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Poiseuille flow in rough pipes: linear instability
induced by vortex–wave interactions

Philip Hall1,† and Ozge Ozcakir1

1School of Mathematics, Monash University, Clayton VIC 3800, Australia

(Received 21 September 2020; revised 4 December 2020; accepted 11 January 2021)

The instability of Hagen–Poiseuille flow in a rough pipe is considered and it is shown
that for arbitrarily small roughness amplitudes the flow is unstable for sufficiently large
values of the Reynolds number. Various models of wall roughness are considered and,
if ε is a typical amplitude of the roughness, it is shown that the flow is unstable when
the Reynolds number R > Cε−(3/2)|log ε|−(3/4) where C is a constant which depends on
the roughness shape and is typically in the range 10–40. The roughness is assumed to
vary on the same length scale as the pipe radius. In the limit of short scale roughness
varying most quickly in the streamwise direction, a quite general condition for instability,
Rb > 3.16[b/h]3/4/(log[b/h])3/8, is found in terms of just the Reynolds number Rb based
on the friction velocity, the streamwise length scale b and h, the height of the roughness.
The instability mechanism described is closely linked to vortex–wave interaction theory
and applies to both two- and three-dimensional roughness shapes and takes the form
of a roll-streak-wave flow. The interaction sustaining the instability occurs in a viscous
boundary layer at the pipe wall but the roll-streak flow persists throughout the pipe. The
most dangerous roughness shapes are found and generic results are also given for when
the roughness length scale is small compared to the pipe radius.

Key words: transition to turbulence, critical layers, parametric instability

1. Introduction

Interest in the manner in which rough boundaries influence the stability properties of
fluid flows dates back to Hagen (1854) and Reynolds (1883). In recent years roughness,
both isolated and distributed, has been shown to be a key ingredient of the receptivity
mechanism by which unstable shear flows undergo transition. By comparison the question
of whether roughness itself can generate an instability not present when the boundaries
are smooth has received little attention; that will be the focus for this paper. As a model
of wall roughness we will assume that it can be modelled by Fourier series expansions

† Email address for correspondence: phil.hall@monash.edu

© The Author(s), 2021. Published by Cambridge University Press 913 A43-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

52
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:phil.hall@monash.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.52&domain=pdf
https://doi.org/10.1017/jfm.2021.52


P. Hall and O. Ozcakir

in one or two dimensions. Further motivation for studying the effect of wall undulations
comes from the heat transfer community where wavy walls have long been used as an aid
to mixing; see for example Gschwind, Regele & Kottke (1995), Kandlikar (2008), Ligrani,
Oliveira & Blaskovich (2003) and Nishimura, Yoshino & Kawamura (1987). Moreover,
such devices often operate at Reynolds numbers where turbulence in smooth channels or
pipes occurs so there is a strong interest in the question of how wall undulations effect
transition to turbulence in shear flows.

Of course surface roughness has long been known to be implicated in transition to
turbulence, but almost always the interest has been in how roughness excites instability
mechanisms which occur in the absence of roughness. The latter process is usually
described as the receptivity process and it is fundamental to how transition occurs in
convectively unstable flows; see for example Goldstein (1985) or Ruban (1984). Here,
we are concerned with roughness as the direct cause of a flow instability rather than
being an ‘enabler’ as in receptivity theory. Note that our approach is also distinct from
‘sensitivity theory’, which is often misunderstood as being the same as receptivity theory.
Sensitivity theory concerns the change in an instability when the undisturbed flow is
modified.

Our focus here is with the instability of Hagen–Poiseuille flow in a pipe with small
modulations of pipe radius as a model for wall roughness. The wall undulations are taken
to be either just in the axial direction or in both the axial and azimuthal directions. It
is widely believed that the corresponding flow in a smooth pipe is linearly stable at all
Reynolds numbers, although dating back to the work of Smith & Bodonyi (1982), it is
now well known that finite amplitude equilibrium perturbations from Hagen–Poiseuille
flow exist; see for example Faisst & Eckhardt (2003), Hof et al. (2004), Fitzerald (2004),
Wedin & Kerswell (2004), Kerswell & Tutty (2007), Pringle & Kerswell (2007), Willis
& Kerswell (2009) and the review paper by Eckhardt et al. (2007). The Smith–Bodonyi
solution takes the form of a spiral wave and numerical calculations by Deguchi & Walton
(2013) confirmed the existence of the asymptotically derived Smith–Bodonyi solution at
Reynolds numbers of order 108. On the other hand experiments show that pipe flow is
turbulent at Reynolds numbers of order 103, which is in the regime where exact coherent
structures of the type described in the review paper by Eckhardt et al. (2007) emerge.

The exact coherent structures found in the work described above were subsequently
shown by Ozcakir et al. (2016) to be of the vortex–wave interaction type. The latter
asymptotic theory was developed in a series of papers by Hall & Smith (1988, 1989);
Hall (1991) in the general context of streamwise vortex and wave interactions for a variety
of shear flows. Subsequently it was shown by Hall & Sherwin (2010) that it provides a
theoretical description of the fundamental interaction supporting exact coherent structures.
In fact, an alternative derivation of what was exactly the vortex–wave interaction theory
description of exact coherent structures had been uncovered numerically by Nagata (1990)
and subsequently Waleffe and colleagues who described it as a ‘self-sustained process’;
see for example Waleffe (2001) and Wang, Gibson & Waleffe (2007).

In vortex–wave interaction theory the key point is the recognition that, at large values
of the Reynolds number R, the roll part of roll-streak flow typical of Taylor–Görtler
instabilities is smaller than the streak by a factor of the Reynolds number. The consequence
is that a small inviscid neutrally stable wave disturbance of the streak flow can drive
the streak by first driving the roll flow. The driving of the roll takes place in the wave’s
viscous critical layer through the Reynolds stresses. Thus an equilibrium state exists with
a predominantly inviscid wave driving a roll which itself drives the streak through the
‘lift-up’ mechanism with the streak neutrally stable to the wave. As mentioned above,
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Instability in rough pipes

exactly the same mechanism had been uncovered by numerical interrogation of computed
states by Waleffe and called a ‘self-sustained process’. More recently Ozcakir et al. (2016)
showed that a second fundamental mechanism is possible in flows having a local maximum
of the mean flow. Such ‘centre modes’ occur in for example Poiseuille flow in pipes
and channels and likely are present in jets, although the asymptotic description for jets
is complicated by downstream growth of the jet.

On the practical side, much of the recent interest in the nature of shear flows at Reynolds
number of the order of 103 has been motivated by the development of microfluidic devices.
In that context, there is interest in how mixing or heat transfer might be modified by
deviations from Poiseuille flow; see Kandlikar (2008). In particular, an important issue
there is that the manufacture of pipes or channels of constant depth is difficult so that
some account of wall roughness must be taken into account.

As a model of wall roughness pipes of radius varying periodically in the streamwise
direction have been considered by for example Cotrell, McFadden & Alder (2008) and Loh
& Blackburn (2011). These authors found that wall waviness can destabilise the flows and
the instability was said to be of the Taylor–Görtler type. Cotrell et al. (2008) gave results
almost exclusively for axisymmetric disturbances and stated that non-axisymmetric modes
were more stable. The investigations of both Cotrell et al. (2008) and Loh & Blackburn
(2011) were confined to a single value of the axial wavelength of the wall undulations, here
we will see that our analysis applies to any waveform. However, Loh & Blackburn (2011)
found that non-axisymmetric modes become unstable at Reynolds numbers where the
axisymmetric mode of Cotrell et al. (2008) is still stable. The reason for the discrepancy
is not obvious but Cotrell et al. (2008) allowed for a more complicated streamwise
dependence of the mode so perhaps the limited investigations of non-axisymmetric modes
by the latter authors were not in the regime investigated by Loh & Blackburn (2011). The
results found here also predict instability before the axisymmetric mode of Cotrell et al.
(2008) become unstable.

