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The core of a graph G is the subgraph G∆ induced by the vertices of maximum degree.

We define the deleted core D(G) of G. We extend an earlier sufficient condition due to

Hoffman [7] for a graph H to be the core of a Class 2 graph, and thereby provide a

stronger sufficient condition. The new sufficient condition is in terms of D(H). We show

that in some circumstances our condition is necessary; but it is not necessary in general.

1. Introduction

In this note all graphs will be simple, so they will have no loops or multiple edges. The

chromatic index χ′(G) of a graph G is the least value of k such that E(G) can be coloured

with k colours so that no two adjacent edges receive the same colour. Vizing [9] showed

that ∆(G) 6 χ′(G) 6 ∆(G) + 1, where ∆(G) is the maximum degree of G; the graphs G

satisfying χ′(G) = ∆(G) are called Class 1, and those satisfying χ′(G) = ∆(G) + 1 are called

Class 2.

The core G∆ of a graph G is the subgraph induced by the vertices of maximum degree.

Every graph H is the core of a Class 1 graph (we can, using Vizing’s theorem, say more:

every graph H with ∆(H) > 1 is the core of a Class 1 graph of degree ∆(H) + 1 – we need

only add ∆(H) + 1− dH (v) pendent edges to each vertex v of H to create a Class 1 graph

of maximum degree ∆(H) + 1 with core H). But not every graph is the core of a Class

2 graph. For example, Fournier [6] showed that no forest is the core of a Class 2 graph,

and Hoffman [7] showed that the graph A of Figure 1 cannot be the core of a Class 2

graph. By contrast, the graph B of Figure 1 can be the core of a Class 2 graph. In [4],

Chetwynd, Hilton and Hoffman showed that every graph G with minimum degree δ(G)

satisfying δ(G) > 2 can be the core of a Class 2 graph.

We call a graph G satisfying |E(G)| > ∆(G)b 1
2
|V (G)|c overfull. It is easy to see that an

overfull graph must be Class 2. The result of Chetwynd, Hilton and Hoffman [4] was

proved by showing that every graph G with δ(G) > 2 is the core of an overfull graph.

This result was carried a step further by Hoffman [7], who looked for a graph H having
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G as its core such that a given subset S of V (G) is of the form S = V (G) ∩ V (K), where

K is an overfull subgraph with ∆(K) = ∆(H). Hoffman’s result was as follows.

Theorem 1.1. Let H be a graph and let S ⊂ V (H). Then there is a graph J having H as

its core and containing an overfull subgraph K with ∆(K) = ∆(J) and V (K) ∩ V (J) = S if

and only if

2 + γH (S) 6 δH (S) < |S |,
where γH (S) is the number of edges of H with exactly one end in S and δH (S) is the minimum

degree (in H) of the vertices of S .

A fundamental lemma proved in [2] that follows from Vizing’s Adjacency Lemma

[9] (see also [5]) and lies behind Fournier’s result, and also much of this paper, is the

following. Here, for v ∈ V (G), we let d∆G(v) be the number of vertices of G of degree

∆ = ∆(G) to which v is adjacent. If there is no risk of ambiguity, we sometimes simplify

this to d∆(v).

Lemma 1.2. Let G be a graph and let v ∈ V (G) satisfy d∆G(v) 6 1. Then if ∆(G−v) = ∆(G)

then χ′(G− v) = χ′(G).

This result is most useful, for if one wishes to know χ′(G), then one need only find a

suitable vertex v to be deleted, and then the problem is reduced to finding χ′(G− v). Quite

often this procedure can be iterated, and thus an unmanageable graph G is reduced to

a manageable graph, say G\{v1, . . . , vr}. This technique was employed by Chetwynd and

Hilton in [2, 3] and was formalized by Hoffman and Rodger [8]; it has been employed

many times since.

An extension of this lemma to the case when an edge is removed instead of a vertex is

also true [2].

Lemma 1.3. Let G be a graph and let u and v be adjacent vertices, joined by an edge e.

