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106.19 Some observations on inequalities related to

Huygens' inequality

Our starting point is a pair of trigonometric inequalities valid for
: Huygens' inequality0 < x < π

2

2 sin x + tan x
3

> x (1)

and the Cusa-Huygens' inequality

x >
3 sin x

2 + cos x
. (2)

These feature in Huygens' 1654 treatise De circuli magnitudine inventa
which built on earlier ideas of Snell and Nicholas of Cusa for accelerating
the convergence of Archimedes' method for calculating . We look at
refinements of these inequalities, using as a common tool the following
technique for establishing inequalities: if  for , then,
on integrating,  for . In all our applications,

 with  then giving the inequality sought.

π

f ′ (x) > g (x) 0 < x < a
f (x) − f (0) > ∫

 x
0 g(t)dt 0 < x < a

f (0) = 0 f (x) > ∫
 x
0 g (t) dt

Inequalities related to (1) and (2) have attracted quite a lot of interest
recently, including a lovely article by Nelsen, [1], and the wide-ranging
survey by Bhayo and Sándor, [2]. These both feature the chain of
inequalities

2 + cos x
3

>
sin x

x
> 3 cos x >

3 cos x
2 cos x + 1

. (3)

Here,  is equivalent to (2) while  is

equivalent to (1). Also note that, because the component pieces are all even
functions, (3) is actually valid for .

2 + cos x
3

>
sin x

x
sin x

x
>

3 cos x
2 cos x + 1

0 < |x| < π
2

The proofs in Nelsen's article use bounds for the partial sums of the
Maclaurin expansions of  and . An alternative method for (1), used

by Christopher Bradley in [3], is to consider  for

which , by the AM-GM

inequality. On integrating, , which gives (1), since

. The same method also works for (2). For if ,

then  so that  which,

on integrating, gives , as required for (2).

sin x cos x

f (x) =
2 sin x + tan x

3

f ′ (x) =
cosx + cosx + sec2x

3
> 3 cosx cosx sec2x = 1

f (x) − f (0) > x
f (0) = 0 g (x) =

3 sin x
2 + cos x

g′ (x) =
6 cos x + 3
(2 + cos x)2

1 − g′ (x) = (1 − cos x
2 + cos x)2

> 0

x − g (x) + g (0) > 0
Regarding (3), we have the following surprising observation:

sin x
x

> 3 cos x ⇔
sin x

x
>

3 cos x
2 cos x + 1

.

So the apparently weaker equivalent of Huygens' inequality on the right-
hand side is equivalent to the stronger left-hand inequality.
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For the  direction, we follow Nelsen's proof in [1]: the GM-HM

inequality applied to  gives .

⇒
1, 1, cos x 3 cosx >

3
1 + 1 + 1

cosx
=

3 cosx
2 cosx + 1

For the  direction, recall that  is equivalent to⇐
sin x

x
>

3 cos x
2 cos x + 1

2 sin x + tan x > 3x. (4)

To show that , it suffices to prove that .

Consider . Then 

sin x
x

> 3 cos x sin2 x tan x > x3

h (x) = sin2 x tan x
h′ (x) = 2 sin2 x + tan2 x > 1

3 (2 sin x + tan x)2 > 3x2,
using the power means inequality together with (4). On integrating,

, as required.h (x) − h (0) > x3

Huygens' inequality has an interesting geometrical interpretation, shown
in Figure 1(a). Here,  and ,
so (1) is equivalent to .

area A1 = 1
2 (tan x − x) area A2 = 1

2 (x − sin x)
A1 > 2A2

(a)

1

1

x

A1

A2

tan x

(b)

1

1

x A2

tan x
2

tan x
2

B1

FIGURE 1

The related Figure 1(b) concerns area  and
. In this case we have the inequality  or

B1 = 1
2 (2 tan x

2 − x)
area A2 = 1

2 (x − sin x) 2B1 > A2

4 tan x
2 + sin x > 3x. (5)

A quick proof of this is to note that, if , thenk (x) = 4 tan x
2 + sin x

k′ (x) = 2 sec2 x
2

+ 2 cos2 x
2

− 1 > 4 sec2 x
2

cos2 x
2

− 1 = 3,

by the AM-GM inequality. This then integrates to give ,
as required. Note that (5) is actually valid for .

k (x) − k (0) > 3x
0 < x < π

Alternatively, we can co-opt the central inequality in (3),

4 tan x
2 + sin x
3

=
2 tan x

2 + 2 tan x
2 + 2 sin x

2 cos x
2

3
> 3

8 sin3 x
2

cos x
2

> x,

using the AM-GM inequality together with  from (3).
sin x

2
x
2

> 3 cos
x
2

How does (5) compare with (1)?
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We claim that , for .
The left-hand inequality is equivalent to

2 sin x + tanx > 4 tan 1
2x + sinx > 3x 0 < x < 1

2π

sin x + tan x − 4 tan
x
2

> 0. (6)

Setting  with  we see that t = tan x
2 0 < t < 1

2t
1 + t2

+
2t

1 − t2
− 4t =

4t5

1 − t4
> 0.

as required.
On the last two pages of [2], Bhayo and Sándor give a proof that

Huygens' arc-length approximation formula, which occurs in Huygens' 1654
treatise mentioned above and is discussed in [4], features in the following
strengthening of (2):

3 sin x
2 + cos x

<
8 sin x

2 − sin x
3

< x. (7)

For the left-hand inequality, they substitute  to show thatt = cos x
2

8 sin x
2 − sin x
3

−
3 sin x

2 + cos x
=

4 sin x
2

3 (2 + cos x) (t − 1)2 (2 − t) > 0.

For the right-hand inequality, if , then l (x) = 1
3 (8 sin x

2 − sin x)
1 − l′ (x) = 2

3 (1 − cos x
2)2 > 0

so, on integrating, , as required.x > l (x) − l (0)
Finally, the authors of [1, 2] discuss the hyperbolic analogues of (3):

2 + cosh x
3

>
sinh x

x
> 3 cosh x >

3 cosh x
2 cosh x + 1

, for x > 0.

These may be established by applying exactly the same methods as those
used above for their trigonometric counterparts. It is worth noting that (5),
(6) and the right-hand side of (7) also remain valid in their hyperbolic
versions; but (mimicking the proof above), the left-hand side of (7) is only
valid for .0 < x < 2 cosh−1 2 = ln (7 + 4 3)
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