Related investigations by Floryan (2002, 2003, 2015) in channel flows of periodically
varying widths give qualitatively similar results for flows driven by a pressure gradient
or the motion of one wall. The latter investigations were all based on global instability
computations of the linearised Naiver–Stokes equations. Recently Hall (2020) has shown
how the small amplitude case, which is in fact the case of most practical interest,
can be described by a variant of vortex–wave interaction theory, henceforth referred to
as VWI theory. Here, we will use and extend the theory to pipe flow problems. The
basic instability mechanism uncovered in Hall (2020) is operational whenever a shear
flow interacts with a wavy wall and so it is relevant to pipe flows. However, various
modifications are needed to allow for the change in geometry. In a situation where
Rayleigh’s criterion for the instability of curved flows is violated it is appropriate to refer
to the instability as a centrifugal one. For that reason in the numerical investigations
it seemed appropriate to refer to the instability found as a centrifugal one since the
wall waviness causes curved streamlines. However, it was shown in Hall (2020) that the
instability is in fact a hybrid form of VWI theory. The regime investigated by Hall (2020)
concerned wall undulations on the same length scale as the channel width; subsequently
the instability problem in channels with depth variations on a longer scale were considered
by Gajjar & Hall (2020) in the lubrication theory regime. In the latter case the instability
is not controlled by VWI theory and is much more closely related to Taylor–Görtler
instabilities.

We will consider the cases of two- and three-dimensional roughness at the pipe wall; see
figure 1 for examples of the two types of geometry to be investigated. The mechanism we
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(a) (b)

Figure 1. The two- and three-dimensional geometries under investigation. Note that the wavelengths in both
axial and azimuthal directions are comparable with the pipe radius.

describe depends on the streamwise variation of the pipe radius and it cannot be driven by
roughness depending only on the azimuthal coordinate. In the simplest case we consider
the case when the axial and azimuthal variations of radius are both simple sine waves.
However, the analysis is readily extended to more general periodic variations in either
direction.

In the next section we discuss the basic flow in a pipe when the wall waviness
amplitude is small compared to the viscous wall layer where the mean flow modified by
the wall adjusts to satisfy the no-slip condition. In § 3 we investigate the high Reynolds
number instability of the flow found in § 2 to roll-streak-wave disturbances and derive
the eigenvalue problem governing the instability of high Reynolds number flows in rough
pipes. In § 4 we give results for two-dimensional roughness and extend the theory to quite
general roughness shapes. In § 5 we give results for three-dimensional roughness. In § 6
we investigate the limit of short and long scale roughness, finally in § 7 we draw some
conclusions.

2. The basic flow in a rough-walled pipe

We consider viscous incompressible flow in a pipe defined in cylindrical polar coordinates
(r, θ, z) by

r = 1 + ε cos Mθ [E + Ē], (2.1)

where E = eiαz and ε, the amplitude of the roughness, is taken to be small. A more
general roughness shape with multiple harmonics in the θ, z directions can be treated
and will be discussed later. We will consider both the case of two-dimensional roughness
corresponding to M = 0 and the more general three-dimensional case.
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Instability in rough pipes

In cylindrical polar coordinates the equations of motion take the form

Du
Dt

+

⎛⎜⎜⎜⎜⎝
−v

2

r
uv
r
0

⎞⎟⎟⎟⎟⎠ = −∇p + 1
R

∇2u + 1
R

⎛⎜⎜⎜⎜⎝
− u

r2 − 2
r2
∂v

∂θ

− v

r2 + 2
r2
∂u
∂θ

0

⎞⎟⎟⎟⎟⎠ , (2.2)

∇·u = 0. (2.3)

Here, u, v, and w are the velocity components in the r, θ, and z directions, p is the pressure
and R is the Reynolds number defined using the mean pipe radius as a length scale and
the maximum unperturbed velocity as a typical velocity. We have defined the material
derivative by

D
Dt

= ∂

∂t
+ u·∇, (2.4)

and ∇ is defined in cylindrical polar coordinates. We assume that the flow is driven by a
fixed mean streamwise pressure gradient −(4/R) so that in the absence of roughness the
base state is given by

u = (0, 0,w0(r)), (2.5)

with w0 = 1 − r2 representing Hagen–Poiseuille flow. In the first instance we assume
the roughness corresponds to a single axial wavenumber α. If we consider the limit
ε → 0 with the Reynolds number R ∼ O(1) held fixed then w0 will be perturbed by
O(ε) throughout the pipe and will induce radial and azimuthal velocity components of the
same order. Here, we are interested in the simultaneous limits ε → 0, R → ∞ but with
εR1/3 � 1. In that case, the wall undulation amplitude is small compared to the thickness
of the viscous wall layer which develops at large R. When the amplitude and wall layer are
of comparable amplitudes the flow is governed by the interactive boundary-layer equations,
see Smith (1982); that regime is not considered in this work.

On the assumptions that α = O(1) and εR1/3 � 1 we shall now find the correction to
the basic flow in the viscous wall layer and the core region where r = O(1); see figure 2.
We define Δ = −iαμ, with μ = w′

0(1), and introduce a wall layer variable η by writing

η = −[RΔ]1/3(r − 1). (2.6)

In the wall layer we expand the velocity and pressure fields in the form

u = ûb = ε

R1/3 [ub(η)E + ūb(η)Ē] cos Mθ + · · · , (2.7)

v = v̂b = ε[vb(η)E + v̄b(η)Ē] sin Mθ + · · · , (2.8)

w = − μ

R1/3Δ1/3 η + · · · + ŵb = − μ

R1/3Δ1/3 η + · · ·
+ε[wb(η)E + w̄b(η)Ē] cos Mθ + · · · , (2.9)

p = −4z
R

+ p̂b = − 4
R

+ ε

R1/3 [pb(η)E + p̄b(η)Ē] cos Mθ + · · · , (2.10)

where an overbar denotes the complex conjugate. We first substitute the above expansions
into the equations of motion and retain the terms proportional to ε. We then take the
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O(R–1/3)

Viscous wall layer

Core region 0 < r < 1

Figure 2. The different regions of interest in the high Reynolds number limit. Note the amplitude of the
wall undulations is small compared to the thickness of the viscous layer at the wall. The cross-section shown
corresponds to z = 0.

leading-order approximation to those equations in the limit of large R to give

∂pb

∂η
= 0, (2.11)

∂2vb

∂η2 − ηvb = −MΔ−(2/3)pb, (2.12)

∂2wb

∂η2 − ηwb − μΔ−(2/3)ub = iαΔ−(2/3)pb, (2.13)

−Δ1/3 ∂ub

∂η
+ Mvb + iαwb = 0. (2.14)

The velocity field must satisfy the no-slip condition on the perturbed surface and so, by
using a Taylor series about the mean pipe radius, we can show that the above equations
must be solved subject to

ub = vb = 0, wb = −μ, η = 0. (2.15a–c)

We also require that ub, vb,wb are bounded for large η. Note that ub cannot be allowed
to grow linearly for large η because the core flow cannot support a velocity field with the
radial velocity component vanishing in order to match with such a linear growth. Equation
(2.11) shows that the pressure is independent of η and by combining (2.12) and (2.13),
using the continuity equation and differentiating with respect to η we find that

∂4ub

∂η4 − η
∂2ub

∂η2 = 0, (2.16)
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Instability in rough pipes

and so we can show that

ub = 3Δ2/3
∫ η

0
dψ

∫ ∞

ψ

Ai(Ψ ) dΨ, vb = −3
ΔM Ai′(0)
α2 + M2 L(η), pb = 3Δ5/3Ai′(0)

(α2 + M2)
,

(2.17a–c)

where Ai is the Airy function, and the function L(η) is the Scorer function which satisfies

L′′ − ηL = 1, L = 0, η = 0,∞. (2.18a,b)

Note that, for large values of η, the above solution gives

ub ∼ −3Δ2/3Ai′(0), vb ∼ 3ΔMAi′(0)
[α2 + M2]η

, η → ∞. (2.19a,b)

The above limiting form for the perturbed velocity field at the edge of the wall layer means
that in the core we must expand the velocity and pressure in the form

u = ε

R1/3 [Ub(r)E + Ūb(r)Ē] cos Mθ + · · · , (2.20)

v = ε

R1/3 [Vb(r)E + V̄b(r)Ē] sin Mθ + · · · , (2.21)

w = w0(r)+ ε

R1/3 [Wb(r)E + W̄b(r)Ē] cos Mθ + · · · , (2.22)

p = −4z
R

+ ε

R1/3 [Pb(r)E + P̄b(r)Ē] cos Mθ + · · · . (2.23)

We substitute the above expansions into the equations of motion and retain terms of order
εR−(1/3) to give

dPb

dr
+ iαw0Ub = 0, (2.24)

M
r

Pb − iαw0Vb = 0, (2.25)

iαPb + iαw0Wb + Ub
dw0

dr
= 0, (2.26)

dUb

dr
+ Ub

r
+ M

Vb

r
+ iαWb = 0. (2.27)

Thus viscous effects do not come into play in the perturbed core flow equations and we
can eliminate Vb,Wb,Pb to give a second order equation for Ub which is solved subject to
the appropriate condition on Ub at r = 0 for the given value of M and

Ub(1) = −3Δ2/3Ai′(0), (2.28)

at the wall. Note that, although the equation for Ub is singular at r = 1, the inhomogeneous
boundary condition allows for a regular solution there, but the solution must be found
numerically. Thus the inviscid response in the core is passive and driven by the
inhomogeneous condition imposed on the radial velocity component in (2.19a,b).