(i) If ∆(G) = ∆(G− w) and d∆G(w) 6 1 then χ′(G− w) = χ′(G).

(ii) If ∆(G) = ∆(G− e) and d∆G(w) + d(u) 6 ∆ then χ′(G− e) = χ′(G).

Suppose that a graph H is the core G∆ of a graph G. In this paper we use Lemma 1.3

to define the deleted core D(H) of H . Roughly speaking, this is the graph that one obtains

from H by repeatedly removing vertices and edges as permitted by Lemma 1.3. We then
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show that if the deleted core D(H) of H satisfies certain specified conditions, then it is

possible for the graph G to be Class 2.

Although the converse is not true in general, we show that it is true if |V (D(H))| 6 4.

An intriguing question is whether a minor variation of our condition can be found which

would be both necessary and sufficient for a graph H to be the core of a Class 2 graph.

Although this might seem to be unlikely, we recall that we do have a necessary and

sufficient condition for a graph H to be the core of a critical graph: call a graph G critical

if G is connected, Class 2, and χ′(G− e) < χ′(G) for each edge e ∈ E(G). Chetwynd, Hilton

and Hoffman [7] proved the following.

Theorem 1.4. Let H be a graph. Then H is the core of a critical graph if and only if

δ(H) > 2.

2. Some useful results

We first note that, with the aid of both parts of Lemma 1.3, we can prove the following

further analogue of Lemma 1.2.

Theorem 2.1. Let G be a graph and let w ∈ V (G). Suppose that ∆(G − w) = ∆(G). If

dG(w) 6 ∆(G)−1 and the neighbours of w in G∆ are u1, u2, . . . , us, with d∆G(ui) 6 i (1 6 i 6 s),
then χ′(G− w) = χ′(G).

Proof. Let ei join ui to w (1 6 i 6 s). Since d∆G(u1) + dG(w) 6 ∆, by Lemma 1.3(ii),

χ′(G − e1) = χ′(G). Then dG−e1
(w) 6 ∆ − 2, so d∆G−e1

(u2) + dG−e1
(w) 6 ∆. Proceed-

ing inductively in this way we find that, for 1 6 i 6 s − 1, dG\{e1 ,e2 ,...,ei}(w) 6 ∆ −
i − 1 and χ′(G\{e1, . . . , ei}) = χ′(G). Then d∆G\{e1, e2, . . . , ei}(ui+1) + dG\{e1 ,...,ei}(w) 6 ∆,

so by Lemma 1.3(ii), χ′(G\{e1, . . . , ei+1}) = χ′(G) (1 6 i 6 s − 1). Eventually we find

that d∆G{e1 ,e2 ,...,es}(w) = 0, so by Lemma 1.3(i), χ′((G\{e1, . . . , es}) − w) = χ′(G\{e1, . . . , es})
= χ′(G). But (G\{e1, . . . , es})− w = G− w, so χ′(G− w) = χ′(G).

We also note the following results (see [2] for a proof of Lemmas 2.2 and 2.3, and [1, 3]

for a proof of Lemma 2.4).

Lemma 2.2. If G has at most two vertices of maximum degree, then G is Class I.

Lemma 2.3. Let G be a connected graph with three vertices of maximum degree. Then G

is Class 2 if and only if G has three vertices of degree |V (G)|−1, and the remaining vertices

have degree |V (G)| − 2.

Lemma 2.4. Let G be a connected graph with four vertices of maximum degree. Then G

is Class 2 if and only if either

(i) G has 4 vertices of degree |V (G)| − 1, |V (G)| − 5 vertices of degree |V (G)| − 2, and

one vertex of degree |V (G)| − 3, or

(ii) G has a cut edge whose removal separates G into G1 and G2, where ∆(G1) = ∆(G),

and G1 either satisfies (i) or is the graph of Lemma 2.3, or

(iii) G has 4 vertices of degree |V (G)| − 2, and |V (G)| − 4 vertices of degree |V (G)| − 3.
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3. The deleted core of a graph

We first define a deleted core D(H) of a graph H . The definition of H is iterative, and it

is not clear immediately from the definition that it is uniquely defined. However, we show

in Lemma 2.3 that it is uniquely defined.

