follow that $D_a(H) = D_b(H)$, as required.

Lemma 3.2. Let G be a graph with core H. Let D(H) be obtained from H by the removal of the elements (vertices and edges) f_1, \ldots, f_r of H, as described in the definition of D(H). Then, if $\Delta(G) = \Delta(G \setminus \{f_1, \ldots, f_r\})$, it follows that $\chi'(G) = \chi'(G \setminus \{f_1, \ldots, f_r\})$.

Proof. As in the definition of D(H), let $G_o = G$ and let $G_{i+1} = G_i \setminus \{f_{i+1}\}$ $(0 \le i \le r-1)$. Suppose that $\Delta(G) = \Delta(G \setminus \{f_1, \dots, f_r\})$. Then $\Delta(G_0) = \dots = \Delta(G_r) = \Delta(G)$. Then, as pointed out in the iterative definition of D(H), G_{i+1} is Class 1 if and only if G_i is Class 1 $(0 \le i \le r-1)$. Therefore $\chi'(G) = \chi'(G \setminus \{f_1, \dots, f_r\})$, as asserted.

4. A sufficient condition

We first use the idea of a deleted core to give a refinement of Hoffman's condition for a graph H to be the core of a Class 2 graph.

Theorem 4.1. Let H be a graph with deleted core D(H). Suppose that

$$2 + \gamma_H(V(D(H))) \leqslant \delta_H(V(D(H))) < |V(D(H))|.$$

$$(4.1)$$

Then H is the core of a Class 2 graph.

Proof. We set S = V(D(H)) and apply Theorem 1.1. Then *H* is the core of a Class 2 graph *J* (and it has the extra property that there is an overfull subgraph *K* with $\Delta(K) = \Delta(J)$ and $V(K) \cap V(J) = V(D(H))$).

Under certain conditions, Hoffman's condition applied to the deleted core is also necessary. The first example we give of this is when |V(D(H))| = 3.

Theorem 4.2. Let *H* be a graph with deleted core D(H), where |V(D(H))| = 3. Suppose that *H* is the core of a Class 2 graph. Then $2 + \gamma_H(V(D(H))) \leq \delta_H(V(D(H))) < |V(D(H))|$.

Proof. Suppose that D(H) is obtained from H by the removal of the elements (vertices or edges) f_1, \ldots, f_r of H as described in the definition of D(H). Suppose also that H is the core of a Class 2 graph G. Let $J = G \setminus \{f_1, \ldots, f_r\}$. Since $|V(D(H))| \ge 3 > 0$, it follows from the construction of D(H) that $\Delta(G) = \Delta(J)$. Then, by Lemma 3.1, J is Class 2. We can now adjoin $\Delta(G) - d_J(v)$ pendent edges to each vertex v of D(H), so that D(H) is the core of the graph J^* obtained. Then J^* is a connected Class 2 graph with three vertices of maximum degree. By Lemma 2.3, J^* is K_{2n+1} less (n-1) independent edges, where $2n = \Delta(G)$. Since J^* has in fact no pendent edges, $J^* = J$. But it is not possible to join any vertex of V(D(H)) to any further vertex without raising the maximum degree of J. Since $\Delta(J) = \Delta(G)$ this is not possible, so it follows that H = D(H). Therefore $\gamma_H(V(D(H))) = 0$, $\delta_H(V(D(H))) = 2$ and |V(D(H))| = 3. Therefore $2 + \gamma_H(V(D(H))) \le \delta_H(V(D(H))) < |V(D(H))|$, as asserted.

102

Theorem 4.3. Let H be a graph with deleted core D(H), where |V(D(H))| = 4. Suppose that H is the core of a Class 2 graph. Then (4.1) holds, that is,

$$2 + \gamma_H(V(D(H))) \leq \delta_H(V(D(H))) < |V(D(H))|.$$

Proof. Suppose that D(H) is obtained from H by the removal of the elements (vertices or edges) f_1, \ldots, f_r of H, as described in the definition of D(H). Suppose also that H is the core of a Class 2 graph G. Let $J = G \setminus \{f_1, \ldots, f_r\}$. Since |V(D(H))| = 4 > 0, it follows from the construction of D(H) that $\Delta(G) = \Delta(J)$. Then, by Lemma 3.1, J is Class 2. We can now adjoin $\Delta(G) - d_J(v)$ pendent edges to each vertex v of D(H), so that D(H) is the core of the graph J^* obtained. Then J^* is a connected Class 2 graph with four vertices of maximum degree, and the possibilities for J^* are described in Lemma 2.4.

If J^* has 4 vertices of degree $|V(J^*)| - 1$, $|V(J^*)| - 5$ of degree $|V(J^*)| - 2$, and one vertex of degree $|V(J^*)| - 3$, then J^* has no pendent edges, so $J = J^*$. But it is not possible to join any vertex of D(H) to any further vertex without raising the maximum degree of J. Since $\Delta(J) = \Delta(G)$, this is not possible, so it follows that H = D(H). Then $\gamma_H(V(D(H))) = 0$, $\delta_H(V(D(H))) = 3$ and |V(D(H))| = 4. Therefore (4.1) is satisfied.