The above expansions can be continued to higher order but we have sufficient
information for our purposes here. Before moving on to discuss the instability of the above
flow, we observe that the streamwise velocity component including the leading-order
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perturbation due to the wall undulation does not change sign either in the wall layer or core
region. Therefore, the suggestion often made that instability of such flows is associated
with flow reversal near the wall will be shown to be incorrect. Note further that to achieve
flow reversal the amplitude of the wall must be O(R−(1/3)) where the interactive regime
occurs; see Smith (1982).

3. The instability problem

The instability we will describe is a streamwise vortex instability with the flow induced by
the wall waviness producing Reynolds stresses which mimic the action of curvature. Even
though the instability is not strictly a centrifugal one the scalings for the relative size of
the velocity components and the time scale for growth flow are those for Taylor–Görtler
instabilities. Therefore, the disturbance has a roll flow in the r–θ plane of size R−1 smaller
than the velocity component in the streamwise direction. We will refer to the latter as the
streak. The time scale for the growth is the diffusion time scale and so instability will
occur for t ∼ R.

3.1. Streamwise vortex disturbances in straight pipes
In order to set the scene we first suppose the pipe is smooth and within the core we perturb
Hagen–Poiseuille flow to a small streamwise vortex disturbance of size δ by writing

u = (0, 0,w0(r))+ δ

(
U(r, θ)

R
,

V(r, θ)
R

,W(r, θ)
)

eσ t/R, p = −4z
R

+ δP(r, θ)
R2 eσ t/R.

(3.1a,b)

The growth rate σ of the above disturbance will be determined by the solution of the
linearised equations⎛⎜⎜⎜⎝ ∂2

∂r2 + 1
r
∂

∂r
−

[
1 − ∂2

∂θ2

]
r2 − σ

⎞⎟⎟⎟⎠U − 2
r2
∂V
∂θ

= ∂P
∂r
, (3.2)

⎛⎜⎜⎜⎝ ∂2

∂r2 + 1
r
∂

∂r
−

[
1 − ∂2

∂θ2

]
r2 − σ

⎞⎟⎟⎟⎠V + 2
r2
∂U
∂θ

= 1
r
∂P
∂θ
, (3.3)

(
∂2

∂r2 + 1
r
∂

∂r
+ 1

r2
∂2

∂θ2 − σ

)
W = U

∂w0

∂r
, (3.4)

1
r
∂(rU)
∂r

+ 1
r
∂V
∂θ

= 0, (3.5)

subject to no slip at the wall and regularity at the centre of the pipe. There will be two sets
of stable eigenvalues. The first set will have U = V = 0 with a second set determined by
the r–θ momentum and continuity equations which then induce a non-zero W through the
‘lift-up’ effect associated with the right-hand side of (3.4). The role of curvature in such
instability problems would be to couple the U,V equations to W through a centrifugal
term in (3.2). Instabilities of curved flows are susceptible to instabilities of the latter form
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when Rayleigh’s criterion is violated. Whilst there is curvature associated with the wall
undulations Rayleigh’s criterion cannot be applied because the flow depends on all three
spatial variables. However, we know from Hall (2020) that certainly two-dimensional
roughness can induce streamwise vortex perturbations. The instability described by Hall
(2020) originates from what is essentially a VWI in the wall layer facilitated by the wall
undulations. We shall see that the interaction couples (3.2) and (3.3) with the streamwise
momentum equations by relating (∂W/∂r)(1, θ) to V(1, θ), the latter connection is driven
by what is essentially a VWI in the wall layer.

We take the streamwise vortex field in the core region in the form

U =
∞∑

N=1

κN(UN(r) cos Nθ,VN(r) sin Nθ,WN(r) cos Nθ), (3.6)

where κN is the amplitude of the Nth mode subject to some normalisation of UN . We
have assumed above that, like the wall undulations, the streamwise velocity component
of the vortex is an even function of θ and so we refer to this type of perturbation as an
‘even’ mode. In addition there is a mode where the streamwise component of the vortex is
odd in θ and we will refer to it as the ‘odd’ mode. We will give details below just for the
even mode and later indicate how the eigenrelation we derive is modified for the odd case.
Now we suppose that the azimuthal velocity component does not vanish at r = 1. If we
now substitute (3.6) together with the corresponding expansion of the pressure field into
(3.2)–(3.5) and solve subject to regularity at the pipe centre and the radial and streamwise
velocities vanishing at r = 1 we obtain

UN(r) = rN−1 − 1
r

JN(
√−σ r)

JN(
√−σ) , VN(r) = −NrN−1 + √−σ J′

N(
√−σ r)

JN(
√−σ) , (3.7a,b)

WN(r) = −2

(
−rN+2

σ
+ 1√−σ

J′
N(

√−σ r)

JN(
√−σ)

)

+ 2
JN(

√−σ r)
JN(

√−σ)

(
− 1
σ

+ 1√−σ
J′

N(
√−σ)

JN(
√−σ)

)
. (3.8)

Here, JN is the Bessel function. Note that σ is not fixed at this stage since we have in effect
only satisfied 5 out of the 6 conditions to be satisfied at r = 0, 1. If σ = 0 the disturbance
is neutral and the above reduces to

UN(r) = χN

(
N[rN−1 − rN+1], [N + 2]rN+1 − NrN−1,

NrN(r2 − 1)
4

×
[

r2 + 1
N + 2

− 2
N + 1

])
, (3.9)

where χN = −((N + 1)(N + 2)/N). The reason why it was convenient to give
(3.7a,b)–(3.9) at this stage without justification for dropping the no-slip condition on the
azimuthal velocity component at the wall will be apparent later. We also note at this stage
that the solution has been normalised such that

W ′
N(1) = 1, (3.10)

so that
∂W
∂r
(1, θ) = κN . (3.11)
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3.2. The interaction in the wall layer
We now show how a VWI in the wall layer can sustain the above streamwise vortex
in the core. The first step is to find the O(δ) correction to the flow in the wall layer
induced by the vortex. The latter correction then interacts with the O(ε) correction to
Hagen–Poiseuille flow in the wall layer through what is a typical VWI to generate an
azimuthal z-independent flow with grows logarithmically at the edge of the layer. That
flow then drives a z-independent flow in the r–θ plane in the core and if the flow is O(δ/R)
it will couple to the O(δ) streamwise velocity component there to allow the streamwise
vortex to reinforce itself leading to instability.

Suppose then that the pipe radius is no longer constant and we add the streamwise vortex
perturbation given by (3.1a,b) onto the disturbed core flow solution (2.20)–(2.23). The
streamwise vortex itself must adjust through the viscous wall layer to satisfy the no-slip
condition on the undulating wall. In order to account for the O(δ) flow within the wall
layer induced by the streamwise vortex we modify (2.7)–(2.10) by writing

u = ûb + δε

R1/3 [Û(η, θ)E + C.C.] + · · · , (3.12)

v = v̂b + δε[V̂(η, θ)E + C.C.] + · · · , (3.13)

w = − μ

R1/3Δ1/3 η + ŵb + · · · + δ
[
−λ η

R1/3 + ε[Ŵ(η, θ)E + C.C.] + · · ·
]
, (3.14)

p = −4z
R

+ p̂b + · · · + δε

R1/3 [P̂(η, θ)E + C.C.] + · · · . (3.15)

Here, λ(θ) = (∂W/∂r)(1, θ), ûb, p̂b are as defined in (2.7)–(2.10) and C.C. denotes
‘complex conjugate’. The terms proportional to η come from the leading-order terms in the
expansion of w0(r) and W as the wall is approached. Note that the relative size of the terms
proportional to δ is fixed by the equation of continuity using ∂/∂r 	 R1/3 and the fact that
derivatives in the θ, z directions are O(1). We now substitute the above expansions into the
equations of motion written in terms of the wall layer variable η and equate coefficients of
the leading-order terms proportional to δ to obtain