Let d > ∆(H). First from H define H∗d to be the graph obtained from H as follows.

To each vertex v ∈ V (H), adjoin d − dH (v) pendent edges. Then H∗d has vertices of

degrees 1 and d, and H is the core of H∗d, that is, H = H∗d∆ . Write J = H∗d. J is a

particular graph with core H . Also, let G be an arbitrary graph with core H and with

∆(G) = ∆(J) = d.

Set J0 = J∆ and G0 = G. If J0(= H) contains a vertex v such that d∆j (v) = 0 or 1,

then let f1 be such a vertex, and let J1 = J0\{f1} and G1 = G0\{f1}. Otherwise, if J0

contains an edge e = uv with dJ(u) < ∆(J) and d∆J (v) + dJ(u) 6 ∆(J), then let f1 be such

an edge and let J1 = J0\{f1} and G1 = G0\{f1}. Otherwise put J1 = J0 and G1 = G0

and define a deleted core D(H) of H to be J0∆ = J∆ = H . Then, if ∆(J1) = ∆(J) then

∆(G1) = ∆(G) and, by Lemma 1.3 (part (i) or (ii)), G1 is Class 1 if and only if G is Class

1. If ∆(J1) < ∆(J) then ∆(G1) = ∆(J1) < ∆(J) = ∆(G), and, by Lemma 2.2, G is Class 1.

If f1 was selected, then we iterate this procedure. In general, for i > 0, suppose

that J0, J1, . . . , Ji, G0, G1, . . . , Gi and f1, f2, . . . , fi ∈ E(J∆) ∪ (J∆) have been selected, and

that Jj = Jj−1\{fj} and Gj = Gj−1\{fj}, for 1 6 j 6 i. Put Ji = J\{f1, . . . , fi} and

Gi = G\{f1, . . . , fi}. If ∆(Ji) = ∆(J) and J∆\{f1, . . . , fi} contains a vertex v such that

d∆ji (v) = 0 or 1, then we let fi+1 be such a vertex and let Ji+1 = Ji\{fi+1}. We also

let Gi+1 = Gi\{fi+1}. Otherwise, if ∆(Ji) = ∆(J) and J∆\{f1, . . . , fi} contains an edge

e = uv with dJi(u) < ∆(J) and d∆Ji(v) + dJi(u) 6 ∆(J) then let fi+1 be such an edge

and let Ji+1 = Ji\{fi+1}. Also let Gi+1 = Gi\{fi+1}. If ∆(J\{f1, . . . , fi}) < ∆(J) and

J∆\{f1, . . . , fi} is not the empty graph, then choose any vertex of J∆\{f1, . . . , fi} as fi+1,

and let Ji+1 = Ji\{fi+1}. Also put Gi+1 = Gi\{fi+1}. If none of these is possible, put

Ji+1 = Ji and Gi+1 = Gi, and define a deleted core D(H) of H to be J∆\{f1, f2, . . . , fi}.
If ∆(Ji) = ∆(Ji+1) = ∆(J) then ∆(Gi) = ∆(Ji) = ∆(Ji+1) = ∆(Gi+1) = ∆(G), and, by

Lemma 1.3, Gi+1 is Class 2 if and only if Gi is Class 2. If ∆(Ji+1) < ∆(Ji) = ∆(J) then

∆(Gi+1) < ∆(Gi) = ∆(G) and then, by Lemma 2.2, Gi is Class 1, and, working back, G is

Class 1. If ∆(Ji+1) = ∆(Ji) < ∆(J) then, similarly, G is Class 1. If the deleted core is the

empty graph then again, similarly, G is Class 1.

This process is iterated until it has to stop. The graph obtained finally from J∆ is called

a deleted core of H , and is denoted by D(H). It is clear from the definition that if D(H) is

obtained from J∆ by the removal of f1, . . . , fr as described above, then either ∆(Jr) = ∆(J)

(so that ∆(Gr) = ∆(G)) or ∆(Jr) < ∆(J) (so that ∆(Gr) < ∆(G)). In the former case, G is

Class 2 if and only if Gr is Class 2. In the latter case G is Class 1.