If J^* has 4 vertices of degree $|V(J^*)| - 2$, and $|V(J^*)| - 4$ vertices of degree $|V(J^*)| - 3$, the argument is similar, and one finds that $\gamma_H(V(D(H))) = 0$, $3 \ge \delta_H(V(D(H))) \ge 2$ and |V(D(H))| = 4, so again (4.1) is satisfied.

In the remaining possibility, J^* has a cut edge e that separates J^* into J_1 and J_2 , where $\Delta(J_1) > \Delta(J_2)$ and J_1 either (a) has four vertices of degree $|V(J_1)| - 1$, $|V(J_1)| - 5$ vertices of degree $|V(J_1)| - 2$ and one vertex of degree $|V(J_1)| - 3$, or (b) has three vertices of degree $|V(J_1)| - 1$ and $|V(J_1)| - 3$ vertices of degree $|V(J_1)| - 2$. Case (a) is virtually a repetition of the first case described above, and it follows as there that $\gamma_H(V(D(H))) = 0$, $\delta_H(V(D(H))) = 3$ and |V(D(H))| = 4, so (4.1) is satisfied. In case (b) e could be a pendent edge, but it makes no difference. We have that D(H)is a K_4 , and then $\gamma_H(V(D(H))) = 1$, $\delta_H(D(H)) = 3$ and |V(D(H))| = 4, so (4.1) is satisfied.

In [7] there was one graph of order 5 for which an *ad hoc* argument was needed to decide whether or not it could be the core of a Class 2 graph. This was the graph A of Figure 1. Theorem 4.3 can be used to decide this question. For D(A) is the subgraph induced by $\{a, b, c, d\}$, and we have $\gamma_A(V(D(A))) = 1$ and $\delta_A(D(A)) = 2$, so (4.1) is not satisfied. Therefore A cannot be the core of a Class 2 graph. By contrast, $\gamma_B(V(D(B))) = 1$, $\delta_B(D(B)) = 3$, and |V(D(B))| = 4, so by Theorem 4.3, B can be the core of a Class 2 graph.

Finally, it is interesting to consider the Petersen graph *P*. Clearly D(P) = P, so $\gamma_P(V(D(P))) = 0$, $\delta_P(D(P)) = 3$ and |V(D(P))| = 10, so that (4.1) is satisfied. Now consider *P*^{*}, the graph obtained from *P* by deleting one vertex. It is well known that *P*^{*} is Class 2. Let a graph *H* be formed by the addition of three vertices, each joined by an edge to a distinct vertex of *P*^{*} of degree 2. Since *P*^{*} is Class 2, it is easy to see that *H* can be the core of a Class 2 graph. But $D(H) = P^*$, so $\gamma_P(V(D(H))) = 3$, $\delta_H(D(H)) = 3$,

and so (4.1) is not satisfied. Thus (4.1) is not sufficient to ensure that H is the core of a Class 2 graph.

However, since P satisfies (4.1), but this slight modification does not, it may not be an impossible hope that (4.1) could be altered slightly so as to provide a necessary and sufficient condition for a graph H to be the core of a Class 2 graph.

References

- [1] Chetwynd, A. G. and Hilton, A. J. W. (1984) The chromatic index of graphs with at most four vertices of maximum degree. *Congressus Numerantium* **43** 221–248.
- [2] Chetwynd, A. G. and Hilton, A. J. W. (1985) Regular graphs of high degree are 1-factorizable. Proc. London Math. Soc. 50 193–206.
- [3] Chetwynd, A. G. and Hilton, A. J. W. (1990) The chromatic index of graphs with large maximum degree, where the number of vertices of maximum degree is relatively small. J. Combin. Theory Ser. B 48 45–66.
- [4] Chetwynd, A. G., Hilton, A. J. W. and Hoffman, D. G. (1989) On the Δ -subgraph of graphs which are critical with respect to the chromatic index. J. Combin. Theory Ser. B. 46 240–245.
- [5] Fiorini, S. and Wilson, R. J. (1977) Edge-Colourings of Graphs, Vol. 16 of Research Notes in Mathematics, Pitman, London.
- [6] Fournier, J.-C. (1977) Méthode et théorème générale de coloration des arêtes. J. Math. Pures Appl. 56 437–453.
- [7] Hoffman, D. G. (1995) Cores of Class II Graphs. J. Graph Theory 20 397-402.
- [8] Hoffman, D. G. and Rodger, C. A. (1988) Class one graphs. J. Combin. Theory. Ser. B 44 373–376.
- [9] Vizing, V. G. (1964) On an estimate of the chromatic class of a *p*-graph. *Diskret. Analiz.* **3** 25–30. (In Russian.)

104