∂P̂
∂η

= 0, (3.16)

Δ2/3

(
∂2Ŵ
∂η2 − ηŴ

)
− iαP̂ − μÛ = Δ2/3λ0ηwb cos Mθ −Δ−(1/3)ηvbλ

′
0 sin Mθ

+ ubλ0 cos Mθ, (3.17)

Δ2/3

(
∂2V̂
∂η2 − ηV̂

)
− ∂P̂
∂θ

= Δ2/3λ0ηvb sin Mθ, (3.18)

−Δ1/3 ∂Û
∂η

+ ∂V̂
∂θ

+ iαŴ = 0, (3.19)

where for convenience we have taken λ0 = λ/μ. The no-slip condition at the wall requires
that

∂Û
∂η

= Δ2/3λ0 = 0, η = 0. (3.20)
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The right-hand sides of the θ, z momentum equations above are known and by combining
those equations and using the continuity equation it can be shown that

Δ

(
∂3Û
∂η3 − η

∂Û
∂η

+ Û

)
+
(
α2P̂ − d2P̂

dθ2

)

= Δλ0

[
η
∂ub

∂η
− ub

]
cos Mθ + 2Δ2/3λ′0ηvb sin Mθ. (3.21)

If we differentiate the above equation with respect to η to eliminate P̂ we obtain a
fourth-order equation for Û which, after substituting for ub, vb from (2.17a–c) can be
solved to give

∂Û
∂η

= −Δ2/3
(

3λ0(θ) cos Mθ
∫ η

∞
Ai(φ) dφ + λ0(θ)Ai′′(η) cos Mθ

+3Mλ′0(θ)Ai′(0)
2[α2 + M2]

L′′′(η) sin Mθ
)
. (3.22)

Later, we will see that the behaviour of (Û, V̂) for large values of η is crucial and so we
note here that

Û ∼ −Δ2/3Ai′(0)(2λ0 cos Mθ − 3Mλ′0
2[α2 + M2]

sin Mθ), η → ∞, (3.23)

V̂ ∼ −ΔAi′(0)
η

[
3M

α2 + M2λ0 sin Mθ + S′(θ)
]
, η → ∞, (3.24)

where S is the solution of

d2S
dθ2 − α2S = −

[
5λ0(θ) cos Mθ + 9M

2[α2 + M2]
λ′0(θ) sin Mθ

]
. (3.25)

We note that in the expansions (3.12)–(3.15) there are terms proportional to δ e±iαz and
that within ûb there are terms independent of δ also proportional to e±iαz. These two sets of
terms will interact at higher order through the nonlinear terms in the equations of motion to
produce a higher-order velocity field independent of z. We now calculate the leading-order
velocity field produced by what is essentially steady streaming or VWI type of interaction.
We increase the size of ε until the interaction drives a roll velocity field of size comparable
with that associated with the streamwise vortex velocity field W in the core. At that stage
the interaction becomes closed and an eigenvalue problem will emerge for the growth rate
σ .

The first step is to return to the full equations of motion (2.2), (2.3) and integrate the
nonlinear terms in the azimuthal momentum equation over one streamwise wavelength.
After integrating by parts and using the equation of continuity we obtain

I =
∫ 2π/α

0

(
u
∂v

∂r
+ uv

r
+ v

r
∂v

∂θ
+ w

∂v

∂z

)
dz =

∫ 2π/α

0

(
∂

∂r
[uv] + 2

uv
r

+ 1
r
∂

∂θ
[v2]

)
dz.

(3.26)

The leading-order term in the above integral can be evaluated in the wall layer using
(2.19a,b), (3.23), (3.24). We find that when η becomes large I ∼ η−2, so that the integral
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written in terms of (r − 1) at the edge of the wall layer has

I ∼ 27/33Ai′2(0)δα4/3ε2

R2/3(α2 + M2)2(r − 1)2
[Q1(θ)+ Q2(θ)] + · · · , (3.27)

where

Q1(θ) = −(α2 + M2)[(α2 + 3M2)S′ cos Mθ + 2Mα2 sin MθS], (3.28)

Q2(θ) = 3M
2

[(3α2 − M2) sin 2Mθλ0(θ)+ M sin2 Mθλ′0(θ)]. (3.29)

The mean in z of the nonlinear terms in the azimuthal momentum equation will induce a
velocity field in the θ direction within the wall layer. If we denote that velocity field by
Vm(η, θ) the above discussion shows that for large values of η

∂2Vm

∂η2 ∼ 27/33R1/3Ai′2(0)α4/3ε2

(α2 + M2)2η2 [Q1(θ)+ Q2(θ)] + · · · . (3.30)

For large values of η it follows from above that Vm ∼ log η. Thus if we now write η in
terms of r we deduce that at the edge of the wall layer

Vm ∼ −27/3R1/3Ai′2(0)δα4/3ε2

(α2 + M2)2
[Q1(θ)+ Q2(θ)][log R + O(1)] + · · · , (3.31)

where the O(1) terms will depend on r.

3.3. The eigenrelation
Comparison of the above result with (3.1a,b) shows that, if ε is taken to be of order
1/R2/3

√
log[R1/3], then V will no longer vanish at r = 1. More precisely if we define

ε2log R = R∗

R4/3 , (3.32)

where R∗ is O(1) then the no-slip condition on V at r=1 must be replaced by

V = −27/3R∗Ai′2(0)δα4/3ε2

(α2 + M2)2
[Q1(θ)+ Q2(θ)], r = 1. (3.33)

The non-dimensional parameter R∗ defined above in terms of the Reynolds number and
wall amplitude is the effective control parameter for the instability we discuss. There is
apparently no simple physical interpretation of R∗ as it arises from complex interactions
involving Reynolds stresses in a viscous wall layer. Later, we will see that in certain limits
it simplifies into a more recognisable form. The instability we discuss therefore occurs
at high Reynolds numbers and small waviness amplitudes and, as in all high Reynolds
number theories, the expectation is that the predictions are relevant at Reynolds numbers
before the flow becomes turbulent.

From (3.23), (3.25) and (3.27) we see that the right-hand side of the above equation
depends linearly on λ0 = (∂W/∂r)(1, θ)/μ so that, on Fourier expanding in θ , (3.33) gives
an infinite set of equations relating the amplitudes κN . In the neutral case, using (3.9), we
deduce that

− 2N
(N + 1)(N + 2)

κN = R∗[ANκN + BNκN−2M + CNκ2M+N + DNκ2M−N], (3.34)

where AN,BN,CN,DN can be found in appendix A. Note also that we take κn = 0
whenever n is negative. The consistency of (3.34) specifies an eigenvalue problem of the
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form R∗ = R∗(M, α) as the eigenvalue of the system

BZ = 1
R∗ SZ . (3.35)

Here, S is a diagonal matrix with

SNN = −2(N + 2)(N + 1)
N

, (3.36)

and B(α,N) is defined in terms of AN,BN,CN,DN as indicated in appendix A and Z =
(κ1, κ2, κ3, . . .)

T. Multiplying the above equation by the inverse of S we obtain

AZ = 1
R∗ Z , (3.37)

where the matrix A =S−1B. The analysis above assumes that the streamwise component
of the vortex is even in θ when the wall undulations are even in θ . As mentioned earlier
a second mode, the odd mode, is possible and it has the streamwise component an odd
function of θ . The analysis given above is readily modified to account for that change and
it is found that in that case the matrix A is modified by switching the sign of the constants
DN defined in appendix A. It should also be noted that the non-neutral case can be solved
by using (3.7a,b) and (3.8) rather than (3.9) to determine VN,UN,WN .

We will see below that the even and odd modes become unstable at quite similar values
of R∗. Before presenting results we note that the assumed form of the disturbance is quite
general in that we have not assumed in (3.6) that the Fourier decomposition of the vortex
should just involve modes having N an integer multiple of M. The eigenrelation defined
by (3.37) is readily modified if we do indeed assume a simplified form of (3.6) with the
only non-zero Fourier modes in the decomposition of the vortex corresponding to N =
M, 2M, 3M, . . . . In that case we write

R∗ = R+M2/3, α = α+M, (3.38a,b)

and let
Z+ = (κM, κ2M, κ3M, . . .)