The graph in Figure 2 is an example of a graph H in which the removal of vertices

alone will not suffice to produce D(H). The edges e1, e2 that must be removed at some

point are indicated. D(H) is induced by the vertex set {a, b, c}.
Now let us consider the question of the uniqueness of D(H).

Lemma 3.1. Let H be a graph. Then the deleted core D(H) is uniquely determined.
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Proof. Let Da(H) be a deleted core obtained from H by removal in succession of

elements a1, a2, . . . , ar of H , as described in the definition of D(H) (so that V (Da(H)) =

V (H)\{a1, a2, . . . , ar} and E(Da(H)) = E(H)\{a1, a2, . . . , ar}); similarly, let Db(H) be a

deleted core obtained from H by the removal in succession of elements b1, . . . , bs
of H .

If Da(H) = Db(H) there is nothing to prove, so suppose that Da(H) 6= Db(H). In that

case we may assume that either (I) V (Da(H))\V (Db(H)) 6= φ, or (II) V (Da(H)) = V (Db(H))

but E(Da(H))\E(Db(H)) 6= φ. Let bc be the element from {b1, b2, . . . , bs} of least index

such that, if bc is a vertex, then bc ∈ V (Da((H))\V (Db(H)), and if bc is an edge then

bc ∈ E(Da(H))\E(Db(H)) and bc = uv, where either, in case (I), u, v ∈ V (Da(H))\V (Db(H))

or, in case (II), u, v ∈ V (Db(H)). Then, since b1, . . . , bc, . . . , bs are removed from H in

succession, reducing H to Db(H), either

(i) ∆(J\{b1, . . . , bc−1}) = ∆(J), bc ∈ V (H) and d∆J\{b1 ,...,bc−1}(bc) = 0 or 1, or

(ii) ∆(J\{b1, . . . , bc−1}) = ∆(J) and bc is an edge uv ∈ E(H) with d∆J\{b1 ,...,bc−1}(u) +

dJ\{b1 ,...,bc−1}(v) 6 ∆(G), or

(iii) ∆(J\{b1, . . . , bc−1}) < ∆(J) and bc is an arbitary vertex of V (H)\{b1, . . . , bc−1}).
In each case b1, . . . , bc−1 6∈ (V (Da(H))\V (Db(H))) ∪ (E(Da(H))\E(Db(H))), so V (H) ∩
{b1, . . . , bc−1}) ⊆ V (H) ∩ {a1, . . . , ar} and E(H) ∩ {b1, . . . , bc−1}) ⊆ E(H) ∩ {a1, . . . , ar}. If

(i) is true and ∆(J) = ∆(J\{a1, . . . , ar}), we have a contradiction since d∆J\{a1 ,...,ar}(bc) 6
d∆J\{b1 ,...,bc−1}(bc) = 0 or 1 so d∆J\{a1 ,...,ar}(bc) = 0 or 1, and so bc is a vertex of Da(H) that is

eligible to be chosen as the next vertex to be removed under case (i). If (i) is true and

∆(J) > ∆(J\{a1, . . . , ar}), we again have a contradiction, since bc is a vertex of Da(H)

that is eligible to be removed under case (iii). If (iii) is true, then we have the same

contradiction, since bc is a vertex eligible to be removed under case (iii).