T, (3.39)

so that Z+ satisfies

B(α+,N)Z+= 1
R+ S+Z+, (3.40)

where S+ is a diagonal matrix with

S+
NN =

−2
(

N + 2
M

)(
N + 1

M

)
N

. (3.41)

Thus, when only integer multiples of M appear in the Fourier decomposition of the vortex,
the roughness wavenumber M appears only in the matrix S+ in the above eigenvalue.
When giving results we will indicate whether R∗(α,M) has been calculated with the more
general Fourier decomposition (3.6) or the special form described above.

The above simplified form of the eigenrelation found by allowing only modes
corresponding to integer multiples of M is useful in determining one possible structure of
the neutral curve for large M. The latter regime is of physical interest since it corresponds
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to the case when the roughness varies in both directions on a length scale short compared
to the pipe radius. For large M we write

α = α+M, R∗
e = R+

e M2/3 + · · · , (3.42a,b)

α = α+M, R∗
o = R+

o M2/3 + · · · . (3.43a,b)

In that limit at leading order we drop the order-M−1 terms in the matrix S+ and solve
the resulting M-independent eigenvalue problem for R+

e (α
+),R+

o (α
+) corresponding to

even and odd modes. We will give results for R+
e ,R+

o in § 6 where we discuss the limit
of short and long scale roughness. However, we stress that the high M structure outlined
above is based on the assumption that in that limit the disturbance has period 2π/M in θ ,
other structures are possible. Indeed we shall see that the most dangerous odd mode adopts
the above structure whilst the even one does not.

4. Two-dimensional roughness

If we set M = 0 the roughness is two-dimensional and A in (3.37) becomes a diagonal
matrix with the eigenvalues given by the diagonal elements of A. Thus there exists an
infinite sequence of neutral values of R∗ given by

R∗ = 1
ANN

= (α2 + N2)(N + 1)(N + 2)
21/35N2α4/3[Ai′(0)]2 , (4.1)

for N = 1, 2, 3, . . . . The minimum value of R∗ over α for a given N occurs when α2 = 2N2

and is given by

R∗ = R∗
c = 3(N + 1)(N + 2)

10N4/3[Ai′(0)]2 , (4.2)

which has its smallest value when N = 3. The most dangerous mode therefore corresponds
to

(α,N,R∗) =
(

3
√

2, 3,
2

31/3[Ai′(0)]2

)
= (4.24, 3, 20.70). (4.3)

Thus two-dimensional wall undulations lead to instability whenever R∗ > 20.70 and the
first mode to become unstable has N = 3. Figure 3(a) shows the first five neutral curves
for a range of values of α and we see that the N = 2, 3, 4 modes become unstable at quite
close values of R∗. Figure 3(b) shows the variation of R∗

c with N for the first fifteen modes.
For small and large values of α the quantity R∗ on any given neutral curve tends to infinity
like α−(4/3) and α2/3 respectively. For N > 3 the minimum R∗ on the Nth neutral curve
is smaller than that on the N + 1th and as α is increased the most dangerous mode will
switch from the Nth curve to the N + 1th curve where

α = ᾱN = 2N2(N + 1)(N + 3)
3N + 1

. (4.4)

Hence, for large α, the most dangerous mode has N = O(α2/3) and it follows from
(4.1)–(4.4) that for large α the locus of the points where the switch occurs has the
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Figure 3. (a) The neutral curves in the R∗ − α plane for the first five modes in the two-dimensional
roughness case. In (b), R∗

c , the minimum value of R∗ over α, for the first fifteen modes is shown.

asymptotic form

R∗ 	 α2/3

21/35[Ai′(0)]2 	 2.37α2/3. (4.5)

On the other hand, the locus of the minima on the different neutral curves found from (4.3)
noting that N = α/

√
2 is

R∗ 	 3α2/3

21/310[Ai′(0)]2 	 3.55α2/3. (4.6)

Figure 4 shows the variation of the lowest value of R∗ over all N as a function of α. Also
shown are the two asymptotic forms (4.5) and (4.6). Suppose figure 3 is extended to large
α and at any α the lowest R∗ over N is traced out as α varies, then that curve has (4.5)
rather than (4.6) as asymptote.

It is interesting to note that, although the instability we describe here satisfies a system
closely related to that satisfied by a Taylor–Görtler instability, the left-hand and right-hand
branch structures here scale differently from those found in Taylor–Görtler flows. It is also
important to note that the streamwise vortex in the core given by (3.6) is independent
of α and depends only on the azimuthal mode number N. Thus the streamwise vortex
instability induced by the wall waviness occurs at a wall amplitude which depends on the
wall wavelength but the structure of the vortex is independent of that wavelength.

The prediction of the N = 3 mode as the most dangerous is consistent with the results
of Loh & Blackburn (2011) who found that, except at relatively large wall amplitudes, the
N = 3 mode is the most dangerous mode. Note also that the axisymmetric mode found by
Cotrell et al. (2008) is significantly less unstable than the modes considered here or in

913 A43-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

52
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.52


P. Hall and O. Ozcakir

0 100 200 300 400 500 600 700 800 900 1000

50

100

150

200

250

300

350

400

R∗

R∗
Locus of minima

Large α form of R∗

α

Figure 4. Variation of the lowest value of R∗ over all N over a range of values of α together with the
asymptotic results (4.5) and (4.6).

Loh & Blackburn (2011). It should also be noted that axisymmetric modes cannot be
supported by the VWI type of interaction we have considered here. We presume the
axisymmetric mode is associated with regions of recirculation which appear in the wave
troughs as ε increases. The asymptotic description of that mode therefore requires a
solution of the interactive problem which develops when ε is of size R−(1/3). However,
for a given small wall amplitude ε, the VWI mode considered here becomes unstable at
Reynolds numbers of order ε−(3/2) whereas the two-dimensional mode would not become
unstable until R is O(ε−3). Hence, it appears that axisymmetric modes occur only in a
regime where the non-axisymmetric ones considered here are massively unstable so that
the flow is likely turbulent in that regime.

The dependence of the critical Reynolds number on ε is found by inverting (3.32). For
the most dangerous mode the R − ε dependence is therefore given by

R = [2R∗]3/4

ε3/2[3|log ε|]3/4 + · · · ≈ 7.16
ε3/2|log ε|3/4 . (4.7)

We will compare the above prediction with the results of Loh & Blackburn (2011) later
when we discuss the relevance of our two- and three-dimensional predictions with previous
work.

Figure 5 shows contours of the streamfunction for the roll flow (U,V) in the r–θ plane
and contours of the corresponding streak W for the N = 1, 2, 3, 4 modes. We note that
the streamwise vortex structure becomes progressively concentrated near the pipe wall as
the azimuthal wavenumber N increases. The roll structure shown for the N = 3 mode is in
good agreement with figure 5 of Loh & Blackburn (2011).

Our analysis so far has been for the case of a single streamwise harmonic, we now show
how the analysis is readily extended to more general roughness shapes. Suppose then that
the pipe is defined in cylindrical polar coordinates (r, θ, z) by

r = 1 + εf (z), (4.8)
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Figure 5. The streamwise vortex disturbance field for the two-dimensional roughness cases. The left-hand
column shows contours of constant values of the streamwise velocity component W. The right column shows
the streamlines in the r–θ plane for the roll flow (U,V) given by (3.9) for the first five modes, i.e. modes
N = 1, 2, 3, 4, 5. Note that the contours are independent of α.

where the function f (z) is periodic in z with period 2π/α and satisfies fmin = −1, fmax = 1.
We write

f (z) =
∞∑

n=−∞
fn exp(inαz), (4.9)
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(a) (b)

(c) (d )

(e) ( f )

Figure 6. Different types of roughness elements to be considered. (a,b) shows a square wave and pulse
function, (c,d) shows sawtooth and triangular walls and (e, f ) shows rectified sine wave and sine wave
walls.

with f0 = 0. The coefficients fn for a particular pipe could be calculated by scanning
the pipe surface; see for example Mughal & Ashworth (2013) for a discussion of
boundary-layer instabilities in flows over rough surfaces.

The instability mechanism we have described is driven by the interaction of the basic
Poiseuille flow and the axial component of the streamwise vortex both modified by the
wall undulations. Thus, at the order considered above, the contributions from interactions
involving different streamwise wavenumbers is negligible. Therefore, in the more general
case, (4.1) is replaced by a sum over all the axial wavenumbers. It follows that the neutral
value of R∗ for the more general roughness shape is given by

R∗ = (N + 1)(N + 2)

21/35α4/3N2[Ai′(0)]2
∞∑

m=−∞

f 2
mm4/3

N2 + m2α2

. (4.10)

Because the α dependence of R∗ is now embedded in the summation we cannot predict the
dependence of α on N for the most unstable mode. Therefore, we cannot infer that the most
dangerous azimuthal mode is the N = 3 mode and, even when it is, the most dangerous
streamwise wavenumber is not 3

√
2. However, the form of the terms within the summation

means that, even for roughness elements having step-function-like discontinuities for
which the Fourier coefficients will decrease like m−1, the dominant contribution will
correspond to that from m = 1 and so it is likely that the most dangerous mode will still
have N = 3. For definiteness we now consider the roughness elements shown in figure 6.

Having calculated the Fourier coefficients for each of the roughness shapes we calculate
R∗ as a function of α for N = 1, 2, 3, 4, 5, . . .. We found that, in fact, the N = 3 mode
remained the most dangerous mode in each case. Figure 7 shows the neutral curves for
the roughness elements of figure 6. We see that the square wave is apparently the most
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Figure 7. The neutral curves for the most dangerous modes (all N = 3) for the two-dimensional roughness
shapes shown in figure 6.

dangerous shape and it leads to a critical value of R∗ which is about one half of its value
for the single sine wave. In terms of R − ε the condition for instability the curves in figure 7
predict instability when

R >
φ

ε3/2|log ε|3/4 , (4.11)

where 4.59 < φ < 10.9 so that for a given small wall amplitude the shape of roughness
likely can make about a factor of 2 difference in the critical Reynolds number. Once again
we stress that the streamwise vortex structure is independent of the wavenumber α and
so independent of the roughness shape and therefore the modes are still as indicated in
figure 5.

5. Three-dimensional roughness

If the azimuthal wavenumber of the roughness is non-zero, then there is not an analytical
expression for R∗ available and we must solve the eigenvalue problem (3.37) numerically.
Note that (3.37) corresponds to the most general form of θ dependence for the streamwise
vortex and, based on our results for the two-dimensional problem, we anticipate that for
given values of α and N there will be an infinite discrete spectrum of eigenvalues R∗. Here
our interest is primarily in the most dangerous mode for the given values of α and M. The
eigenvalue problem was solved using MATLAB. Negative values of R∗ are not physically
relevant and so we are interested in the largest positive value of the eigenvalue 1/R∗ which
therefore, for given values of α,M, gives instability at the least value of R∗. The eigenvalue
problem was solved for both the even and odd modes and results for M = 1, 2, 3, 4, 5 are
shown in figure 8. We see that in both cases the M = 1 roughness is the most unstable.
However, by comparison with figure 3 we conclude that two-dimensional roughness is
more unstable than three-dimensional roughness.

We stress that in spite of the relative similarity between the results shown in figures 3 and
8 they are conveying different information. Figure 3 shows the neutral curves for the first
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Figure 8. (a,b) The neutral curves for the even and odd modes in the α − R∗ plane for the three-dimensional
roughness case with M = 1, 2, 3, 4, 5.

five neutral modes for two-dimensional roughness whilst figure 8 shows the dependence
of R∗ on α for the most unstable odd and even modes for different values of M. We stress
that for the three-dimensional case we do not specify an azimuthal wavenumber for the
disturbance. Instead we have a sequence of eigenvalues R∗ with eigenfunctions distributed
amongst the different values of N. Moving along any of the neutral curves in figure 8
the dominant Fourier term in the decomposition of the disturbance changes and there can
be many slightly less unstable modes bunched in the vicinity of the most dangerous one.
Thus for the even mode, the most unstable mode can jump to one with a quite different
Fourier decomposition as α varies. The result of the jump in modes means that if figure 8
is enlarged discontinuities in slope along the curves can be seen where the jump occurs. In
addition we observe that the most dangerous even mode for M = 4 jumps discontinuously
near α = 14.5. A careful investigation around that point shows that the branch to the left
of the discontinuity has increasing slope before turning and developing for decreasing α as
a less unstable mode. By contrast the right-hand part of the M = 4 curve continues above
both branches of the left-hand part of the curve as α decreases and so ceases to be the most
unstable mode as α is decreased below 15.5.

Figure 9 shows the variation of R∗
c , the minimum value of R∗ over α, for both the even

and odd modes, we see that in each case the odd mode is the most unstable. That property
holds for all higher values of M investigated but not shown here. Since the odd mode is
always the most unstable we will for the most part concentrate on that mode below.

The calculations uncovered significant differences between the eigenfunctions
associated with the most unstable odd and even modes calculated from the more general
form (3.6) and the simplified form where the Fourier decomposition of the disturbance
involves only multiples of the roughness wavenumber M. However, for the odd mode we
find that the most unstable mode from the constrained expansion coincides with that from
the full expansion. Hence the Fourier decomposition of the most dangerous odd mode
contains only integer multiples of M. We see from (3.25)–(3.31) that it is 2Mθ rather than
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Figure 9. The variation of R∗
c the minimum of R∗ over α for the first ten values of M for the odd (red symbol)

and even (blue symbol) modes.

Mθ that appears in the disturbance equations, therefore the odd mode corresponds to a 1/2
subharmonic.

Our calculations show that, in contrast to the odd mode, the even mode has a more
complex structure and in most instances the Fourier decomposition of the most unstable
even mode contains non-integer multiples of the roughness wavenumber M. In fact we
find that for larger values of M the even mode is typically dominated by the M ± 1 Fourier
components. The latter modes have almost equal and opposite values so the streamwise
velocity disturbance for large M is proportional to sin Mθ sin θ and the mode is more
correctly described as a sideband instability; see for example Eckhaus (1965).

If we choose a value for M and compute the values of R∗ corresponding to the most
unstable odd and even modes at increasing values of α we find that, as shown in figure 8,
R∗ will vary like α2/3 for α large. In fact our calculations showed that in the large α limit
the most unstable odd and even modes have the asymptotic form (4.5) found earlier for the
two-dimensional case. Thus when the streamwise variation of the roughness varies much
more quickly than the azimuthal variation the most unstable mode occurs at the same value
of R∗ as the two-dimensional case. Thus if figure 8 is extended to higher values of α,M
the neutral curves would have the curve R∗ 	 2.37α2/3 as an envelope.

If we constrain the disturbances to contain only multiples of M in their Fourier
decompositions then we must solve the simplified eigenvalue problem (3.40). For the odd
mode that procedure invariably gives the same most unstable mode as the more general
expansion. For the even mode that is not the case and the most unstable mode does not
come from the simplified problem. However, the most unstable odd and even modes of the
constrained problem once again adopt the asymptotic form (4.5) for large α, but we stress
that all solutions with increasing α do not have that property.

By neglecting the terms of order 1/M in (3.38a,b) we can solve for the asymptotic
eigenrelations given by (3.42a,b) and (3.43a,b). However, we stress that the resulting
asymptotic form assumes the Fourier decomposition of the disturbance involves only
multiples of M and so does not necessarily connect with the most unstable even
or odd mode at lower α. Figure 10 shows the variations of R+

e ,R+
o for a range of

values of the scaled wavenumber α+. We see that the predicted values have the
same asymptotic form for large α+; in fact numerically it was found that, as can be
anticipated from the above discussion, R+

e ,R+
o both behave like 2.37[α+]2/3 for large α+.
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Figure 10. The odd and even functions R+
e ,R+

o for a range of values of α+.

Figure 10 shows that in the high M limit the odd mode remains the most unstable
with instability occurring first at (α+,R+

o ) = (2.91, 9.03) whilst the even mode becomes
unstable when (α+,R+

e ) = (3.75, 10.04) We note also that the even mode has a single
minimum whilst the odd mode has two.

Figure 11 shows a comparison of the α − R∗ dependence of the most unstable odd
and even modes found by solving the full eigenvalue problem with the asymptotic forms
(3.42a,b) and (3.43a,b) using the data of figure 10. We see that at large M the most unstable
even and odd mode neutral curves are remarkably close together over the whole range of
α. The asymptotic prediction of the curve for odd mode curve agrees almost perfectly with
the full solutions, by contrast the asymptotic prediction for the even mode agrees only
at large M. This is because the asymptotic solutions we constructed assumed the Fourier
decomposition of the disturbance field involved only multiples of M. For the odd mode
that property is shared by the solution of the full problem assuming no special structure.
However, the even mode solution of the full problem does not share the same special
structure. Since the odd mode is always the most unstable we do not pursue alternative
large M asymptotic descriptions of the modes here.