If (ii) is true and bc = uv, where u, v ∈ V (Da(H))\V (Db(H)), then either ∆(J) =

∆(J\{a1, . . . , ar}), in which case we have a contradiction since d∆J\{a1 ,...,ar}(u)+dJ\{a1 ,...,ar}(v) 6
d∆J\{b1 ,...,bc−1}(u) + dJ\{b1 ,...,bc−1}(v) 6 ∆(J), so e is an edge of Da(H) that is eligible to

be removed under case (ii), or ∆(J) > ∆(J\{a1, . . . , ar}), in which case we have a

contradiction since u and v are both eligible to be removed under case (iii). If (ii)

is true and bc = uv, where u, v ∈ V (Da(H)), then we have a contradiction since

d∆J\{a1 ,...,ar}(u) + dJ\{a1 ,...,ar}(v) 6 d∆J\{b1 ,...,bc−1}(u) + dJ\{b1 ,...,bc−1}(v) 6 ∆(J), so that bc is an

edge of Da(H) that is eligible to be removed under case (ii).

It must therefore follow that Da(H) = Db(H), as required.
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Lemma 3.2. Let G be a graph with core H . Let D(H) be obtained from H by the removal

of the elements (vertices and edges) f1, . . . , fr of H , as described in the definition of D(H).

Then, if ∆(G) = ∆(G\{f1, . . . , fr}), it follows that χ′(G) = χ′(G\{f1, . . . , fr}).

Proof. As in the definition of D(H), let Go = G and let Gi+1 = Gi\{fi+1} (0 6 i 6 r − 1).

Suppose that ∆(G) = ∆(G\{f1, . . . , fr}). Then ∆(G0) = · · · = ∆(Gr) = ∆(G). Then, as

pointed out in the iterative definition of D(H), Gi+1 is Class 1 if and only if Gi is Class 1

(0 6 i 6 r − 1). Therefore χ′(G) = χ′(G\{f1, . . . , fr}), as asserted.

4. A sufficient condition

We first use the idea of a deleted core to give a refinement of Hoffman’s condition for a

graph H to be the core of a Class 2 graph.

Theorem 4.1. Let H be a graph with deleted core D(H). Suppose that

2 + γH (V (D(H))) 6 δH (V (D(H))) < |V (D(H))|. (4.1)

Then H is the core of a Class 2 graph.

Proof. We set S = V (D(H)) and apply Theorem 1.1. Then H is the core of a Class 2 graph

J (and it has the extra property that there is an overfull subgraph K with ∆(K) = ∆(J)

and V (K) ∩ V (J) = V (D(H))).

Under certain conditions, Hoffman’s condition applied to the deleted core is also

necessary. The first example we give of this is when |V (D(H))| = 3.

Theorem 4.2. Let H be a graph with deleted core D(H), where |V (D(H))| = 3. Suppose

that H is the core of a Class 2 graph. Then 2 + γH (V (D(H))) 6 δH (V (D(H))) < |V (D(H))|.

Proof. Suppose that D(H) is obtained from H by the removal of the elements (vertices

or edges) f1, . . . , fr of H as described in the definition of D(H). Suppose also that H is the

core of a Class 2 graph G. Let J = G\{f1, . . . , fr}. Since |V (D(H))| > 3 > 0, it follows from

the construction of D(H) that ∆(G) = ∆(J). Then, by Lemma 3.1, J is Class 2. We can now

adjoin ∆(G)−dJ(v) pendent edges to each vertex v of D(H), so that D(H) is the core of the

graph J∗ obtained. Then J∗ is a connected Class 2 graph with three vertices of maximum

degree. By Lemma 2.3, J∗ is K2n+1 less (n− 1) independent edges, where 2n = ∆(G). Since

J∗ has in fact no pendent edges, J∗ = J . But it is not possible to join any vertex of V (D(H))

to any further vertex without raising the maximum degree of J . Since ∆(J) = ∆(G) this is

not possible, so it follows that H = D(H). Therefore γH (V (D(H))) = 0, δH (V (D(H))) = 2

and |V (D(H))| = 3. Therefore 2 + γH (V (D(H))) 6 δH (V (D(H))) < |V (D(H))|, as asserted.
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Theorem 4.3. Let H be a graph with deleted core D(H), where |V (D(H))| = 4. Suppose

that H is the core of a Class 2 graph. Then (4.1) holds, that is,

2 + γH (V (D(H))) 6 δH (V (D(H))) < |V (D(H))|.