Now, let us discuss the velocity fields associated with the even and odd modes.
Figures 12 and 13 show the contours of the streamfunction and axial velocity of the
most dangerous odd and even modes for M = 1, 2, 3, 4, 5. In each case the eigenfunctions
are evaluated at the minimum points of the neutral curves. We see that the flow fields
tend to become more regular at the higher values of M; indeed the disturbance field is
then similar to the two-dimensional case. This is because the critical configuration occurs
at progressively higher values of α as M increases and thus takes on the more regular
properties found in the two-dimensional case.

The results found above show that for three-dimensional roughness the odd mode is
always more unstable than the corresponding even one, but both are less unstable than the
most dangerous mode for the case of two-dimensional roughness. Thus three-dimensional
roughness with M = 1 gives instability whenever R∗ > 26.02 whereas two-dimensional
roughness gives instability when R∗ > 20.70.

For given small values of ε the corresponding neutral values of R are calculated as
indicated in (4.7). Figure 14 shows the α − R dependence for the most dangerous two
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Figure 11. Comparison between odd and even modes for M = 100, 200 with the large M asymptotic result for
the odd mode.

and three-dimensional roughness cases. Also in the figure we have plotted the results
of Cotrell et al. (2008) who investigated the instability of two-dimensional roughness to
two-dimensional disturbances. We see that such modes are significantly less unstable. In
addition the numerical results of Loh & Blackburn (2011) on two-dimensional roughness
are shown for α = 4, 6. The latter two values are comparable to the critical values
of α we obtained for the two and three-dimensional roughness cases. The results are
increasingly consistent with the asymptotic results as ε decreases and show the same trend
as the asymptotic results until ε is about 0.35 where the full numerical calculations give
increasing values of R as ε decreases.

Figure 14 also includes experimental results taken from figure 10 of Kandlikar (2008).
The results indicated by the blue and red crosses at each ε correspond to measurements in
water and air respectively. The agreement with the asymptotic predictions is excellent, this
might be fortuitous since the full numerical results of Loh & Blackburn (2011), which
one might expect to be in better agreement with experiment, are less consistent with
experiments.

6. The limits of small and large scale roughness

6.1. Small scale roughness and a universal criterion for roughness induced instability
In the previous sections we have described the instability of Hagen–Poiseuille flow caused
by wall roughness varying on the same length scale as the pipe radius. We have shown that
instability will occur when

R ≥ [2R∗(α,M)]3/4

ε3/2[3|log ε|]3/4 + · · · , (6.1)

with, in the most dangerous configurations, R∗ = 20.7 and 26.02 for two and
three-dimensional roughness respectively. In both the two and three-dimensional cases
in the limit of large α the lowest value of R∗ at which instability occurs has the asymptotic
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Figure 12. Contours for the axial velocity (a,c,e,g,i) and streamwise vortex streamfunction (b,d, f,h,j) for the
even modes at the minima in figure 8. Results are shown in the order M = 1, 2, 3, 4, 5 from top to bottom.

dependence R∗ 	 2.37α2/3. However, as indicated in figure 8, the rate at which that limit
is approached in the three-dimensional case depends on M.

It is useful at this stage to express (6.1) in an alternative form. In dimensional form the
radius of the pipe can be taken as a(1 + 2ε cos Mθ cosαz∗/a) where z∗ is the dimensional
length in the streamwise direction. The dimensional wavelength of the radius variations in
the streamwise direction b and the wave height h are given by

b = 2πa
α
, h = 2εa. (6.2a,b)
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Figure 13. Contours for the axial velocity (a,c,e,g,i) and streamwise vortex streamfunction (b,d, f,h,j) for the
odd modes at the minima in figure 8. Results are shown in the order M = 1, 2, 3, 4, 5 from top to bottom.

If the maximum streamwise velocity in the straight pipe is U0 then the friction velocity
uτ is given by uτ = √

νU0/a. We define Rb, a Reynolds number based on the streamwise
wall wavelength b and the frictional velocity, by writing

Rb = uτb
ν

= b
√

R
a
. (6.3)
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Figure 14. Comparison of theoretical predictions with previous numerical work and experiment.

Thus, since a/h  1, we can write (6.1) in the form

Rb ≥ b
a1/4h3/4

⎛⎜⎝8R∗(α,M)

3 log
a
h

⎞⎟⎠
3/8

. (6.4)

Now, we suppose that the roughness operates on a smaller length scale, that would likely be
the case if it is a result of manufacturing imperfections rather than ‘designed roughness’.
If the roughness length scales in the streamwise and azimuthal directions decrease at the
same rate then we need to consider the structure of R∗(α,M) in the limit α,M → ∞, with
α/M held fixed. This is precisely the regime discussed earlier in § 3; see the discussion
around (3.40) and (3.42a,b). We recall that for modes having energy only in Fourier modes
corresponding to integer multiples of M the even and odd function R+

o ,R+
e are as shown

in figure 10. We now consider only the odd mode since we found that it is always the
most unstable and can be described by the constrained Fourier decomposition. Thus if we
concentrate on the odd mode we replace R∗ in (6.4) by M2/3R+

o (α
+) where α = α+M to

give the condition

Rb ≥ bM1/2

a1/4h3/4

⎛⎜⎝8R+
o (α

+)

3 log
a
h

⎞⎟⎠
3/8

. (6.5)

This is the condition for instability when the roughness is on a length scale that is small
compared to the pipe radius with R+

o given in figure 10; the minimum occurs when R+
o =

9.03. Now suppose that the roughness length scale in the axial direction is short compared
to that in the azimuthal direction. In that case α+  1 and R+

o 	 2.37(α+)2/3 and (6.5)
becomes

Rb ≥
3.16

[
b
h

]3/4

(
log

[a
b

]
+ log

[
b
h

])3/8 . (6.6)
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Thus, the condition for instability in this case depends only weakly on the pipe radius
through the logarithmic term in the denominator and, if a/b � b/h, the condition becomes

Rb ≥ 3.16

[
b
h

]3/4

log
[

b
h

]3/8 . (6.7)

This condition is now independent of the pipe radius and applies to short scale roughness
varying more quickly in the streamwise direction. The condition also applies to short scale
two-dimensional roughness, and being independent of the pipe radius it is a universal
result which can for example be derived from the results of Hall (2020) for channel flows.

6.2. Roughness on a long length scale
Now let us make some observations about the situation when the streamwise variation of
the roughness is on a length scale large compared to the pipe radius. We will consider only
the two-dimensional case. We see from (4.1) that in the limit of small α

R∗ 	 C(N)
α4/3 , (6.8)

where

C(N) = (N + 1)(N + 2)
21/35Ai′(0)2

. (6.9)

It follows that at small values of α the N = 1 mode is the most dangerous mode. In terms
of h, b the dimensional height and wavelength of the wall undulations, instability in the
two-dimensional case thus occurs when

h
a
>

2
√

C(1)
[

b
a

]2/3

(2π)2/3R2/3√log R
. (6.10)

In this limit h/a � b/a so that in the above formula we can replace log R by log[b/a].
The authors are not aware of experimental or numerical predictions of the critical wave
height h in this parameter range. It is of interest to speculate about what the above result
implies for boundary layers where there has been much interest in the effects of waves on
transition, see for example Fage (1943) and Carmichael (1959).

In the boundary-layer case, boundary-layer growth somewhat complicates the issue but,
if we assume that the left-hand branch structure R∗ 	 C(N)/α4/3 remains intact in the
presence of non-parallel effects, we can draw some conclusions. Note that we know from
Denier, Hall & Seddougui (1991) that the left-hand branch structure of Görtler vortices
expected on the basis of Taylor vortex theory remains intact when non-parallel effects are
taken care of.

In the boundary-layer case the appropriate Reynolds number is based on the local
boundary-layer thickness rather than pipe radius a. If we write the condition for instability
in terms of the Reynolds number R based on chord length scale L then we find instability
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occurs when

h
L
>

F
[

b
L

]2/3

R7/6

√
log

[
b
L

] , (6.11)

where F is a constant dependent on the form of the initial disturbance. By comparison
with experimental results, Fage (1943) arrived at the result

h
L
>

G
[

b
L

]1/2

R3/2 , (6.12)

where G is a constant. Subsequent work by Carmichael, Whites & Pfenninger (1957)
and Carmichael & Pfenninger (1959) was broadly in agreement with Fage’s results and
certainly their experiments supported the result that the critical configuration has h2/b
a constant. By contrast (6.12) predicts h2/b4/3 is constant, whilst there is a factor b1/6

different between the present results and experiments the square root of the logarithmic
term in the denominator of (6.12) partially accounts for that factor. However, there is a
more significant factor of R1/3 power between the two equations. Nevertheless, the overall
trend of the two results is consistent and it should be pointed out that (6.12) was derived
on the basis of a small number of experiments on wall deformations of different shapes.

7. Conclusion

We have described a VWI instability mechanism which governs the growth of streamwise
vortex perturbations induced by wall undulations. The instability is operational when the
Reynolds number satisfies (6.1) or, equivalently, (6.4) in terms of the Reynolds number
based on friction velocity and streamwise wall wavelength. If the radius variations are on
a shorter length scale than the pipe radius then the condition simplifies to (6.5). Moreover,
when azimuthal variations are slow compared to the axial ones, or when they are absent,
(6.5) can be reduced to (6.7) which is independent of the pipe radius. Therefore, (6.7) is
a universal result which applies to any fully developed pipe or channel flows. It should be
noted that the instability mechanism can only occur when axial variations are present
so that azimuthal radius variations alone cannot induce the VWI mechanism. If only
azimuthal perturbations are present the basic state is a unidirectional flow depending on
the two variables in the plane perpendicular to the axis. In the absence of the mechanism
described here instability will likely require wall amplitudes comparable with the radius
of the pipe.

Our results are broadly consistent with the numerical results of Loh & Blackburn (2011)
and predict instability before the axisymmetric mode of Cotrell et al. (2008) becomes
unstable. The latter authors also argue that instability is only possible when the wall
undulations are sufficiently large to cause reversed flow in the troughs of the pipe wall.
For small amplitudes reversed flow only occurs in the interactive regime ε = O(R−(1/3))
which would mean that for a given small value of ε instability occurs only when R > d/ε3,
however, the curve fit given by Cotrell et al. (2008) has instability when the Reynolds
number is O(ε−1). The reason for the expected scaling and the curve fit of the latter
authors differing is perhaps because their results were at values of ε too large for the
small ε asymptotic to be a good approximation. However, it should also be noted that
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Cotrell et al. (2008) reported that, in an axisymmetric pipe, three-dimensional modes are
less unstable than two-dimensional ones. That result is at odds with our results and those
given by Loh & Blackburn (2011).

The VWI mechanism described here can be extended to the situation when the axial
undulations contain a number of Fourier modes. We have only investigated the more
general situation when the wall undulations are axisymmetric but the method used in § 4
is readily extended to the more general case. For the cases investigated in § 4 we found
that step function roughness was the most destabilising, but even then the critical value of
R∗ needed for instability is only about one half of its value for the pure sine wave case so
the actual shape of the roughness appears not to be crucial. The roughness we considered
also contained a single Fourier mode in the θ direction, the more general case could be
considered and in that case the matrix A in (3.37) becomes full.

There is an important difference in our results for two and three-dimensional wall
undulations. In the first case we found that there is an infinite set of unstable modes and
that the N = 3 azimuthal mode is the most dangerous one with the corresponding wall
undulation wavenumber given by α = 3

√
2. Interestingly the fact that the critical Reynolds

numbers for the N = 2, 3, 4, 5 modes are quite close together is consistent with exact
coherent structure solutions in smooth pipes; see Eckhardt et al. (2007) or the discussion in
Wedin & Kerswell (2004). However, it should be noted that the exact coherent structures
we refer to support waves which travel downstream with a non-zero speed whereas the
waves implicated in the instability mechanism discussed here are stationary. We presume
that the similar importance of the N = 2, 3, 4, 5 modes in what are distinct physical
problems is that those azimuthal modes decay at similar rates in smooth pipes. In the
present problem the wall undulations destabilise these modes whereas in the exact coherent
structure context those streamwise modes are reinforced by the VWI mechanisms within
their critical layers. It should also be pointed out that the N = 1 mode which is known
from Schmid & Henningson (1994) to be the most rapidly growing transient mode is
significantly more stable than the N = 2, 3, 4, 5 modes and plays a less prominent role
in the exact coherent structure context.

In the case of three-dimensional undulations we computed the most dangerous mode
which now has energy distributed in a number of azimuthal wavenumbers. We found that
wall undulations with M = 1 give the most unstable even and odd modes. We found that,
in general, the most dangerous mode, the odd one, has energy only in modes corresponding
to integer multiples of M. At finite values of α we found that two-dimensional roughness
was always more unstable than three-dimensional roughness. However, in the limit of
short scale roughness with M, α large we found that at leading-order instability occurred
at the same R∗ for the two and three-dimensional cases. The conclusion is of course that
roughness in the form of pipe radius variations need only occur at quite tiny amplitudes in
the axial direction to produce instability.
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Appendix A. Evaluation of the elements of the matrix A

Here, we will derive expressions for the constants aN, bN, cN, dN introduced in § 3 for
even modes where streamwise velocity component of the vortex is an even function of
θ . In the first instance we suppose that M /= 0. For convenience, we define a sequence
λN,N = 0,±1,±2, . . . by first expanding λ(θ) = W ′(1, θ) in the form

λ =
∞∑

N=1

λN cos Nθ (A1)

and then taking λN = 0,N < 1. The first step is to solve for S(θ) which satisfies (3.25).
By substitution it is easily seen that

S(θ) =
∞∑

N=1

αn cos Mθ cos Nθ + βN sin Mθ sin Nθ, (A2)

αN

λN
= α̂N =

5(N2 + M2 + α2)− 9M2N2

α2 + M2

(N2 + M2 + α2)2 − 4M2N2 , (A3)

βN

λN
= β̂N = (N2 + M2 + α2)α̂N − 5

2MN
. (A4)

Using the above form for S(θ) we can then compute the functions S′(θ) cos Mθ, S(θ)
appearing in (3.22) to give

Q1(θ) = 1
μ

∞∑
N=1

[aNλN + bNλN−2M + cNλN+2M + dNλ2M−N] sin Nθ (A5)

2aN

α2 + M2 = −(α2 + 3M2)(Mβ̂N − Nα̂N)− 2Mα2β̂N (A6)

4bN

α2 + M2 = −(α̂N−2M − β̂N−2M)[(M − N)(α2 + 3M2)+ 2Mα2], (A7)

4cN

α2 + M2 = −(α̂N+2M + β̂N+2M)[−(M + N)(α2 + 3M2)− 2Mα2], (A8)

4dN

α2 + M2 = −(α̂2M−N + β̂2M−N)[(M − N)(α2 + 3M2)+ 2Mα2]. (A9)

Similarly, we can show that

Q2(θ) = 1
μ

∞∑
N=1

[eNλN + fNλN−2M + gNλN+2M + hNλ2M−N] sin Nθ, (A10)

where

eN = −3
4

M2N, fN = hN = 3M
8
(6α2 + MN − 4M2),

gN = −3M
8
(6α2 − MN − 4M2).

⎫⎪⎪⎬⎪⎪⎭ (A11)
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We then define

AN = −24/3α4/3Ai′2(0)
(α2 + M2)2

(aN + eN), (A12)

BN = −24/3α4/3Ai′2(0)
(α2 + M2)2

(bN + fN), (A13)

CN = −24/3α4/3Ai′2(0)
(α2 + M2)2

(cN + gN), (A14)

DN = −24/3α4/3Ai′2(0)
(α2 + M2)2

(dN + hN). (A15)

The matrix B introduced in § 3 has then all elements zero except for:

(a) The main diagonal has BNN = AN,N /= M and BMM = AMM + DMM .
(b) The (2M + N,N) element for N = 1, 2, . . . is CN .
(c) The (2M + N,N) element for N = 1, 2, . . . is BN .
(d) The (N, 2M − N) element for N = 1, 2, . . . , 2M − 1 is DN .

In the case M = 0 the matrix B has all off-diagonal elements zero and the diagonal
element BNN is given by

BNN = 24/3Nα4/3Ai′2(0)
α2 + N2 . (A16)
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