Proof. Suppose that D(H) is obtained from H by the removal of the elements (vertices

or edges) f1, . . . , fr of H , as described in the definition of D(H). Suppose also that H

is the core of a Class 2 graph G. Let J = G\{f1, . . . , fr}. Since |V (D(H))| = 4 > 0,

it follows from the construction of D(H) that ∆(G) = ∆(J). Then, by Lemma 3.1, J

is Class 2. We can now adjoin ∆(G) − dJ(v) pendent edges to each vertex v of D(H),

so that D(H) is the core of the graph J∗ obtained. Then J∗ is a connected Class 2

graph with four vertices of maximum degree, and the possibilities for J∗ are described in

Lemma 2.4.

If J∗ has 4 vertices of degree |V (J∗)| − 1, |V (J∗)| − 5 of degree |V (J∗)| − 2, and one

vertex of degree |V (J∗)| − 3, then J∗ has no pendent edges, so J = J∗. But it is not

possible to join any vertex of D(H) to any further vertex without raising the maximum

degree of J . Since ∆(J) = ∆(G), this is not possible, so it follows that H = D(H). Then

γH (V (D(H))) = 0, δH (V (D(H))) = 3 and |V (D(H))| = 4. Therefore (4.1) is satisfied.

If J∗ has 4 vertices of degree |V (J∗)| − 2, and |V (J∗)| − 4 vertices of degree |V (J∗)| − 3,

the argument is similar, and one finds that γH (V (D(H))) = 0, 3 > δH (V (D(H))) > 2 and

|V (D(H))| = 4, so again (4.1) is satisfied.

In the remaining possibility, J∗ has a cut edge e that separates J∗ into J1 and J2,

where ∆(J1) > ∆(J2) and J1 either (a) has four vertices of degree |V (J1)| − 1, |V (J1)| − 5

vertices of degree |V (J1)| − 2 and one vertex of degree |V (J1)| − 3, or (b) has three

vertices of degree |V (J1)| − 1 and |V (J1)| − 3 vertices of degree |V (J1)| − 2. Case

(a) is virtually a repetition of the first case described above, and it follows as there

that γH (V (D(H))) = 0, δH (V (D(H))) = 3 and |V (D(H))| = 4, so (4.1) is satisfied. In

case (b) e could be a pendent edge, but it makes no difference. We have that D(H)

is a K4, and then γH (V (D(H))) = 1, δH (D(H)) = 3 and |V (D(H))| = 4, so (4.1) is

satisfied.

In [7] there was one graph of order 5 for which an ad hoc argument was needed to

decide whether or not it could be the core of a Class 2 graph. This was the graph A

of Figure 1. Theorem 4.3 can be used to decide this question. For D(A) is the subgraph

induced by {a, b, c, d}, and we have γA(V (D(A))) = 1 and δA(D(A)) = 2, so (4.1) is not

satisfied. Therefore A cannot be the core of a Class 2 graph. By contrast, γB(V (D(B))) = 1,

δB(D(B)) = 3, and |V (D(B))| = 4, so by Theorem 4.3, B can be the core of a Class 2

graph.

Finally, it is interesting to consider the Petersen graph P . Clearly D(P ) = P , so

γP (V (D(P ))) = 0, δP (D(P )) = 3 and |V (D(P ))| = 10, so that (4.1) is satisfied. Now

consider P ∗, the graph obtained from P by deleting one vertex. It is well known that P ∗
is Class 2. Let a graph H be formed by the addition of three vertices, each joined by an

edge to a distinct vertex of P ∗ of degree 2. Since P ∗ is Class 2, it is easy to see that H

can be the core of a Class 2 graph. But D(H) = P ∗, so γP (V (D(H))) = 3, δH (D(H)) = 3,
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and so (4.1) is not satisfied. Thus (4.1) is not sufficient to ensure that H is the core of a

Class 2 graph.

However, since P satisfies (4.1), but this slight modification does not, it may not be

an impossible hope that (4.1) could be altered slightly so as to provide a necessary and

sufficient condition for a graph H to be the core of a Class 2 graph.
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